
Provably Correct Runtime Monitoring?

(Extended Abstract)

Irem Aktug1, Mads Dam2, and Dilian Gurov1

1 Royal Institute of Technology (KTH), Sweden
2 Access Linneaus Center, Royal Institute of Technology (KTH), Sweden

Abstract. Runtime monitoring is an established technique for enforc-
ing a wide range of program safety and security properties. We present
a formalization of monitoring and monitor inlining, for the Java Vir-
tual Machine. Monitors are security automata given in a special-purpose
monitor specification language, ConSpec. The automata operate on finite
or infinite strings of calls to a fixed API, allowing local dependencies on
parameter values and heap content. We use a two-level class file annota-
tion scheme to characterize two key properties: (i) that the program is
correct with respect to the monitor as a constraint on allowed program
behavior, and (ii) that the program has an instance of the given monitor
embedded into it, which yields state changes at prescribed points accord-
ing to the monitor’s transition function. As our main application of these
results we describe a concrete inliner, and use the annotation scheme to
characterize its correctness. For this inliner, correctness of the level II
annotations can be decided efficiently by a weakest precondition annota-
tion checker, thus allowing on-device checking of inlining correctness in
a proof-carrying code setting.

1 Introduction

Program monitoring is a firmly established and efficient approach for enforc-
ing a wide range of program security and safety properties [6, 10, 5, 9]. Several
approaches to program monitoring have been proposed in the literature. In “ex-
plicit” monitoring, target program actions are intercepted and tested by some
external monitoring agent [10]. A variant, examined by Schneider and Erlingsson
[6], is monitor inlining, under which target programs are rewritten to include the
desired monitor functionality, thus making programs essentially self-monitoring.
This eliminates the need for a runtime enforcement infrastructure which may be
costly on small devices. Also, it opens the possibility for third party developers
to use inlining as a way of providing runtime guarantees to device users or their
proxies. This, however, requires that users are able to trust that inlining has
been performed correctly. In this work we propose a formalization of monitoring
and monitor inlining as a first step towards addressing this concern.

? This work was partially funded by the S3MS project, IST-STREP-27004. The second
author was partially supported by the Swedish Research Council grant 2003-6108.

We focus on monitors as security automata that operate on calls to some fixed
API from a target program given as an abstract Java Virtual Machine (JVM)
class file. Automaton transitions are allowed to depend locally on argument
values, heap at time of call and (normal or exceptional) return, and return
value. Our main contributions are characterizations, in terms of JVM class files
annotated by formulas in a suitable Floyd-like program logic, of the following
two conditions on a program:

1. That the program is policy-adherent.
2. The existence of a concrete representation of the monitor state inside the tar-

get program itself, as an inlined monitor which is compositional, in the sense
that manipulations of the monitor state do not cross method call boundaries.

The annotations serve as an important intermediate step towards a decidable
annotation validity problem, once the inliner is suitably instantiated. Composi-
tionality allows validity to be checked per method. This is uncontroversial, and
satisfied by all inliners we know of.

By these results, the verification of a concrete inliner reduces to proof of
validity of the corresponding annotations. We use this to prove correctness for
an inlining scheme which is introduced in the paper. We also sketch how, for a
program inlined by such an inliner, the annotations can be completed to produce
a fully annotated program for which validity can be efficiently decided. Such a
fully annotated program can then be used by a bytecode weakest precondition
checker in a proof-carrying code setting to certify monitor compliance to a third
party such as a mobile device.

Related Work A closely related result is the recent work on type-based moni-
tor certification by Hamlen et al [8]. That work focuses on per-object monitoring
rather than the “per-session” model considered here. Also, their results are re-
stricted to one particular inliner, whereas we give a characterization of a whole
class of compositional inliners.

Our results can be seen as providing theoretical underpinnings for the earlier
work by Schneider and Erlingsson [6]. The PoET/PSLang framework developed
by Erlingsson represents monitors as Java snippets connected by an automaton
superstructure. The code snippets are inserted into target programs at suitable
points to implement the inlined monitor functionality. This approach, however,
makes many monitor-related problems such as policy adherence and correctness
undecidable. To overcome this, we base our results on a restricted monitor
specification language, ConSpec [3], developed in the context of the EU project
S3MS.

Organization In section 2 we present the JVM model used in this paper.
Sections 3 and 4 introduce the automaton model in concrete and symbolic forms,
the ConSpec language, and relations between the three. In section 5 we give an
account of monitoring by interleaved co-execution of a target program with a
monitor, and establish the equivalence of policy adherence and co-execution. In
section 6, the two annotation levels are presented, and the main characterization
theorems are proved. In section 7 an inliner and its correctness are presented.
We also sketch how to produce, for this inliner, fully annotated programs with a

decidable validity problem. Finally, in section 8 we conclude and discuss future
work. Due to space limitations, many technical details, all proofs and further
examples are delegated to a technical report [1].

Acknowledgements Thanks are due to Andreas Lundblad for discussions on many
issues relating to this paper, and to Johan Linde for his work on the inliner tool.

2 Program Model

We briefly present the components of JVM used in this paper.
Types Fix sets of class names c ∈ C, method names m ∈ M, and field names

f ∈ F. A type τ ∈ Type is either a primitive type, not further specified, or
an object type, determined by a class name c. An object type determines a set
of fields and methods defined through its class declaration. Class declarations
induce a class hierarchy, and c1 <: c2 if c1 is a subclass of c2. If c is the smallest
superclass (under <:) of c′ that contains an explicit definition of c.m then c
defines c′.m. Single inheritance ensures that definitions are unique, if they exist.

Values and Methods Values of object type are (typed) locations ` ∈ Loc,
mapped to objects by a heap h ∈ H, a partial assignment of objects to locations.
Objects determine typed fields and methods, using standard dot notation, and
type(`, h) is the type of ` in h, if defined. A method definition is an environment
Γ (usually elided) taking a method reference M = c.m to a definition (P,H)
consisting of a method body (instruction sequence) P , and an exception handler
arrayH . Method overloading is not considered. The notationM [L] = I indicates
that Γ (M) = (P,H) and P (L) is defined and equal to the instruction I . The
exception handler array H is a partial map from integer indices to exception
handlers. An exception handler (b, e, t, c) catches exceptions of type c and its
subtypes raised by instructions in the range [b, e) and transfers control to address
t, if it is the topmost handler that covers the instruction for this exception type.

Machine Configurations, Transitions and Type Safety A configuration of the
JVM is a pair C = (R, h), where R is a stack of activation records of the
form either (M,pc, s, lv) for some method reference M , program counter pc,
operand stack s, and local variables lv , or, for exceptional states, of the form
(`)e, where ` is the location of an exceptional object. Unhandled (C) holds if C
has an exceptional frame on top of the frame stack, and the current method does
not have a handler for the exception. We assume a standard transition relation
−→JVM on JVM configurations (cf. [7]). An execution E of a program (class file)
T is then a (possibly infinite) sequence of JVM configurations C1C2 . . . where
C1 is an initial configuration consisting of a single, normal activation record
with an empty stack, no local variables, M as a reference to the main method
of P , pc = 1, Γ set up according to T, and for each i ≥ 1, Ci −→JVM Ci+1.
We restrict attention to configurations that are type safe, in the sense that heap
contents match the types of corresponding locations, and that arguments and
return/exceptional values for primitive operations as well as method invocations
match their prescribed types. The Java bytecode verifier serves, among other
things, to ensure that type safety is preserved under machine transitions.

API Method Calls The only non-standard aspect of −→JVM is the treatment
of API methods. We assume a fixed API for which we have access only to the
signature, but not the implementation, of its methods. We therefore treat API
method calls as atomic instructions with a non-deterministic semantics. Our
approach hinges on our ability to recognize such method calls. This property
is destroyed by the reflect API, which is left out of consideration. Among the
method invocation instructions, we discuss here only invokevirtual; the re-
maining invoke instructions are treated similarly.

3 Security Policies and Automata

Let T be a program for which we identify a set of security relevant actions A.
Each execution of T determines a corresponding set Π(T) ⊆ A∗ ∪ Aω of finite
or infinite traces of actions in A. A security policy is a predicate on such traces,
and T satisfies a policy P if P(Π(T)).

The notion of security automata was introduced by Schneider [11]. We view
a security automaton over alphabet A as an automaton A = (Q, δ, q0) where Q
is a countable set of states, q0 ∈ Q is the initial state, and δ : Q × A ⇀ Q is
a (partial) transition function. All q ∈ Q are viewed as accepting. A security
automaton A induces a security policy PA ⊆ 2A∗∪Aω

through its language LA

by PA(X) ⇔ X ⊆ LA.
In this study, we focus on security automata which are induced by poli-

cies in the ConSpec language (see section 4) and therefore are named Con-
Spec automata. The security relevant actions are method calls, represented by
the class name and the method name of the method, along with a sequence
of values that represent the actual arguments. We partition the set of secu-
rity relevant actions into pre-actions A[⊆ C × M × Val∗ × H and post-actions
A] ⊆ RVal × C × M × Val∗ × H × H, corresponding to method invocations and
returns. Both types of actions may refer to the heap prior to method invocation,
while the latter may also refer to the heap upon termination and to a return
value from RVal = V al ∪ {exc} where exc is used to mark exceptional return
from a method call3. The partitioning on security relevant actions induces a cor-
responding partitioning on the transition function δ of ConSpec automata into
a function δ[on pre-actions, and a function δ] on post-actions.

4 ConSpec: A Monitor Specification Language

A monitor specification in ConSpec determines a collection of security relevant
actions (sra’s), a security state, and for each security relevant action, a transition
rule, using a guarded command-like syntax. In addition, in [3] a scope declara-
tion is introduced which is ignored in this paper. As an example, consider the
following specification:

3 We disregard the exceptional value since we do not, as yet, put constraints on these
in ConSpec policies.

SECURITY STATE bool accessed = false; bool permission = false;

BEFORE File.Open(string path, string mode, string access)

PERFORM mode.equals("CreateNew") -> { skip; }
mode.equals("Open") && access.equals("OpenRead") -> { accessed = true; }

AFTER bool answer = GUI.AskConnect()
PERFORM answer -> { permission = true; }

!answer -> { permission = false; }

BEFORE Connection.Open(string type, string address)

PERFORM !accessed || permission -> { permission = false; }

The sra’s are self-explanatory. The security state is a pair of boolean variables
accessed and permission, which record whether an existing file has been ac-
cessed and if a permission has been obtained. The example policy contains three
clauses that state the conditions for and effect of the security relevant actions.
The sra of a clause is identified by the signature of the method mentioned in
the clause. The modifiers BEFORE and AFTER (or EXCEPTIONAL) indicate
whether it is the call of, or the normal (or exceptional) return from, the method
that is security relevant. For each sra, there can exist at most one event clause
per modifier in the policy. In order to determine if the policy allows an sra, the
guards of the corresponding clause are evaluated top to bottom using the cur-
rent value of the security state variables and the values of the relevant program
variables. If none of the conditions hold for the current sra, it is violating and
no more sra’s are allowed by the policy.

Fix a set Svar of security state variables and a set Var of program variables.
The security state variables of ConSpec are restricted to strings, integers and
booleans. Expressions Exp and boolean expressions BoolExp over Svar ∪Var can
access object fields and use standard arithmetic and boolean operations. Strings
can be compared for equality or prefix.

The formal semantics of ConSpec policies is defined in terms of symbolic
security automata, which in turn induce ConSpec automata.

Definition 1 (Symbolic Security Automaton). A symbolic security au-
tomaton is a tuple As = (qs, As, δs, Inits), where:

(i) qs = Svar is the initial and only state;
(ii) Inits : qs → Val is an initialization function;
(iii) As = A[

s ∪ A
]
s is a countable set of symbolic actions, where:

A[
s ⊆ C × M × (Type × V ar)∗ and A]

s ⊆ {(Type × V ar) ∪ {exc}} × C ×
M × (Type × V ar)∗ are the symbolic pre- and post-actions, respectively;

(iv) δs = δ[
s ∪ δ

]
s is a symbolic transition relation, where:

δ[
s ⊆ A[

s × BoolExp × (qs → Exp) and δ]
s ⊆ A]

s × BoolExp × (qs → Exp)
are the symbolic pre- and post-transitions, respectively.

ConSpec policies and symbolic automata are two very similar representations.
The security state variables of a ConSpec policy determines the state of the
symbolic automaton. Each sra clause gives rise to one symbolic action, and each
guarded command of the clause gives rise to a symbolic transition consisting of
the sra itself, the guard of the guarded command in conjunction with negations

file_open:

{ a,p }

ask_user:

file_open:conn_open:

ask_user:

PSfrag replacements

mode.equals("CreateNew") ? [p 7→ p, a 7→ a]

!mode.equals("CreateNew") && mode.equals("Open")

&& access.equals("OpenRead") ? [p 7→ p, a 7→ true]

answer ?

[p 7→ true, a 7→ a]

!answer ?

[p 7→ false, a 7→ a]

!a || p ?

[p 7→ false, a 7→ a]

A[
s={file open, conn open}

A
]
s={ask user}

file open=(File,Open,(string path, string mode, string access))

ask user=(string answer, GUI,AskConnect,())

conn open=(Connection,Open,(string type, string address))

Inits =[p 7→ false, a 7→ false]

Fig. 1. Symbolic Automaton for the Example Policy

of the guards that lie above it in the clause, and the effect of the guarded
command. The updates to security state variables, which are presented as a
sequence of assignments in ConSpec, are captured in the automaton as functions
that return one ConSpec expression per symbolic state variable, determining the
value of that variable after the update. In fig. 1 we illustrate the construction
on the earlier example, using ”a” for accessed and ”p” for permission.

Symbolic automata are converted to ConSpec automata without too much
effort. The details are given in [1]. Here it suffices to note that states in the
induced ConSpec automaton are members of the lifted function space (qs →
Val)⊥. The bottom element, in particular, is used only as the target of post-
transitions that are disallowed (has an unsatisfied boolean guard) in the symbolic
automaton; it has no outgoing transitions.

5 Monitoring with ConSpec Automata

In this section we formalize the enforcement language of a ConSpec automaton
as a set of finite strings of security relevant actions. Each target transition can
give rise to zero, one, or two security relevant actions, namely, in the latter case, a
pre-action followed by a post-action. Accordingly, we define the security relevant
pre-action, act [(C), of the configuration C, and the corresponding post-action,
act](C1, C2), as in the table below. If none of the conditions of the table hold,
the corresponding action is ε.

act [(C) Condition

(c,m, s, hb)
C = ((M, pc, s · [d] · s′, lv) ·R, h[) M [pc] = invokevirtual c′.m

c defines type(d, h[).m type(h[, d) <: c′ (c,m, s, h[) ∈ A[

act](C1, C2) Condition

(v, c,m, s, h[, h])

C1 = ((M, pc, s · d · s′, lv) · R,h[) M [pc] = invokevirtual c′.m

C2 = ((M, pc + 1, v · s′, lv) · R, h]) c defines type(h[, d).m

type(h[, d) <: c′ (v, c,m, s, h[, h]) ∈ A]

(exc, c, m, s, h[, h])

C1 = ((M, pc, s · d · s′, lv) · R,h[) M [pc] = invokevirtual c′.m

C2 = ((b)e · (M, pc, s · d · s′, lv) ·R, h]) c defines type(h[, d).m

type(h[, d) <: c′ (exc, c, m, s, h[, h]) ∈ A]

We obtain the security relevant trace, srtA(w), of an execution w by lifting
the operations act [and act] co-inductively to executions in the following way:

srtA(ε) = ε srtA(C) = act [(C)

srtA(C1C2 · w) = act [(C1) · act](C1, C2) · srtA(C2 · w)

Then a target program T adheres to a policy P , if the security trace of each
execution of T is in the enforcement language of the corresponding automaton
AP , i.e. ∀E ∈ Π(T). srtA(E) ∈ LAP .

Program-Monitor co-execution A basic application of a ConSpec automaton is
to execute it alongside a target program to monitor for policy compliance. We
can view such an execution as an interleaving w = (C0, q0)(C1, q1) · · · such
that C0 and q0 is the initial configuration and state of T and A, respectively,
and such that for each consecutive pair (Ci, qi)(Ci+1, qi+1), either the target
(only) progresses: Ci −→JVM Ci+1 and qi+1 = qi or the automata (only) pro-
gresses: Ci+1 = Ci and ∃a ∈ A. δ(qi, a) = qi+1. In the former case we write
(Ci, qi) −→JVM (Ci+1, qi+1), and in the latter case we write (Ci, qi) −→AUT

(Ci+1, qi+1). We can w.l.o.g. assume that at most one of these cases apply, for
instance by tagging each interleaving step.

The first projection function w ↓ 1 on interleavings w = (C1, q1)(C2, q2) · · ·
extracts the underlying execution sequence C ′

1C
′
2 · · · such that C ′

1 = C1, and
C ′

2 = C1 if (C1, q1) −→AUT (C2, q2) and C ′
2 = C2 otherwise, and so on. To

extract the automaton states and the security relevant actions, we use the (co-
inductive) function extract :

extract((C1, q1)(C2, q2)w) = q1q2extract((C2, q2)w)

if (C1, q1) −→AUT (C2, q2),

extract((C1, q1)(C2, q2)w) = act [(C1)act
](C1, C2)extract((C2, q2)w),

if (C1, q1) −→JVM (C2, q2), extract(C, q) = act [(C), and extract(ε) = ε.
Note that extract(w) may well be finite even if w is infinite.

Definition 2 (Co-Execution). Let E[= {qq′a[| q, q′ ∈ Q, a[∈ A[, δ[(q, a[) =
q′}, E] = {a]qq′ | q, q′ ∈ Q, a] ∈ A], δ](q, a]) = q′}. An interleaving w is a co-
execution if extract(w) ∈ (E[∪E])∗ ∪ (E[∪ E])ω.

In other words, an interleaving is a co-execution, if the sequence of extracted
automaton states corresponds to an automaton run for the security relevant
trace of the underlying execution.

Theorem 1 (Correctness of Monitoring by Co-execution). The program
T adheres to policy P if, and only if, for each execution C1C2 · · · of T there is
a co-execution w for the automaton AP such that w ↓ 1 = C1C2 · · · .

6 Specification of Monitoring

We specify monitor inlining correctness using annotations in a Floyd-style logic
for bytecode. The idea behind our annotation scheme is the following. In a first
annotation, referred to as the policy (or, level I) annotation, we define a monitor
for the given policy by means of “ghost” variables, updated before or after every
security relevant action according to the symbolic automaton induced by the
given security policy. In a second annotation, referred to as synchronisation check
annotation (or level II), we add assertions that check at all relevant program
points that the actual inlined monitor (represented by global program variables)
agrees with the specified one (represented by ghost variables).

6.1 Language of Ghost Annotations

Assertions Methods are augmented with annotations that determine assertions
on the extended state (current configuration and current ghost variable assign-
ment), and actions on ghost variables. Let g range over ghost variables, i ∈ ω,
and let Op (Bop) range over a standard, not further specified, collection of
unary and binary operations (comparison operations) on strings and integers.
Assertions a, and expressions e used in assertions, have the following shape:

e ::= ⊥ | v | g | e.f | s[i] | Op e | e Op e

a ::= e Bop e | e : c | ¬a | a ∧ a | a ∨ a

Here, s[i] is the value at the i’th position of the current operation stack, if defined,
and ⊥ otherwise, and e : c is a class membership test.

Ghost Variable Assignments Ghost variables are assigned using a single,
guarded multi-assignment of the form

−→gs := a1 → −→e1 | · · · |am → −→em (1)

such that the arities (and types) of −→gs and the −→ei match. The idea is that the
first assignment −→gs := −→ei is assigned such that the guard ai is true in the current
extended state. If no guard is true, the ghost state is assigned the constant ⊥-
vector. This happens, in particular, when m ≤ 0 in (1) above, which we write as
−→gs := ().

Method Annotations A target program is annotated by an extended environ-
ment, Γ ∗, which maps method referencesM to tuples (P,H,A,Requires ,Ensures,
Exsures) such that Requires, Ensures and Exsures are assertions, and such that
A is an assignment to each program point n ∈ Dom(P) of a sequence, ψ, of
atomic annotations, either an assertion or a ghost variable assignment.

Annotation Semantics In the absence of ghost variable assignments the no-
tion of annotation validity is the expected one, i.e. that the assertions annotating
any given program point (or the point of exceptional return) are all guaranteed
to be valid. To extend this account to ghost variables, we use a rewrite semantics,
shown on table 1. In the table, extended configurations are triples of the form

(1)
Assert (a, C, σ)

Γ ∗ ` (aψ,C, σ) → (ψ,C, σ)

(2)
‖ a1 ‖ (C, σ) = TRUE, m > 0

Γ ∗ ` ((−→gs := a1 → −→e1 | · · · |am → −→em)ψ,C, σ) → (ψ,C, σ[‖ −→e1 ‖ (C, σ)/−→gs])

(3)
‖ a1 ‖ (C, σ) 6= TRUE, m > 0

Γ ∗ ` ((−→gs := a1 → −→e1 | · · · |am → −→em)ψ,C, σ) → ((−→gs := a2 → −→e2 | · · · |am → −→em)ψ,C, σ)

(4)
·

Γ ∗ ` ((−→gs := ())ψ,C, σ) → (ψ,C, σ[
−→
⊥/−→gs])

(5)
C −→JVM C′ Unexc(C′)

Γ ∗ ` (ε, C, σ) → (A(Γ ∗(M(C′)))(pc(C′)), C′, σ)

(6)
C −→JVM C′, Unhandled(C ′)

Γ ∗ ` (ε, C, σ) → (Exsures(Γ ∗(M(C))), C′, σ)
(7)

C −→JVM C′ Handled (C ′)

Γ ∗ ` (ε, C, σ) → (ε, C′, σ)

Table 1. Operational Semantics of Annotations

(ψ,C, σ) such that ψ is the sequence of annotations remaining to be evaluated
for the current program point in C. We use abbreviations M , pc, A, Requires,
Ensures, and Exsures for the first to sixth projections, respectively. Unexc holds
of a configuration that does not have an exceptional frame on the top of the
stack, and Unexc(C) ⇔ ¬(Handled (C) ∨ Unhandled (C)). The side condition
Assert(a, C, σ) always returns true, but as a sideeffect causes the arguments to
be “asserted”, e.g. to appear on some output channel. For rule (6), note that
unhandled exceptions causes the assertions in the Exsures clause to be asserted.

Definition 3 (Validity). A program annotated according to the rules set up
above is valid for the annotated environment Γ ∗, if all predicates asserted as a re-
sult of a Γ ∗-derivation (ψ0, C0, σ0) −→JVM · · · −→JVM (ψn, Cn, σn) −→JVM · · ·
are valid, where ψ0 is Requires(Γ ∗(〈main〉)) ·A〈main〉[1], C0 is an initial configu-
ration, and σ0 = ⊥.

6.2 Policy Annotations (Level I)

The policy annotations define a monitor for the given policy by means of a ghost
state. The ghost state is initialized in the precondition of the 〈main〉 method and
updated at relevant points by annotating all the methods defined by the classes
of the target program. We call each such method an application method. We
assume that 〈main〉 is not called by any application method (including itself)
and that all exceptions that may be raised by a security relevant instruction
(i.e. an instruction that may lead to a security relevant action) are covered
by a handler. We also assume that the exception handling is structured such
that the only way an instruction in an exception handler gets executed is if
an exception has been raised and caught by the handler that the instruction
belongs to. Finally, we assume w.l.o.g. that there are no jumps to instructions
below method invocations.

Updating the Specified Security State The updates to the specified security
state are done according to the transitions of the symbolic automaton. If the
automaton does not have a transition for a security relevant method call, the
call is violating and the corresponding annotation sets the value of the specified
state to undefined. Such a program should terminate without executing the next
security relevant action in order to adhere to the policy. This is specified by
asserting, as a precondition to each security relevant method invocation and at
updates to the ghost state, that the ghost state is not undefined. If a security
relevant instruction may cause a pre-action (an unexceptional post-action) of
the automaton, then a ghost assignment annotation is inserted as a precondition
(as a postcondition) to this instruction. Finally, if the instruction can cause an
exceptional post-action, the update is inserted as a precondition to the first
instruction of each exception handler that covers the instruction.

Preliminary Definitions In the definitions below, fix a program T and a pol-
icy P . Let As = (qs, As, δs, Inits) be the symbolic automaton induced by P .We
define the set Ae

s ⊆ A]
s of exceptional symbolic post-actions as those which have

the value exc as their first component. Given a symbolic action set A′
s, the func-

tion RS((c,m), A′
s) returns those subclasses c′ of c for which the method (c′.m)

is defined by a class c′′ such that A′
s has an action with the reference (c′′.m).

The variables of −→gs are named identical to the security state variables of the au-
tomaton.The ghost variable gpc records labels of security relevant instructions.
and ghost variables g stack values. For an expression mapping E : qs → Exp,
let −→eE denote the corresponding expression tuple, and for a boolean ConSpec
expression b ∈ BoolExp, let ab denote the corresponding assertion.

Level I Annotation We define the annotations for every method M , through
three arrays of annotations: a pre-annotation array A[

M [i], a post-annotation

arrayA]
M [i][j], and an exceptional annotation arrayAe

M [i][k], where i ranges over
the instructions of methodM . The second index j ∈ {0, 1}, k ∈ {0, 1, 2} indicates
whether the annotation will be placed as a precondition of the instruction (j, k =
0), as a precondition to the next instruction (j, k = 1), or as a precondition to
all the exception handlers of the instruction (k = 2). The predicate Handler
holds for a label L and a method M if (L1, L2, L, c) ∈ HM for some labels L1,
L2, and class name c. In addition, we define Exc(L,M) as the sequence of all
annotations Ae

M [L′][2] where L′ is a security relevant instruction and there exists
an exception handler (L1, L2, L, c) ∈ HM such that L1 ≤ L′ < L2, and as ε if
such an L′ does not exist.

Given these annotations, the level I annotation of program T is given for
each application method M as a precondition Requires I

M and an array AI
M of

annotation sequences defined as follows (where L > 0):

RequiresI
M =

{

(−→gs := −−−→eInits
) · (gpc := 0) if M = 〈main〉

(gpc := 0) otherwise.

AI
M [1] = A[

M [1] · A]
M [1][0] ·Ae

M [1][0]

AI
M [L] =

{

Exc(L,M) ·A[
M [L] · A]

M [L][0] ·Ae
M [L][0] if Handler (L,M)

Ae
M [L− 1][1] ·A]

M [L− 1][1] · A[
M [L] ·A]

M [L][0] ·Ae
M [L][0] otherwise

The annotation RequiresM resets the value of gpc and, if M = 〈main〉, also
initializes the ghost state using function Inits of the automaton.

After Annotations For every method M , the elements of the post-annotation
array A]

M [L] are defined for each label L as follows:

(i) If the instruction at label L is not an invokevirtual instruction or is of the
form M [L] = invokevirtual c.m where RS((c,m), A]

s \A
e
s) = ∅, we define

the pre- and postconditions to be empty:A]
M [L][0] = A]

M [L][1] = ε
(ii) Otherwise, if the instruction at label L is of the formM [L] = invokevirtual

c.m with c.m : (γ → τ) and |γ| = n and RS((c,m), A]
s \A

e
s) = {c′1, . . . , c

′
p},

then the precondition of the instruction saves the arguments and the object
in ghost variables:

A]
M [L][0] = ((g0, . . . , gn−1, gthis) := (s[0], . . . , s[n])) · Defined]

The assertion Defined] checks if the ghost variables are defined:

Defined] = ((gthis : c′1 ∨ . . . ∨ gthis : c′p) ⇒ (−→gs 6=
−→
⊥))

while the postcondition of the instruction uses these saved values to compute
the new security state:

A]
M [L][1] = (−→gs := α1 | · · · | αm | α)

where the αk are the guarded expressions (−→gs 6=
−→
⊥)∧gthis : c′i∧abρi → −→eEρi

where class c′′ defines (c′i,m) and there exists a]
s = (τ x, c′′,m, (τ0 x0, . . . ,

τn−1 xn−1)), a
]
s ∈ A]

s \ Ae
s such that (a]

s, b, E) ∈ δ]
s. The substitution ρi is

defined as [s[0]/x, g0/x0, . . . , gn−1/xn−1, gthis/this]. Finally, α = ¬(gthis :
c′1 ∨ . . . ∨ gthis : c′p) → −→gs.

The annotation arrays A[
M and Ae

M are defined similarly (see [1] for details).
Each execution of a program that is valid w.r.t. level I annotations for pol-

icy P is a co-execution of the program and the automaton for P , where the
automaton states are given by the ghost state; hence the program adheres to P .

Theorem 2 (Correctness of Level I Annotations). Program T annotated
with level I annotations for policy P is valid, if and only if T adheres to P.

6.3 Synchronisation Check Annotations (Level II)

An inlined program can be expected to contain an explicit representation of the
security state, an embedded state, which is updated in synchrony with the exe-
cution of security relevant actions. The level II annotations aim to capture this
idea in a generic form that is independent of the design choices a specific inliner
may make. To this end, we make two assumptions on the inliner. We require that
the embedded state is in agreement with the ghost state immediately prior to
execution of a security relevant action. This condition would be violated by, for

example, an optimized inliner which determines in advance that a fixed sequence
of security relevant actions is permissible and reflects this to the embedded state
through only a single update. The second assumption we make in this section
is that updates to the embedded state are made locally, that is by the method
that executes the security relevant method call. The specified and the embedded
states are synchronized then at all call points.

For simplicity we assume that the embedded state is determined as a fixed
vector −→ms of global static variables of the target program, of types correspond-
ing pointwise to the type of ghost state vector −→gs. The synchronisation assertion
is the equality −→gs = −→ms, and the level II annotations are formed by append-
ing the synchronization assertion to the level I annotations of each applica-
tion method M at the following points: (i) each annotation A(Γ ∗(M))(i) such
that P (Γ ∗(M))(i) is an invoke or a return instruction, and (ii) the annotation
Exsures(Γ ∗(M)).

AII [L] L M [L]

.

.

.
L3 dup
L4 astore r1

8

<

:

gthis := s[0] ·
gthis : GUI ⇒ (ga, gp) 6= (⊥,⊥) ·
(ga, gp) = (SecState.accessed, SecState.permission)

9

=

;

L5 invokevirtual GUI/AskConnect()Z

8

>

<

>

:

(ga, gp) :=
((ga, gp) 6= (⊥,⊥) ∧ gthis : GUI ∧ s[0]) → (ga, true) |
((ga, gp) 6= (⊥,⊥) ∧ gthis : GUI ∧ ¬s[0]) → (ga, false) |
(¬(gthis : GUI)) → (ga, gp)

9

>

=

>

;

L6 istore r2

L7 aload r1
L8 instanceof GUI
L9 ifeq L12

L10 iload r2
L11 putstatic SecState/permission

L12 iload r2
˘

(ga, gp) = (SecState.accessed, SecState.permission)
¯

L13 ireturn

Fig. 2. An application method with level II annotations for the example policy

Level II Annotation Example An application method annotated with level II
annotations for the example policy of section 4 is shown in fig. 2. The ghost state
is represented by the ghost variables ga and gp, i.e. −→gs = (ga, gp). The embedded
state consists of the static fields accessed and permission of the SecState class.
It is assumed that the class GUI does not have any subclasses. The annotated
method is valid since the embedded state is updated as is described by the policy,
after a call to the method GUI.AskConnect. The annotations are enclosed by
braces and placed on the left of the instruction label they are associated with.

Level II Characterization We now explain in what sense the level II annotations
characterize the two conditions assumed in this section (the synchronous update
assumption, and the method-local update assumption).

Consider a program T with a level II annotated environment Γ ∗. Consider
an execution E = C0C1 · · · from an initial configuration C0 of T. The index i is
a sampling point if one of the following three conditions holds:

(i) the top frame of Ci has the shape (M, pc, s, f) ·R;h, and M [pc] is either an
invokevirtual instruction, or a return instruction;

(ii) the configuration Ci−1 has the shape (M, pc, s, f) · R;h where M [pc] is an
invokevirtual instruction, and Ci, the shape (N, 1, ε, f ′)(M, pc, s, f) ·R;h;

(iii) alternatively, Unhandled(Ci).

We can then construct a sequence w(E,−→ms) = (C0, q0)(C1, q1) · · · such that:
q0 is the initial automaton state, for all sampling points i > 0, qi = Ci(

−→ms),
where Ci(

−→ms) denotes the value of −→ms in configuration Ci, and for any two
consecutive sampling points i and i′, for all j : i ≤ j < i′, qj = qi.

The role of the sequence w(E,−→ms) is similar to that of interleavings in sec-
tion 5. However, the sequence q0q1 · · · may not necessarily correspond to an
automaton run: the intermediate automaton state is not sampled when a post-
action is followed by a pre-action without an intermediate method boundary
crossing, as there is no well-defined point where this might be done. The con-
struction also needs to account for the method-local nature of embedded state
updates. For this reason, we define the operation extract II , taking sequences w
to strings over the alphabet Q ∪ A ∪ {I} where I is a distinguished symbol, by
the following conditions:

– extractII((C1, q1)(C2, q2)w) = q1act
[(C1)act

](C1, C2)q2extractII((C2, q2)w),
if C1 is an API method call.

– extractII((C1, q1)(C2, q2)w) = q1Iq2 extractII((C2, q2)w), if C1 is an appli-
cation method call and Unexc(C2), i.e. C2 is a method entry point.

– extractII((C, q)w) = qIq extractII(w), if C is a return point from an appli-
cation method, either normal or exceptional.

– extractII((C1, q1)(C2, q2)w) = extractII((C2, q2)w), otherwise.
– extractII((C, q)) = q act [(C) if C is a method call and ε otherwise.

Definition 4 (Method-local Co-execution). Let

Σ0 = {I, q, a[, a] | q ∈ Q, a[∈ A[, a] ∈ A]},
Σ1 = {I} ∪Q ∪ E[∪ E] ∪ {a]qq′a[| ∃q′′.δ[(q, a[) = q′′, δ](q′′, a]) = q′},
Σ2 = {qq′q′′, qq′q, Iqq′a], Iqq′I, Iqq′q′, qa]q′,

qa[a]q′, a[qq′q′, a[qq′I, a[qq′a], qIq′, qa[q′ | q 6= q′ 6= q′′}

A sequence w is a method-local co-execution, if

extractII(w) ∈ (Σ∗
1 ∪Σω

1) \ (Σ∗
0 ·Σ2 · (Σ

∗
0 ∪Σω

0))

We can then extend theorem 2 to the situation where a target program T
has a monitor for the given policy inlined into it.

Theorem 3 (Level II Characterization). The level II annotation of T with
embedded state −→ms is valid if, and only if, for each execution E of T, the sequence
w(E,−→ms) is a method-local co-execution.

7 Correctness of Inlining

As an application of the annotation scheme described in the previous section, we
characterize the correctness of a class of inliners in the flavor of PoET/PSLang [6].
We first describe the operation of a simple inliner that embeds, in target pro-
grams, a method-local monitor for a ConSpec policy.

Description of Inlining The inliner adds a class definition to the program.
The static variables of this class serve as the embedded state. Since this class is
not in the original namespace, the embedded state is safe from interference by
the target. For each clause in the policy, a piece of bytecode is created, which
evaluates, in turn, the guards of guarded commands and either updates the
security state according to the update block associated with the first condition
that holds or quits the program if none of them hold.

The rewriting process consists of identifying method invocation instructions
that lead to security relevant actions (security relevant instructions), and for
each such instruction, inserting code produced by policy compilation in an ap-
propriate manner. The inliner inserts, immediately before the security relevant
instruction, code that records the object the method is called for, and the ar-
guments (and possibly parts of the heap) in local variables. Then, code for the
relevant BEFORE clauses of the policy (if any) is inserted. Next, the object and
the method arguments are restored on the stack. If there are AFTER clauses
in the policy for the instruction, first the return value (if any) is recorded in a
local variable, the code compiled from the AFTER clauses is inlined, followed
by code to restore the return value on the stack. Finally, if there are EXCEP-
TIONAL clauses for the instruction, an exception handler is created that covers
only the method invocation instruction and catches all types of exceptions. It
is placed highest amongst the handlers for this label in the handler list, so that
whenever the instruction throws an exception, this handler will be executed. The
code of this exception handler consists of code created for the related EXCEP-
TIONAL clauses and ends by rethrowing the caught exception. All (original)
exception handlers of the program that cover the security relevant instruction
are redirected to cover this last throw instruction instead.

Due to virtual method call resolution, execution of an invocation instruction
can give rise to different security relevant actions. The inliner inserts code to
resolve, at runtime, the signature of the method that is called, using the type
of the object that the method is invoked on, and information on which methods
have been overridden. A check to compare this signature against the signature of
the event mentioned in the clause is prepended to code compiled for the clause.

Correctness of Inlining Inliners as described above are expected to satisfy
the following property. Let P be a policy, T a program and M [L] be a post-
security relevant instruction M [L] of the inlined program T ′. Let M [L] =
invokevirtual (c.m) for some c and m, α1, . . . , αm be the guarded expressions
gthis : c′i ∧ abρi → −→eEρi, 1 ≤ i ≤ m, and α be ¬(gthis : c′1 ∨ . . .∨ gthis : c′p) → −→gs,
induced, by the policy, for M [L] as described in section 6.2. Furthermore, let
rthis be the local variable used by the inliner to record the reference of the
object M [L] operates on. Then the weakest pre-condition of the block of code

inlined immediately after the instruction M [L] in T′ w.r.t. the synchronisation
assertion −→gs = −→ms is the logical assertion

∧

1≤i≤m rthis : c′i ∧ abρ
′
i → −→gs = −→eEρ

′
i

∧ ¬(rthis : c′1 ∨ . . . ∨ rthis : c′p) → −→gs = −→ms

The blocks inlined above and at the exception handlers of security relevant
instructions can be specified similarly.

We claim that it is possible to devise an inliner in accordance with the de-
scription above. Let I be such an inliner, and let I(T,P) denote the program T
inlined by I for the policy P . Our implementation of such an inliner is found
at [2].

The following result shows that programs inlined for a policy contain a moni-
tor as characterized by theorem 3, and that level II annotations can be efficiently
completed to a “fully” annotated program for which annotation validity, and
hence policy adherence, is decidable. In the result, local validity refers to logical
validity of the verification conditions resulting from a fully annotated program
(see [4] for details).

Theorem 4. Let P be a ConSpec policy and T a program.

(i) The inlined program I(T,P) is valid with respect to the level II annotation
for this policy.

(ii) For I(T,P), the level II annotation can be efficiently extended to an an-
notation so that: (a) the extended annotation is locally valid (in terms of
the pre- and postconditions of the individual instructions) if and only if the
level II annotation is valid (in terms of definition 3), and (b) local validity
is decidable.

An extended (or level III) annotation as referred to above can be obtained by:
(a) annotating all non-inlined instructions with the synchronisation assertion
−→gs = −→ms, (b) extending the annotation to inlined instructions by means of
a syntactic weakest precondition function wp(M [L]) (as defined in [4]), and (c)
collapsing every annotation to an equivalent single assertion (see [1] for details).

As a corollary of theorem 2 and the above result, every program inlined with
the described inliner adheres to the policy it was inlined for.

Corollary 1 (Correctness of Inlining). Let P be a ConSpec policy and T be
a program. The inlined program I(T,P) adheres to the policy.

Another corollary of theorem 4 is that the inlined program I(T,P) yields
only method-local co-executions. This is so since programs that validate level III
annotations validate also level II annotations and thus theorem 3 applies to
inlined programs.

As a consequence, a level III annotation as described above can be used for
on-device checking of inlining correctness in a proof-carrying code setting.

8 Conclusion

This extended abstract presents a specification language for security policies in
terms of security automata, and a two-level class file annotation scheme in a
Floyd-style program logic for Java bytecode, characterizing two key properties:
(i) that a program adheres to a given policy, and (ii) that the program has an
embedded method-compositional monitor for this policy. The annotation scheme
thus characterizes a whole class of monitor inliners. As an application, we de-
scribe a concrete inliner and prove its correctness. For this inliner, validity of the
annotations can be decided efficiently using a weakest precondition annotation
checker, thus allowing the annotation scheme to be used in a proof-carrying code
setting for certifying monitor compliance. This idea is currently being developed
within the European S3MS project.

Future effort will focus on generalizing the level II annotations by formulating
suitable state abstraction functions to extend the present approach to programs
that are not inlined but still self-monitoring. Another interesting challenge is to
extend the annotation framework to programs with threading.

References

1. I. Aktug, M. Dam, and D. Gurov. Provably correct runtime mon-
itoring. Technical Report TRITA-CSC-TCS 2008:1, CSC KTH, 2007.
http://www.csc.kth.se/∼irem/S3MS/TechRep07.pdf.

2. I. Aktug and J. Linde. An inliner tool for mobile platforms.
http://www.csc.kth.se/∼irem/S3MS/Inliner/.

3. I. Aktug and K. Naliuka. ConSpec – a formal language for policy specification.
In F. Piessens and F. Massacci, editors, Proc. of The First Int. Workshop on Run
Time Enforcement for Mobile and Distributed Systems (REM’07), volume 197-1 of
Electronic Notes in Theoretical Computer Science, pages 45–58, 2007.

4. F. Y. Bannwart and P. Müller. A logic for bytecode. In Proc. of BYTECODE’05,
volume 141-1 of ENTCS, pages 255–273, 2005.

5. L. Bauer, J. Ligatti, and D. Walker. Composing security policies with Polymer.
In Proc. of the ACM SIGPLAN Conf. on Prog. Lang. Design and Implementation,
pages 305–314, 2005.

6. Ú. Erlingsson and F. B. Schneider. IRM enforcement of Java stack inspection. In
IEEE Symp. on Security and Privacy, page 246. IEEE Computer Society, 2000.

7. S. N. Freund and J. C. Mitchell. A type system for object initialization in the Java
bytecode language. ACM Trans. Program. Lang. Syst., 21(6):1196–1250, 1999.

8. K. W. Hamlen, G. Morrisett, and F. B. Schneider. Certified in-lined reference
monitoring on .NET. In Proc. of the ACM SIGPLAN Workshop on Programming
Languages and Analysis for Security (PLAS’06), pages 7–16, June 2006.

9. K. W. Hamlen, G. Morrisett, and F. B. Schneider. Computability classes for
enforcement mechanisms. ACM Trans. Program. Lang. Syst., 28(1):175–205, 2006.

10. K. Havelund and G. Rosu. Synthesizing monitors for safety properties. In Proc.
of Tools and Algorithms for Construction and Analysis of Systems (TACAS’02),
volume 2280, pages 342–356, 2002.

11. F. B. Schneider. Enforceable security policies. ACM Trans. Infinite Systems Se-
curity, 3(1):30–50, 2000.

