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Abstract

We present an algebraic embedding of Neighbourhood Logic (NL) into the frame-
work of semirings which yields various simplifications. For example, some of the
NL axioms can be dropped, since they are theorems in our framework, and Galois
connections produce properties for free. A further simplification is achieved, since
the semiring methods used are easy and fairly standard. Moreover, this embedding
allows us to reuse knowledge from Neighbourhood Logic in other areas of Com-
puter Science. Since in its original axiomatisation the logic cannot handle intervals
of infinite length and therefore not fully model and specify reactive and hybrid sys-
tems, using lazy semirings we introduce an extension of NL to intervals of finite and
infinite length. Furthermore, we discuss connections between the (extended) logic
and other application areas, like Allen’s thirteen relations between intervals, the
branching time temporal logic CTL∗ and hybrid systems.
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1 Introduction

Chop-based interval temporal logics like ITL [15] and IL [10] are useful for
the specification and verification of safety properties of real-time systems,
in particular, of hybrid systems (e.g. [46]). The Duration Calculus (DC) [45]
is an extension of ITL in which real numbers model time and Boolean-valued
functions over time model states and events of real-time systems. In particular,
DC extends ITL by introducing notions of duration, measure and integration.
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However, all these approaches have natural limitations due to different aspects.
First, it is clear that formulae of these logics cannot express unbounded liveness
properties, since their truth value only depends on a given finite interval.
Furthermore they consider only properties inside that interval and cannot be
used for reasoning about properties “outside”. Therefore, they are not able
to express properties about the perpetual interaction of the system with its
environment as in the case of hybrid or reactive systems. Second, notions from
real analysis, such as limits, are not expressible in ITL.

In order to improve the expressiveness of ITL and DC, they were extended
by infinite intervals [47,31,42] and expanding modalities [41,33,39,34] that are
able to describe behaviour outside the interval under consideration. Neigh-
bourhood Logic (NL) [43] is a first-order interval logic that uses expanding
modalities. These atomic formulae relate time intervals to their (left and right)
interval neighbours. It has been shown that the basic unary interval modalities
of [16] and the three binary interval modalities (C, T and D) of [41] can be
defined using the modalities of NL [14,5]. Hence NL subsumes those logics. It
is also used for specifying liveness and fairness of computing systems and for
defining notions of real analysis in terms of expanding modalities. Unfortu-
nately NL, as an extension of ITL, is based on finite intervals and cannot handle
infinite intervals. Therefore, although NL is able to reason about past and fu-
ture behaviour via a universal modality, it cannot reason about unbounded
infinite behaviour. Moreover, there is nearly no support from theorem provers
for the above logics. The few existing approaches like [13] are special-purpose
theorem provers, i.e. these automated theorem provers have to be developed
and implemented for each single purpose.

Due to these deficiencies, we pursue two main aims with this paper.

First we present an algebraic embedding of NL into the algebraic framework
of semirings, dealing mainly with the propositional aspects of NL. Then we
extend NL from single intervals to sets of intervals, which also paves the way
to an algebraic axiomatisation of NL. Moreover, we extend the approach to
arbitrary idempotent semirings. This allows us to transfer the knowledge of NL

to other areas of Computer Science and to reuse it there. Vice versa, we can
transfer knowledge from semirings to NL. Because of work in [43] our extension
is also an embedding of the logics of [16] and [41]. When deriving the algebraic
version of NL we obtain further interesting results. For example, we show that
the axioms K, M and another one can be dropped since they are theorems in
the algebraic setting. Allen’s thirteen relations between intervals [1,2] can also
be embedded into semirings and are therefore related to NL. Since we are using
first-order equationally based theory, we can use off-the-shelf theorem-provers
like Prover9 [28] to support our calculations. The advantage of such general-
purpose provers is that they are ready to use and there is no need to design
and implement a new special-purpose theorem prover. Another advantage of
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the algebraic setting is that the methods used are fairly standard.

Second, since neither NL nor the algebraic version handle intervals of infinite
length, we extend the algebraic approach to infinite time. Instead of using
semirings, we relax them to lazy semirings. This allows us to handle infinite
behaviour within the setting of NL. Moreover, due to the capability of handling
infinite elements, NL and its algebraic counterpart can also be adapted to
logics like CTL∗ and hybrid systems. For the latter, semiring neighbours yield
some safety and liveness properties. In both settings (full and lazy semirings)
semiring neighbours are related by Galois connections, which give a lot of
properties for free.

The paper is organised as follows: In Section 2 we recapitulate the necessary
basics for our work. In particular we introduce NL and modal semirings. Af-
terwards we derive the algebraic embedding of NL in Section 3. There we also
define semiring neighbours and boundaries in the setting of modal semirings
and show some simplifications of NL which are enabled by the algebraic set-
ting. In Section 4 we discuss properties beyond the original NL. More precisely
we have a look at the chop operator and at Allen’s 13 relations between in-
tervals. In Section 5 we generalise the developed theory to the setting of lazy
semirings; this starts the second part of the paper which deals with finite
and infinite elements. After this, in Section 6, we present an extension of NL

that can now handle intervals of finite and infinite length. Before summarising
our results and presenting a short outlook on our future work in Section 8,
we present applications of semiring neighbours beyond intervals. This can be
done only since we abstract from concrete models and use (lazy) semirings
instead. In particular, we sketch connections to temporal logics as CTL∗ and
to hybrid systems in Section 7.

2 Basic Definitions

2.1 Overview of Neighbourhood Logic

Neighbourhood Logic (NL) is a logical formalism for reasoning about live-
ness and fairness properties in the framework of finite intervals, introduced
by Zhou and Hansen in [43]. It is mainly based on Interval Temporal Logic
(ITL) [15,16] and provides the possibility to “look” beyond the current inter-
val. This additional feature allows expressing unbounded liveness properties,
like “eventually there will be a time interval, where ϕ holds” and “ϕ will
hold infinitely often in the future”, which are not expressible in the setting of
ITL. Similarly, NL was extended to obtain a real-time logic, called Duration
Calculus (DC).
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The vocabulary used consists of time-independent global variable symbols x,
time-dependent temporal variable symbols v, time-independent global func-
tion symbols fn, time-independent temporal propositional letters X and time-
independent global relation symbols Gn (for certain arities n ∈ IN). There are
two special global variables true and false and a special temporal variable ℓ
which denotes the length of the interval under consideration.

The languages Θ of NL terms and Φ of NL formulae over that vocabulary are
defined by the semi-formal grammar

Θ ::= x | v | fn(Θ, . . . ,Θ
︸ ︷︷ ︸

n

) ,

Φ ::= X | Gn(Θ, . . . ,Θ
︸ ︷︷ ︸

n

) | Φ ∧ Φ | ¬Φ | (∃x)Φ | �lΦ | �rΦ .

The logical connectives ∨, → are defined, as usual, by ϕ∨ψ =df ¬(¬ϕ∧¬ψ),
ϕ→ ψ =df ¬ϕ∨ψ and (∀x)ϕ =df ¬ (∃x)¬ϕ. Furthermore, we define duals of
the diamond operators �l and �r in the standard way by �lϕ =df ¬ �l¬ϕ
and �rϕ =df ¬ �r¬ϕ.

Now we briefly recapitulate the original semantics of NL, which is based on
the arithmetic of real numbers (see [43]). It is well known that NL allows an
arbitrary cancellative commutative group as its time domain. However, since
we want to derive an abstract algebraic version of NL later on, we focus on the
intuition of NL which is more directly presented with real numbers. Moreover,
non-expert readers will have less problems following arguments about real
numbers than with an abstract time domain.

The basic objects of NL are real-valued intervals [y, z] with y ≤ z and y, z ∈ IR.
The meanings of fn and Gn are straightforwardly given by functions fn ∈
IRn → IR and Gn ∈ IRn → {true, false}. The meanings of global variables are
given by a value assignment V, a function that assigns a real number xV to each
global variable x. The meanings of temporal variables and propositional letters
are given by an interpretation J , a function that associates a real-valued
interval function vJ with each temporal variable v and a truth-valued interval
function XJ with each propositional letter X. For example, the interpretation
of the temporal variable ℓ is

ℓJ ([y, z]) = z − y .

The semantics of terms and the logical symbols other than �l and �r is
standard; for further details see Appendix A and [44,4]. For �l and �r one
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has

[y, z] |=J ,V �lϕ iff ∃δ ≥ 0 : [y − δ, y] |=J ,V ϕ

[y, z] |=J ,V �rϕ iff ∃δ ≥ 0 : [z, z + δ] |=J ,V ϕ

Intuitively, �l and �r allow reasoning about left and right neighbourhoods
of a given interval.

︷ ︸︸ ︷︷ ︸︸ ︷
ϕ

�lϕ
� �� �

u y z

︷ ︸︸ ︷︷ ︸︸ ︷
�rϕ ϕ

� �� �

y z v

where u = y − δ where v = z + δ

By definition, �lϕ will hold for an interval that has an interval on the left
where ϕ holds. Symmetrically, �rϕ holds for an interval having a right neigh-
bour interval where ϕ holds.

One of the most interesting binary interval modalities is the chop operator ⌢,
interpreted as the operation of “chopping” an interval into two parts. Its se-
mantics is given by

[y, z] |=J ,V ϕ
⌢ψ iff ∃m : y ≤ m ≤ z ∧ [y,m] |=J ,V ϕ ∧ [m, z] |=J ,V ψ . (1)

The chop operator cannot be derived from the basic unary modalities in a
propositional logic like ITL [40,5], but it is expressible in NL and therefore ITL

is subsumed [43]. More precisely,

ϕ⌢ψ ⇔ ∃x, y : ((ℓ = x+ y) ∧ �l �r((ℓ = x) ∧ ϕ ∧ �r((ℓ = y) ∧ ψ))) .

There are various kinds of interval temporal logics in the literature, both
propositional ([16,15,41]) and first-order ([10]). Most of these logics are sub-
sumed by NL (e.g. [44]).

So far we have used real numbers as domain of time and values. It is known
that it is impossible to have a complete axiomatisation of real numbers. One
can develop different first order theories for real numbers, but none of them
can be complete. However, Neighbourhood Logic is complete with respect to
an abstract time domain [4].

Since NL is a logic based on finite intervals, an infinite behaviour can therefore
only be approximated by finite prefixes of the respective infinite interval. In
Sections 5 and 6 we will discuss a possibility to introduce infinite intervals into
NL. An extension of ITL to discrete-time infinite intervals has already been
given in [31].
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2.2 Semirings and Tests

Semirings have a wide range of applications in computer science: in the theory
of formal languages and automata (regular expressions) (e.g. [27]), logic of
programs (e.g. [26,17]) and many more [18,12].

A semiring (for clarity sometimes also called full semiring) is a quintuple
(S,+, ·, 0, 1) where (S,+, 0) is a commutative monoid and (S, ·, 1) is a monoid
such that · distributes over + and · is strict, i.e., a ·0 = 0 ·a = 0 for all a ∈ S.

A semiring is called idempotent if + is idempotent. On idempotent semirings
the natural order ≤ on S is given by a ≤ b ⇔df a + b = b. It is the only
order in which both operators are isotone. Moreover, 0 is the least element and
a+ b is the join of a and b. Hence every idempotent semiring is a semilattice.
A semiring is Boolean if it is idempotent and its underlying semilattice is a
Boolean algebra with meet operator ⊓. In particular, every Boolean semiring
has a complement operator, denoted by , and a greatest element ⊤ = 0. An
important proof principle in Boolean semirings is the shunting rule

a ⊓ b ≤ c ⇔ a ≤ b+ c .

Models for (Boolean) semirings include formal languages under concatenation
as composition, relations under standard composition, sets of graph paths
under path concatenation and sets of streams under concatenation. All these
models are based on power set constructions and their addition is standard
set union.

Another power set construction yields a semiring of intervals (e.g. [19]) which
we will use for the algebraic characterisation of NL in the next section.

Let T be a set of time points (e.g. IN, Q, IR, . . .) with a linear order �. An
interval [y, z] over T is defined in the standard way as [y, z] =df {t : y � t � z}
for all y, z ∈ T with y � z; by I we denote the set of all intervals. Standard
interval composition is given by [y1, z1] ; [y2, z2] =df [y1, z2] if z1 = y2 and
undefined otherwise. Hence

[y1, z1] is a left neighbour of [y2, z2]

⇔ [y2, z2] is a right neighbour of [y1, z1]

⇔ [y1, z1] ; [y2, z2] is defined

⇔ z1 = y2 .

(2)

Now the structure

INT =df (P(I),∪, ;, ∅, 1l) ,
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with pointwise lifted composition and 1l being the set of all one-point intervals
forms a Boolean semiring. The natural order of this structure coincides with
set inclusion.

To model assertions in semirings we use the idea of tests as introduced into
Kleene algebras by Kozen [25]. In the semiring of relations and in INT a set of
elements can be modelled as a subset of the identity; meets and joins of such
partial identities coincide with their composition and addition. Generalising
this, one defines a test in an idempotent semiring to be an element p ≤ 1 that
has a complement q relative to 1, i.e., p+ q = 1 and p · q = 0 = q ·p. The set of
all tests of S is denoted by test(S). It is not hard to show that test(S) is closed
under + and · and has 0 and 1 as its least and greatest elements. Moreover, the
complement ¬p of a test p is uniquely determined by the definition and test(S)
forms a Boolean algebra. If S is Boolean itself, then test(S) coincides with the
set of all elements below 1. For tests p, q, r we have in arbitrary idempotent
semirings the shunting rule p · q ≤ r ⇔ p ≤ ¬q + r.

With the above definition of tests we deviate slightly from [25], where an
arbitrary Boolean algebra of subidentities is allowed as test(S). The reason
is that, as shown in Theorem 4.15 of [9], the axiomatisation of domain to
be presented below forces every complemented subidentity to be in test(S)
anyway.

We will consistently write a, b, . . . for arbitrary semiring elements and p, q, . . .
for tests.

For ease of notation we introduce the operations p → q =df ¬p + q and
p − q =df p · ¬q which obey their usual laws. The above shunting rule now
reads p · q ≤ r ⇔ p ≤ q → r. In particular,

q ≤ r ⇔ 1 ≤ q → r .

To prepare the connection to general modal logic we study unary functions
on tests, later to be instantiated by box and diamond operators. Let S be an
idempotent semiring and f : test(S) → test(S) be a function. We distinguish
the following properties of f :

f(1) = 1 , (M)

f(p→ q) ≤ f(p) → f(q) , (K)

f(p · q) = f(p) · f(q) . (C)

The labels M and K are taken from modal logic (see e.g. [24]), while C stands
for conjunctivity. It is well known that C implies isotony of f . We have the
following relations.

Lemma 2.1
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(a) C ⇒ K.
(b) C 6⇒ M.
(c) M ∧ K ⇒ C.

For the proof see Appendix B.

The de Morgan dual of f is f ◦(p) =df ¬f(¬p). The duals of the above prop-
erties are

f ◦(0) = 0 , (M◦)

f ◦(p) − f ◦(q) ≤ f ◦(p− q) , (K◦)

f ◦(p+ q) = f ◦(p) + f ◦(q) . (C◦)

They are equivalent to the original ones by straightforward Boolean algebra.
Hence we have

Corollary 2.2

(a) C◦ ⇒ K◦.
(b) C◦ 6⇒ M◦.
(c) M◦ ∧ K◦ ⇒ C◦.

We close with an auxiliary property that will be instrumental in the next
section.

Lemma 2.3 In an idempotent semiring S with greatest element ⊤ we have
the following equivalences:

(a) a · p ≤ 0 ⇔ a ≤ a · ¬p ⇔ a ≤ ⊤ · ¬p
(b) p · a ≤ 0 ⇔ a ≤ ¬p · a ⇔ a ≤ ¬p · ⊤

Proof.

(a) The first equivalence is part of Lemma 3.4 of [9]. The first implication
(a · p ≤ 0 ⇒ a ≤ a · ¬p) follows by identity, Boolean test algebra,
distributivity and the assumption:

a = a · 1 = a(p+ ¬p) = a · p+ a · ¬p ≤ a · ¬p .

The second implication follows directly by a ≤ ⊤ and isotony. The third
implication (a ≤ ⊤·¬ ⇒ a ·p ≤ 0) is by isotony and Boolean test algebra:

a ≤ ⊤ · ¬p ⇒ a · p ≤ ⊤ · ¬p · p ⇒ a · p ≤ 0 .

(b) Similar to (a).

⊓⊔
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2.3 Domain and Modal Semirings

We introduce abstract domain and codomain operators that assign to a set of
computations the tests that describe precisely its initial and final states. In
combination with restriction, domain yields an abstract preimage operation
and codomain an abstract image operation.

A semiring with domain [9] is a structure (S, p), where S is an idempotent
semiring and the domain operator p: S → test(S) satisfies

a ≤ pa · a (d1), p(p · a) ≤ p (d2), p(a · pb) ≤ p(a · b) (d3).

The domain of an element describes all its possible starting points.

In INT we have, for A ⊆ I,

pA = {[x, x] : ∃ y : [x, y] ∈ A} . (3)

We only give some properties which we need in the following sections; other
properties can be found e.g. in [9]

First, the conjunction of (d1) and (d2) is equivalent to each of

pa ≤ p ⇔ a ≤ p · a (llp), pa ≤ p ⇔ ¬p · a ≤ 0 (gla).

(llp) says that pa is the least left preserver of a; (gla) that ¬pa is the greatest
left annihilator of a. By Boolean algebra, (gla) is equivalent to

p · pa ≤ 0 ⇔ p · a ≤ 0 . (4)

Lemma 2.4 (Lemma 4.11 of [9]) Let S be a semiring with domain.

(a) pis isotone and universally disjunctive;
in particular p0 = 0 and p(a+ b) = pa + pb.

(b) pa ≤ 0 ⇔ a ≤ 0. (Full Strictness)
(c) pp = p. (Stability)
(d) p(p · a) = p · pa. (Import/Export)
(e) p(a · b) ≤ pa.

A codomain operator q, which describes all possible ending states of an ele-
ment, is easily defined as a domain operator in the opposite semiring (i.e., the
one that swaps the order of composition). Due to the duality aq is the least
right preserver of a and ¬aq is the greatest right annihilator:

aq ≤ p ⇔ a ≤ a · p (lrp), aq ≤ p ⇔ a · ¬p ≤ 0 (gra).
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Furthermore, the duality between domain and codomain immediately implies
a Lemma dual to Lemma 2.4.

A modal semiring is a semiring with domain and codomain. In the remainder
of this section we will only list the properties and proofs for domain; the ones
for codomain are symmetric.

Lemma 2.5 If S is Boolean then

¬pa ≤ pa, hence ¬pa ≤ pa, and p · ⊤ = ¬p · ⊤ .

Proof. By Boolean algebra and additivity of domain, 1 = p⊤ = p(a + a) =
pa+ pa. Then the first two claims follow by shunting.

By Boolean algebra we only have to show that ¬p · ⊤ + p · ⊤ = ⊤ and
¬p · ⊤⊓ p · ⊤ = 0. The first equation follows by left-distributivity, the second
one by Boolean algebra and the law (see [29])

p · a ⊓ q · a = p · q · a (5)

that holds even in absence of a general meet operation. ⊓⊔

3 Embedding Neighbourhood Logic into Modal Semirings

In this section we present an embedding of Neighbourhood Logic into the
interval semiring INT. This yields several advantages:

• It can be shown that some axioms of NL can be dropped since they are
theorems in our setting.

• Using the algebra one can now use theorem provers to verify or falsify for-
mulae and therefore has a computer-aided framework.

• The algebra gives a unifying framework in which the theory of NL can be
reused in other areas, and vice versa, the theory of semirings can be applied
to NL.

3.1 Towards an Algebraic Characterisation

For the embedding we assume a fixed interpretation J and value assignment V
and abbreviate |=J ,V by just |=. Given a formula ϕ we define Iϕ as the set of
all intervals where ϕ holds:

Iϕ =df {[y, z] : [y, z] |= ϕ} .
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The sets Iϕ of intervals will be the elements of our algebraic structure.

Obviously, temporal and global variables as well as propositional letters can
be used to construct such sets of intervals. For example, using the temporal
variable ℓ, we can characterise all intervals of length x by Iℓ=x. The embedding
of other NL formulae is then straightforward by

[y, z] |= ϕ ∨ ψ ⇔ [y, z] ∈ Iϕ∨ψ = Iϕ ∪ Iψ ,

[y, z] |= ¬ϕ ⇔ [y, z] ∈ Iϕ .

We lift the validity assertion to sets of intervals by setting, for A ⊆ I,

A |= ϕ ⇔ ∀[y, z] ∈ A : [y, z] |= ϕ ⇔ A ⊆ Iϕ .

But how to handle the neighbourhood modalities? For �lϕ we get, using (2)
and (3),

{[y, z]} |= �lϕ ⇔ ∃ [u1, u2] ∈ Iϕ : [u1, u2] ; [y, z] is defined

⇔ ∃ [u1, u2] ∈ Iϕ : y = u2

⇔ p{[y, z]} ⊆ Iϕq,

and therefore, for any set A ⊆ I of intervals, by disjunctivity of domain and
codomain,

A |= �lϕ ⇔ pA ⊆ Iϕq , (6)

A |= �rϕ ⇔ Aq ⊆ pIϕ . (7)

As a first result we note that at least one of the eight axioms postulated in [43]
can be dropped, since it is a theorem in domain semirings.

Theorem 3.1 On single intervals, �(ϕ ∨ ψ) ⇔ �ϕ ∨ �ψ, where � is �l

or �r. Hence Axiom 4 of [43], which postulates the distributivity of � over
disjunction, is now a conclusion.

Proof. Using Equation (6), that p{[y, z]} = {[y, y]} is a singleton set and addi-
tivity of codomain, we get

[y, z] |= �lϕ ∨ �lψ ⇔ p{[y, z]} ⊆ Iϕq ∨ p{[y, z]} ⊆ Iψq

⇔ p{[y, z]} ⊆ Iϕq ∪ Iψq

⇔ p{[y, z]} ⊆ (Iϕ ∪ Iϕ)q = (Iϕ∨ψ)q

⇔ [y, z] |= �l(ϕ ∨ ψ) .

The proof of distributivity of �r is similar. ⊓⊔
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More precisely, the corresponding logical part of Theorem 3.1 splits into two
parts. The first one, �(ϕ∨ψ) ⇒ �ϕ∨ �ψ is a consequence of the axioms M
and K for modal logic, as stated in Lemma 2.1 and Corollary 2.2. The second,

�ϕ∨ �ψ ⇒ �(ϕ∨ψ) is already a theorem in NL(e.g. Theorem NL3 in [44]).

Now we will discuss the box operators �lϕ and �rϕ of Zhou and Hansen in
the setting of modal semirings. The meaning of �lϕ and �rϕ is the following:

[y, z] |= �lϕ ⇔ i |= ϕ for all left neighbour intervals i of [y, z] ,

[y, z] |= �rϕ ⇔ i |= ϕ for all right neighbour intervals i of [y, z] .

Again we start with the pointwise characterisation of the boxes in INT.

Since p{[y, z]} = {[y, y]} is a singleton set,

[y, z] |= �lϕ ⇔ [y, z] |= ¬ �l¬ϕ

⇔ p{[y, z]} 6⊆ (I¬ϕ)q

⇔ p{[y, z]} ⊆ ¬(I¬ϕ)q

⇔ (I¬ϕ)q ; p{[y, z]} ⊆ ∅ .

Note that the symbol ¬ is overloaded and used in two different contexts; on
the one hand it is the logical negation of NL and on the other hand it denotes
the complement of tests.

Since I¬ϕ characterises the set of all intervals where ϕ does not hold, it is the
same as Iϕ using the complement function of Boolean semirings. Using the
same generalisation as above we get, for A ⊆ I,

A |= �lϕ ⇔ (I¬ϕ)q ; pA ⊆ ∅ , (8)

A |= �rϕ ⇔ Aq ; p(I¬ϕ) ⊆ ∅ . (9)

In [44] the authors introduce additional neighbourhood modalities for NL

which are given by composing the basic modalities �l and �r. In the re-
maining section we show that they are again diamonds closely related to �l

and �r. First we want to illustrate the meaning of �r �lϕ.

︷ ︸︸ ︷

︸ ︷︷ ︸

�r �lϕ
� � � �

y u z

ϕ
︸ ︷︷ ︸

︷ ︸︸ ︷
�r �lϕ

� �� �

u y z

ϕ

with u = z − δ. Therefore in this case, [u, z] is a postfix of [y, z], or [y, z] is
a postfix of [u, z]. These nested diamond operators are closely related to the
modal operators E,E,B and B of the logic defined in [16]. For details of the
relationship e.g. [44].

In contrast to the simple neighbourhood operators where some starting points
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have to be equal to some end points of sets of intervals, here only end points
occur. The end points of �r �lϕ have to form a subset of the ones of ϕ. Using
the (co)domain interpretation of (6) and (7),

[y, z] |= �r �lϕ ⇔ {[y, z]}q ⊆
p
(

I
�lϕ

)

⇔ {[y, z]}q ⊆ p{[u, v] : p{[u, v]} ⊆ Iϕq}

⇔ {[y, z]}q ⊆ {[u, u] : [u, u] ∈ Iϕq}

⇔ {[y, z]}q ⊆ Iϕq .

We can derive a similar expression for �l �rϕ as p{[y, z]} ⊆ pIϕ. We see in our
setting the characterisation of �r �lϕ and �l �rϕ is no more complicated
than that of the single neighbourhood modalities. The four neighbourhood
operators ( �l, �r, �l �r, �r �l) represent all combinations for comparing
domain and codomain and therefore motivate the generalised definition in the
next section.

3.2 Semiring Neighbours

Starting with the expressions for the neighbourhoods derived in the previous
section and motivated by NL we now give definitions that work on general
modal semirings. We simply have to replace sets of intervals by semiring ele-
ments, ∅ by 0 and inclusion ⊆ by the natural order ≤. In the remainder some
proofs are presented only for one of a series of similar cases.

Definition 3.2 Let S be a modal semiring. Then

(a) a is a left neighbour of b (or a ≤ �
n
lb for short) iff aq ≤ pb,

(b) a is a right neighbour of b (or a ≤ �
n
rb for short) iff pa ≤ bq,

(c) a is a left boundary of b (or a ≤ �b lb for short) iff pa ≤ pb,
(d) a is a right boundary of b (or a ≤ �b rb for short) iff aq ≤ bq.

We will see below that the use of ≤ is justified. Note that the b inside the
diamond stands for boundary and is not related to the argument b, which
is an arbitrary element. By semiring neighbours we mean both, left/right
neighbours and boundaries.

Now we take a closer look at the definition and its interpretation in INT. It
is straightforward to see the connection between semiring neighbours and the
modalities of NL. As an example take the equivalence

i |= �lϕ iff {i} ≤ �
n
rIϕ ,

for any interval i. The change in the direction is caused by different points of
view. The original interpretation of i |= �lϕ was that i has a left neighbour
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interval where ϕ holds. Our reading of i ≤ �
n
rIϕ is that i is a right neighbour

of some interval in Iϕ.

In our opinion the latter notation is more intuitive, since, looking at the figures
of Section 2.1 �lϕ is on the right hand side of the interval where ϕ holds.

Starting from the definitions of semiring neighbours we calculate an explicit
form of these operators if the existence of a greatest element ⊤ is guaranteed.
Such an element exists in nearly all semirings that occur in applications. In
particular, all semirings which are built via a power set construction have
a greatest element, namely the set of all elements. For example in INT the
greatest element is the set of all intervals.

Lemma 3.3 If ⊤ exists, neighbours and boundaries can be expressed as

�
n
l b = ⊤ · pb , �

n
rb = bq · ⊤ , �b l b = pb · ⊤ , �b rb = ⊤ · bq .

Consequently, ( �
n
l b)q = pb, p( �

n
rb) = bq, p( �b l b) = pb and ( �b rb)q = bq.

Proof. By definition, (lrp) and Lemma 2.3.(b) we get

a ≤ �
n
lb ⇔ aq ≤ pb ⇔ a ≤ a · pb ⇔ a ≤ ⊤ · pb .

The second part follows from Lemma 2.4(d) and p⊤ = 1. ⊓⊔

As a direct consequence of the explicit expressions and the equation p(p·⊤) = p,
we have the following cancellation properties for nested neighbours.

Corollary 3.4

(a) �
n
l �
n
rb = �b rb and �

n
r �
n
l b = �b l b,

(b) �b l �
n
rb = �

n
rb and �b r �

n
l b = �

n
l b,

(c) �b l �b l b = �b l b and �b r �b rb = �b rb,
(d) �

n
l �b l b = �

n
l b and �

n
r �b rb = �

n
rb.

This corollary shows that Axiom 6 of [43], which postulates that left and right
neighbourhoods of an interval always end and start at the same point, is also
a theorem in our setting.

To define boxes similar to �l and �r in the general setting we assume that
the underlying semiring S is Boolean.

Definition 3.5

(a) a is a perfect left neighbour of b (or a ≤ �n lb) iff aq · pb ≤ 0,
(b) a is a perfect right neighbour of b (or a ≤ �n rb) iff bq · pa ≤ 0,
(c) a is a perfect left boundary of b (or a ≤ �b lb) iff pa · pb ≤ 0,
(d) a is a perfect right boundary of b (or a ≤ �b rb) iff aq · bq ≤ 0.
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(a) and (b) correspond to the box-operators of NL. By (c) and (d) we have an
additional extension of NL. These two definitions provide “box operators” for
the nested neighbourhood modalities �l �r and �r �l, which are not defined
in the semantics of NL in [44].

To justify the definitions above we have

Lemma 3.6 Each perfect neighbour (boundary) is a neighbour (boundary):

�n lb ≤ �
n
lb , �n rb ≤ �

n
rb , �b lb ≤ �b lb , �b rb ≤ �b rb .

For boundaries this corresponds to the fact in modal logic that 2ϕ→ �ϕ iff
the underlying relation is total, since every interval is a boundary of itself.

Proof. By definition, shunting, Lemma 2.5 and definition again:

a ≤ �n lb ⇔ aq ≤ ¬pb ⇒ aq ≤ pb ⇔ a ≤ �
n
l b . ⊓⊔

From the definitions we immediately get the box exchange rule

a ≤ �n l b ⇔ b ≤ �n ra . (bexc)

Like neighbours/boundaries we can characterise the box operators in an ex-
plicit form.

Lemma 3.7 Perfect neighbours and boundaries can be expressed as

�n l b = ⊤ · ¬pb , �n rb = ¬bq · ⊤ , �b l b = ¬pb · ⊤ , �b rb = ⊤ · ¬bq .

Consequently, (�n l b)q = ¬pb, p(�n rb) = ¬bq, p(�b l b) = ¬pb and (�b rb)q = ¬bq.

Proof. By definition, shunting, (lrp) and Lemma 2.3.(a):

a ≤ �n lb ⇔ aq · pb ≤ 0 ⇔ aq ≤ ¬pb ⇔ a ≤ a · ¬pb ⇔ a ≤ ⊤ · ¬pb . ⊓⊔

In the remainder of this section we show some properties of (perfect) neigh-
bours and boundaries and compare them to properties of NL. To reduce cal-
culations we introduce � and � as parameterised versions that can be instan-
tiated by either �

n
l , �

n
r, �b l or �b r and �n l , �n r, �b l or �b r, respectively. The

instantiation must be consistent for all occurrences of � and �. The following
proofs are only done for one instance of � or �; for all other instances they
are similar. If the “direction” of � or � is important we use formulae like �l
and �r where only one degree of freedom remains.

The above explicit forms (Lemma 3.3 and 3.7) show immediately that boxes
and diamonds are connected via the de Morgan dualities

�a = �a and �a = �a ;
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hence they form proper modal operators. Additionally, we show that diamonds
and boxes are lower and upper adjoints of Galois connections:

Lemma 3.8 Diamonds and boxes form the following Galois connections.

�la ≤ b ⇔ a ≤ �rb , �ra ≤ b ⇔ a ≤ �lb .

Proof. By de Morgan duality, Boolean algebra, definition of �n l , Boolean al-
gebra again and definition of �n r

�
n
la ≤ b ⇔ �n la ≤ b ⇔ b ≤ �n la ⇔ bq · pa ≤ 0 ⇔ a ≤ �n rb . ⊓⊔

3.3 Simplifications of Neighbourhood Logic

We have already seen that at least two axioms of NL can be dropped since
they are theorems in our setting. Since Galois connections are useful as theo-
rem generators and dualities as theorem transformers (e.g. [3]) we get many
properties of (perfect) neighbours and (perfect) boundaries for free and can
simplify NL even more.

For example we get directly by the Galois connection

Corollary 3.9

(a) � and � are isotone.
(b) � is disjunctive and � is conjunctive.
(c) The cancellation laws �l �r a ≤ a ≤ �r �la and �r �l a ≤ a ≤ �l �ra

hold.

All these properties are standard implications of the Galois connection (e.g.
Lemma 7.26 and Proposition 7.31 of [7]). Therefore no proofs are needed and
the corresponding properties for NL come for free.

Since 0 is the least element with respect to ≤ and domain as well as codomain
are strict, 0 is a neighbour and boundary of each element. Furthermore, special
neighbours and boundaries are summarised in

Lemma 3.10

(a) �1 = �⊤ = �⊤ = ⊤, �0 = �0 = 0.
(b) �a ≤ 0 ⇔ a ≤ 0.
(c) By isotony, pa ≤ �la and aq ≤ �ra. Additionally, a is a left (right) bound-

ary of itself, i.e., a ≤ �b la and a ≤ �b ra.
(d) By the Galois connections and (a) we get ⊤ ≤ �y ⇔ ⊤ ≤ y.
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Part (a) shows that our box operators satisfy the modal axiom M. Part (c)
cannot be transferred from � to �, i.e., x ≤ �b x, px ≤ �n lx, . . . do not hold,
since in general pa 6= ¬pa.

To summarise, nearly all theorems of NL given in [37,43,44] hold in the gen-
eralisation. Most of them already follow from the Galois connections and the
lemmas above. The few which cannot be proved in the generalised setting need
special properties of the time domain. An example is the density of IR. This
property implies that each proper interval [x, y] where x 6= y can be split into
two proper subintervals. A translation table between [44] and our approach is
given in Appendix A of [20].

Hence the Galois connections and the algebraic equations provide simplifi-
cations of NL. Next to that, algebraic structures like modal semirings are
first-order and therefore automated theorem provers for first-order and equa-
tional logic like Prover9 [28] can be used. A procedure to prove theorems fully
automatically is given in [23]. Some of the properties above are already shown
there. However, a full investigation whether all above properties of NL can be
shown automatically has yet to be carried out. We expect only minor problems
when doing this, except whenever specific knowledge is needed. For example
the fact that every interval of length ℓ = 2x can be split into two intervals of
length ℓ = x needs particular knowledge about addition. Mace4 [28], which is
provided together with Prover9, searches for finite counterexamples. Therefore
it can be used to disprove false conjectures about NL.

With Corollary 3.4 we have already given cancellation laws for semiring neigh-
bours. Using the explicit forms, we can show many more cancellation laws like

�b l�b l = �b l b and �b l �b l = �b l b . (10)

In fact there are altogether 32 such laws, which are summarised in [20].

Within the calculations the combination � � b = � �b turns out to be
very useful. Furthermore, the “inner” operator dominates the “outer” one;
i.e., in those cases, where � � or �� fulfils one of the cancellation laws, the
expression is the same as � � and ��, respectively.

Further simplifications and properties are discussed in [20]. There it is also
shown how to handle the nested modality �n l�

n
l�
n
r�
n
ra, which is used in [44]

for a deduction theorem. In INT this complex formula becomes either the
greatest element ⊤ or, if a = 0, represents the empty set.
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4 Beyond Neighbourhood Logic

So far, we have discussed semiring neighbours and boundaries, their properties
and their connection to NL. This section gives a short overview over further
interval operators in our algebraic treatment.

4.1 The Chop Operator and Interval Logics

As mentioned in the introduction, ϕ⌢ψ holds on [y, z] iff there is an m with
y ≤ m ≤ z such that ϕ holds on [y,m] and ψ holds on [m, z]. Equation (1)
shows the connection to NL. In the setting of the semiring INT this becomes

i |= ϕ⌢ψ ⇔ ∃ j, k : i = j ; k ∧ j ∈ Iϕ ∧ k ∈ Iψ

⇔ i ∈ Iϕ ; Iψ , ,

where ; is the lifted interval composition defined in Section 2.2. Hence, for
A ⊆ I,

A |= ϕ⌢ψ ⇔ A ⊆ Iϕ ; Iψ ,

so that in a general semiring we can simply identify a⌢b with a · b. This
interpretation of chop is much easier than (1) and coincides well with the
standard definitions in semirings. All the explicit treatment of the interval
lengths in (1) can be skipped, since they are encoded in the concatenation of
intervals, abstractly in the equation a⌢b = a · b.

It has been shown elsewhere that ITL is subsumed by NL and that all modali-
ties of Halpern and Shoham [16] and the one of Venema [41] can be expressed
in NL. Due to our algebraisation of NL we therefore provide also algebraic
versions of these logics. It is straightforward to derive algebraic expressions
using the representation of [43] of these operators in NL.

4.2 Allen’s Relations Between Intervals

Another temporal-based interval logic, introduced in [1,2], describes all possi-
ble relationships between intervals i and k over a linear time. Over a partially
ordered time a few more exist, but these are not discussed in [1].

The essential relationships are shown in Figure 1. Considering also the con-
verses of these relations, there are in total thirteen ways in which an ordered
pair of intervals can be related. For example k after i is the converse of i be-

fore k when considering only single intervals. Obviously, equal can be expressed
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i before k i k

i equal k
i

k

i meets k i k

i overlaps k
i

k

i during k
i

k

i starts k
i

k

i finishes k
i

k

Fig. 1. Possible relationships

by = in the semiring setting. Further, starts and finishes coincide with bound-
aries. More precisely, i starts j ⇔ i ≤ �b l j and i finishes j ⇔ i ≤ �b rj.
Moreover, meets can be expressed easily by neighbours:

i meets j ⇔ i ≤ �
n
lj ⇔ j ≤ �

n
ri . (11)

For sets of intervals we have to distinguish left and right neighbours. Therefore
meets splits into two relationships and we have to be careful which one we mean
in each case.

For the description of the further relations we need the following simple fact.
For arbitrary functions f, g such that f is isotone,

a ≤ f(g(b)) ⇔ ∃ c : a ≤ f(c) ∧ c ≤ g(b) . (12)

For (⇒) choose c = g(b); (⇐) follows by isotony of f and transitivity of ≤.

Now we treat the before relation, for which we slightly deviate from Allen.
He considers only intervals of positive length, and “before” means “properly
before”. Since we have also included “improper” one-point intervals, it seems
more natural to define before to include meets as a special case. Then we can
simply set, even when i and j stand for sets of intervals,

i before k ⇔ ∃ j : i meets j ∧ j meets k

⇔ ∃ j : i ≤ �
n
l j ∧ j ≤ �

n
lk

⇔ i ≤ �
n
l �
n
lk ,

using the first representation of meets from (11) together with (12). Simi-
larly, k after i becomes k ≤ �

n
r �
n
ri. Therefore in our setting before and after

are converses of each other on single intervals, but for general a, b we have
a before b 6⇔ b after a.
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If one wants to model the relation “properly before” one can, in a Boolean
semiring, use a modified neighbour operator

�
n ′
l b =df ⊤ · 1 · pb

and set

a pbefore b ⇔df a ≤ �
n ′
lb .

In contrast to the above expression for before this also works for a time domain
which is not densely ordered.

Now let us take a closer look at the more complex relations during and overlaps.
Both can be characterised using the previous ones.

Using again (12) as well as the duality expressed in (11), we calculate

i during k ⇔ ∃ j1, j2 : i meets j1 ∧ j1 finishes k ∧ j2 meets i ∧ j2 starts k

⇔ ∃ j1, j2 : i ≤ �
n
lj1 ∧ j1 ≤ �b rk ∧ i ≤ �

n
rj2 ∧ j2 ≤ �b lk

⇔ i ≤ �
n
l �b rk ∧ i ≤ �

n
r �b lk .

In INT, also a meet-operator is available; hence i during k is the same as
i ≤ �

n
l �b rk⊓ �

n
r �b lk. overlaps can also be expressed by the other relationships

and therefore embedded in our setting. By similar reasoning as above,

i overlaps k ⇔ ∃ j1, j2 : i meets j1 ∧ j1 finishes k ∧ k meets j2 ∧ j2 starts i

⇔ i ≤ �
n
l �b rk ∧ k ≤ �

n
r �b l i

Hence we obtain closed algebraic expressions for all of Allen’s relations ex-
cept overlaps. Furthermore it seems that the modalities �

n
l �b r and �

n
r �b l are

important, since they occur frequently; for example they were used in the
derivation of during and overlaps.

4.3 Further Applications

Recapitulating, we have shown that modal semirings not only provide an al-
gebraic framework for NL but also for many other temporal interval-based
logics. But the algebraic structure can be exploited even more. On the one
hand it equips us with easy, straightforward calculation rules which can be
supported by theorem provers. On the other hand, since there are many
other areas in computer science where modal semirings play an important
role (e.g. [8,27,18]), the knowledge of NL can be shifted and reused in these
areas. Vice versa, one can also apply knowledge from other areas to NL. In
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Section 7 we will show how to apply semiring neighbours and therefore Neigh-
bourhood Logic to other subjects. Some interpretations of neighbours in other
settings are already given in [20].

5 Adding Infinity

A severe limitation of NL and also the presented algebraic setting is that they
cannot handle infinite intervals, which is necessary to describe infinite be-
haviour. For example, including infinite intervals allows expressing properties
about perpetual interaction of a system with its environment as in the case of
hybrid or reactive systems. Therefore we will now present another extension
of NL in which this can be modelled.

5.1 Lazy Semirings

We will now assume that the time domain T includes a special value ∞ which
is required to be the greatest element of T; e.g., T = IR∪{∞}. Then we
consider two types of intervals. As before, we restrict ourselves to the real
numbers to make the discussion more understandable. Obviously IR can be
replaced by an abstract time domain as in NL.

• A finite interval has the form [y, z] with y, z 6= ∞.
• An infinite interval has the form [y,∞[ with y 6= ∞.

(An interval like [∞, z] would not be meaningful.) We denote the set of all
such intervals by I

∞.

Now we extend interval composition to I
∞. For two finite intervals their com-

position is defined as before. The missing cases are [y1, z1] ; [y2,∞[ =df [y1,∞[
if z1 = y2 and undefined otherwise, and, [y,∞[ ; i =df [y,∞[ for any inter-
val i ∈ I

∞. Intuitively, the latter case describes the situation that the second
interval is never reached, since the first one is already infinite.

We can split each set of intervals into its finite and infinite part. For A ⊆ I
∞

we set finA =df {i : i ∈ A, i is finite} and inf A =df {i : i ∈ A, i is infinite}.
The composition of two sets of intervals now becomes

A ;B =df inf A ∪ {i ; j : i ∈ finA, j ∈ B} .

This implies that A ;∅ = inf A. Therefore ∅ is not a right annihilator anymore
and INT∞ =df (P(I∞),∪, ;, ∅, 1l) does not form a full semiring.
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Algebraically we relax the definition of a semiring. A lazy semiring (also called
a left semiring) is a quintuple (S,+, ·, 0, 1) where (S,+, 0) is a commutative
monoid and (S, ·, 1) is a monoid such that · is left-distributive over + and
left-strict , i.e., 0 · a = 0. A lazy semiring in which · is also right-distributive
and right-strict forms a full semiring. Therefore every full semiring is also
a lazy semiring. A lazy semiring structure forms the core of process algebra
frameworks.

The lazy semiring is idempotent if + is idempotent and · is right-isotone, i.e.,
b ≤ c ⇒ a · b ≤ a · c. Left-isotony of · follows from its left-distributivity.

The definitions of Boolean lazy semirings and of tests are identical to the ones
for semirings (cf. [29]).

It is straightforward to check that the structure

INT∞ = (P(I∞),∪, ;, ∅, 1l)

forms a Boolean lazy semiring which is even right-distributive. More examples
for idempotent lazy semirings are given in [29] and in the following sections.
In particular, we will present a lazy semiring describing hybrid systems and
another one for temporal logics like CTL∗.

Note thatA ⊆ I
∞ consists of infinite intervals only, i.e., A = inf A, iffA;B = A

for all B ⊆ I
∞. We call such an interval set infinite, too. Contrarily, A consists

of finite intervals only, i.e., A = finA, iff A ; ∅ = ∅. We call such an interval
set finite, too.

We now generalise these notions from INT∞ to an arbitrary idempotent lazy
semiring S. An element a ∈ S is called infinite if it is a left zero, i.e., a · b = a

for all b ∈ S, which is equivalent to a · 0 = a. By this property, a · 0 may
be considered as the infinite part of a, i.e., the part consisting just of infinite
computations (if any). We assume the existence of a largest infinite element
N, i.e.,

a ≤ N ⇔df a · 0 = a .

Dually, we call an element a finite if its infinite part is trivial, i.e., if a ·0 = 0.
We also assume that there is a largest finite element F, i.e.,

a ≤ F ⇔df a · 0 = 0 .

This implies, in particular, 1 ≤ F.

Finally, we assume that every element can be split into its finite and infinite
parts: a = fin a + inf a, where fin a =df a ⊓ F and inf a =df a ⊓ N (but no
general meet operation is assumed to exist). In particular, ⊤ = N + F.
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In general N and F need not exist (cf. [29]); but if the underlying semiring is
Boolean they do, viz. N = ⊤ · 0 and F = N. Since all semirings presented
above satisfy that assumption, we will freely use these equations.

Lemma 5.1 Assume an idempotent lazy semiring with F and N.

(a) If a ≤ F then a · p ⊓ a · q = a · p · q.
(b) If S is Boolean and right-distributive then ⊤ · p = F · ¬p.

Note that (a), contrary to (5), needs the premise a ≤ F.

5.2 Modal Lazy Semirings

As we have seen, domain and codomain abstractly characterise, in the form of
tests, the sets of initial and final states of a set of computations. In contrast
to the domain and codomain operators of full semirings, the operators for lazy
semirings are not symmetric. Therefore we recapitulate their definitions [29]
and establish some properties we need later.

Since the domain describes all possible starting states of an element, it is easy
to see that “laziness” of the underlying semiring doesn’t matter. Therefore the
axioms for domain are the same as in full semirings and most properties of [9]
can also be proved in lazy semirings with domain. For example the Equations
(llp) and (gla) (cf. Section 2.4) and Lemma 2.4 still hold.

But due to the absence of right-distributivity and right-strictness, a codomain
operator can no longer be defined as a domain operator in the opposite semi-
ring; we need an additional axiom.

A lazy semiring with codomain is a structure (S, q), where S is an idempotent
lazy semiring and the codomain operator q : S → test(S) satisfies for all
a, b ∈ S and p ∈ test(S)

a ≤ a · aq (lcd1), (a · p)q ≤ p (lcd2),

(aq · b)q ≤ (a · b)q (lcd3), (a+ b)q ≥ aq + bq (lcd4).

(lcd4) is equivalent to postulating isotony of the codomain operator. As for
domain, the conjunction of (lcd1) and (lcd2) together with (lcd4) is equivalent
to

aq ≤ p ⇔ a ≤ a · p , (lrp)

i.e., aq is the least right preserver of a. However, due to lack of right-strictness
¬aq need not be the greatest right annihilator; we only have the weaker equiv-
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alence

aq ≤ p ⇔ a · ¬p ≤ a · 0 . (wgra)

With one exception, codomain satisfies the dual of Lemma 2.4:

Lemma 5.2 (Lemma 7.7, Lemma 7.8 and its comment in [29]) Let S be a
q-lazy semiring.

(a) q is universally disjunctive;
in particular 0q = 0 and (a+ b)q = aq + bq.

(b) aq ≤ 0 ⇔ a ≤ N.
(c) pq = p. (Stability)
(d) (a · p)q = aq · p. (Import/Export)
(e) (a · b)q ≤ bq.

Lemma 2.4.(b) and Lemma 5.2.(b) show the asymmetry between domain and
codomain.

A modal lazy semiring is a lazy semiring with domain and codomain. The
following lemma has some important consequences for the next sections and
illustrates again the asymmetry in lazy semirings; it is the counterpart of
Lemma 2.3 for lazy semirings.

Lemma 5.3 In a modal lazy semiring with a greatest element ⊤ we have

(a) ¬p · a ≤ 0 ⇔ pa ≤ p ⇔ a ≤ p · a ⇔ a ≤ p · ⊤.
(b) a · ¬p ≤ a · 0 ⇔ aq ≤ p ⇔ a ≤ a · p ⇔ a ≤ ⊤ · p.
(c) a ≤ F ⇔ (a ≤ a · p ⇔ a · ¬p ≤ 0) ⇔ (a ≤ ⊤ · p ⇔ a · ¬p ≤ 0).

Therefore, in general, a ≤ a · p 6⇒ a · ¬p ≤ 0 and a ≤ ⊤ · p 6⇒ a · ¬p ≤ 0.

Property (c) says that we do not have a law for codomain symmetric to (a).
Further properties of (co)domain in the setting of lazy semirings can be found
in [9,29].

In the lazy semiring of intervals INT∞, (co)domain can be defined as

pA =df {[y, y] | [y, z] ∈ A or [y,∞[ ∈ A} ,

Aq =df {[z, z] | [y, z] ∈ A, z 6= ∞} .

With these definitions we will derive a new version NL∞ of NL that handles
intervals with infinite durations.
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6 Neighbourhood Logic with Infinite Duration

6.1 Lazy Semiring Neighbours

The above definitions of semiring neighbours required full semirings as the
underlying algebraic structure. In this section we use the same axiomatisation
to define neighbours and boundaries in lazy semirings. Since the domain and
codomain operators are not symmetric, we will also discuss some properties
and consequences those arise out right-distributivity and right-strictness.

The definitions of (perfect) neighbours and boundaries remain unchanged.
But their properties are slightly different in the lazy setting. Most of the
properties given in Section 2.2 use Lemma 2.3 in their proofs. Unfortunately,
by Lemma 5.3.(b) and (c), we do not have that symmetry and we have to
check them again. Since most of the interesting properties depend on a greatest
element ⊤, we assume its existence in the remainder.

First, the explicit representations for (perfect) semiring neighbours (Lem-
mas 3.3 and 3.7), the cancellation properties for nested neighbours (Lemma 3.4
and Appendix of [20]), Lemma 3.6, and the exchange rule for boxes (Equa-
tion (bexc)) also hold for lazy semirings.

Furthermore, we still have the de Morgan dualities between right neighbours
and between left boundaries and hence the following Galois connections.

�
n
ra ≤ b ⇔ a ≤ �n l b and �b la ≤ b ⇔ a ≤ �b rb . (13)

As a consequence we get, even in the setting of lazy semirings, that �
n
r, �b l , �n l ,

�b r are isotone, �
n
r, �b l are disjunctive, �n l , �b r are conjunctive and �

n
r�
n
la ≤

a ≤ �n l �
n
ra and �b l�b ra ≤ a ≤ �b r �b la.

Between left neighbours and between right boundaries only weak, inequational
forms of de Morgan dualities hold.

Lemma 6.1 Let S be a right-distributive idempotent semiring with ⊤.

(a) �
n
l b ≤ �n l b and �n l b ≤ �

n
l b ,

(b) �b rb ≤ �b rb and �b rb ≤ �b rb .

Proof.

(a) By Lemma 3.3, Lemma 2.5 (5.1), isotony and Lemma 3.7, �
n
lb = ⊤ · pb =

F · ¬pb ≤ ⊤ · ¬pb = �n lb. The inequation �n l b ≤ �
n
lb then follows by

shunting. ⊓⊔
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The converse inequations do not hold due to Lemmas 5.1(a) and 5.3(c), since
in most cases ⊤ 6≤ F (if there is at least one infinite element 6= 0). Hence

�
n
l⊤ = ⊤ · p0 = ⊤ · 0 = N = F and �n l⊤ = ⊤ · ¬p0 = ⊤. Similarly, the

above Galois connections are not valid for left neighbours and right boundaries,
but one implication can still be proved.

Lemma 6.2 For S as in Lemma 6.1,

�
n
la ≤ b ⇒ a ≤ �n rb , �b ra ≤ b ⇒ a ≤ �b rb .

Proof. By Lemma 6.1.(a), Boolean algebra and the exchange rule (bexc)

�
n
la ≤ b ⇒ �n la ≤ b ⇔ b ≤ �n la ⇔ a ≤ �n rb . ⊓⊔

By lack of Galois connections, we do not have a full analogue to Corollary 3.9.

Lemma 6.3 For S as in Lemma 6.1,

(a) �
n
l , �b r, �n r and �b l are isotone.

(b) If S is right-distributive, then �
n
l , �b r are disjunctive and �n r, �b l are

conjunctive.

Proof.

(a) The claim follows directly by the explicit representation of (perfect) neigh-
bours and boundaries (Lemma 3.3 and Lemma 3.7).

(b) By Lemma 3.3, additivity of domain and right-distributivity we get

�
n
l (a+ b) = ⊤· p(a+ b) = ⊤· (pa+ pb) = ⊤· pa+⊤· pb = �

n
la+ �

n
lb. ⊓⊔

Until now, we have seen that most of the properties of semiring neighbours
hold in full semirings as well as in lazy semirings. At some points, we need
additional assumptions like right-distributivity. Many more properties, like
bq ≤ �

n
rb, can be shown. Most proofs use the explicit forms for lazy semiring

neighbours or the Galois connections. Some of them can be found in [21].

However, since lazy semirings reflect some aspects of infinity, we get some
useful properties, which are different from the properties of full semirings.
Some are summarised in the following lemma.

Lemma 6.4

(a) �
n
lF = �

n
rF = �b lF = �b rF = ⊤.

(b) b ≤ N ⇔ �
n
rb ≤ 0 ⇔ �b rb ≤ N.

(c) �n lN = �b rN = N and �n rN = �b lN = 0.
(d) b ≤ N ⇔ F ≤ b ⇔ �n rb = ⊤ ⇔ �b rb = ⊤.

Proof. First we note that by straightforward calculations using Lemmas 2.4
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and 5.2 and isotony we get

⊤ · p ≤ ⊤ · q ⇔ p ≤ q ⇔ p · ⊤ ≤ q · ⊤ . (14)

Furthermore, by Lemmas 2.4(c) and 5.2(c) we get pF = Fq = 1.

(a) Directly by Lemma 3.3 and Fq = 1:

�
n
lF = ⊤ · pF = ⊤ · 1 = ⊤.

(b) By Lemma 5.2, (14), left-strictness and definition of �
n
l

b ≤ N ⇔ bq ≤ 0 ⇔ bq · ⊤ ≤ 0 · ⊤ ⇔ �
n
rb ≤ 0 .

(c) By Lemma 3.7 and pF = 1 we get

�n lN = ⊤ · ¬pN = ⊤ · ¬pF = ⊤ · 0 = N .

(d) Similar to (b). ⊓⊔

Note that (a) implies �
n
l⊤ = �

n
r⊤ = �b l⊤ = �b r⊤ = ⊤ using isotony.

(c) shows again that the inequations of Lemma 6.1 cannot be strengthened to
equations.

6.2 Infinite Neighbourhood Logic

We have shown that INT∞ forms a lazy semiring. Further we have defined
semiring neighbours within the setting of lazy semirings. Thereby we have de-
fined a new version NL∞ of NL which handles intervals with infinite durations.
We already mentioned that NL subsumes logics like the one of Halpern and
Shoham [16], the binary interval modalities of Venema ([41]) and ITL([15]).
Using the same arguments, NL∞ subsumes extensions of those logics. In par-
ticular it covers the logics presented in [39,42,34] and [47].

Since INT∞ is right-distributive, all Lemmas and Corollaries of the preceding
section hold in this model.

Due to the algebraic structure, there is nothing more to do to get an extended
Neighbourhood Logic. Nevertheless we will give a short example.

We want to discuss the neighbourhood modalities �l and �r in the infinite
setting of NL∞. By splitting into finite and infinite parts, Lemma 6.3.(b) and
Lemma 6.4.(b) we get

�
n
rb = �

n
r(fin b+ inf b) = �

n
rfin b+ �

n
rinf b = �

n
rfin b.
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Therefore
i |= �lϕ ⇔ {i} ≤ �

n
rIϕ ⇔ {i} ≤ �

n
rfin (Iϕ)

Informally, �lϕ holds on [y, z] ([y,∞[) iff there exists a finite interval [u, y]
where ϕ holds; this behaviour fits well with our intuition, since an infinite
interval has no neighbour at the “right hand side”.

In contrast to this and due to the asymmetry of domain and codomain, �r

behaves differently. �rϕ holds on [y, z] iff there exists any interval (finite or
infinite) where ϕ holds. This can be shown by straightforward calculations
and is similar to the original NL. For an infinite interval we calculate

[y,∞[ |= �rϕ ⇔ {[y,∞[} ≤ �
n
l Iϕ

⇔ ({[y,∞[})q ≤ �
n
l Iϕ

⇔ 0 ≤ �
n
l Iϕ

⇔ true .

The third step holds due to Lemma 5.2.(b). Informally, �rϕ holds always on
[y,∞[. Since the set of end points of [y,∞[ is empty, every property holds
there vacuously.

The chop operator in NL∞ and lazy semirings has now to guarantee the reach-
ability of the second part of the “chopped” interval. Therefore we set, for any
A ⊆ I

∞,

A |= ϕ⌢ψ ⇔ A ≤ fin (Iϕ) ; Iψ

Similar to the above calculations every property of NL and NL∞ can be de-
termined and interpreted in an algebraic setting and therefore allows simple,
elegant and convenient calculations. Therefore we won’t discuss further prop-
erties of NL∞. Instead we will present a few further applications for semiring
neighbours beyond Neighbourhood Logic.

7 More Applications for Semiring Neighbours

7.1 The Lazy Semiring of Streams and Trajectories

The applications presented in this paper will be in the area of temporal logic
and hybrid systems. For this we introduce another important Boolean lazy
semiring. It is based on trajectories (e.g. [38]) that reflect the values of the
system variables over time and was introduced in [22].

LetD be a set of durations (e.g. IN, Q, IR, . . .). The elements ofD will represent
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interval lengths (see also the special variable ℓ of the duration calculus). We
assume a cancellative addition + on D and an element 0 ∈ D such that
(D,+, 0) is a commutative monoid and the relation x � y ⇔df ∃ z . x+ z = y

is a linear order onD. Then 0 is the least element and + is isotone with respect
to �. Moreover, 0 is indivisible, i.e., x + y = 0 ⇔ x = y = 0. Similarly to T,
the set D may include the special value ∞. It is required to be an annihilator
with respect to + and hence the greatest element of D (and cancellativity of
+ is restricted to elements in D − {∞}).

For d ∈ D we define the interval intv d of admissible times as

intv d =df







[0, d] if d 6= ∞

[0, d[ otherwise .

Compared to the algebra of intervals, intv d is just a subset of I
∞. Similarly,

we call an interval of the form [0, d] finite and one like [0, d[ infinite.

Let now be V a set of values. A trajectory t is a pair (d, g), where d ∈ D and
g : intv d→ V is a function. Then d is the duration of the trajectory. This view
models oblivious systems in which the evolution of a trajectory is independent
of the history before the starting time. The model is more abstract than that
of general intervals, since we cannot distinguish different starting times; they
are all set to 0.

The set of all trajectories is denoted by TRA. Composition of trajectories
(d1, g1) and (d2, g2) is defined by

(d1, g1) · (d2, g2) =df







(d1 + d2, g) if d1 6= ∞ ∧ g1(d1) = g2(0)

(d1, g1) if d1 = ∞

undefined otherwise

with g(x) = g1(x) for all x ∈ [0, d1] and g(x + d1) = g2(x) for all x ∈ intv d2.
For a value v ∈ V , let v =df (0, g) with g(0) = v be the corresponding

0 d1

·

0 d2

=

0 d1 + d2

Fig. 2. Composition of two finite trajectories

zero-length trajectory having value v at its only time point 0. Moreover, set
I =df {v | v ∈ V }.

A process is a set of trajectories. Again, similar to INT∞, the infinite part
of process A are its processes over infinite intervals, i.e., inf A =df {(d, g) ∈
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A | d = ∞}, while the finite part of A are its processes over finite intervals,
i.e., finA =df A− inf A. Furthermore composition is lifted as

A · B =df inf A ∪ {a · b | a ∈ finA, b ∈ B} .

With this, we obtain the lazy Boolean semiring

PRO =df (P(TRA),∪, ·, ∅, I) ,

with test set test(PRO) =df P(I).

For a discrete infinite set D, e.g. D = IN, trajectories are isomorphic to
nonempty finite or infinite words over the value set V .

If V consists of states of computations, then the elements of PRO can be
viewed as sets of computation streams; therefore we also write STR(V ) instead
of PRO in this case.

7.2 Semiring Neighbours and CTL∗

The branching time temporal logic CTL∗ (e.g. [11]) is a well-known tool for
analysing and describing parallel as well as reactive and hybrid systems. In
CTL∗ one distinguishes state formulae and path formulae, the former denoting
sets of states, the latter sets of computation traces. We want to show how
neighbourhood concepts figure in the semantics of CTL∗.

The language Ψ of CTL∗ formulae over a set Φ of atomic propositions is defined
by the grammar

Ψ ::= ⊥ | Φ | Ψ → Ψ | X Ψ | Ψ U Ψ | EΨ ,

where X and U are the next-time and until operators and E is the existential
quantifier on paths. As usual, ¬ϕ =df ϕ → ⊥, ϕ ∧ ψ =df ¬(ϕ → ¬ψ),
ϕ ∨ ψ =df ¬ϕ → ψ, Aϕ =df ¬E¬ϕ, true =df ¬⊥, Fϕ =df true Uϕ,Gϕ =df

¬F¬ϕ.

In [30] a connection between CTL∗ and Boolean modal left quantales is pre-
sented. A left quantale [32] is an idempotent and right-distributive semiring
that is a complete lattice under the natural order. In particular, all the lemmas
of the previous sections can still be used.

More concretely, one can use the left quantale STR(A) (cf. Section 7.1) of sets
of finite and infinite streams over a set A of states as a model. The tests in
that semiring are sets of singleton streams (finite streams consisting of only
one state each) and hence are isomorphic to sets of states.
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For an arbitrary Boolean modal quantale S, the concrete standard semantics
for CTL∗ is generalised to a function [[ ]] : Ψ → S as follows, where [[ϕ]]
abstractly represents the set of paths satisfying formula ϕ. Atomic formulae
from Φ are represented by tests p. Moreover, one fixes an element n (n standing
for “next”) as representing the transition system underlying the logic. This
leads to the following semantic clauses:

[[⊥]] = 0 ,

[[p]] = p · ⊤ ,

[[ϕ→ ψ]] = [[ϕ]] + [[ψ]] ,

[[Xϕ]] = n · [[ϕ]] ,

[[ϕUψ]] =
⊔

j≥0

(nj · [[ψ]] ⊓
d

k<j

nk · [[ϕ]]) ,

[[Eϕ]] = p[[ϕ]] · ⊤ .

The expression p · ⊤ for [[p]] describes the set of all paths that start with a
state in p; the same idea is used to define the semantics of Eϕ. For further
details and explanations we have to refer to [30].

Using these definitions, it is straightforward to check that [[ϕ∨ψ]] = [[ϕ]]+[[ψ]],
[[ϕ ∧ ψ]] = [[ϕ]] ⊓ [[ψ]] and [[¬ϕ]] = [[ϕ]].

By simple calculations one gets the following result.

Lemma 7.1 (Theorem 6.1 of [30]) Let ϕ be a state formula of CTL∗. Then

[[Aϕ]] = ¬p([[ϕ]]) · ⊤ .

Hence we see that [[Eϕ]] corresponds to a left boundary and [[Aϕ]] to a perfect
left boundary, i.e.,

[[Eϕ]] = �b l [[ϕ]] and [[Aϕ]] = �b l [[ϕ]] .

Hence we have built a bridge between CTL∗ and NL via semiring neighbours
and therefore can transfer knowledge between both logics. For example, from
the cancellation laws for (perfect) semiring neighbours and equations (10) we
obtain immediately

[[EEϕ]] = [[Eϕ]] , [[AAϕ]] = [[Aϕ]] , [[EAϕ]] = [[Aϕ]] , [[AEϕ]] = [[Eϕ]] .

Of course, there are many more dual lemmas which we do not discuss here. The
other two boundaries as well as all variants of (perfect) neighbours do not occur
in CTL∗ itself. However, the extension PCTL∗ (e.g. [35,36]) of CTL∗ provides
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operators for describing behaviour in the past. Therefore right boundaries
occur in that setting.

In the next section we will build a bridge between semiring neighbours and
hybrid systems. In particular, we also build a bridge between NL, CTL∗ and
hybrid systems.

7.3 Semiring Neighbours and Hybrid Systems

Hybrid systems are dynamical heterogeneous systems characterised by the
interaction of discrete and continuous dynamics. In [22] we use the lazy semi-
ring PRO of processes taken from Section 7.1 for the description of hybrid
systems.

Hybrid systems and NL. In PRO the left/right neighbours describe a kind
of composability, i.e., for processes A, B,

A ≤ �
n
lB iff ∀ t ∈ A : ∃u ∈ B : t · u is defined, (15)

A ≤ �
n
rB iff ∀ t ∈ A : ∃u ∈ fin (B) : u · t is defined. (16)

Both �
n
r and �

n
l guarantee the existence of a composable element. Especially,

�
n
rB = Bq · ⊤ 6= 0 guarantees that for every trajectory t ∈ B there exists a

trajectory u that can continue t. Therefore �
n
rB is a form of liveness assertion.

In particular, the process �
n
rB contains all trajectories that are composable

with the “running” one. If �
n
rB = ∅, we know that the system will terminate

if all trajectories of the running process have finite durations. Note that in (15)
the composition t · u is defined if either f(d1) = g(0) (assuming a = (d1, f)
and b = (d2, g)) or a has infinite duration, i.e., d = ∞.

The next paragraph will show that left and right boundaries of lazy semi-
rings are closely connected to temporal logics for hybrid systems. But, by
Lemma 3.4, they are also useful as operators that simplify nestings of semi-
ring neighbours.

The situation for right/left perfect neighbours is more complicated. As shown
in [20], �n rB is the set of those trajectories which can be reached only from
B, not from B. Hence it describes a situation of guaranteed non-reachability
from B. The situation with �n l is similar for finite processes, because of the
symmetry between left and right perfect neighbours.

Hybrid systems and CTL∗. Above we have shown how lazy semiring neigh-
bours are characterised in PRO. Although a next-time operator is not mean-
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ingful in continuous time models, the other operators of CTL∗ still make sense.

Since PRO is a Boolean modal left quantale, we simply reuse the above seman-
tic equations (except those for X and U) and obtain a semantics of a fragment
of CTL∗ for hybrid systems. In particular, the existential quantifier E is a left
boundary also in hybrid systems. The operators F, G and U can be realised as

[[Fϕ]] =df F · [[ϕ]] , Gϕ =df ¬F¬ϕ , [[ϕUψ]] =df (fin [[Gϕ]]) · [[ψ]] .

Note that in the first of these equations the F on the left is the CTL∗ operator
“finally”, while on the right it is the largest finite element. A straightforward
calculation shows that Fϕ = true Uϕ is still valid.

Of course all other kinds of left and right (perfect) neighbours and boundaries
have their own interpretation in PRO and in (the extended) CTL∗, respectively.
A detailed discussion of all these interpretations is part of our future work (cf.
Section 8).

8 Conclusion and Outlook

In this paper we have discussed different algebraic views of Neighbourhood
Logic. In particular, we have given an embedding of Neighbourhood Logic into
semirings and its connections to other interval logics in the algebraic setting.
Furthermore we have extended Neighbourhood Logic by infinite intervals and
shown other applications for Neighbourhood Logics beyond intervals.

The abstract algebraic structure of semirings has wide-spread applications in
Computer Science, for example to formal languages and graph algorithms,
and one of their advantages is a simple first-order based meta-calculus. It
is also at the right level of abstraction for deriving an algebraic version of
Neighbourhood Logic. In this setting we have shown that at least two axioms
of this logic can be dropped and that the neighbourhood modalities can be
expressed in a much more general framework, namely modal semirings. There
arbitrary sets of intervals can be handled and, due to the first-order setting,
we are able to use theorem provers to verify or falsify formulae.

These modalities of Neighbourhood Logic satisfy Galois connections which
yield several properties for free. We have also shown that the algebraic setting
can be used for characterising further interval operations. In particular, we
have given a common framework for Neighbourhood Logic and Allen’s thirteen
interval relations.

In the second part of this paper we have generalised semiring neighbours to
lazy semirings which are suitable for modelling non-strict systems with infi-
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nite behaviour. As a result, our Algebraic Neighbourhood Logic now uniformly
handles intervals of finite or infinite length. With that extended logic we can
now express unlimited processes and treat infinite elements. During the de-
velopment of lazy semiring neighbours it turned out that they are not only
useful and necessary for this particular logic, but also in other areas of com-
puter science; in particular, we have sketched connections to temporal logics
like CTL∗ and to hybrid systems.

Since the developed algebraic theory of neighbours is based on (lazy and full)
semirings, it is obvious that one can use it also in the framework of (lazy)
Kleene algebra and (lazy) omega algebra (see e.g. [6,29]) with operators for
finite and infinite iteration. Hence Neighbourhood Logic can be extended by
iteration.

Some of our further aims in this area are, on the one hand, to find more
applications for neighbours and boundaries in both settings (full and lazy
semirings) and, on the other hand, using a concrete example of a hybrid system
and to algebraically prove safety and liveness properties using neighbourhood
concepts, in particular, using at least partial automation.
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A Original Semantics of NL

Based on the definitions in Section 2.1, the semantics θJ ,V of a term θ w.r.t. in-
terpretation J and value assignment V can be given inductively as an interval
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function:

xJ ,V([y, z]) =df V(x),

vJ ,V([y, z]) =df vJ ([y, z]),

fn(θ1 . . . θn)
J ,V([y, z]) =df fn(c1 . . . cn) ,

where ci = θ
J ,V
i ([y, z]), i = 1 . . . n. Further on, one inductively defines when a

formula ϕ holds for an interpretation J , a value assignment V and an interval
[y, z], in signs [y, z] |=J ,V ϕ, (e.g., [44]):

[y, z] |=J ,V X iff XJ ([y, z]) = true

[y, z] |=J ,V G
n(θ1, . . . , θn) iff Gn(c1, . . . , cn) = true,

where ci = θ
J ,V
i ([y, z]), i = 1 . . . n

[y, z] |=J ,V ¬ϕ iff [y, z] 6|=J ,V ϕ,

[y, z] |=J ,V ϕ ∨ ψ iff [y, z] |=J ,V ϕ or [y, z] |=J ,V ψ,

[y, z] |=J ,V (∃x)ϕ iff [y, z] |=J ,V ′ ϕ for some V ′ that agrees with V

for all global variables u 6= x

[y, z] |=J ,V �lϕ iff ∃δ ≥ 0 : [y − δ, y] |=J ,V ϕ

[y, z] |=J ,V �rϕ iff ∃δ ≥ 0 : [z, z + δ] |=J ,V ϕ

B Proof of Lemma 2.1

(a) f(p→ q) ≤ f(p) → f(q)
⇔ {[ shunting ]}

f(p→ q) · f(p) ≤ f(q)
⇔ {[ Axiom C ]}

f((p→ q) · p) ≤ f(q)
⇐ {[ isotony (implied by C) ]}

(p→ q) · p ≤ q

⇔ {[ Boolean algebra ]}
true

(b) Set f(p) =df 0 for all p.
(c) (≤) First, by q ≤ 1, isotony and shunting,

true ⇔ p · q ≤ p ⇔ 1 ≤ p · q → p ,

i.e., 1 = p · q → p. Now,
1

= {[ Axiom M ]}
f(1)
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= {[ Axiom M ]}
f(p · q → p)

≤ {[ Axiom K ]}
f(p · q) → f(p)

and shunting yields f(p · q) ≤ f(p). Likewise, f(p · q) ≤ f(p), showing the
claim. Moreover, by this, f is isotone.
(≥)

f(p) · f(q) ≤ f(p · q)
⇔ {[ shunting ]}

f(p) ≤ f(q) → f(p · q)
⇐ {[ Axiom K ]}

f(p) ≤ f(q → p · q)
⇔ {[ shunting ]}

1 ≤ f(p) → f(q → p · q)
⇐ {[ Axiom K ]}

1 ≤ f(p→ q → p · q)
⇐ {[ Axiom M ]}

1 ≤ p→ q → p · q
⇔ {[ Boolean algebra ]}

true

⊓⊔
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