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Abstract

This paper presents some testing approaches based on model checking and using different testing
criteria. First, test sets are built from different Kripke structure representations. Second, various
rule coverage criteria for transitional, non-deterministic, cell-like P systems, are considered in
order to generate adequate test sets. Rule based coverage criteria (simple rule coverage, context
dependent rule coverage and variants) are defined and, for each criterion, a set of LTL (Linear
Temporal Logic) formulas is provided. A codification of a P system as a Kripke structure and the
sets of LTL properties are used in test generation: for each criterion, test cases are obtained from
the counterexamples of the associated LTL formulas, which are automatically generated from the
Kripke structure codification of the P system. The method is illustrated with an implementation
using a specific model checker, NuSMV.
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1. Introduction

Model checkingis an automated technique for verifying if a model meets a given specifi-
cation, see [5]. It has been applied for checking concurrent systems, models of hardware and
software designs. It starts from a model of the implementation, given as an operational specifi-
cation; it also takes a temporal logic formula and verifies, through the entire state space, whether
the property holds or fails. If a property violation is discovered then a counterexample is re-
turned. Usually, these formulas describe liveness and safety requirements, such as the absence
of deadlocks or other critical states that can cause the system to crash.

Testing is an essential part of software development and allsoftware applications, irrespective
of their use and purpose, are tested before being released. Testing is not a replacement for
a formal verification procedure, when the former is also present, but rather a complementary
mechanism to increase the confidence in software correctness [15]. In black-box (or functional)
testing, the test generation is based on specification or model; if the specification or model is
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expressed in a formal way, the generation process could be automated. The obtained test cases
are then applied to the implementation, which is regarded asa ”black-box”.

The software testing community has used the capability of model checkers to generate test
sets: the counterexamples provided by the model checkers are used to construct test cases [17],
[16]. Two recent surveys on this topic are: [14] and [10]. Hierons et al. present a more general
view of the interplay between testing and formal methods [14], whereas the survey of Fraser et
al. describes the results obtained in the last decade in software testing using model checkers [10].
The type of testing discussed in this context is model-basedtesting, which assumes the existence
of a model of the implementation under test, given in a certain formalism.

In order to obtain a test suite, sometest purposesare defined, each one describing the ex-
pected characteristic of the test case (for example covering a certain state or transition in the
model, traversing a sequence of states etc.). The test purpose is further specified as a temporal
logic property (e.g. there exists a path in the model that reaches a certain states) and then con-
verted by negation to a ’never-claim’ condition (e.g. states is never reached), see [9]. The model
checker which verifies the never-claim property will produce a counterexample, if the property
is false. This counterexample provides the actual test datathat violates the never-claim property
and also satisfies the original test purpose. When never-claim properties are based on coverage
criteria, they are calledtrap properties[12]. For example, in order to create a test suite that
covers all the values of a discrete variablex, a trap property for each possible valuevi , 1 ≤ i ≤ n,
of the variablex is needed, claiming that the value is never taken: G!(x = vi) (x is always dif-
ferent fromvi). A different test generation approach is presented in [1]: mutated versions of the
model are generated and tests cases that distinguish these mutants from the original model are
automatically produced by applying model checking.

In the last ten years, a natural computing paradigm, namelymembrane computing, has
emerged as a powerful computational tool [24]. Its models, calledP systems, have been in-
tensively studied for their theoretical aspects as well as for various applications in biology, con-
currency, graphics, and with respect to many interactions with other computational models -
brane, ambient andπ calculi, Petri nets, cellular automata, grammar systems [3]. Many variants
have been introduced and studied, covering deterministic,non-deterministic or probabilistic phe-
nomena. The decidability of model checking properties for Psystems has also been studied in
the last years [6]. A recent handbook summarizes the most important developments in the mem-
brane computing field [26]. Apart from a strong theoretical investigation of variousaspects of
membrane computing, there have been many developments related to producing software appli-
cations modelled by certain P system classes. An overview ofvarious applications and software
tools developed so far, as well as of a specific programming environment called P-lingua, is pro-
vided in [26]. It is a natural question to ask whether these applicationsand P-lingua programs
are correct or error-free. The development of certain testing strategies for these applications has
relatively recently started to be studied ([13], [19], [20], [18]). These papers investigate different
testing coverage principles associated with the model utilised, but do not discuss any specific
method to derive test sets that will test the implementationagainst the model specification.

This paper applies model checking techniques to automatically generate test data for different
testing criteria. First, different Kripke structures of the same model are utilised to generate
positiveandnegativetest sets and necessary conditions to generateminimal positive test cases
are identified. Second, for cell-like P system models test sets are generated based on various
rule coverage criteria. A test set satisfying therule coverage criterioncontains test cases that
cover every rule, i.e. for each rule there exists a test case containing a computation which applies
that rule. Intuitively, rule coverage is the simplest test criterion, similar tostatement coveragein
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structural testing, since it ensures that each rule is applied at least once in testing. More powerful
test sets can be selected by considering thecontext-dependent rule coverage criterion, in which
each rule must be used in every possible context (defined by other rules). For test generation,
the P system specification is first automatically transformed into a Kripke structure, which is
then written in the language accepted by a specific symbolic model checker, NuSMV [2]. For
each test criterion (rule coverage and context-dependent rule coverage), a set of temporal logic
formulas is also automatically generated. The counterexamples produced by the model checker
will provide the test cases; these are the exact P system paths, containing the configurations
and the set of rules applied at each step. The paper proposes anovel approach for P systems
testing, by automating the test case generation process by using model checking techniques; it
also extends the test criteria previously defined to a more general context, i.e., cell-like P systems
with cooperative rules.

The paper is structured as follows: Section2 briefly presents the background notions, Sec-
tion 3 shows how test cases can be generated from Kripke structuresand Section4 describes the
transformation of a P system into a Kripke structure. Coverage criteria for P systems are given
in Section5; the theoretical basis for test case derivation is given in Section6, while the prac-
tical side of the automatic generation is described in Section 7; The NuSMV implementation
is illustrated with an example in Section8. Finally, related work is reported in Section9 and
conclusions are drawn in Section10.

2. Preliminaries

For an alphabetV = {a1, ..., ap}, V∗ denotes the set of all strings overV; λ denotes the empty
string. For a stringu ∈ V∗, |u|ai denotes the number ofai occurrences inu. Each stringu has an
associated vector of non-negative integers (|u|a1, ..., |u|ap). This is denoted byΨV(u).

2.1. P systems

A basic cell-like P system is defined as a hierarchical arrangement of membranes identifying
corresponding regions of the system. With each region thereare associated a finite multiset of
objects and a finite set of rules; both may be empty. A multisetis either denoted by a string
u ∈ V∗, where the order is not considered, or byΨV(u). The following definition refers to one
of the many variants of P systems, namely cell-like P systems, which use transformation and
communication rules [25]. We will call these processing rules. From now onwards we will refer
to this model as simply a P system.

Definition 1. A P systemis a tupleΠ = (V, µ,w1, ...,wn,R1, ...,Rn), where V is a finite set, called
alphabet; µ defines the membrane structure, which is a hierarchical arrangement of n compart-
ments calledregionsdelimited bymembranes- these membranes and regions are identified by
integers 1 to n; wi , 1 ≤ i ≤ n, represents the initial multiset occurring in region i; Ri , 1 ≤ i ≤ n,
denotes the set of processing rules applied in region i.

The membrane structure,µ, is denoted by a string of left and right brackets ([, and ]), each
with the label of the membrane it points to;µ also describes the position of each membrane in
the hierarchy. The rules in each region have the formu→ (a1, t1)...(am, tm), whereu is a multiset
of symbols fromV, ai ∈ V, ti ∈ {in, out, here}, 1 ≤ i ≤ m. When such a rule is applied to a
multisetu in the current region,u is replaced by the symbolsai , with ti = here; symbolsai ,
with ti = out, are sent to the outer region or outside the system when the current region is the
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external compartment and symbolsai , with ti = in, are sent into one of the regions contained
in the current one, arbitrarily chosen. In the following definitions and examples all the symbols
(ai , here) are used asai . The rules are applied in maximally parallel mode which means that they
are used in all the regions at the same time and in each region all the objects to which a rulecan
be appliedmustbe the subject of a rule application [24].

A configurationof the P systemΠ, is a tuplec = (u1, ..., un), whereui ∈ V∗, is the multiset
associated with regioni, 1 ≤ i ≤ n. A computationfrom a configurationc1 to c2 using the
maximal parallelism mode is denoted byc1 =⇒ c2. Within the set of all configurations we
will distinguish terminal configurations;c = (u1, ..., un) is a terminal configurationif there is no
regioni such thatui can be further developed.

For the type of P system we investigate in this paper, multi-membranes can be equivalently
collapsed into one membrane by properly renaming symbols ofthe system associated with mem-
branes. Thus, for the sake of convenience, in the remainder of this paper we will focus on P
systems with only one membrane. For more details regarding different variants of P systems and
their properties see [25].

2.2. Kripke structures

Definition 2. A Kripke structure over a set of atomic propositions AP is a four tuple M =
(S,H, I , L), where S is a finite set of states; I⊆ S is a set of initial states; H⊆ S × S is a
transition relation that must be left-total, that is, for every state s∈ S there is a state s′ ∈ S such
that (s, s′) ∈ H; L : S −→ 2AP is an interpretation function, that labels each state with the set of
atomic propositions true in that state.

Usually, the Kripke structure representation of a system results by giving values to every
variable in each configuration of the system. Supposevar1, . . . , varn are the system variables,
Vali denotes the set of values forvari and vali is a value fromVali , 1 ≤ i ≤ n. Then the
states of the system areS = {(val1, . . . , valn) | val1 ∈ Val1, . . . , valn ∈ Valn}, and the set of
atomic predicates areAP = {(vari = vali) | 1 ≤ i ≤ n, vali ∈ Vali}. Naturally, L will map
each state (given by the values of variables) onto the corresponding set of atomic propositions.
For convenience, in the sequel the expressions ofAP and L will not be explicitly given, the
assumption being that they are defined as above.

Additionally, a halt (sink) state is needed whenH is not left-total and an extra atomic propo-
sition, that indicates that the system has reached this state, is added toAP.

Definition 3. An (infinite) path in a Kripke structure M= (S,H, I , L) from a state s∈ S is an
infinite sequence of statesπ = s0s1 . . . , such that s0 = s and(si , si+1) ∈ H for every i≥ 0. A
finite pathπ is a finite prefix of an infinite path.

The set of all (infinite) paths from initial states is denotedby Path(M). The set of all finite
paths from initial states is denoted byFPath(M).

2.3. Linear Temporal Logic (LTL)

The most widely used temporal specification languages in model checking areLinear Tem-
poral Logic(LTL) [ 22, 23] and the branching time logic CTL (Computation Tree Logic) [4]. A
superset of these logics is CTL* [8], which combines both linear-time and branching-time oper-
ators. A state formula in CTL* may be obtained from a path formula by prefixing it with a path
quantifier, eitherA (for every path) or anE (there exists a path).
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In LTL the only path quantifier allowed isA, i.e. we can describe only one path properties
per formula and the only state subformulas permitted are atomic propositions. More precisely,
LTL formulas satisfy the following rules [5]:

• If p ∈ AP, thenp is a path formula

• If f andg are path formulas, then¬ f , f ∨ g, f ∧ g, X f , F f , G f , f Ug and f Rg are path
formulas, where:

– The X operator (”neXt time”, also written©) requires that a property holds in the
next state of the path.

– TheF operator (”eventually” or ”in the future”, also written♦) is used to assert that
a property will hold at some state on the path.

– G f (”always” or ”globally”, also written�) specifies that a property,f , holds at
every state on the path.

– f Ug operator (U means ”until”) holds if there is a state on the path whereg holds,
and at every preceding state on the path,f holds. This operator requires thatf has to
holdat leastuntil g, which holds at the current or a future position.

– R (”release”) is the logical dual of theU operator. It requires that the second property
holds along the path up to and including the first state where the first property holds.
However, the first property is not required to hold eventually: if f never becomes
true,g must remain true forever.

3. Test cases for Kripke structures

In this section positive and negative test cases are introduced in relation to two Kripke struc-
tures associated to a model. A necessary condition, expressed as a LTL specification, is identified
for generating minimal positive test cases.

Let us assume that a system is modelled by a Kripke structureM = (S,H, I , L) overAP. Let
M′ = (S,H′, I ′, L) be a Kripke structure overAP; M′ represents the (potentially faulty) model of
the implementation under test.

Definition 4. We say that M′ covers M, denoted M≤ M′ if Path(M) ⊆ Path(M′).

Lemma 1. M′ covers M if and only if FPath(M) ⊆ FPath(M′).

Proof. =⇒: We assume by absurd that the consequence is false and we derive the falsity of the
hypothesis. IfFPath(M) * FPath(M′) then there exists a finite sequence of statesπ = s0 . . . sn

such thatπ ∈ FPath(M) \ FPath(M′). Since the transition relation is left-total, there exists an
infinite sequenceπ′ = s0 . . . snsn+1 . . . such thatπ′ ∈ Path(M). Sinceπ′ < Path(M′), we have a
contradiction.
⇐=: Using the same principle, we assumePath(M) * Path(M′). Then there exists an infinite

sequence of statesπ = s0s1 . . . such thatπ ∈ Path(M) \ Path(M′). Let n be the minimum integer
for whichπ′ = s0 . . . sn < FPath(M′). Sinceπ′ ∈ FPath(M), we have a contradiction.

Definition 5. We say that M is trace equivalent to M′, denoted M≡ M′ if M ′ covers M and M′

covers M.
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Corollary 1. M is trace equivalent to M′ if and only if FPath(M) = FPath(M′).

Proof. Follows from lemma1.

The above results suggest the following definitions of positive and negative test cases. These
definitions are adapted from the concepts presented in [10]. The test sets are generated from two
Kripke structures,M andM′, associated with a system. The former is assumed to be correct and
the other faulty.

Definition 6. A finite sequence of statesπ is called a positive test case of M w.r.t. M′ if π ∈
FPath(M) \ FPath(M′).

Definition 7. A finite sequence of statesπ is called a negative test case of M w.r.t. M′ if π ∈
FPath(M′) \ FPath(M).

Definition 8. A positive test case s0 . . . sn, n ≥ 0 is said to beminimal if s0 . . . sn−1 is not a
positive test case.

Clearly,s0 . . . sn is a minimal test case if and only ifs0 . . . sn ∈ FPath(M) \ FPath(M′) and
s0 . . . sn−1 ∈ FPath(M) ∩ FPath(M′).

A minimal negative test case is defined similarly.

Definition 9. Let AP1 = AP∪ {(newvar = 0), (newvar = 1)}, where newvar is not a system
variable and let L1 : (S × {0, 1}) −→ 2AP1 be defined by L1(s, 1) = L(s) ∪ {(newvar = 1)}
and L1(s, 0) = L(s) ∪ {(newvar = 0)}, s ∈ S . Then M− M′ denotes the Kripke structure
(S × {0, 1},H1, (I ∩ I ′) × {1} ∪ (I \ I ′) × {0}, L1), where H1 is defined by:

• ((s, 1), (s′, 1)) ∈ H1 if (s, s′) ∈ H ∩ H′, s, s′ ∈ S ;

• ((s, 1), (s′, 0)) ∈ H1 if (s, s′) ∈ H \ H′, s, s′ ∈ S ;

• ((s, 0), (s′, 0)) ∈ H1, s, s′ ∈ S .

Note that, since H is left total, H1 is also left-total.

Lemma 2. s0 . . . sn, n ≥ 0, is a minimal positive test case if and only if(s0, 1) . . . (sn−1, 1)(sn, 0) ∈
FPath(M − M′).

Proof. By induction onk ≥ 0 it follows thats0 . . . sk ∈ FPath(M) ∩ FPath(M′) if and only if
(s0, 1) . . . (sk, 1) ∈ FPath(M − M′).

Thens0 . . . sn, n ≥ 0, is a minimal positive test case if and only if
s0 . . . sn−1 ∈ FPath(M) ∩ FPath(M′) ands0 . . . sn ∈ FPath(M) \ FPath(M′) (by definition8) if
and only if
(s0, 1) . . . (sn−1, 1) ∈ FPath(M − M′) and (sn−1, sn) ∈ H \ H′ if and only if
(s0, 1) . . . (sn−1, 1) ∈ FPath(M − M′) and (s0, 1) . . . (sn−1, 1) (sn, 0) ∈ FPath(M − M′) (by defini-
tion 9).

Lemma 3. π = s0 . . . sn is a minimal positive test case if and only if there exists an infinite
sequence sn+1sn+2 . . . such that(s0, 1) . . . (sn−1, 1)(sn, 0)(sn+1, 0) (sn+2, 0) . . . ∈ Path(M − M′).

Proof. Follows from lemma2 sinceH1 is left total.
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Theorem 4. Consider the LTL specification G(newvar = 1) for a model associated with M−M′.

1. If the specification is satisfied then FPath(M) ⊆ FPath(M′).
2. If π is a counterexample, then there exists a finite prefixπ′ ofπ, π′ = (s0, 1) . . . (sn−1, 1)(sn, 0),

such that s0 . . . sn−1sn is a minimal positive test case.

Proof. 1. AssumeFPath(M) * FPath(M′). Then there exists a minimal positive test case
s0 . . . sn. By lemma3, there exists an infinite sequencesn+1sn+2 . . . such that
(s0, 1) . . . (sn−1, 1)(sn, 0)(sn+1, 0)(sn+2, 0) . . . ∈ Path(M − M′). This contradicts the hypoth-
esis.

2. Suppose (s0, i0)(s1, i1) . . . is a counterexample. Then there existsn ≥ 0 such thatin = 0
andi j = 1 for every j < n. From the definition ofM − M′ it follows that i j = 0 for every
j ≥ n. By lemma3, s0 . . . sn−1sn is a minimal positive test case.

4. Transforming a P system into a Kripke structure

This section shows how a P system can be transformed into a Kripke structure. As stated in
the introduction, without loss of generality, we consider only 1-membrane P systems in order to
simplify the presentation (for the type of P system used in this paper, a multi-membrane P system
can be reduced to 1-membrane P system by an adequate codification of the symbols and rules).

Consider a 1-membrane P systemΠ = (V, µ,w,R), whereR = {r1, . . . , rm}; each ruler i ,
1 ≤ i ≤ m, is of the formui −→ vi , whereui and vi are multisets over the alphabetV. In
the sequel, we treat the multisets as vectors of non-negative integers, that is each multisetu is
replaced byΨV(u) ∈ Nk, wherek denotes the number of symbols inV; so, we will writeu ∈ Nk.

In order to define the Kripke structure associated toΠ we use two predicates,MaxPar and
Apply (similar to [6]): MaxPar(u, u1, v1, n1, . . . , um, vm, nm), u ∈ Nk, n1, . . . , nm ∈ N signifies
that a computation from the configurationu in maximally parallel mode is obtained by applying
rules r1 : u1 −→ v1, . . . , rm : um −→ vm, n1, . . . , nm times, respectively, tou (in particular,
MaxPar(u, u1, v1, 0, . . . , um, vm, 0) signifies that no rule can be applied and sou is a terminal
configuration);Apply(u, v, u1, v1, n1, . . . , um, vm, nm), u, v ∈ Nk, n1, . . . , nm ∈ N, denotes thatv is
obtained fromu by applying rulesr1, . . . , rm, n1, . . . , nm times, respectively.

In order to keep the number of configurations finite, we will assume that, for each config-
urationu = (u(1), ..., u(k)), each component,u(i), 1 ≤ i ≤ k, cannot exceed an established upper
bound, denotedMaxand, in each computation, each rule can only be applied for atmost a given
number of times, denotedS up. Obviously, the existence ofMax implies the existence ofS up;
however, in practice it is often more convenient to explicitly impose both these constraints.

We denoteu ≤ Max if u(i) ≤ Max for every 1≤ i ≤ k and (n1, . . . , nm) ≤ S upif ni ≤ S upfor
every 1≤ i ≤ m; Nk

Max = {u ∈ Nk | u ≤ Max}, Nm
S up= {(n1, . . . , nm) ∈ Nm | (n1, . . . , nm) ≤ S up}.

Analogously to [6], the system is assumed to crash wheneveru ≤ Max or (n1, . . . , nm) ≤ S up
does not hold (this is different from the normal termination, which occurs whenu ≤ Max,
(n1, . . . , nm) ≤ S upand no rule can be applied). Under these conditions, the 1-membrane P
systemΠ can be described by a Kripke structureM = (S,H, I , L) with S = Nk

Max∪{Halt,Crash}
with Halt,Crash< Nk

Max, Halt , Crash; I = w andH defined by:

• (u, v) ∈ H, u, v ∈ Nk
Max, if ∃(n1, . . . , nm) ∈ Nm

S up\ {(0, . . . , 0)} ·
MaxPar(u, u1, v1, n1, . . . , um, vm, nm) ∧
Apply(u, v, u1, v1, n1, . . . , um, vm, nm);
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• (u,Halt) ∈ H, u ∈ Nk
Max, if MaxPar(u, u1, v1, 0, . . . , um, vm, 0);

• (u,Crash) ∈ H, u ∈ Nk
Max, if ∃(n1, . . . , nm) ∈ Nm, v ∈ Nk ·

¬((n1, . . . , nm) ≤ S up∧ v ≤ Max) ∧ MaxPar(u, u1, v1, n1, . . . , um, vm, nm)
∧ Apply(u, v, u1, v1, n1, . . . , um, vm, nm);

• (Halt,Halt) ∈ H;

• (Crash,Crash) ∈ H.

It can be observed that the relationH is left-total. It is easy to show that for everyu, v ∈ Nk
Max, v

is computed fromu, in Π, if and only if (u, v) ∈ H.

5. Coverage criteria for P systems testing

In this section we define test suites which satisfy two coverage criteria: simple rule coverage
and context-dependent rule coverage. The definitions givenbelow generalize the previous defi-
nitions, given in [18], in two respects. Firstly, test cases are now considered tobe sequences of
vectors (multisets), not mere vectors (multisets). Secondly, cooperative rules are now considered
(as opposed to [18], in which only non-cooperative rules were considered); this raises new issues,
especially when defining a test set which meets the context-dependent rule coverage criterion.

Consider again a 1-membrane P systemΠ = (V, µ,w,R), and its associated Kripke structure
M = (S,H, I , L).

Definition 10. A finite path(s0, . . . , sn) ∈ FPath(M), n ≥ 1, is called a test case which covers
rule ri , 1 ≤ i ≤ m, if there exists p≤ n− 1 for which sp, sp+1 ∈ Nk

Max and∃(n1, . . . , nm) ∈ Nm
S up

such as ni ≥ 1∧MaxPar(sp, u1, v1, n1, . . . , um, vm, nm)∧ Apply(sp, sp+1, u1, v1, n1, . . . , um, vm, nm).

In other words, a test case that covers a certain ruler i is a finite sequence of P system com-
putations in whichr i is applied at least once. A terminal test case is one which ends in a terminal
configuration.

Definition 11. A terminal test case which covers rule ri , 1 ≤ i ≤ m, is a test case(s0, . . . , sn)
which covers ri such that MaxPar(sn, u1, v1, 0, . . . , um, vm, 0).

A (terminal) test suite which satisfies the simple rule coverage criterion will then be defined
as a finite set of (terminal) test cases which cover all rules of the P system.

Definition 12. A finite set U⊆ FPath(M) is called a (terminal) test suite which satisfies the
simple rule coverage criterion if for every rule ri , 1 ≤ i ≤ m, whenever there exists a (terminal)
test case which covers ri , there existsπ ∈ U such thatπ is a (terminal) test case which covers ri .

A stronger criterion is context-dependent rule coverage: given ruler j and rulesr i1 , . . . , r ih, a
test case which covers ruler j in the context defined by rulesr i1, . . . , r ih is a finite sequence of P
system computations in which all rulesr i1, . . . , r ih are applied one step beforer j is applied (thus
providing the context for the application ofr j). A (terminal) test suite which satisfies the context
dependent rule coverage criterion will then be defined as a finite set of (terminal) test cases which
cover every rule in every possible context.

Note that, unlike previous work [18], the definitions below consider cooperative rules. Con-
sequently, they use a set of rules (not a single rule like in [18]) as a context of a rule, all applied
a step before the rule is used; in this case its left hand side is contained in the union of their right
hand sides and is not in the right hand side of any of them.
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Definition 13. A finite path(s0, . . . , sn) ∈ FPath(M), n ≥ 2, is called a test case which covers
rule r j in the context defined by rules ri1 , . . . , r ih, 1 ≤ i1, . . . ih, j ≤ m,1 ≤ h ≤ m, if there exists p,
p ≤ n− 2 for which sp, sp+1, sp+2 ∈ Nk

Max, ∃ (n1, . . . , nm) ∈ Nm
S up · ni1, . . . , nih ≥ 1 ∧ MaxPar(sp,

u1, v1, n1, . . . , um, vm, nm) ∧ Apply(sp, sp+1, u1, v1, n1, . . . , um, vm, nm) and
∃(n′1, . . . , n

′
m) ∈ Nm

S up · n
′
j ≥ 1 ∧ MaxPar(sp+1, u1, v1, n′1, . . . , um, vm, n′m) ∧ Apply(sp+1, sp+2, u1,

v1, n′1, . . . , um, vm, n′m).

Definition 14. A terminal test case which covers rule rj in the context defined by rules ri1, . . . , r ih,
1 ≤ i1, . . . ih, j ≤ m, 1 ≤ h ≤ m, is a test case(s0, . . . , sn) which covers rj in the context defined
by ri1 , . . . , r ih such that MaxPar(sn, u1, v1, 0, . . . , um, vm, 0).

Definition 15. A finite set U⊆ FPath(M) is called a (terminal) test suite which satisfies the
context-dependent rule coverage criterion if for every rules ri1, . . . , r ih and rj , 1 ≤ i1, . . . ih, j ≤ m,
1 ≤ h ≤ m, whenever there exists a (terminal) test case which coversr j in the context defined by
r i1 , . . . , r ih, there existsπ ∈ U such thatπ is a (terminal) test case which covers rj in the context
defined by ri1, . . . , r ih.

6. Deriving test cases for rule coverage criteria

In this section we show how test suites which satisfy the above rule coverage criteria can
be derived from the counterexamples produced by model checkers. Consider once again a 1-
membrane P systemΠ = (V, µ,w,R) as above.

For (u(1), . . . , u(k)) ∈ Nk and (n1, . . . , nm) ∈ Nm we denote (u(1), . . . , u(k)) ◦ (n1, . . . , nm) =
(u(1), . . . , u(k), n1, . . . , nm).

As a prerequisite, we define an additional Kripke structureM = (S,H, I , L) with S = Nk
Max×

Nm
S up∪ {Halt,Crash} with Halt,Crash< Nk

Max × Nm
S up, Halt , Crash; I = {w ◦ (0, . . . , 0)} and

H defined by:

• (u ◦ (n1, . . . , nm), v ◦ (n′1, . . . , n
′
m)) ∈ H, u, v ∈ Nk

Max, (n1, . . . , nm), (n′1, . . . , n
′
m) ∈ Nm

S up if
MaxPar(u, u1, v1, n′1, . . . , um, vm, n′m) ∧
Apply(u, v, u1, v1, n′1, . . . , um, vm, n′m);

• (u ◦ (n1, . . . , nm),Halt) ∈ H, if MaxPar(u, u1, v1, 0, . . . , um, vm, 0);

• (u◦ (n1, . . . , nm),Crash) ∈ H, u ∈ Nk
Max, (n1, . . . , nm), ∈ Nm

S up if ∃(n′1, . . . , n
′
m) ∈ Nm, v ∈ Nk

· ¬((n′1, . . . , n
′
m) ≤ S up∧ v ≤ Max) ∧

MaxPar(u, u1, v1, n′1, . . . , um, vm, n′m) ∧
Apply(u, v, u1, v1, n′1, . . . , um, vm, n′m);

• (Halt,Halt) ∈ H;

• (Crash,Crash) ∈ H.

It can be observed that the relationH is left-total.
For x ∈ Nk

Max × Nm
S up, x = (x1, . . . xk, xk+1, . . . , xk+m), we denotepro jk(x) = (x1, . . . xk).

For a finite sequenceπ = (x0, . . . , xn), xi ∈ Nk
Max × Nm

S up, 1 ≤ i ≤ n, we denotepro jk(π) =
(pro jk(x0), . . . , pro jk(xn)).

If Π = (V, µ,w,R) is a 1-membrane P system andM = (S,H, I , L) andM = (S,H, I , L), are
Kripke structures above mentioned, then (s0, . . . , sn) ∈ FPath(M) if and only if (s′0, . . . , s

′
n) ∈

9



FPath(M), wheres′i = si ◦ (ni
1, . . . , n

i
m), and (ni

1, . . . , n
i
m) ∈ Nm, 0 ≤ i ≤ n; ((sn = Halt) and

(s′n = Halt)) or ((sn = Crash) and (s′n = Crash)). M Kripke structure includes bothM Kripke
structure and the values of occurrences of each rule of the P system involved in computations.
This additional information ofM is utilised in the following results.

In the sequel it will be shown how various test cases are builtin order to fulfill rule coverage
criteria.

Suppose (state= halt), (state= crash), (state= other) ∈ AP, (state= halt) holds whenM
is in stateHalt, (state= crash) holds whenM is in stateCrashand (state= other) holds when
M is neither inHalt nor inCrashstate.

Lemma 5. Consider the LTL specification G¬((ni ≥ 1) ∧ (state = other)), 1 ≤ i ≤ m, for
1-membrane P system,Π, with its associated Kripke structureM. If π is a counterexample, then
there exists a finite prefixπ′ of π such that pro jk(π′) is a test case which covers ri .

Proof. Let π = x0x1 . . . be a counterexample. Then there existsp, p ≥ 1 such thatxp = sp ◦

(np
1, . . . , n

p
m), with sp ∈ Nk

Max, (np
1, . . . , n

p
m) ∈ Nm

S up, np
i ≥ 1. From the construction ofM it follows

that x j = sj ◦ (n j
1, . . . , n

j
m), with sj ∈ Nk

Max, (n j
1, . . . , n

j
m) ∈ Nm

S up, for every 0≤ j ≤ p− 1. Then
s0 . . . sp is a test case which coversr i .

Lemma 6. Consider the LTL specification G¬((ni ≥ 1) ∧ (state= other) ∧ F(state= halt)),
1 ≤ i ≤ m, for 1-membrane P system,Π, with its associated Kripke structureM. If π is a
counterexample, then there exists a finite prefixπ′ of π such that pro jk(π′) is a terminal test case
which covers ri .

Proof. Analogously to the proof of Lemma5, there existp, r, 1 ≤ p < r such thatxp = sp ◦

(np
1, . . . , n

p
m), xr = sr ◦ (nr

1, . . . , n
r
m), with sp, sr ∈ Nk

Max, (np
1, . . . , n

p
m), (nr

1, . . . , n
r
m) ∈ Nm

S up, np
i ≥ 1

and MaxPar(sr , u1, v1, 0, . . . , um, vm, 0); x j = sj ◦ (n j
1, . . . , n

j
m), with sj ∈ Nk

Max, (n j
1, . . . , n

j
m) ∈

Nm
S up, for every 0≤ j ≤ r − 1. Thens0 . . . sr is a terminal test case which coversr i .

Lemma 7. Consider the LTL specification G¬((ni1 ≥ 1)∧ . . .∧ (nih ≥ 1)∧ X((n j ≥ 1)∧ (state=
other))), 1 ≤ i1, . . . , ih, j ≤ m, 1 ≤ h ≤ m, for 1-membrane P system,Π, with its associated
Kripke structureM. If π is a counterexample, then there exists a finite prefixπ′ of π such that
pro jk(π′) is a test case which covers rj in the context defined by ri1, . . . , r ih.

Proof. Analogously to the proof of Lemma5, there existsp, p ≥ 1 such thatxp = sp ◦

(np
1, . . . , n

p
m), xp+1 = sp+1 ◦ (np+1

1 , . . . , n
p+1
m ), with sp, sp+1 ∈ Nk

Max, (np
1, . . . , n

p
m)(np+1

1 , . . . , n
p+1
m ) ∈

Nm
S up, np

i1
≥ 1, . . . , np

ih
≥ 1 andnp+1

j ≥ 1; xa = sa ◦ (na
1, . . . , n

a
m), with sa ∈ Nk

Max, (na
1, . . . , n

a
m) ∈

Nm
S up, for every 0≤ a ≤ p − 1. Thens0 . . . spsp+1 is a test case which coversr j in the context

defined byr i1 , . . . , r ih.

Lemma 8. Consider the LTL specification G¬((ni1 ≥ 1)∧ . . .∧ (nih ≥ 1)∧ X((n j ≥ 1)∧ (state=
other) ∧ F(state= halt))), 1 ≤ i1, . . . , ih, j ≤ m, 1 ≤ h ≤ m, for 1-membrane P system,Π, with
its associated Kripke structureM. If π is a counterexample, then there exists a finite prefixπ′ of
π such that pro jk(π′) is a terminal test case which covers rj in the context defined by ri1, . . . , r ih.

Proof. Follows the lines of the above proofs.
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Theorem 9. Given a 1-membrane P system, (terminal) test suites satisfying the rule coverage
and context-dependent rule coverage criteria are generated based on LTL specifications for every
rule of P.

The generation of these test suites follows from the above lemmas.
As previously mentioned, multi-compartment P systems of the type presented in this paper

can be converted to 1-compartment P systems. On the other hand, the approach introduced for
P systems with one single compartment can be generalised (and therefore directly applied) to
multiple compartments using the definitions and techniquesgiven in [18]. This generalisation
may be useful in practice, if we need to keep the system as it isoriginally specified.

7. Generating the test suits

For automatic generation of test suits we have used NuSMV, a symbolic model checker [2],
publicly available athttp://nusmv.irst.itc.it/. NuSMV can process files written in SMV language
[21] and supports LTL and CTL as temporal specification logics.

For a 1-membrane P systemΠ = (V, µ,w,R), with V = {a1, . . . , ak} and R = {r1, . . . rm}

(each ruler i has the formui −→ vi), its associated Kripke structure isM = (S,H, I , L). This
is represented in NuSMV as follows. The state space ofM is implemented by using a 3-valued
”state” variable (with values ”Halt”, ”Crash” and ”Running”) and appropriate variables to hold
the current configuration and the number of applications of each rule. Therefore, the NuSMV
model will contain:

• k variables, labelled exactly like the objects from the alphabetV, each one showing the
number of occurrences of each object,ai ∈ V, 1≤ i ≤ k;

• m variablesni, 1 ≤ i ≤ m, each one showing the number of applications ofr i ∈ R,
1 ≤ i ≤ m;

• one variablestateshowing the current state of the model,state∈ {Running,Halt,Crash};

• two constants,Max, the upper bound for the number of occurrences of eachai ∈ V, 1 ≤
i ≤ k, andS up, the upper bound for the number of applications of each ruler i , 1 ≤ i ≤ m
(see Section4).

We can now construct a NuSMV specification as a Finite State Machine (FSM) whose states
and transitions are defined below.

If the current state isRunningthen the current configuration is characterised by the values
provided bya1 ≥ 0, . . . , ak ≥ 0; the maximal parallelism condition will be written as a conjunc-
tion c1 ∧ . . . ∧ cm, where each conditionci , 1 ≤ i ≤ m, corresponds to ruler i and is a disjunction
ci = ci1 ∨ . . . ∨ cip, given that the left hand side ofr i is a

ti1
i1
. . .a

ti p
ip

. The conditionci j , 1 ≤ j ≤ p,
is 0 ≤ ai j − n1h1 − . . . − nmhm < ti j , wheren1, . . . , nm represent the values provided byMaxPar
andhq ≥ 0 represents the number of occurrences of symbolai j on the left hand side ofrq. This
condition simply states that, after applying all rules in a maximal parallel way, the number of
occurrences of symbolai j left is less than the number of occurrences ofai j appearing on the
left hand side ofr i and so this rule can no longer be applied in this step. When thenumber
of occurrences of the symbolai j on the left side of a rulerq is equal to 1, the above inequality
0 ≤ ai j − n1h1 − . . . − nmhm < ti j becomes 0= ai j − n1h1 − . . . − nmhm (becauseti j = 1).
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The valuesa1 ≥ 0, . . . , ak ≥ 0 that characterise the next state are computed as follows. Using
the above notation and denoting bynext(a) the new value, we havenext(ai j ) = ai j − n1h1 − . . . −

nmhm + n1h′1 + . . . + nmh′m, whereh′q ≥ 0 represents the number of occurrences of symbolai j on
the right hand side ofrq.

Some additional conditions are added to those given above, in order to distinguish the des-
tination state. These are obvious and derive from the upper bound conditions introduced. The
example below illustrates the approach. Note that all theseconditions and the entire NuSMV
specification, including the LTL expressions, are automatically derived from a P system by using
a tool developed by the authors of this paper.

8. NuSMV implementation - example

We illustrate the approach by using the following 1-membrane P systems:Π1 = (V1, µ,w1,R1),
havingV1 = {s, a, b, c}, µ = [1]1, w1 = s, R1 = {r1 : s→ ab; r2 : a→ c; r3 : b→ bc; r4 : b→ c}
andΠ2 = (V2, µ,w2,R2), havingV2 = {s, a, b, c, d, x}, µ = [1]1, w2 = s, R2 = {r1 : s→ abc; r2 :
ab→ d2; r3 : c→ ab; r4 : abd2→ x}.

The transition from the stateRunningto itself for the P systemΠ1, which has non-cooperative
rules, can be written as the following NuSMV specification, in which the second row shows that
all the objects have been consumed and no rule can be further applied (maximal parallelism):

state = running & next(state) = running &

s - next(n1) = 0 & a - next(n2) = 0 & b - next(n3) - next(n4) = 0 &

next(s) = s - next(n1) &

next(a) = a - next(n2) + next(n1) &

next(b) = b - next(n3) - next(n4) + next(n1) + next(n3) &

next(c) = c + next(n2) + next(n3) + next(n4) &

! (next(n1) = 0 & next(n2) = 0 & next(n3) = 0 & next(n4) = 0) &

! (next(s) > Max | next(a) > Max | next(b) > Max | next(c) > Max |

next(n1) > Sup | next(n2) > Sup | next(n3) > Sup | next(n4) > Sup)

The maximal parallelism condition forΠ2, a P system with cooperative rules, becomes a
conjunction of disjunctionsc1 ∧ . . . ∧ cm, eachci corresponding to a rule:

(s-next(n1)=0) & (a-next(n2)-next(n4)=0 | b-next(n2)-next(n4)=0) &

(c-next(n3)=0) & (a-next(n2)-next(n4)=0 | b-next(n2)-next(n4)=0 |

(0<=d-2*next(n4) & d-2*next(n4)<2))

When one specification is false, a counterexample is given, i.e., a trace of the FSM that
falsifies the property. Based on the counterexample received for the specificationG !((n1 > 0

& X n2 > 0) & F state = halt) of Π1, a test sequence checking thatr2 appears in the
context ofr1 on a terminal computation starting withw is obtained. This is given by{s}{ab}{c2}

and the rules applied are firstr1 and thenr2, r4, at the next step. Similarly, the LTL specification
G !(((n2 > 0 & n3 > 0) & X n4 > 0) & F state = halt) of Π2 has a corresponding
test case:{s}{abc}{abd2}{x} and the rules applied in the computations =⇒ abc=⇒ abd2 =⇒ x
are firstr1, thenr2, r3 and, finally,r4, at the last step. The complete NuSMV specification ofΠ1

is given in Appendix A and a counterexample returned by NuSMVwith its corresponding test
case is shown in Appendix B.
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9. Related work

P system testing has been studied now for a few years and threemain directions have been
considered: finite state machine based testing [13, 18], mutation based testing [19], and testing
based on model checking. The first and third directions are somehow related since the underlying
model used in both cases is a state-transition system. Furthermore, coverage based criteria can
be used for test generation in both cases. In finite state machine based testing, however, con-
formance methods [18] (which ensure that the (unknown) implementation under test conforms
to the specification, provided its model belongs to a certain, pre-defined, set of finite state ma-
chines, which makes up the so-calledfault modelof the method in question). Both approaches
(finite state machine based and model checking based) may suffer from the state explosion as-
sociated with the construction of the state-transition model of the P system. On the other hand,
in NuSMV (as well as other existing model checkers), heuristics are available for partially con-
trolling the state explosion [2]. In any case, further case studies based on P system models of
realistic systems are needed to properly assess the strengths and weaknesses of each approach.

No implementation of mutation based testing of P systems exists yet. In future research it
may be interesting to consider mixed approaches, in which mutation analysis is applied to state-
transition models of P Systems.

10. Conclusions

This paper, first, discusses a general testing strategy derived from Kripke structure represen-
tations of the same system using model checking and, second,introduces a testing methodology
for P systems based on rule coverage criteria and model checking. The methodology presented
is implemented using the symbolic model checker NuSMV and isapplied to a basic class of
1-membrane P systems with cooperative rules, but it is also applicable to multi-membrane P sys-
tems. Furthermore, it can be generalized to other classes ofP systems and can use other model
checkers, a topic we will follow in future papers.

The coverage criteria used in this paper have been introduced and studied for P systems
in [18], but here we consider systems with non-cooperative rules and generate, as test suites,
sequences of multisets rather than just multisets. Additionally, the entire NuSMV specification
is automatically obtained from the P system. This aspect is important when using various P
system based specification languages, like P-lingua, [7, 11], since it enables the direct derivation
of test sets, satisfying given coverage criteria, from the specification.

Further work will concentrate on more complex types of P systems, integrating this approach
with P-lingua and on LTL rewriting to improve the performance of test generation method.
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Appendix A. NuSMV Specification

Based on the P system specification, the tool developed by theauthors generates an SMV
file, that will be processed by the NuSMV model checker. The result received from NuSMV

13



will be further parsed by the tool, each counterexample willbe ’decoded’ and the corresponding
test case will be obtained. In the sequel is given an SMV file, automatically generated for the
P systemΠ1, having one membraneµ = [1]1, the alphabetV1 = {s, a, b, c}, the initial multiset
w1 = s and the set of rulesR1 = {r1 : s→ ab; r2 : a→ c; r3 : b→ bc; r4 : b→ c}. To increase
the readability of the SMV code, we have added some comments,introduced by ”--”.

MODULE main

VAR

s : 0..10;

a : 0..10;

b : 0..10;

c : 0..10;

n1 : 0..10;

n2 : 0..10;

n3 : 0..10;

n4 : 0..10;

state : {running, halt, crash};

DEFINE

Max := 5;

Sup := 5;

ASSIGN

init(s) := 1;

init(a) := 0;

init(b) := 0;

init(c) := 0;

init(n1) := 0;

init(n2) := 0;

init(n3) := 0;

init(n4) := 0;

init(state) := running;

-- Initially the system is in the ’running’ state and has only one

-- object ’s’. The possible transitions are given in the TRANS

-- section and these are: running -> {running, crash, halt},

-- halt -> halt and crash -> crash.

TRANS

-- The system remains in the ’running’ state. Then, conditions for

-- maximal parallelism are expressed: no further rule can be applied,

-- e.g. all the "b" objects, used by the rules r3 and r4, are

-- consumed: b-next(n3)-next(n4)=0. The ’next’ values for s, a, b, c

-- are set, taking into account their previous values, the objects

-- produced and consumed by the rules. Non halting and non crashing

-- conditions follow.

state = running & next(state) = running &

s - next(n1) = 0 & a - next(n2) = 0 & b - next(n3) - next(n4) = 0 &
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next(s) = s - next(n1) &

next(a) = a - next(n2) + next(n1) &

next(b) = b - next(n3) - next(n4) + next(n1) + next(n3) &

next(c) = c + next(n2) + next(n3) + next(n4) &

! (next(n1) = 0 & next(n2) = 0 & next(n3) = 0 & next(n4) = 0) &

! (next(s) > Max | next(a) > Max | next(b) > Max | next(c) > Max |

next(n1) > Sup | next(n2) > Sup | next(n3) > Sup | next(n4) > Sup) |

-- The system enters in the ’halt’ state. The main difference from the

-- previous transition ’running -> running’ is given by the halting

-- condition: next(n1)=0 & next(n2)=0 & next(n3)=0 & next(n4)=0

state = running & next(state) = halt &

s - next(n1) = 0 & a - next(n2) = 0 & b - next(n3) - next(n4) = 0 &

next(s) = s - next(n1) &

next(a) = a - next(n2) + next(n1) &

next(b) = b - next(n3) - next(n4) + next(n1) + next(n3) &

next(c) = c + next(n2) + next(n3) + next(n4) &

(next(n1) = 0 & next(n2) = 0 & next(n3) = 0 & next(n4) = 0 ) |

-- The system enters in the ’crash’ state. The main difference from the

-- transition ’running -> running’ is given by the crashing rule:

-- next(s)>Max | ... | next(c)>Max | next(n1)>Sup | ... | next(n4)>Sup

state = running & next(state) = crash &

s - next(n1) = 0 & a - next(n2) = 0 & b - next(n3) - next(n4) = 0 &

next(s) = s - next(n1) &

next(a) = a - next(n2) + next(n1) &

next(b) = b - next(n3) - next(n4) + next(n1) + next(n3) &

next(c) = c + next(n2) + next(n3) + next(n4) &

! (next(n1) = 0 & next(n2) = 0 & next(n3) = 0 & next(n4) = 0) &

(next(s) > Max | next(a) > Max | next(b) > Max | next(c) > Max |

next(n1) > Sup | next(n2) > Sup | next(n3) > Sup | next(n4) > Sup) |

-- Loop ’halt -> halt’: the variables will keep their previous values

state = halt & next(state) = halt &

(next(n1) = 0 & next(n2) = 0 & next(n3) = 0 & next(n4) = 0) &

next(s) = s & next(a) = a & next(b) = b & next(c) = c |

-- Loop ’crash -> crash’

state = crash & next(state) = crash &

next(n1) = n1 & next(n2) = n2 & next(n3) = n3 & next(n4) = n4 &

next(s) = s & next(a) = a & next(b) = b & next(c) = c

-- Simple integrity checks

LTLSPEC G ( state = running -> (0 <= s & s <= Max) );

LTLSPEC G ( state = running -> (0 <= a & a <= Max) );

LTLSPEC G ( state = running -> (0 <= b & b <= Max) );

LTLSPEC G ( state = running -> (0 <= c & c <= Max) );

LTLSPEC G ( state = running -> (0 <= n1 & n1 <= Sup) );

LTLSPEC G ( state = running -> (0 <= n2 & n2 <= Sup) );
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LTLSPEC G ( state = running -> (0 <= n3 & n3 <= Sup) );

LTLSPEC G ( state = running -> (0 <= n4 & n4 <= Sup) );

LTLSPEC G ( state = halt -> ( n1 = 0 & n2 = 0 & n3 = 0 & n4 = 0 ) );

LTLSPEC G ( state = crash -> ( n1 > Sup | n2 > Sup | n3 > Sup |

n4 > Sup | s > Max | a > Max | b > Max | c > Max ) );

-- LTL specifications for Rule Coverage (RC) express that the rule

-- is never applied, in order to obtain a counterexample

LTLSPEC G !( n1 > 0 );

LTLSPEC G !( n2 > 0 );

LTLSPEC G !( n3 > 0 );

LTLSPEC G !( n4 > 0 );

-- LTL specifications for Rule Terminal Coverage (RTC) are similar to

-- RC specifications, having in addition the condition F(state = halt)

LTLSPEC G !( n1 > 0 & F(state = halt) );

LTLSPEC G !( n2 > 0 & F(state = halt) );

LTLSPEC G !( n3 > 0 & F(state = halt) );

LTLSPEC G !( n4 > 0 & F(state = halt) );

-- LTL specifications for Context Dependent Rule Coverage (CDRC)

LTLSPEC G !( n1 > 0 & X(n2 > 0) );

LTLSPEC G !( n1 > 0 & X(n3 > 0) );

LTLSPEC G !( n1 > 0 & X(n4 > 0) );

LTLSPEC G !( n3 > 0 & X(n3 > 0) );

LTLSPEC G !( n3 > 0 & X(n4 > 0) );

-- LTL specifications for Context Dependent Terminal Rule Coverage,

-- or CDRTC, are similar to CDRC, having in addition F(state = halt)

LTLSPEC G !( n1 > 0 & X(n2 > 0) & F(state = halt) );

LTLSPEC G !( n1 > 0 & X(n3 > 0) & F(state = halt) );

LTLSPEC G !( n1 > 0 & X(n4 > 0) & F(state = halt) );

LTLSPEC G !( n3 > 0 & X(n3 > 0) & F(state = halt) );

LTLSPEC G !( n3 > 0 & X(n4 > 0) & F(state = halt) );

Appendix B. Counterexample and corresponding test case

This is an excerpt of the counterexample received from NuSMV, using the above model, for
the LTL specification,G !((n3 > 0 & X n3 > 0) & F state = halt), edited for brevity:

-- specification G !((n3 > 0 & X n3 > 0) & F state = halt) is false

-- as demonstrated by the following execution steps

Trace Description: LTL Counterexample

Trace Type: Counterexample
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-> State: 17.1 <-

s = 1

a = 0

b = 0

c = 0

n1 = 0

n2 = 0

n3 = 0

n4 = 0

state = running

-> State: 17.2 <-

s = 0

a = 1

b = 1

n1 = 1

-> State: 17.3 <-

a = 0

c = 2

n1 = 0

n2 = 1

n3 = 1

-> State: 17.4 <-

c = 3

n2 = 0

-> State: 17.5 <-

b = 0

c = 4

n3 = 0

n4 = 1

-- Loop starts here

-> State: 17.6 <-

n4 = 0

state = halt

The values of all variables are listed only once, for the firstconfiguration of the counterexam-
ple. Then, at the following steps, only the modified variables are printed. Based on the counterex-
ample received for the specificationG !((n3 > 0 & X n3 > 0) & F state = halt), the
tool developed computes the entire configuration at each step and the applied rules. The test
case corresponding to the use of ruler3 in the context ofr3, is represented by the P system com-
putation: s =⇒ ab =⇒ bc2 =⇒ bc3 =⇒ c4. The rules used are: firstr1, thenr2, r3, for the
third transitionr3 and finallyr4, as it can be seen from the following table, corresponding tothe
counterexample above:

State s a b c n1 n2 n3 n4 state
17.1 1 0 0 0 0 0 0 0 running
17.2 0 1 1 0 1 0 0 0 running
17.3 0 0 1 2 0 1 1 0 running
17.4 0 0 1 3 0 0 1 0 running
17.5 0 0 0 4 0 0 0 1 running
17.6 0 0 0 4 0 0 0 0 halt
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