promoting access to White Rose research papers

A White Rose

ANSZ¥a Research Online

Universities of Leeds, Sheffield and York
http://eprints.whiterose.ac.uk/

This is an author produced version of a paper published in The Journal of Logic
and Algebraic Programming.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/11214

Published paper

Ipate, F., Gheorghe, M., Lefticaru, R. (2010) Test generation from P systems
using model checking, The Journal of Logic and Algebraic Programming, 79 (6),
pp. 350-362

http://dx.doi.org/10.1016/}.jlap.2010.03.007

White Rose Research Online
eprints@whiterose.ac.uk

http://eprints.whiterose.ac.uk/11214�
http://dx.doi.org/10.1016/j.jlap.2010.03.007�

Test Generation from P Systems Using Model Checking

Florentin Ipaté*, Marian Gheorgh®? Raluca Lefticar@

aDepartment of Computer Science, University of Pitesti,
Str. Targu din Vale 1, 110040 Pitesti, Romania
bDepartment of Computer Science, University offgéld,
Regent Court, Portobello Street, $iedd S1 4DP, UK

Abstract

This paper presents some testing approaches based on medkirg and using élierent testing
criteria. First, test sets are built fromfidirent Kripke structure representations. Second, various
rule coverage criteria for transitional, non-determiistell-like P systems, are considered in
order to generate adequate test sets. Rule based coveitaga ¢simple rule coverage, context
dependent rule coverage and variants) are defined and,dbrceiderion, a set of LTL (Linear
Temporal Logic) formulas is provided. A codification of a B&m as a Kripke structure and the
sets of LTL properties are used in test generation: for edtdrion, test cases are obtained from
the counterexamples of the associated LTL formulas, whielaatomatically generated from the
Kripke structure codification of the P system. The methotlustrated with an implementation
using a specific model checker, NUSMV.

Keywords: P systems, Kripke structures, model checking, test geparat
2000 MSC:68Q05, 68Q60

1. Introduction

Model checkings an automated technique for verifying if a model meets @&mispecifi-
cation, seef]. It has been applied for checking concurrent systems, teaafehardware and
software designs. It starts from a model of the implememtatyiven as an operational specifi-
cation; it also takes a temporal logic formula and verifiesptigh the entire state space, whether
the property holds or fails. If a property violation is diseoed then a counterexample is re-
turned. Usually, these formulas describe liveness andysefgquirements, such as the absence
of deadlocks or other critical states that can cause thersytt crash.

Testing is an essential part of software development arséillare applications, irrespective
of their use and purpose, are tested before being releasesting is not a replacement for
a formal verification procedure, when the former is also @ngsbut rather a complementary
mechanism to increase the confidence in software correcfh8ls In black-box (or functional)
testing, the test generation is based on specification oemddhe specification or model is

*Corresponding author
Email addressestlorentin.ipate@ifsoft.ro (Florentin Ipate)M.Gheorghe@dcs.shef.ac.uk (Marian
Gheorghe)raluca.lefticaru@gmail . com (Raluca Lefticaru)

Preprint submitted to Journal of Logic and Algebraic Progmaing April 30, 2010

expressed in a formal way, the generation process couldtoenated. The obtained test cases
are then applied to the implementation, which is regarded"atack-box”.

The software testing community has used the capability adehoheckers to generate test
sets: the counterexamples provided by the model checkenssad to construct test casé3]|
[16]. Two recent surveys on this topic ard:4] and [10]. Hierons et al. present a more general
view of the interplay between testing and formal methdd§, [whereas the survey of Fraser et
al. describes the results obtained in the last decade watesting using model checket$].
The type of testing discussed in this context is model-b#esihg, which assumes the existence
of a model of the implementation under test, given in a cef@malism.

In order to obtain a test suite, sorest purposesare defined, each one describing the ex-
pected characteristic of the test case (for example cayexrinertain state or transition in the
model, traversing a sequence of states etc.). The test gairpdurther specified as a temporal
logic property (e.g. there exists a path in the model thattrea a certain sta® and then con-
verted by negation to a 'never-claim’ condition (e.g. s&itenever reached), se@][The model
checker which verifies the never-claim property will prod@ccounterexample, if the property
is false. This counterexample provides the actual testtiataviolates the never-claim property
and also satisfies the original test purpose. When neven-geoperties are based on coverage
criteria, they are callettap properties[12]. For example, in order to create a test suite that
covers all the values of a discrete variakje trap property for each possible valggl <i < n,
of the variablex is needed, claiming that the value is never takenxG(v) (x is always dif-
ferent fromyv;). A different test generation approach is presentedl]imjutated versions of the
model are generated and tests cases that distinguish theéaatmfrom the original model are
automatically produced by applying model checking.

In the last ten years, a natural computing paradigm, nammaynbrane computindhas
emerged as a powerful computational to®][Its models, called® systemshave been in-
tensively studied for their theoretical aspects as welbasdrious applications in biology, con-
currency, graphics, and with respect to many interactioitls other computational models -
brane, ambient and calculi, Petri nets, cellular automata, grammar systé&hsany variants
have been introduced and studied, covering determinigtitsdeterministic or probabilistic phe-
nomena. The decidability of model checking properties faystems has also been studied in
the last yearsd]. A recent handbook summarizes the most important devedopsin the mem-
brane computing field26]. Apart from a strong theoretical investigation of varicaspects of
membrane computing, there have been many developmentsdédgproducing software appli-
cations modelled by certain P system classes. An overviearddus applications and software
tools developed so far, as well as of a specific programming@mment called P-lingua, is pro-
vided in [26]. It is a natural question to ask whether these applicataomsP-lingua programs
are correct or error-free. The development of certainrigstirategies for these applications has
relatively recently started to be studiedd[, [19], [20], [18]). These papers investigateidirent
testing coverage principles associated with the modeaseti| but do not discuss any specific
method to derive test sets that will test the implementadigainst the model specification.

This paper applies model checking techniques to autontigtgzenerate test data forfiiérent
testing criteria. First, dierent Kripke structures of the same model are utilised tcegea
positiveand negativetest sets and necessary conditions to genenaténal positive test cases
are identified. Second, for cell-like P system models tetst age generated based on various
rule coverage criteria. A test set satisfying tiiée coverage criteriorcontains test cases that
cover every rule, i.e. for each rule there exists a test cais@ming a computation which applies
that rule. Intuitively, rule coverage is the simplest tagtecion, similar tostatement coveraga

2

structural testing, since it ensures that each rule is egjali least once in testing. More powerful
test sets can be selected by consideringcthrgext-dependent rule coverage criteri@amwhich
each rule must be used in every possible context (definedhsr otiles). For test generation,
the P system specification is first automatically transfatimo a Kripke structure, which is
then written in the language accepted by a specific symbadidahchecker, NuSMVZ]. For
each test criterion (rule coverage and context-dependéntoverage), a set of temporal logic
formulas is also automatically generated. The countergelesmproduced by the model checker
will provide the test cases; these are the exact P systens,patihtaining the configurations
and the set of rules applied at each step. The paper proposashapproach for P systems
testing, by automating the test case generation processiby model checking techniques; it
also extends the test criteria previously defined to a manergécontext, i.e., cell-like P systems
with cooperative rules.

The paper is structured as follows: Sect®hbriefly presents the background notions, Sec-
tion 3 shows how test cases can be generated from Kripke stru@ndeSectior describes the
transformation of a P system into a Kripke structure. Coyereriteria for P systems are given
in Section5; the theoretical basis for test case derivation is givendati®n6, while the prac-
tical side of the automatic generation is described in $actj The NuSMV implementation
is illustrated with an example in Secti@ Finally, related work is reported in Secti@and
conclusions are drawn in Sectiaf.

2. Preliminaries

For an alphabe¥ = {ay, ..., ap}, V* denotes the set of all strings ovér A denotes the empty
string. For a stringi € V*, |ul5 denotes the number af occurrences im. Each stringu has an
associated vector of non-negative integ@uig,(..., [Ula,). This is denoted by (u).

2.1. P systems

A basic cell-like P system is defined as a hierarchical ararent of membranes identifying
corresponding regions of the system. With each region theressociated a finite multiset of
objects and a finite set of rules; both may be empty. A muliseither denoted by a string
u € V¥, where the order is not considered, or'By(u). The following definition refers to one
of the many variants of P systems, namely cell-like P systemhich use transformation and
communication rulesZb]. We will call these processing rules. From now onwards wierefer
to this model as simply a P system.

Definition 1. AP systenis a tuplell = (V, u, W, ..., W, Ry, ..., Ry), where V is a finite set, called
alphabet u defines the membrane structure, which is a hierarchical agement of n compart-
ments calledegionsdelimited bymembranes these membranes and regions are identified by
integers 1 to n; w1 <i < n, represents the initial multiset occurring in region i;,R <i < n,
denotes the set of processing rules applied in region i.

The membrane structurg, is denoted by a string of left and right brackets ([, and §cle
with the label of the membrane it points {@;also describes the position of each membrane in
the hierarchy. The rules in each region have the form (ay, t)...(am, tm), whereu is a multiset
of symbols fromV, g € V, tj € {in,out herg, 1 < i < m. When such a rule is applied to a
multisetu in the current regiony is replaced by the symbobs, with t; = here symbolsa;,
with t; = out, are sent to the outer region or outside the system when tinientuegion is the

3

external compartment and symbais with t; = in, are sent into one of the regions contained
in the current one, arbitrarily chosen. In the following dé&fons and examples all the symbols
(a, herg are used ag;. The rules are applied in maximally parallel mode which nsgt@at they
are used in all the regions at the same time and in each reljitne @bjects to which a rulean

be appliednustbe the subject of a rule applicatio?4].

A configurationof the P systenil, is a tuplec = (uy, ..., Uy), whereu; € V*, is the multiset
associated with region 1 < i < n. A computationfrom a configuratiorc; to ¢, using the
maximal parallelism mode is denoted by — c,. Within the set of all configurations we
will distinguish terminal configurations; = (uy, ..., U,) is aterminal configuratiorif there is no
regioni such that; can be further developed.

For the type of P system we investigate in this paper, mudtinioranes can be equivalently
collapsed into one membrane by properly renaming symbdisafystem associated with mem-
branes. Thus, for the sake of convenience, in the remairfddisopaper we will focus on P
systems with only one membrane. For more details regardifeyent variants of P systems and
their properties seef.

2.2. Kripke structures

Definition 2. A Kripke structure over a set of atomic propositions AP is arftuple M =
(S,H,1,L), where S is a finite set of states;d S is a set of initial states; HL Sx S is a
transition relation that must be left-total, that is, forezy state &= S there is a state € S such
that(s) € H; L : S — 24P is an interpretation function, that labels each state with set of
atomic propositions true in that state.

Usually, the Kripke structure representation of a systesults by giving values to every
variable in each configuration of the system. Suppase,...,var, are the system variables,
Val; denotes the set of values foar; andval; is a value fromvVal, 1 < i < n. Then the
states of the system afe = {(vals,...,valy) | val; € Val,...,val, € Val}, and the set of
atomic predicates arAP = {(var; = val) | 1 < i < n,val, € Val}. Naturally,L will map
each state (given by the values of variables) onto the qooreing set of atomic propositions.
For convenience, in the sequel the expressiond®fand L will not be explicitly given, the
assumption being that they are defined as above.

Additionally, a halt (sink) state is needed whidris not left-total and an extra atomic propo-

sition, that indicates that the system has reached this, s¢éeidded t@\P.

Definition 3. An (infinite) path in a Kripke structure M (S, H, 1, L) from a state = S is an
infinite sequence of states= ss;..., such that § = s and(s, s41) € H for every i> 0. A
finite pathr is a finite prefix of an infinite path.

The set of all (infinite) paths from initial states is denobydPath(M). The set of all finite
paths from initial states is denoted Byath(M).

2.3. Linear Temporal Logic (LTL)

The most widely used temporal specification languages inetndtecking aré.inear Tem-
poral Logic(LTL) [22, 23] and the branching time logic CTlCpomputation Tree Log)d4]. A
superset of these logics is CTL8][which combines both linear-time and branching-time eper
ators. A state formula in CTL* may be obtained from a path folarby prefixing it with a path
quantifier, eitheA (for every path) or aft (there exists a path).

4

In LTL the only path quantifier allowed i4, i.e. we can describe only one path properties
per formula and the only state subformulas permitted ammiatpropositions. More precisely,
LTL formulas satisfy the following rulesg]:

e If pe AP, thenpis a path formula

e If f andg are path formulas, thenf, f v g, f A g, Xf, Ff, Gf, fUg and fRg are path
formulas, where:

— The X operator ("neXt time”, also writte)) requires that a property holds in the
next state of the path.

— TheF operator ("eventually” or "in the future”, also writte) is used to assert that
a property will hold at some state on the path.

— Gf ("always” or "globally”, also written[) specifies that a property,, holds at
every state on the path.

— fUg operator U means "until”) holds if there is a state on the path whgtelds,
and at every preceding state on the pdtholds. This operator requires thiahas to
hold at leastuntil g, which holds at the current or a future position.

— R ("release”) is the logical dual of the operator. It requires that the second property
holds along the path up to and including the first state whezditst property holds.
However, the first property is not required to hold eveniuaifl f never becomes
true,g must remain true forever.

3. Test cases for Kripke structures

In this section positive and negative test cases are intexlin relation to two Kripke struc-
tures associated to a model. A necessary condition, exgt@ssa LTL specification, is identified
for generating minimal positive test cases.

Let us assume that a system is modelled by a Kripke strudluze(S, H, I, L) over AP. Let
M’ = (S,H’, I’, L) be a Kripke structure ovekP; M’ represents the (potentially faulty) model of
the implementation under test.

Definition 4. We say that NMcovers M, denoted M M’ if Path(M) ¢ Path(M’).
Lemma 1. M’ covers M if and only if FPatfM) ¢ FPath(M’).

Proor. = We assume by absurd that the consequence is false and we theifalsity of the
hypothesis. IfFPath(M) ¢ FPath(M’) then there exists a finite sequence of statess, ... s
such thatr € FPath(M) \ FPath(M’). Since the transition relation is left-total, there exiah
infinite sequence’ = ... 51 ... such thatr’ € Path(M). Sincer’ ¢ Path(M’), we have a
contradiction.

«: Using the same principle, we assuP@th(M) ¢ Path(M’). Then there exists an infinite
sequence of states= 5s; ... such thatr € Path(M) \ Path(M’). Letn be the minimum integer
forwhichn’ = 5... 5 ¢ FPath(M’). Sincer’ € FPath(M), we have a contradiction.

Definition 5. We say that M is trace equivalent to’ Mlenoted M= M’ if M’ covers M and M
covers M.

Corollary 1. M is trace equivalent to Nif and only if FPatl{M) = FPath(M’).
Proor. Follows from lemmal.

The above results suggest the following definitions of peesand negative test cases. These
definitions are adapted from the concepts presentetDin The test sets are generated from two
Kripke structuresM andM’, associated with a system. The former is assumed to be tarréc
the other faulty.

Definition 6. A finite sequence of statesis called a positive test case of M w.r.t.”M n €
FPath(M) \ FPath(M’).

Definition 7. A finite sequence of statesis called a negative test case of M w.r.t.” M €
FPath(M’) \ FPath(M).

Definition 8. A positive test caseps.. Sy, n > 0 is said to beminimal if sp...5,1 IS hot a
positive test case.

Clearly,s ... s is a minimal test case if and only § . .. s, € FPath(M) \ FPath(M’) and
... S-1 € FPath(M) n FPath(M").
A minimal negative test case is defined similarly.

Definition 9. Let AR, = AP U {(newvar = 0), (newvar = 1)}, where newvar is not a system
variable and let L : (S x {0,1})) — 24™ be defined by i(s,1) = L(s) U {(newvar = 1)}
and L(s,0) = L(s) U {(newvar = 0)}, se€ S. Then M- M’ denotes the Kripke structure
(Sx{0,1},Hy, (I n ") x {1y U (I \ I’) x {0}, L1), where H is defined by:

e ((s1),(s,1)eHiif(sS)eHNH,sS €S;
* ((s1).(s.0)eHiif (ss)e H\H', 55 €S;

* ((80).(s,0)€H;, 85 €S.

Note that, since H is left total, Hs also left-total.

Lemma?2. ..., h> 0, is aminimal positive test case if and onlys§, 1). .. (S-1, 1)($, 0) €
FPath(M — M").

Proor. By induction onk > 0 it follows thats ... s € FPath(M) n FPath(M’) if and only if
(%0,1)...(%,1) € FPath (M — M").

Thensy... s, n > 0, is a minimal positive test case if and only if
... 51 € FPath(M) n FPath(M’) andsy ... s, € FPath(M) \ FPath(M’) (by definition8) if
and only if
(%0,1)...(s-1,1) € FPath(M — M") and 6,-1, S) € H \ H’ if and only if
(S0,1)...(Sh-1,1) € FPathM — M") and (0, 1) . . . (Sr-1, 1) (S, 0) € FPath(M — M’) (by defini-
tion 9).

Lemma 3. 7 = ... IS @ minimal positive test case if and only if there exists rainite
sequencesiSz - - - such that(sp, 1). .. (Sh-1, 1)(Sh, 0)(Sh+1, 0) (Sh42,0). .. € Path(M — M").

Proor. Follows from lemma sinceH; is left total.
6

Theorem 4. Consider the LTL specification(@ewvar = 1) for a model associated with MM’.

1. If the specification is satisfied then FP&th) c FPath(M’).
2. If nis a counterexample, then there exists a finite prefof 7, 7’ = (s, 1). .. (Sh-1, 1)(Sh, 0),
suchthats... s, 1S, is a minimal positive test case.

ProoF. 1. AssumeFPath(M) ¢ FPath(M’). Then there exists a minimal positive test case
... S By lemma3, there exists an infinite sequengg; S . . . such that
(s0,1)...(S-1, 1)(Sh, 0)(Shi1, 0)(She2, 0) . .. € Path(M — M’). This contradicts the hypoth-
esis.
2. Supposes,ip)(s1,i1)... is a counterexample. Then there exists 0 such thai, = 0
andij = 1 for everyj < n. From the definition oM — M’ it follows thatij = O for every
j=n.Bylemma3, ... 5.1 is a minimal positive test case.

4. Transforming a P system into a Kripke structure

This section shows how a P system can be transformed intopikéKstructure. As stated in
the introduction, without loss of generality, we considelydl-membrane P systems in order to
simplify the presentation (for the type of P system usedigmghper, a multi-membrane P system
can be reduced to 1-membrane P system by an adequate cadtifiafthe symbols and rules).

Consider a 1-membrane P systéim= (V,u,w,R), whereR = {r4,..., rn}; each ruler;,

1 <i < m, is of the formu; — v;, whereu; andv; are multisets over the alphabét In
the sequel, we treat the multisets as vectors of non-negiatiegers, that is each multiseis
replaced byPy(u) € N, wherek denotes the number of symbols\in so, we will writeu € N¥.

In order to define the Kripke structure associatedlitae use two predicatedfaxParand
Apply (similar to [6]): MaxPar(u, Uy, Vi, Ny, . .., Un, Vm, Nm), U € NX, ng, ..., nym € N signifies
that a computation from the configuratiain maximally parallel mode is obtained by applying
rulesry @ up — Vi,...,Im : Un — Vm, N1,..., N, times, respectively, ta (in particular,
MaxPar(u, ug, vi, O,. .., Un, Vi, 0) signifies that no rule can be applied andusis a terminal
configuration)Apply(u, v, Uz, V1, Ny, . . . , Um, Vi, Nm), U, V € NK, ny,....nm € N, denotes that is
obtained fromu by applying rules, ..., rm, N, ..., Ny times, respectively.

In order to keep the number of configurations finite, we willage that, for each config-
urationu = (U, ...,u®), each component®, 1 < i < k, cannot exceed an established upper
bound, denotetlaxand, in each computation, each rule can only be applied foioat a given
number of times, denoteslup Obviously, the existence dflax implies the existence & up
however, in practice it is often more convenient to exgiidinpose both these constraints.

We denotau < Maxif u®) < Maxfor every 1<i < kand f, ..., nym) < Supif n; < Supfor
every 1<i <m; N, = {ue N[u< Maxj, NG, = {(N,....,Nm) € N™ | (N, Nm) < Sup.
Analogously to §], the system is assumed to crash whenever Maxor (ng,...,ny) < Sup
does not hold (this is élierent from the normal termination, which occurs wherx Max,
(n1,...,Nnm) < Supand no rule can be applied). Under these conditions, the rhbrene P
systemll can be described by a Kripke structie= (S, H, I, L) with S = NKAaXU {Halt,Crash
with Halt, Crash¢ NX,__, Halt # Crash | = wandH defined by:

Max?

o (UV)eH, uveNg if 3(n,....Nm) € NI, \{(O,...,0)) -

MaxPar(u, ug, Vi, Ny, . . ., Un, Vim, Nm) A
AppIYU, V, Uy, V1, M, . . ., Um, Vim, Nin);

(u, Halt) € H, u e N, if MaxPar(u, u;, v1,0, ..., Un, Vm, 0);

(u.Crash e H,ue NK_ ., if 3(Ny,....nm) € N™,ve NK.

=((Ng,...,Nm) < SUupA v < Max) A MaxPar(u, ug, vi, Ny, . .., Un, Vm, Nm)
A Apply(u, Vv, us, V1, M, . . ., Um, Vi, Ni);

(Halt, Halt) € H;
(CrashCrash € H.

It can be observed that the relatibinis left-total. It is easy to show that for eveuyv € N',j,lax, %
is computed fromu, in I1, if and only if (u,v) € H.

5. Coverage criteria for P systems testing

In this section we define test suites which satisfy two cayeraiteria: simple rule coverage
and context-dependent rule coverage. The definitions dieéow generalize the previous defi-
nitions, given in 1§, in two respects. Firstly, test cases are now considerée teequences of
vectors (multisets), not mere vectors (multisets). Selypndoperative rules are now considered
(as opposed tdlf], in which only non-cooperative rules were consideredy; thises new issues,
especially when defining a test set which meets the conexéudent rule coverage criterion.

Consider again a 1-membrane P sysiém (V, u, w, R), and its associated Kripke structure
M = (S, H,1,L).

Definition 10. A finite path(so, ..., S) € FPath(M), n > 1, is called a test case which covers
rule r, 1 <i < m, if there exists p< n— 1 for which $, Sp.1 € N',j,lax andd(ny,...,Ny) € Ng“up
such as n> 1 A MaxPar(sp, Uy, Vi, Ny,, Um, Vm, Nm) A APPIY(Sp, Sp+1, U1, V1, N1, . . ., Um, Vi, Nim).

In other words, a test case that covers a certainrutea finite sequence of P system com-
putations in whiclr; is applied at least once. A terminal test case is one which gna terminal
configuration.

Definition 11. A terminal test case which coversrulet < i < m, is a test casés, ..., Sn)
which coversirsuch that MaxP&(s,, ug, vi, 0, . . ., Un, Vin, 0).

A (terminal) test suite which satisfies the simple rule cagercriterion will then be defined
as a finite set of (terminal) test cases which cover all rulés®P system.

Definition 12. A finite set UC FPath(M) is called a (terminal) test suite which satisfies the
simple rule coverage criterion if for every rulg L < i < m, whenever there exists a (terminal)
test case which coversg there exists € U such thatr is a (terminal) test case which coveygs r

A stronger criterion is context-dependent rule coverageergruler; and rules,, ..., rj,, a
test case which covers rutgin the context defined by rules, ..., r;, is a finite sequence of P
system computations in which all rules,, rj, are applied one step befargis applied (thus
providing the context for the application of). A (terminal) test suite which satisfies the context
dependentrule coverage criterion will then be defined asta et of (terminal) test cases which
cover every rule in every possible context.

Note that, unlike previous worklB], the definitions below consider cooperative rules. Con-
sequently, they use a set of rules (not a single rule likd &) [as a context of a rule, all applied
a step before the rule is used; in this case its left hand sideritained in the union of their right
hand sides and is not in the right hand side of any of them.

8

Definition 13. A finite path(so, ..., S) € FPath(M), n > 2, is called a test case which covers
rule rj in the context defined by rules,r.. ., 1, 1 <iy,...in, j <m,1 < h <m, if there exists p,
p < n—2forwhich $, Spr1, Spi2 € N',‘V,ax, A(ng,...,Nm) € Ng“up- Ni,, ..., M, > 1 A MaxPar(sp,
U1, V1, N1, . . ., Um, Vim, Nm) A APPIY(Sp, Sp+1, U1, Va, Ny, . . ., Um, Vi, Ny) @nd

An},....np) € NT - n’j > 1 A MaxPar(sp 1, Ug, V1, 1y, . . ., Um, Vi,) A APPIY(Spi1, Spe2, Ut,
V1, N, ...y Um, Vi,).

Definition 14. A terminal test case which covers rulgm the context defined by rules,r.. ., r;,,
1<iy,...in,j <m,1<h<m,isatestcasesy,...,Ss) which covers yin the context defined
by ri,,...,ri, such that MaxP&(s,, Ui, V1, 0, . . ., Um, Vi, 0).

Definition 15. A finite set UC FPath(M) is called a (terminal) test suite which satisfies the
context-dependentrule coverage criterion if for evergsu,, ..., ri, andrj, 1 <iy,...in, j <m,

1 < h <m, whenever there exists a (terminal) test case which coyénghe context defined by
ri,,l there existsr € U such thatr is a (terminal) test case which coversin the context
defined by,r,.

6. Deriving test cases for rule coverage criteria

In this section we show how test suites which satisfy the abole coverage criteria can
be derived from the counterexamples produced by model engclConsider once again a 1-
membrane P systei = (V, u, w, R) as above.

For ®,...,u®) € N¥and @u,...,nm) € N™ we denote (,...,u®) o (ny,...,ny) =
u®, . u® g,).

As a prerequisite, we define an additional Kripke strucMre (S, H, I, L) with S = N¥,__ x
NT U {Halt, Crash with Halt, Crash¢ Nk x NT, Halt # Crash T = {wo (0,...,0)} and

_Sup Max
H defined by:
o (Uo(Ny,....Nm), Vo (N,....n)) € H,uve NS (Ne,....nm), (M, ...,) € NT,, if

MaxPar(u, ug, Vi, N7,, Um, Vim, Nyp) A
Apply(uv V7 ul, Vl? n;_, REE] Um, VI"I"I, n|/"n)1

e (uo(ny,...,Ny), Halt) € H, if MaxPar(u, uy, V1,0, . .., Un, Vim, 0);

o (Uo(ny,...,Ny),Crash e H,ue N§,_, (n,...,Ny), € Ng,pif ANy, ...,) e NM v e NK
~=((nf,...,n) < SupAv < Max) A
MaxPar(u, ug, Vi, N7,, Um, Vim, M) A
Apply(uv V7 ul, Vl? n?l_, cee Um, VI"I"I, n|{'n)1

e (Halt, Halt) € H;
e (CrashCrash e H.

It can be observed that the relatibinis left-total.
Forx € N, x NZ, x = (x5 X% xX™), we denoteproju(X) = (x%,...xY).
For a finite sequence = (X0, .-, %n), X € NK__ x Ngp 1 < i < n, we denoteproji(r) =
(Projk(xo), - - - » Pro jk(xs))- o
If IT = (V,u, W, R) is a 1-membrane P system aktl= (S, H,I,L) andM = (S, H, 1,L), are
Kripke structures above mentioned, thes, (.., s,) € FPath(M) if and only if (s),....s)) €
9

FPath(M), wheres = 5 o (n},...,n}), and @,....n) € N", 0 < i < n; (s, = Halt) and
(s, = Halt)) or ((s, = Crash and &, = Crash). M Kripke structure includes bothl Kripke
structure and the values of occurrences of each rule of thestéra involved in computations.
This additional information oM is utilised in the following results.

In the sequel it will be shown how various test cases are toudtder to fulfill rule coverage
criteria.

Supposegtate= halt), (state= crash, (state= othe) € AP, (state= halt) holds whenM
is in stateHalt, (state= crash holds whenM is in stateCrashand (state= other) holds when
M is neither inHalt nor inCrashstate.

Lemma 5. Consider the LTL specification-&(n > 1) A (state = other), 1 < i < m, for
1-membrane P systerd, with its associated Kripke structubd. If x is a counterexample, then
there exists a finite prefix of = such that proj(n’) is a test case which covers r

Proor. Letm = XoX;... be a counterexample. Then there existp > 1 such thak, = s, o

(nf,....nk), with s, € NMaX, (nf,....nk) € N, P > 1. From the construction &l it follows

thatx; =s§jo (nl,...,nm) .Wlth Sj € NKAaX, (nl,.. ,nl) € NSup, forevery 0< j < p—1. Then
S ... Spis atest case which covers

Lemma 6. Consider the LTL specification-(n; > 1) A (state = other A F(state= halt)),
1 < i < m, for -membrane P systeif, with its associated Kripke structudl. If 7 is a
counterexample, then there exists a finite prefiaf 7 such that proj(z’) is a terminal test case
which coversir.

Proor. Analogously to the proof of Lemm@, there existp,r, 1 < p < r such thatx, = s, o

(nf,....nR), % = s o (nf,....nM), with sp, 5 € NMaX, (nf,....nR), (nG,....n7) € NSup n’>1

and MaxPar(s, Uz, Vi, O, .., Um, Vi, 0); Xj = §j o (n),....nk), with s € N&_, (n),....nk) €
Sup, forevery0< j <r -1. Thens ... s is a terminal test case which covers

Lemma 7. Consider the LTL specification-&g(n;, > 1) A ... A (n, = 1) A X((n; > 1) A (state=
othen)), 1 < iy,...,ih,J < m,1 < h < m, for 1-membrane P systeiid, with its associated
Kripke structureM. If & is a counterexample, then there exists a finite prefiaf 7 such that
projk(’) is a test case which covergin the context defined by, s. . ., rj,.

Proor. Analogously to the proof of Lemm§, there existsp, p > 1 such thatx, = s ©
(NP, ..., NR), Xps1 = Spe1 © (nerl , N2, with Sp, Spr1 € NEo,0 (07, nm)(ni”l, oty e
Nm np >1,... np > 1andnerl > 1% = S0 (Nd,...,nd), Wlthsae Nk (na,..., nd) e

for every O< a <p-1 Thenso . SpSp+1 is @ test case which covergin the context
defmed byri,,....ri,

Lemma 8. Consider the LTL specification-&(n, > 1)A... A (m, > 1) A X((nj > 1) A (state=
othen A F(state= halt))), 1 < is,...,in,] < m,1 < h <m, for 1-membrane P systei, with
its associated Kripke structud. If z is a counterexample, then there exists a finite prefiof
7 such that proj(z’) is a terminal test case which covessin the context defined by, s.. ., rj,.

Proor. Follows the lines of the above proofs.

10

Theorem 9. Given a 1-membrane P system, (terminal) test suites Satisfiie rule coverage
and context-dependentrule coverage criteria are generbgesed on LTL specifications for every
rule of P.

The generation of these test suites follows from the abawnenas.

As previously mentioned, multi-compartment P systems eftyfpe presented in this paper
can be converted to 1-compartment P systems. On the othdr themnapproach introduced for
P systems with one single compartment can be generalisédiifanefore directly applied) to
multiple compartments using the definitions and technigyiesn in [18]. This generalisation
may be useful in practice, if we need to keep the system asrdgmally specified.

7. Generating the test suits

For automatic generation of test suits we have used NuSMyrdoslic model checker],
publicly available ahttpy/nusmv.irst.itc.it NuSMV can process files written in SMV language
[21] and supports LTL and CTL as temporal specification logics.

For a 1-membrane P systefh = (V,u,W,R), with V = {a;,...,a) andR = {ry,...ry}
(each ruler; has the formu; — Vv;), its associated Kripke structure M = (S, H,I,L). This
is represented in NuSMV as follows. The state spackl @ implemented by using a 3-valued
"state” variable (with values "Halt”, "Crash” and "Runnifjgand appropriate variables to hold
the current configuration and the number of applicationsacherule. Therefore, the NuSMV
model will contain:

e k variables, labelled exactly like the objects from the alp#td/, each one showing the
number of occurrences of each objegte V, 1 <i <k;

e mvariablesn;, 1 < i < m, each one showing the number of applicationg0E R,
1<i<m

e one variablestateshowing the current state of the modstiatee {Running Halt, Crash;

e two constantsMax, the upper bound for the number of occurrences of eachV, 1 <
i <k, andSup the upper bound for the number of applications of eachnule< i <m
(see Sectiod).

We can now construct a NuSMV specification as a Finite Statehih@ (FSM) whose states
and transitions are defined below.

If the current state iRunningthen the current configuration is characterised by the galue
provided bya; > 0, ..., ax > 0; the maximal parallelism condition will be written as a jorc-
tioncy A ... A cm, Where each conditiog), 1 < i < m, corresponds to rulg and is a disjunction
G =G, V...V, given that the left hand side ofis a:'ll . ..a:ip". The conditiorc;;, 1 < j < p,
is0<a; —mhy —... = nwhy < t;;, whereny, ..., ny represent the values provided MaxPar
andhg > 0 represents the number of occurrences of syrapan the left hand side afy. This
condition simply states that, after applying all rules in aximal parallel way, the number of
occurrences of symba;, left is less than the number of occurrencesapfappearing on the
left hand side ofr; and so this rule can no longer be applied in this step. Whemtimeber
of occurrences of the symbaj, on the left side of a rule, is equal to 1, the above inequality
O0<a; —nh—... - Nphy <t becomes G &, — nihy — ... — Nphy (because; = 1).

11

http://nusmv.irst.itc.it/

The valuesy > 0,...,a > 0 that characterise the next state are computed as follogingU
the above notation and denoting ibgx{(a) the new value, we haveex(a;;) = &, —nhy — ... -
Nmhm + Mh] + ... + nphy, whereh(q > 0 represents the number of occurrences of syrapain
the right hand side af.

Some additional conditions are added to those given aboweder to distinguish the des-
tination state. These are obvious and derive from the uppend conditions introduced. The
example below illustrates the approach. Note that all tleeselitions and the entire NuSMV
specification, including the LTL expressions, are autocadlii derived from a P system by using
a tool developed by the authors of this paper.

8. NuSMV implementation - example

We illustrate the approach by using the following 1-membrasystemsl; = (Vi, u, Wi, Ry),
havingV: = {s,a,b,cl,u=[1li, mw=sRi={rp:s—abr,:a—-crz3:b—-bcrs:b—-c}
andIl; = (Vo, u,Wo, Rp), havingV, = {s,a,b,c,d, x}, u = [1]1, W2 = SS R = {r1 : s— abcr; :
ab— d%r3:c— abrs; abd - x.

The transition from the stafRunningo itself for the P systerfi;, which has non-cooperative
rules, can be written as the following NuSMV specificatianwihich the second row shows that
all the objects have been consumed and no rule can be fughbed (maximal parallelism):

state = running & next(state) = running &

s —next(nl) = 0 & a - next(n2) = 0 & b - next(n3) - next(nd) =0 &
next(s) = s - next(nl) &

next (a) a - next(n2) + next(nl) &

next(b) = b - next(n3) - next(n4) + next(nl) + next(n3) &

next(c) = ¢ + next(n2) + next(n3) + next(nd) &

! (next(nl) = 0 & next(n2) = 0 & next(n3) = 0 & next(nd) = 0) &

! (next(s) > Max | next(a) > Max | next(b) > Max | next(c) > Max |
next(nl) > Sup | next(n2) > Sup | next(n3) > Sup | next(n4d) > Sup)

The maximal parallelism condition fdi,, a P system with cooperative rules, becomes a
conjunction of disjunctions; A ... A ¢y, €ache; corresponding to a rule:

(s-next(n1)=0) & (a-next(n2)-next(n4)=0 | b-next(n2)-next(n4)=0) &
(c-next (n3)=0) & (a-next(n2)-next(n4)=0 | b-next(n2)-next(nd)=0 |
(0<=d-2#next(n4) & d-2*next(nd)<2))

When one specification is false, a counterexample is given, a trace of the FSM that
falsifies the property. Based on the counterexample redéareghe specificatio@ ! ((n1 > 0
& X n2 > 0) & F state = halt) of II;, a test sequence checking thiatappears in the
context ofr; on a terminal computation starting withis obtained. This is given bys}{ab}{c?}
and the rules applied are fingtand therr,, ry4, at the next step. Similarly, the LTL specification
G !'(((n2 >0 &n3 >0) & Xnd >0) &F state = halt) of II, has a corresponding
test case{s}{abg{abd?}{x} and the rules applied in the computati®e= abc = abd® = x
are firstry, thenry, rz and, finally,r4, at the last step. The complete NuSMV specificatiohl of
is given in Appendix A and a counterexample returned by NuSMwW its corresponding test
case is shown in Appendix B.

12

9. Related work

P system testing has been studied now for a few years andrtaigedirections have been
considered: finite state machine based testir8) 18], mutation based testind §], and testing
based on model checking. The first and third directions arebow related since the underlying
model used in both cases is a state-transition system. dfurtive, coverage based criteria can
be used for test generation in both cases. In finite state imadased testing, however, con-
formance methodslB] (which ensure that the (unknown) implementation undetr ¢eaforms
to the specification, provided its model belongs to a ceriaie-defined, set of finite state ma-
chines, which makes up the so-calledilt modelof the method in question). Both approaches
(finite state machine based and model checking based) nfigey fwm the state explosion as-
sociated with the construction of the state-transition elad the P system. On the other hand,
in NuSMV (as well as other existing model checkers), heiggsire available for partially con-
trolling the state explosior?]. In any case, further case studies based on P system mddels o
realistic systems are needed to properly assess the stsaanyd weaknesses of each approach.

No implementation of mutation based testing of P systemst®yiet. In future research it
may be interesting to consider mixed approaches, in whidiatiom analysis is applied to state-
transition models of P Systems.

10. Conclusions

This paper, first, discusses a general testing strategyadiftiom Kripke structure represen-
tations of the same system using model checking and, sertrajuces a testing methodology
for P systems based on rule coverage criteria and model tigeckhe methodology presented
is implemented using the symbolic model checker NuSMV angpiglied to a basic class of
1-membrane P systems with cooperative rules, but it is gdpbcable to multi-membrane P sys-
tems. Furthermore, it can be generalized to other classesg$tems and can use other model
checkers, a topic we will follow in future papers.

The coverage criteria used in this paper have been intradand studied for P systems
in [18], but here we consider systems with non-cooperative rutesgenerate, as test suites,
sequences of multisets rather than just multisets. Adtitlg, the entire NuSMV specification
is automatically obtained from the P system. This aspeahisortant when using various P
system based specification languages, like P-lingiyd.]], since it enables the direct derivation
of test sets, satisfying given coverage criteria, from fhectication.

Further work will concentrate on more complex types of Peys, integrating this approach
with P-lingua and on LTL rewriting to improve the performaraf test generation method.

Acknowledgments

This work was supported by CNCSIS - UEFISCSU, project nunitdélt - IDEI 643/2008.
The authors would like to thank the anonymous reviewersteir tvaluable comments and sug-
gestions.

Appendix A. NuSMV Specification

Based on the P system specification, the tool developed bguti®rs generates an SMV
file, that will be processed by the NuSMV model checker. Trsultereceived from NuSMV
13

will be further parsed by the tool, each counterexamplebéglldecoded’ and the corresponding
test case will be obtained. In the sequel is given an SMV filkomatically generated for the
P systendl;, having one membrane = [1]1, the alphabeV; = {s, a, b, c}, the initial multiset
w; = sand the setofruleR, = {r; : s— ab;ro:a—c;r3: b — bcrs: b — c}. Toincrease
the readability of the SMV code, we have added some commiatrisduced by =-".

MODULE main

VAR

s : 0..10;
a : 0..10;
b : 0..10;
c : 0..10;
nl : 0..10;
n2 : 0..10;
n3 : 0..10;
n4d : 0..10;

state : {running, halt, crash};

DEFINE
Max := 5;
Sup := 5;

ASSIGN

init(s) := 1
init(a) := 0
init(b) := 0;
init(c) := 0
init(nl) :=
init(n2)
init (n3)
init(n4) := 0;
init(state) := running;

|
O O O O -~

s

-- Initially the system is in the ’running’ state and has only one
-- object ’s’. The possible transitions are given in the TRANS

-- section and these are: running -> {running, crash, halt},

-- halt -> halt and crash -> crash.

TRANS

-- The system remains in the ’running’ state. Then, conditions for
-- maximal parallelism are expressed: no further rule can be applied,
-- e.g. all the "b" objects, used by the rules r3 and r4, are

-- consumed: b-next(n3)-next(n4)=0. The ’next’ values for s, a, b, c
-- are set, taking into account their previous values, the objects
—-- produced and consumed by the rules. Non halting and non crashing
-- conditions follow.

state = running & next(state) = running &
s - next(nl) =0 & a - next(n2) =0 & b - next(n3) - next(nd) =0 &
14

next(s) = s - next(nl) &

next(a) = a - next(n2) + next(nl) &

next(b) = b - next(n3) - next(n4) + next(nl) + next(n3) &
next(c) = ¢ + next(n2) + next(n3) + next(nd) &

! (next(nl) = 0 & next(n2) = 0 & next(n3) = 0 & next(nd) = 0) &

! (next(s) > Max | next(a) > Max | next(b) > Max | next(c) > Max |
next(nl) > Sup | next(n2) > Sup | next(n3) > Sup | next(nd) > Sup) |

-- The system enters in the ’halt’ state. The main difference from the
-- previous transition ’running -> running’ is given by the halting
-- condition: next(n1)=0 & next(n2)=0 & next(n3)=0 & next(n4)=0

state = running & next(state) = halt &
s - next(nl) =0 & a - next(n2) =0 & b - next(n3) - next(nd) =0 &
next(s) = s - next(nl) &

next(a) = a - next(n2) + next(nl) &

next(b) = b - next(n3) - next(n4) + next(nl) + next(n3) &
next(c) = ¢ + next(n2) + next(n3) + next(nd) &

(next(nl) = 0 & next(n2) = 0 & next(n3) = 0 & next(n4) =0) |

-- The system enters in the ’crash’ state. The main difference from the
-- transition ’running -> running’ is given by the crashing rule:
-- next(s)>Max | ... | next(c)>Max | next(nl)>Sup | ... | next(n4)>Sup

state = running & next(state) = crash &

s - next(nl) =0 & a - next(n2) =0 & b - next(n3) - next(nd) =0 &
next(s) = s - next(nl) &

next(a) = a - next(n2) + next(nl) &

next (b) b - next(n3) - next(n4) + next(nl) + next(n3) &

next(c) = ¢ + next(n2) + next(n3) + next(nd) &

! (next(nl) 0 & next(n2) = 0 & next(n3) = 0 & next(nd) = 0) &
(next(s) > Max | next(a) > Max | next(b) > Max | next(c) > Max |
next(nl) > Sup | next(n2) > Sup | next(n3) > Sup | next(nd) > Sup) |

-- Loop ’halt -> halt’: the variables will keep their previous values
state = halt & next(state) = halt &

(next(nl) = 0 & next(n2) = 0 & next(n3) = 0 & next(nd) = 0) &

next(s) = s & next(a) = a & next(b) = b & next(c) = c |

-- Loop ’crash -> crash’

state = crash & next(state) = crash &

next(nl) = nl & next(n2) = n2 & next(n3) = n3 & next(nd4) = n4d &
next(s) = s & next(a) = a & next(b) = b & next(c) = c

-- Simple integrity checks

LTLSPEC G (state = running -> (0 <= s & s <= Max));
LTLSPEC G (state = running -> (0 <= a & a <= Max));
LTLSPEC G (state = running -> (0 <= b & b <= Max));
LTLSPEC G (state = running -> (0 <= ¢ & ¢ <= Max));
LTLSPEC G (state = running -> (0 <= nl1 & nl <= Sup));
LTLSPEC G (state = running -> (0 <= n2 & n2 <= Sup));

15

LTLSPEC G (state = running -> (0 <= n3 & n3 <= Sup));

LTLSPEC G (state = running -> (0 <= n4 & n4 <= Sup));

LTLSPEC G (state = halt -> (n1 =0 &n2=0&n3 =0&n4d=0));
LTLSPEC G (state = crash -> (nl > Sup | n2 > Sup | n3 > Sup |

n4d >Sup | s >Max | a>Max | b > Max | ¢ > Max));

-- LTL specifications for Rule Coverage (RC) express that the rule
-- 1is never applied, in order to obtain a counterexample

LTLSPEC G !(n1 > 0);

LTLSPEC G !(n2 > 0);

LTLSPEC G !(n3 > 0);

LTLSPEC G !(n4 > 0);

-- LTL specifications for Rule Terminal Coverage (RTC) are similar to
-- RC specifications, having in addition the condition F(state = halt)
LTLSPEC G !(nl > 0 & F(state = halt));
LTLSPEC G !(n2 > 0 & F(state = halt));
LTLSPEC G !(n3 > 0 & F(state = halt));
LTLSPEC G !(n4 > 0 & F(state = halt));

—-- LTL specifications for Context Dependent Rule Coverage (CDRC)
LTLSPEC G !(nl > 0 & X(n2 > 0));

LTLSPEC G !'(n1 > 0 & X(n3 > 0));
LTLSPEC G !'(nl > 0 & X(nd > 0));
LTLSPEC G !'(n3 > 0 & X(n3 > 0));
LTLSPEC G !'(n3 > 0 & X(nd > 0));

-- LTL specifications for Context Dependent Terminal Rule Coverage,
-- or CDRTC, are similar to CDRC, having in addition F(state = halt)

LTLSPEC G !'(n1 > 0 & X(n2 > 0) & F(state = halt));
LTLSPEC G !'(n1 > 0 & X(n3 > 0) & F(state = halt));
LTLSPEC G '(nl > 0 & X(n4 > 0) & F(state = halt));
LTLSPEC G !'(n3 > 0 & X(n3 > 0) & F(state = halt));
LTLSPEC G !'(n3 > 0 & X(n4 > 0) & F(state = halt));

Appendix B. Counterexample and corresponding test case

This is an excerpt of the counterexample received from NuShMing the above model, for
the LTL specificationg !'((n3 > 0 & X n3 > 0) &F state = halt), edited for brevity:

-- specification G !((n3 > 0 & X n3 > 0) & F state = halt) is false
-- as demonstrated by the following execution steps

Trace Description: LTL Counterexample

Trace Type: Counterexample

16

-> State: 17.1 <- s =0 c =3
s =1 a=1 n2 =0
a=20 b=1 -> State: 17.5 <-
b=0 nl =1 b=20
c=0 -> State: 17.3 <- c =4
nl =0 a=20 n3 =0
n2 =0 c =2 nd =1
n3 =0 nl =0 -- Loop starts here
nd = 0 n2 =1 -> State: 17.6 <-
state = running n3 =1 n4d =0

-> State: 17.2 <- -> State: 17.4 <- state = halt

The values of all variables are listed only once, for the @iostfiguration of the counterexam-
ple. Then, at the following steps, only the modified varialaee printed. Based on the counterex-
ample received for the specificatian! ((n3 > 0 & X n3 > 0) & F state = halt), the
tool developed computes the entire configuration at eaghastd the applied rules. The test
case corresponding to the use of rigén the context of 3, is represented by the P system com-
putation: s = ab = b = bc® = c¢*. The rules used are: firs, thenry,rs, for the
third transitionrs and finallyr,4, as it can be seen from the following table, correspondirth¢o
counterexample above:

State| s|a|b|c|nl|n2|n3|nd| state
172(1}(0|(0|0| 0| O| O | O | running
172|021 |(2(0| 1| 0| O | O | running
1730|022 0| 12| 1| 0| running
17410023 0| 0| 1| O | running
1750004 0| 0| O 1 | running
176|0|0|0|4] 0| 0| 0] O halt

References

[1] P.E. Ammann, P.E. Black, W. Majurski, Using model checkio generate tests from specifications, in: Proceed-
ings of the Second IEEE International Conference on Formgirieering Methods, ICFEM '98, IEEE Computer
Society, 1998, p. 46.

[2] A.Cimatti, E.M. Clarke, F. Giunchiglia, M. Roveri, NuS¥ A new symbolic model checker, International Journal
on Software Tools for Technology Transfer 2 (2000) 410-425.

[3] G. Ciobanu, M.J. Pérez-Jiménez, G. Paun (Eds.), itapbns of Membrane Computing, Natural Computing Se-
ries, Springer, 2006.

[4] E.M. Clarke, E.A. Emerson, Design and synthesis of symization skeletons using branching-time temporal
logic, 1981, in: D. Kozen (Ed.), Logic of Programs, Worksheplume 131 of_ecture Notes in Computer Science
Springer, 1982, pp. 52-71.

[5] E.M. Clarke, Jr., O. Grumberg, D.A. Peled, Model chegkiMIT Press, Cambridge, MA, USA, 1999.

[6] Z. Dang, O.H. Ibarra, C. Li, G. Xie, On the decidability ofodel-checking for P systems, Journal of Automata,
Languages and Combinatorics 11 (2006) 279-298.

[7] D.Diaz-Pernil, I. Pérez-Hurtado, M.J. Pérez-Jiveg, A. Riscos-NUfiez, A P-lingua programming environtfen
membrane computing, in: D.W. Corne, P. Frisco, G. Paun,d2eRberg, A. Salomaa (Eds.), Membrane Computing
- 9th International Workshop, WMC 2008, Revised Selectedllanited Papers, volume 5391 bécture Notes in
Computer SciengeSpringer, 2009, pp. 187-203.

[8] E.A. Emerson, J.Y. Halpern, Decision procedures andesgiveness in the temporal logic of branching time, in:
Proceedings of the Fourteenth Annual ACM Symposium on ThebComputing, STOC '82, ACM, 1982, pp.
169-180.

17

[9] A.Engels, L.M.G. Feijs, S. Mauw, Test generation foeifigent networks using model checking, in: E. Brinksma

[10]

[11]

[12]

(23]

[14]

[15]
[16]
[17]
[18]
[19]
[20]

[21]
[22]

[23]
[24]
[25]
[26]

(Ed.), Tools and Algorithms for Construction and AnalysiSgstems, Third International Workshop, TACAS '97,
volume 1217 oL ecture Notes in Computer Scien&pringer, 1997, pp. 384—-398.

G. Fraser, F. Wotawa, P. Ammann, Testing with model kbe a survey, Software Testing, Verification and
Reliability 19 (2009) 215-261.

M. Garcia-Quismondo, R. Gutiérrez-Escudero, IreRéHurtado, M.J. Pérez-Jiménez, A. Riscos-NUfiez, An
overview of P-Lingua 2.0, in: G. Paun, M.J. Pérez-Jinzérfe Riscos-Nlfez, G. Rozenberg, A. Salomaa (Eds.),
Membrane Computing - 10th International Workshop, WMC 2Révised Selected and Invited Papers, volume
5957 ofLecture Notes in Computer Scien&pringer, 2010, pp. 264—-288.

A. Gargantini, C.L. Heitmeyer, Using model checking generate tests from requirements specifications, in:
O. Nierstrasz, M. Lemoine (Eds.), Software Engineering EE&FSE’99, 7th European Software Engineering
Conference, volume 1687 akcture Notes in Computer Scien&pringer, 1999, pp. 146-162.

M. Gheorghe, F. Ipate, On testing P systems, in: D.Wn€pP. Frisco, G. Paun, G. Rozenberg, A. Salomaa (Eds.),
Membrane Computing - 9th International Workshop, WMC 20R8yised Selected and Invited Papers, volume
5391 ofLecture Notes in Computer Scien&pringer, 2009, pp. 204-216.

R. Hierons, K. Bogdanov, J. Bowen, R. Cleaveland, JriderJ. Dick, M. Gheorghe, M. Harman, K. Kapour,
P. Krause, G. Luettgen, A. Simons, S. Vilkomir, M. Woodwad,Zedan, Using formal specifications to support
testing, ACM Compt. Surv. 41 (2009).

M. Holcombe, F. Ipate, Correct Systems: Building a Besis Process Solution, Applied Computing Series,
Springer-Verlag, Berlin, Germany, 1998.

H.S. Hong, I. Lee, O. Sokolsky, S.D. Cha, Automatic gsheration from statecharts using model checking, in:
In Proceedings of FATES’01, Workshop on Formal Approachekesting of Software, volume NS-01-4BRICS
Notes Seriggpp. 15-30.

H.S. Hong, I. Lee, O. Sokolsky, H. Ural, A temporal lodgiased theory of test coverage and generation, in: J.P.
Katoen, P. Stevens (Eds.), Tools and Algorithms for the €oason and Analysis of Systems, 8th International
Conference, TACAS 2002, volume 2280Llagcture Notes in Computer Scien&pringer, 2002, pp. 327-341.

F. Ipate, M. Gheorghe, Finite state based testing ofdfesys, Natural Computing 8 (2009) 833-846.

F. Ipate, M. Gheorghe, Mutation based testing of P systénternational Journal of Computers, Communications
& Control 4 (2009) 253-262.

F. Ipate, M. Gheorghe, Testing non-deterministic a&tmex-machine models and p systems, Electronic Notes in
Theoretical Computer Science 227 (2009) 113-126.

K.L. McMillan, Symbolic Model Checking, Kluwer AcademPubl., 1993.

A. Pnueli, The temporal logic of programs, in: 18th Amh®ymposium on Foundations of Computer Science,
IEEE, 1977, pp. 46-57.

A. Pnueli, The temporal semantics of concurrent progralheoretical Computer Science 13 (1981) 45-60.

G. Paun, Computing with membranes, Journal of Conrparte System Sciences 61 (2000) 108-143.

G. Paun, Membrane Computing: An Introduction, Speinyerlag, 2002.

G. Paun, G. Rozenberg, A. Salomaa (Eds.), The OxfonidHaok of Membrane Computing, Oxford University
Press, 2010.

18

	1.pdf
	Gheorghe_Test
	Introduction
	Preliminaries
	P systems
	Kripke structures
	Linear Temporal Logic (LTL)

	Test cases for Kripke structures
	Transforming a P system into a Kripke structure
	Coverage criteria for P systems testing
	Deriving test cases for rule coverage criteria
	Generating the test suits
	NuSMV implementation - example
	Related work
	Conclusions

