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PARAMETRIC ESTIMATION AND TESTS THROUGH

DIVERGENCES AND DUALITY TECHNIQUE

MICHEL BRONIATOWSKI∗ AND AMOR KEZIOU∗∗

Abstract. We introduce estimation and test procedures through divergence optimiza-

tion for discrete or continuous parametric models. This approach is based on a new

dual representation for divergences. We treat point estimation and tests for simple and

composite hypotheses, extending maximum likelihood technique. An other view at the

maximum likelihood approach, for estimation and test, is given. We prove existence and

consistency of the proposed estimates. The limit laws of the estimates and test statistics

(including the generalized likelihood ratio one) are given both under the null and the

alternative hypotheses, and approximation of the power functions is deduced. A new

procedure of construction of confidence regions, when the parameter may be a boundary

value of the parameter space, is proposed. Also, a solution to the irregularity problem of

the generalized likelihood ratio test pertaining to the number of components in a mixture

is given, and a new test is proposed, based on χ2-divergence on signed finite measures

and duality technique.

Key words: Parametric estimation; Parametric test; Maximum likelihood; Mixture;

Boundary valued parameter; Power function; Duality; φ-divergence.
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1. Introduction and notation

Let (X ,B) be a measurable space and P be a given probability measure (p.m.) on (X ,B).
Denote M the real vector space of all signed finite measures on (X ,B) and M(P ) the

vector subspace of all signed finite measures absolutely continuous (a.c.) with respect to

(w.r.t.) P . Denote also M1 the set of all p.m.’s on (X ,B) and M1(P ) the subset of all

p.m.’s a.c. w.r.t. P . Let φ be a proper1 closed2 convex function from ] − ∞,+∞[ to

[0,+∞] with φ(1) = 0 and such that its domain domφ := {x ∈ R such that φ(x) < ∞} is

an interval with endpoints aφ < 1 < bφ (which may be finite or infinite). For any signed

Date: December 22, 2007.
1We say a function is proper if its domain is non void.
2The closedness of φ means that if aφ or bφ are finite numbers then φ(x) tends to φ(aφ) or φ(bφ) when

x ↓ aφ or x ↑ bφ, respectively.
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finite measure Q in M(P ), the φ-divergence between Q and P is defined by

Dφ(Q,P ) :=

∫

X
φ

(
dQ

dP
(x)

)
dP (x). (1.1)

When Q is not a.c. w.r.t. P , we set Dφ(Q,P ) = +∞. The φ-divergences were introduced

by Csiszár (1963) as “f -divergences”. For all p.m. P , the mappings Q ∈ M 7→ Dφ(Q,P )

are convex and take nonnegative values. When Q = P then Dφ(Q,P ) = 0. Furthermore,

if the function x 7→ φ(x) is strictly convex on a neighborhood of x = 1, then the following

fundamental property holds

Dφ(Q,P ) = 0 if and only if Q = P. (1.2)

All these properties are presented in Csiszár (1963, 1967a,b) and Liese and Vajda (1987)

chapter 1, for φ-divergences defined on the set of all p.m.’s M1. When the φ-divergences

are defined on M, then the same properties hold. Let us conclude these few remarks

quoting that in general Dφ(Q,P ) and Dφ(P,Q) are not equal. Hence, φ-divergences

usually are not distances, but they merely measure some difference between two measures.

Of course a main feature of divergences between distributions of random variables X and

Y is the invariance property with respect to common smooth change of variables.

1.1. Examples of φ-divergences. When defined on M1, the Kullback-Leibler (KL),

modified Kullback-Leibler (KLm), χ2, modified χ2 (χ2
m), Hellinger (H), and L1 diver-

gences are respectively associated to the convex functions φ(x) = x log x− x+ 1, φ(x) =

− log x + x − 1, φ(x) = 1
2 (x− 1)2, φ(x) = 1

2(x− 1)2/x, φ(x) = 2(
√
x− 1)

2
and φ(x) =

|x− 1|. All these divergences except the L1 one, belong to the class of the so called “power

divergences” introduced in Cressie and Read (1984) (see also Liese and Vajda (1987) chap-

ter 2). They are defined through the class of convex functions

x ∈]0,+∞[7→ φγ(x) :=
xγ − γx+ γ − 1

γ(γ − 1)
(1.3)

if γ ∈ R \ {0, 1}, φ0(x) := − log x+ x− 1 and φ1(x) := x log x− x+ 1. (For all γ ∈ R, we

define φγ(0) := limx↓0 φγ(x)). So, the KL-divergence is associated to φ1, the KLm to φ0,

the χ2 to φ2, the χ2
m to φ−1 and the Hellinger distance to φ1/2.

We extend the definition of the power divergences functions Q ∈ M1 7→ Dφγ
(Q,P ) onto

the whole vector space of all signed finite measures M via the extension of the definition

of the convex functions φγ : For all γ ∈ R such that the function x 7→ φγ(x) is not defined
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on ]−∞, 0[ or defined but not convex on whole R, set

x ∈]−∞,+∞[7→
{

φγ(x) if x ∈ [0,+∞[,

+∞ if x ∈]−∞, 0[.
(1.4)

Note that for the χ2-divergence, the corresponding φ function φ2(x) :=
1
2(x−1)2 is defined

and convex on whole R.

In this paper, we are interested in estimation and test using φ-divergences. An i.i.d. sample

X1, . . . ,Xn with common unknown distribution P is observed and some p.m. Q is given.

We aim to estimate Dφ(Q,P ) and, more generally, infQ∈ΩDφ(Q,P ) where Ω is some set

of measures, as well as the measure Q∗ achieving the infimum on Ω. In the parametric

context, these problems can be well defined and lead to new results in estimation and

tests, extending classical notions.

1.2. Statistical examples and motivations.

1.2.1. Tests of fit. Let Q0 and P be two p.m.’s with same support S. Introduce a finite

partition A1, . . . , Ak of S (when S is finite this partition is the support of Q0). The quan-

tization method consists in approximating Dφ(Q0, P ) by
∑k

j=1 φ
(
Q0(Aj)
P (Aj)

)
P (Aj) which is

estimated by

D̃φ(Q0, P ) =
k∑

j=1

φ

(
Q0(Aj)

Pn(Aj)

)
Pn(Aj),

where Pn is the empirical measure associated to the data. In this vein, goodness of fit

tests have been proposed by Zografos et al. (1990) for fixed number of classes, and by

Menéndez et al. (1998) and Györfi and Vajda (2002) when the number of classes depends

on the sample size. We refer to Pardo (2006) which treats these problems extensively and

contains many more references.

1.2.2. Parametric estimation and tests. Let {Pθ; θ ∈ Θ} be some parametric model with

Θ a set in Rd. On the basis of an i.i.d. sample X1, . . . ,Xn with distribution PθT , we want

to estimate θT , the unknown true value of the parameter and perform statistical tests

on the parameter using φ-divergences. When all p.m.’s Pθ share the same finite support

S, Liese and Vajda (1987), Lindsay (1994) and Morales et al. (1995) introduced the so-

called “Minimum φ-divergences estimates” (MφDE’s) (Minimum Disparity Estimators in

Lindsay (1994)) of the parameter θT , defined by

θ̃φ := arg inf
θ∈Θ

Dφ(Pθ, Pn). (1.5)
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Various parametric tests can be performed based on the previous estimates of φ-divergences;

see Lindsay (1994) and Morales et al. (1995). The class of estimates (1.5) contains the

maximum likelihood estimate (MLE). Indeed, when φ(x) = φ0(x) = − log x + x − 1, we

obtain

θ̃KLm := arg inf
θ∈Θ

KLm(Pθ, Pn) = arg inf
θ∈Θ

∑

j∈S

− log(Pθ(j))Pn(j) = MLE. (1.6)

The MφDE’s (1.5) are motivated by the fact that a suitable choice of the divergence may

lead to an estimate more robust than the ML one (see e.g. Lindsay (1994), Basu and Lindsay

(1994) and Jiménez and Shao (2001)).

When interested in testing hypotheses H0 : θT = θ0 against alternatives H1 : θT 6= θ0,

where θ0 is a given value, we can use the statistic Dφ(Pθ0 , Pn), the plug-in estimate of the

φ-divergence between Pθ0 and PθT , rejecting H0 for large values of the statistic; see e.g.

Cressie and Read (1984). In the case when φ(x) = − log x+ x− 1, the corresponding test

based on KLm(Pθ0 , Pn) does not coincide with the generalized likelihood ratio one, which

defined through the generalized likelihood ratio (GLR) λn := 2 log
supθ∈Θ

Qn
i=1

pθ(Xi)
Qn

i=1
pθ0(Xi)

. The

new estimate K̂Lm(Pθ0 , PθT ) of KLm(Pθ0 , PθT ), which is proposed in this paper, leads to

the generalized likelihood ratio test; see remark 3.7 below.

When the support S is continuous, the plug-in estimates (1.5) are not well defined;

Basu and Lindsay (1994) investigate the so-called “minimum disparity estimators” (MDE’s)

for continuous models, through some common kernel smoothing method of Pn and Pθ.

When φ(x) = − log x + x − 1, this estimate clearly, due to smoothing, does not coin-

cide generally with the ML one. Also, the test based on the associated estimator of the

KLm(Pθ0 , PθT ) is different from the generalized likelihood ratio one. Further, their esti-

mates poses the problem of the choice of the kernel and the window. For Hellinger distance,

see Beran (1977). For nonparametric goodness-of-fit test, Berlinet et al. (1998), Berlinet

(1999) proposed a test based on the estimation of the KLm-divergence using the smoothed

kernel estimate of the density. The extension of their results to other divergences remains

an open problem; see Berlinet (1999), Györfi et al. (1998), and Berlinet et al. (1998). All

those tests are stated for simple null hypotheses; the case of composite null hypotheses

seems difficult to handle by the above technique. In the present paper, we treat this prob-

lem in the parametric setting.
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When the support S is discrete infinite or continuous, then the plug-in estimate Dφ(Pθ, Pn)

usually takes infinite value when no use is done of some partition-based approximation.

In Broniatowski (2003), a new estimation procedure is proposed in order to estimate the

KL-divergence between some set of p.m.’s Ω and some p.m. P , without making use of any

partitioning nor smoothing, but merely making use of the well known “dual” representa-

tion of the KL-divergence as the Fenchel-Legendre transform of the moment generating

function. Extending the paper by Broniatowski (2003), we will use the new dual repre-

sentations of φ-divergences (see Broniatowski and Keziou (2006) theorem 4.4 and Keziou

(2003) theorem 2.1) to define the minimum φ-divergence estimates in both discrete and

continuous parametric models. These representations are the starting point for the defi-

nition of estimates of the parameter θT , which we will call “minimum dual φ-divergence

estimates” (MDφDE’s). They are defined in parametric models {Pθ; θ ∈ Θ}, where the

p.m.’s Pθ do not necessarily have finite support; it can be discrete or continuous, bounded

or not. Also the same representations will be applied in order to estimate Dφ(Pθ0 , PθT )

and infθ∈Θ0
Dφ(Pθ, PθT ) where θ0 is a given value in Θ and Θ0 is a given subset of Θ, which

leads to various simple and composite tests pertaining to θT , the true unknown value of the

parameter. When φ(x) = − log x+x−1, the MDφD estimate coincides with the maximum

likelihood one (see remark 3.2 below); since our approach includes also test procedures, it

will be seen that with this peculiar choice for the function φ, we recover the classical like-

lihood ratio test for simple hypotheses and for composite hypotheses (see remark 3.7 and

remark 3.10 below). A similar approach has been proposed by Liese and Vajda (2006);

see their formula (118).

In any case, an exhaustive study of MφDE’s seems necessary, in a way that would include

both the discrete and the continuous support cases. This is precisely the main scope of

this paper.

The remainder of this paper is organized as follows. In section 2, we recall the dual

representations of φ-divergences obtained by Broniatowski and Keziou (2006) theorem 4.4,

Broniatowski and Keziou (2004) theorem 2.4 and Keziou (2003) theorem 2.1. Section 3

presents, through the dual representation of φ-divergences, various estimates and tests in

the parametric framework and deals with their asymptotic properties both under the null

and the alternative hypotheses. The existence and consistency of the proposed estimates

are proved using similar arguments as developed in Qin and Lawless (1994) lemma 1. We

use the limit laws of the proposed test statistics, in a similar way to Morales and Pardo
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(2001), to give an approximation to the power functions of the tests (including the GLR

one). Observe that the power functions of the likelihood ratio type tests are not generally

known; one of our contributions is to provide explicit power functions in the general case

for simple or composite hypotheses. As a by-product, we obtain the minimal sample

size which ensures a given power, for quite general simple or composite hypotheses. In

section 4, we give a solution to the irregularity problem of the GLR test of the number of

components in a mixture; we propose a new test based on the χ2-divergence on signed finite

measures, and a new procedure of construction of confidence regions for the parameter in

the case where θT may be a boundary value of the parameter space Θ. All proofs are in

the Appendix. We sometimes write Pf for
∫
f dP for any measure P and any function

f , when defined.

2. Fenchel Duality for φ-divergences

In this section, we recall a version of the dual representations of φ-divergences obtained

in Broniatowski and Keziou (2006), using Fenchel duality technique. First, we give some

notations and some results about the conjugate (or Fenchel-Legendre transform) of real

convex functions; see e.g. Rockafellar (1970) for proofs. The Fenchel-Legendre transform

of φ will be denoted φ∗, i.e.,

t ∈ R 7→ φ∗(t) := sup
x∈R

{tx− φ(x)} , (2.1)

and the endpoints of domφ∗ (the domain of φ∗) will be denoted aφ∗ and bφ∗ with aφ∗ ≤ bφ∗ .

Note that φ∗ is a proper closed convex function. In particular, aφ∗ < 0 < bφ∗ , φ∗(0) = 0

and

aφ∗ = lim
y→−∞

φ(y)

y
, bφ∗ = lim

y→+∞

φ(y)

y
. (2.2)

By the closedness of φ, applying the duality principle, the conjugate φ∗∗ of φ∗ coincides

with φ, i.e.,

φ∗∗(t) := sup
x∈R

{tx− φ∗(x)} = φ(t), for all t ∈ R. (2.3)

For the proper convex functions defined on R (endowed with the usual topology), the lower

semi-continuity3 and the closedness properties are equivalent. The function φ (resp. φ∗)

is differentiable if it is differentiable on ]aφ, bφ[ (resp. ]aφ∗ , bφ∗ [), the interior of its domain.

Also φ (resp. φ∗) is strictly convex if it is strictly convex on ]aφ, bφ[ (resp. ]aφ∗ , bφ∗ [).

3We say a function φ is lower semi-continuous if the level sets {x ∈ R such that φ(x) ≤ α}, α ∈ R are

all closed.
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The strict convexity of φ is equivalent to the condition that its conjugate φ∗ is essentially

smooth, i.e., differentiable with

limt↓aφ∗ φ
∗′(t) = −∞ if aφ∗ > −∞,

limt↑bφ∗ φ
∗′(t) = +∞ if bφ∗ < +∞.

(2.4)

Conversely, φ is essentially smooth if and only if φ∗ is strictly convex; see e.g. Rockafellar

(1970) section 26 for the proofs of these properties. If φ is differentiable, we denote φ′

the derivative function of φ, and we define φ′(aφ) and φ′(bφ) to be the limits (which may

be finite or infinite) limx↓aφ φ
′(x) and limx↑bφ φ

′(x), respectively. We denote Imφ′ the set

of all values of the function φ′, i.e., Imφ′ := {φ′(x) such that x ∈ [aφ, bφ]}. If additionally
the function φ is strictly convex, then φ′ is increasing on [aφ, bφ]. Hence, it is a one-to-one

function from [aφ, bφ] to Imφ′. In this case, φ′−1 denotes the inverse function of φ′ from

Imφ′ to [aφ, bφ]. If φ is differentiable, then for all x ∈]aφ, bφ[,

φ∗
(
φ′(x)

)
= xφ′(x)− φ (x) . (2.5)

If additionally φ is strictly convex, then for all t ∈ Imφ′ we have

φ∗(t) = tφ′−1
(t)− φ

(
φ′−1

(t)
)

and φ∗′(t) = φ′−1
(t). (2.6)

On the other hand, if φ is essentially smooth, then the interior of the domain of φ∗ coin-

cides with that of Imφ′, i.e., (aφ∗ , bφ∗) = (φ′(aφ), φ
′(bφ)).

Let F be some class of B-measurable real valued functions f defined on X , and denote

MF , the real vector subspace of M, defined by

MF :=

{
Q ∈ M such that

∫
|f | d|Q| < ∞, for all f ∈ F

}
.

In the following theorem, we recall a version of the dual representations of φ-divergences

obtained by Broniatowski and Keziou (2006) (for the proof, see Broniatowski and Keziou

(2006) theorem 4.4).

Theorem 2.1. Assume that φ is differentiable. Then, for all Q ∈ MF such that Dφ(Q,P )

is finite and φ′
(
dQ
dP

)
belongs to F , the φ-divergence Dφ(Q,P ) admits the dual representa-

tion

Dφ(Q,P ) = sup
f∈F

{∫
f dQ−

∫
φ∗(f) dP

}
, (2.7)
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and the function f := φ′
(
dQ
dP

)
is a dual optimal solution4. Furthermore, if φ is essentially

smooth5, then f := φ′ (dQ/dP ) is the unique dual optimal solution (P -a.e.).

3. Parametric estimation and tests through minimum φ-divergence

approach and duality technique

We consider an identifiable parametric model {Pθ; θ ∈ Θ} defined on some measurable

space (X ,B) and Θ is some set in Rd, not necessarily an open set. For simplicity, we

write Dφ(θ, α) instead of Dφ(Pθ, Pα). We assume that for any θ in Θ, Pθ has density pθ

with respect to some dominating σ-finite measure λ, which can be either with countable

support or not. Assume further that the support S of the p.m. Pθ does not depend upon

θ. On the basis of an i.i.d. sample X1, ...,Xn with distribution PθT , we intend to estimate

θT , the true unknown value of the parameter, which is assumed to be an interior point

of the parameter space Θ. We will consider only strictly convex functions φ which are

essentially smooth. We will use the following assumption

∫ ∣∣∣∣φ′

(
pθ(x)

pα(x)

)∣∣∣∣ dPθ(x) < ∞. (3.1)

Note that if the function φ satisfies

there exists 0 < δ < 1 such that for all c in [1− δ, 1 + δ],

we can find numbers c1, c2, c3 such that

φ(cx) ≤ c1φ(x) + c2 |x|+ c3, for all real x,

(3.2)

then the assumption (3.1) is satisfied wheneverDφ(θ, α) < ∞; see e.g. Broniatowski and Keziou

(2006) lemma 3.2. Also the real convex functions φγ (1.4), associated to the class of power

divergences, all satisfy the condition (3.2), including all standard divergences.

For a given θ ∈ Θ, consider the class of functions

F = Fθ :=

{
x 7→ φ′

(
pθ(x)

pα(x)

)
; α ∈ Θ

}
. (3.3)

By application of Theorem 2.1 above, when assumption (3.1) holds for any α ∈ Θ, we

obtain

Dφ(θ, θT ) = sup
f∈Fθ

{∫
f dPθ −

∫
φ∗(f) dPθT

}
,

4i.e., the supremum in (2.7) is achieved at f := φ′ (dQ/dP ) .
5Note that this is equivalent to the condition that its conjugate φ∗ is strictly convex.
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which, by (2.5), can be written as

Dφ(θ, θT ) = sup
α∈Θ

{∫
φ′

(
pθ
pα

)
dPθ −

∫ [
pθ
pα

φ′

(
pθ
pα

)
− φ

(
pθ
pα

)]
dPθT

}
. (3.4)

Furthermore, the supremum in this display is unique and it is achieved at α = θT

independently upon the value of θ. Hence, it is reasonable to estimate Dφ(θ, θT ) :=∫
φ(pθ/pθT ) dPθT , the φ-divergence between Pθ and PθT , by

D̂φ(θ, θT ) := sup
α∈Θ

{∫
φ′

(
pθ
pα

)
dPθ −

∫ [
pθ
pα

φ′

(
pθ
pα

)
− φ

(
pθ
pα

)]
dPn

}
, (3.5)

in which we have replaced PθT by its estimate Pn, the empirical measure associated to the

data.

For a given θ ∈ Θ, since the supremum in (3.4) is unique and it is achieved at α = θT ,

define the following class of M-estimates of θT

α̂φ(θ) := arg sup
α∈Θ

{∫
φ′

(
pθ
pα

)
dPθ −

∫ [
pθ
pα

φ′

(
pθ
pα

)
− φ

(
pθ
pα

)]
dPn

}
(3.6)

which we call “dual φ-divergence estimates” (DφDE’s); (in the sequel, we sometimes write

α̂ instead of α̂φ(θ)). Further, we have

inf
θ∈Θ

Dφ(θ, θT ) = Dφ(θT , θT ) = 0.

The infimum in this display is unique and it is achieved at θ = θT . It follows that a natural

definition of minimum φ-divergence estimates of θT , which we will call “minimum dual

φ-divergence estimates” (MDφDE’s), is

θ̂φ := arg inf
θ∈Θ

sup
α∈Θ

{∫
φ′

(
pθ
pα

)
dPθ −

∫ [
pθ
pα

φ′

(
pθ
pα

)
− φ

(
pθ
pα

)]
dPn

}
. (3.7)

In order to simplify formulas (3.5), (3.6) and (3.7), define the functions

g(θ, α) : x 7→ g(θ, α, x) :=
pθ(x)

pα(x)
φ′

(
pθ(x)

pα(x)

)
− φ

(
pθ(x)

pα(x)

)
, (3.8)

f(θ, α) : x 7→ f(θ, α, x) := φ′

(
pθ(x)

pα(x)

)
(3.9)

and

h(θ, α) : x 7→ h(θ, α, x) := Pθf(θ, α)− g(θ, α, x). (3.10)

Hence, (3.5), (3.6) and (3.7) can be written as follows

D̂φ(θ, θT ) := sup
α∈Θ

Pnh(θ, α), (3.11)

α̂φ(θ) := arg sup
α∈Θ

Pnh(θ, α) (3.12)
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and

θ̂φ := arg inf
θ∈Θ

sup
α∈Θ

Pnh(θ, α). (3.13)

Formula (3.4) can be written then as

Dφ(θ, θT ) = sup
α∈Θ

PθT h(θ, α). (3.14)

If the supremum in (3.12) is not unique, we define the estimate α̂φ(θ) as any value of

α ∈ Θ that maximizes the function α ∈ θ 7→ Pnh(θ, α). Also, if the infimum in (3.13) is

not unique, the estimate θ̂φ is defined as any value of θ ∈ Θ that minimizes the function

θ 7→ supα∈Θ Pnh(θ, α). Conditions assuring the existences of the above estimates are given

in section 3.1 and 3.2 below.

Remark 3.1. For the L1 distance, i.e. when φ(x) = |x − 1|, formula (3.4) does not

apply since the corresponding φ function is not differentiable. However, using the gen-

eral dual representation of divergences given in Broniatowski and Keziou (2006) theorem

4.1, we can obtain an explicit formula for L1 distance avoiding the differentiability as-

sumption. A methodology on estimation and testing in L1 distance has been proposed by

Devroye and Lugosi (2001), and its consequences for composite hypothesis testing and for

model selection based density estimates for nested classes of densities are presented in

Devroye et al. (2002) and Biau and Devroye (2005).

Remark 3.2. (An other view at the ML estimate). The maximum likelihood estimate

belongs to both classes of estimates (3.12) and (3.13). Indeed, it is obtained when φ(x) =

− log x + x − 1, that is as the dual modified KL-divergence estimate or as the minimum

dual modified KL-divergence estimate, i.e., MLE=D(KLm)DE=MD(KLm)DE. Indeed,

we then have Pθf(θ, α) = 0 and Pnh(θ, α) = −
∫
log
(

pθ
pα

)
dPn. Hence by definitions (3.6)

and (3.7), we get

α̂KLm(θ) = arg sup
α∈Θ

−
∫

log

(
pθ
pα

)
dPn = arg sup

α∈Θ

∫
log(pα) dPn = MLE

independently upon θ, and

θ̂KLm = arg inf
θ∈Θ

sup
α∈Θ

−
∫

log

(
pθ
pα

)
dPn = arg sup

θ∈Θ

∫
log(pθ) dPn = MLE.

So, the MLE can be seen as the estimate of θT that minimizes the estimate of the KLm-

divergence between the parametric model {Pθ; θ ∈ Θ} and the p.m. PθT .
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3.1. The asymptotic properties of the DφDE’s α̂φ(θ) and D̂φ(θ, θT ) for a given θ

in Θ. This section deals with the asymptotic properties of the estimates (3.11) and (3.12).

We will use similar arguments as developed in van der Vaart (1998) section 5.2 and 5.6

under classical conditions, for the study of M-estimates. In the sequel, we assume that

condition (3.1) holds for any α ∈ Θ, and use ‖.‖ to denote the Euclidean norm in Rd.

3.1.1. Consistency. Consider the following conditions

(c.1) The estimate α̂φ(θ) exists;

(c.2) supα∈Θ |Pnh(θ, α) − PθT h(θ, α)| converges to zero a.s. (resp. in probability);

(c.3) for any positive ǫ, there exists some positive η such that for all α ∈ Θ satisfying

‖α − θT ‖ > ǫ we have

PθT h(θ, α) < PθT h(θ, θT )− η.

Remark 3.3. Condition (c.1) is fulfilled for example if the function α ∈ Θ 7→ Pnh(θ, α)

is continuous and Θ is compact. Condition (c.2) is satisfied if {x 7→ h(θ, α, x); α ∈ Θ} is

a Glivenko-Cantelli class of functions. Condition (c.3) means that the maximizer α = θT

of the function α 7→ PθT h(θ, α) is well-separated. This condition holds, for example, when

the function α ∈ Θ 7→ PθT h(θ, α) is strictly concave and Θ is convex, which is the case for

the following two examples:

Example 3.1. Consider the case φ(x) = − log x+ x− 1 and the normal model

{N (α, 1); α ∈ Θ = R} .

Hence, we obtain

PθT h(θ, α) =
1

2
(θ − θT )

2 − 1

2
(α− θT )

2. (3.15)

We see that condition (c.3) is satisfied; we can choose η = ǫ2

2 .

Example 3.2. Consider the case φ(x) = − log x+ x− 1 and the exponential model

{
pα(x) = α exp(−αx); α ∈ Θ = R

∗
+

}
.

Hence, we obtain

PθT h(θ, α) = − log θ +
θ

θT
+ logα− α

θT
, (3.16)

which is strictly concave (in α). Hence, condition (c.3) is satisfied.

Proposition 3.1. (1) Under assumption (c.1-2), the estimate D̂φ(θ, θT ) converges

a.s. (resp. in probability) to Dφ(θ, θT ).

(2) Assume that the assumptions (c.1-2-3) hold. Then the estimate α̂φ(θ) converges

in probability to θT .
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3.1.2. Asymptotic Normality. Assume that θT is an interior point of Θ, the convex function

φ has continuous derivatives up to 4th order, and the density pα(x) has continuous partial

derivatives up to 3th order (for all x λ− a.e). Denote IθT the Fisher information matrix

IθT :=

∫
p′θT p

′
θT

T

pθT
dλ.

In the following theorem, we give the limit laws of the estimates α̂φ(θ) and D̂φ(θ, θT ). We

will use the following assumptions.

(A.0) The estimate α̂φ(θ) exists and is consistent;

(A.1) There exists a neighborhood N(θT ) of θT such that the first and second order

partial derivatives (w.r.t α) of f(θ, α, x)pθ(x) are dominated on N(θT ) by some

λ-integrable functions. The third order partial derivatives (w.r.t α) of h(θ, α, x)

are dominated on N(θT ) by some PθT -integrable functions;

(A.2) The integrals PθT ‖(∂/∂α)h(θ, θT )‖2 and PθT

∥∥(∂2/∂α2)h(θ, θT )
∥∥ are finite, and

the matrix PθT (∂
2/∂α2)h(θ, θT ) is non singular;

(A.3) The integral PθT h(θ, θT )
2 is finite.

Theorem 3.2. Assume that assumptions (A.0-1-2) hold. Then, we have

(a)
√
n (α̂φ(θ)− θT ) converges in distribution to a centered multivariate normal ran-

dom variable with covariance matrix

Vφ(θ, θT ) = S−1MS−1 (3.17)

with S := −PθT (∂
2/∂α2)h(θ, θT ) and M := PθT (∂/∂α)h(θ, θT )(∂/∂α)

T h(θ, θT ).

If θT = θ, then Vφ(θ, θT ) = V (θT ) = I−1
θT

.

(b) If θT = θ, then the statistic 2n
φ′′(1)D̂φ(θ, θT ) converges in distribution to a χ2 random

variable with d degrees of freedom.

(c) If additionally assumption (A.3) holds, then when θ 6= θT , we have
√
n
(
D̂φ(θ, θT )−Dφ(θ, θT )

)
converges in distribution to a centered normal random

variable with variance

σ2
φ(θ, θT ) = PθT h(θ, θT )

2 − (PθT h(θ, θT ))
2 . (3.18)

Remark 3.4. Our first result (proposition 3.1 above) provides a general solution for

the consistency of the global maximum (3.12) under strong but usual conditions, also

difficult to be checked; see van der Vaart (1998) chapter 5. Moreover, in practice, the

optimization in (3.12) is handled through gradient descent algorithms, depending on some

initial guess α0 ∈ Θ, which may provide a local maximum (not necessarily global) of

Pnh(θ, .). Hence, it is desirable to prove that in a “neighborhood” of θT there exits a
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maximum of Pnh(θ, .) which indeed converges to θT ; this is the scope of theorem 3.3, in

the following subsection, which states that for some “good” α0 (near θT ) the algorithm

provides a consistent estimate. It is well known that, in various classical models, the global

maximizer of the likelihood function may not exist or be inconsistent. Typical examples

are provided in mixture models. Consider the Beta-mixture model given in Ferguson

(1982) section 3

pθ(x) = θg(x|1, 1) + (1− θ)g(x|γ(θ), β(θ)),

where Θ = [1/2, 1], g(x|γ(θ), β(θ)) is the Be(γ, β)-density and γ(θ) = θδ(θ) and β(θ) =

(1 − θ)δ(θ) with δ(θ) → +∞ sufficiently fast as θ → 1. The ML estimate converges to 1

(a.s.) whatever the value of θT in Θ; see Ferguson (1982) section 3 for the proof. However,

if we take for example θT = 3/4, theorem 3.3 hereafter proves the existence and consistency

of a sequence of local maximizers under weak assumptions which hold for this example.

Other motivations for the results of theorem 3.3 are given in remark 3.5 below.

3.1.3. Existence, consistency and limit laws of a sequence of local maxima. We use similar

arguments as developed in Qin and Lawless (1994) lemma 1. Assume that θT is an interior

point of Θ, the convex function φ has continuous derivatives up to 4th order, and the

density pα(x) has continuous partial derivatives up to 3th order (for all x λ − a.e). In

the following theorem, we state the existence and the consistency of a sequence of local

maxima α̃φ(θ) and D̃φ(θ, θT ). We give also their limit laws.

Theorem 3.3. Assume that assumptions (A.1) and (A.2) hold. Then, we have

(a) Let B(θT , n
−1/3) :=

{
α ∈ Θ; ‖α− θT ‖ ≤ n−1/3

}
. Then, as n → ∞, with proba-

bility one, the function α 7→ Pnh(θ, α) attains its maximum value at some point

α̃φ(θ) in the interior of the ball B, and satisfies Pn(∂/∂α)h(θ, α̃φ(θ)) = 0.

(b)
√
n (α̃φ(θ)− θT ) converges in distribution to a centered multivariate normal ran-

dom variable with covariance matrix

Vφ(θ, θT ) = S−1MS−1. (3.19)

(c) If θT = θ, then the statistic 2n
φ′′(1)D̃φ(θ, θT ) converges in distribution to a χ2 random

variable with d degrees of freedom.

(d) If additionally assumption (A.3) holds, then when θ 6= θT , we have
√
n
(
D̃φ(θ, θT )−Dφ(θ, θT )

)
converges in distribution to a centered normal random

variable with variance σ2
φ(θ, θT ).

Remark 3.5. The results of this theorem are motivated by the following statements
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- The estimates α̃φ(θ) can be calculated if the statistician disposes of some preknowledge of

the true unknown parameter θT .

- The hypotheses are satisfied for a large class of parametric models for which the support

does not depend upon θ, such normal, log normal, exponential, Gamma, Beta, Weibull, ...

etc; see for example van der Vaart (1998) paragraph 5.43.

- The maps h(θ, α) : x 7→ h(θ, α, x) and (θ, α) 7→ PθT h(θ, α) are allowed to take the value

−∞; for example, take φ(x) = − log x+ x− 1, and consider the model

{Pα = αCauchy(0) + (1− α)N (0, 1); α ∈ Θ} ,

with Θ = [0, 1] and θT = 1/2. Then, PθT h(θ, 1) = −∞ for all θ ∈]0, 1[.
- The theorem states both existence, consistency and asymptotic normality of the estimates.

- The estimate α̃φ(θ) may exist and be consistent whereas α̂φ(θ) does not in many cases.

- One interesting situation also is if the map α ∈ Θ 7→ Pnh(θ, α) = 0 is strictly concave

and Θ is convex; the estimates α̃φ(θ) and α̂φ(θ) are the same.

Remark 3.6. Using theorem 3.2 part (c), the estimate D̂φ(θ0, θT ) can be used to perform

statistical tests (asymptotically of level ǫ) of the null hypothesis H0 : θT = θ0 against the

alternative H1 : θT 6= θ0 for a given value θ0. Since Dφ(θ0, θT ) is nonnegative and takes

value zero only when θT = θ0, the tests are defined through the critical region

Cφ(θ0, θT ) :=

{
2n

φ′′(1)
D̂φ(θ0, θT ) > qd,ǫ

}
(3.20)

where qd,ǫ is the (1− ǫ)-quantile of the χ2 distribution with d degrees of freedom. Note that

these tests are all consistent, since D̂φ(θ0, θT ) are n-consistent estimates of Dφ(θ0, θT ) = 0

under H0, and
√
n-consistent estimate of Dφ(θ0, θT ) > 0 under H1; see part (c) and (d)

in theorem 3.2 above. Further, the asymptotic result (d) in theorem 3.2 above can be used

to give approximation of the power function θT 7→ β(θT ) := PθT (Cφ(θ0, θT )). We obtain

then the following approximation

β(θT ) ≈ 1− FN

( √
n

σφ(θ0, θT )

[
φ′′(1)

2n
qd,ǫ −Dφ(θ0, θT )

])
(3.21)

where FN is the cumulative distribution function of a normal random variable with mean

zero and variance one. An important application of this approximation is the approximate

sample size (3.22) below that ensures a power β for a given alternative θT 6= θ0. Let n0 be

the positive root of the equation

β = 1− FN

( √
n

σφ(θ0, θT )

[
φ′′(1)

2n
qd,ǫ −Dφ(θ0, θT )

])
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i.e., n0 =
(a+b)−

√
a(a+2b)

2Dφ(θ0,θT )2
where a = σ2

φ(θ0, θT )
[
F−1
N (1− β)

]2
and b = φ′′(1)qd,ǫDφ(θ0, θT ).

The required sample size is then

n∗ = [n0] + 1 (3.22)

where [.] is used here to denote “integer part of”.

Remark 3.7. (An other view at the generalized likelihood ratio test and approx-

imation of the power function through KLm -divergence). In the particular case

of the KLm-divergence, i.e., when φ(x) = φ0(x) := − log x+ x− 1, we obtain from (3.20)

the critical area

CKLm(θ0, θT ) :=

{
2n sup

α∈Θ
Pn log

(
pα
pθ0

)
> qd,ǫ

}
=

{
2 log

supα∈Θ
∏n

i=1 pα(Xi)∏n
i=1 pθ0(Xi)

> qd,ǫ

}
,

which is to say that the test obtained in this case is precisely the generalized likelihood ratio

one. The power approximation and the approximate sample size guaranteeing a power β

for a given alternative (for the GLRT) are given by (3.21) and (3.22), respectively, where

φ is replaced by φ0 and Dφ by KLm.

3.2. The asymptotic behavior of the MDφDE’s. We now explore the asymptotic

properties of the estimates θ̂φ and α̂φ(θ̂φ) defined in (3.13) and (3.12). We assume that

condition (3.1) holds for any α, θ ∈ Θ.

3.2.1. Consistency. We state consistency under the following assumptions

(c.4) The estimates θ̂φ and α̂φ(θ̂φ) exist.

(c.5) sup{α,θ∈Θ} |Pnh(θ, α) − PθT h(θ, α)| tends to 0 in probability;

(a) for any positive ǫ, there exists some positive η, such that for any α in Θ with

‖α− θT ‖ > ǫ and for all θ ∈ Θ, it holds PθT h(θ, α) < PθT h(θ, θT )− η;

(b) there exists a neighborhood of θT , say N(θT ), such that for any positive ǫ,

there exists some positive η such that for all α ∈ N(θT ) and all θ ∈ Θ satisfying

‖θ − θT ‖ > ǫ, it holds PθT h(θT , α) < PθT h(θ, α)− η;

(c.6) there exists some neighborhood N(θT ) of θT and a positive function H such that

for all α in N(θT ), ‖h(θT , α, x)‖ ≤ H(x) (PθT -a.s.) with PθTH < ∞.

Remark 3.8. Condition (c.5) is fulfilled if
{
x 7→ h(θ, α); (θ, α) ∈ Θ2

}
is a Glivenko-

Cantelli class of functions. Conditions (c.5.a) and (c.5.b) mean that the saddle-point

(θT , θT ), of (θ, α) ∈ Θ×Θ 7→ Pnh(θ, α), is well-separated. Note that theses two conditions

are not very restrictive, they are satisfied for example when Θ is convex and the function

(θ, α) ∈ Θ ×Θ 7→ Pnh(θ, α) is concave in α (for all θ) and convex in θ (for all α), which
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is the case for example 3.1 and 3.2 above, both conditions (c.5.a) and (c.5.b) are satisfied;

we can take η = ǫ2

2 .

Proposition 3.4. Assume that conditions (c.4-5-6) hold. Then,

(1) supθ∈Θ ‖α̂φ(θ)− θT ‖ tends to 0 in probability.

(2) The MDφ estimate θ̂φ converges to θT in probability.

3.3. Asymptotic normality. Assume that θT is an interior point of Θ, the convex func-

tion φ has continuous derivatives up to 4th order, and the density pθ(x) has continuous

partial derivatives up to 3th order (for all x λ-a.e.). In the following theorem we sate the

asymptotic normality of the estimates θ̂φ and α̂φ(θ̂φ). We will use the following assump-

tions

(A.4) The estimates θ̂φ and α̂φ(θ̂φ) exist and are consistent;

(A.5) There exists a neighborhood N(θT ) of θT such that the first and second order

partial derivatives (w.r.t. α and θ) of f(θ, α, x)pθ(x) are dominated on N(θT ) ×
N(θT ) by λ-integrable functions. The third partial derivatives (w.r.t. α and θ) of

h(θ, α, x) are dominated on N(θT )×N(θT ) by some PθT -integrable functions;

(A.6) The integrals PθT ‖(∂/∂α)h(θT , θT )‖2, PθT ‖(∂/∂θ)h(θT , θT )‖2,
PθT

∥∥(∂2/∂α2)h(θT , θT )
∥∥, PθT

∥∥(∂2/∂θ2)h(θT , θT )
∥∥ and PθT

∥∥(∂2/∂θ∂α)h(θT , θT )
∥∥

are finite, and the matrix IθT is non singular.

Theorem 3.5. Assume that conditions (A.4-5-6) hold. Then, both
√
n
(
θ̂φ − θT

)
and

√
n
(
α̂φ(θ̂φ)− θT

)
converge in distribution to a centered multivariate normal random vari-

able with covariance matrix V = I−1
θT

.

3.3.1. Existence, consistency and limit laws of a sequence of local minima-maxima. As-

sume that θT is an interior point of Θ, the convex function φ has continuous derivatives up

to 4th order, and the density pθ(x) has continuous partial derivatives up to 3th order (for

all x λ-a.e.). In the following theorem we sate the existence and consistency of a sequence

of local minima-maxima θ̃φ and α̃φ(θ̃φ). We give also their limit laws.

Theorem 3.6. Assume that conditions (A.5) and (A.6) hold.

(a) Let B :=
{
θ ∈ Θ; ‖θ − θT ‖ ≤ n−1/3

}
. Then, as n → ∞, with probability one, the

function (θ, α) 7→ Pnh(θ, α) attains its min-max value at some point
(
θ̃φ, α̃φ(θ̃φ)

)

in the interior of B ×B, and satisfies Pn(∂/∂α)h
(
θ̃φ, α̂φ(θ̃φ)

)
= 0 and

Pn(∂/∂θ)h
(
θ̃φ, α̃φ(θ̃φ)

)
= 0.
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(b) Both
√
n
(
θ̃φ − θT

)
and

√
n
(
α̃φ(θ̃φ)− θT

)
converge in distribution to a centered

multivariate normal random variable with covariance matrix V = I−1
θT

.

3.4. Composite tests by minimum φ−divergence. Let Θ0 be a subset of Θ. We

assume that there exists an open set B0 ⊂ Rd−l and mappings r : Θ → Rl and s : B0 → Rd

such that the matrices R(θ) :=
[

∂
∂θi

r(θ)
]
and S(β) :=

[
∂
∂βi

s(β)
]
exist, with elements

continuous, and are of rank l and (d− l), respectively, Θ0 = {s(β); β ∈ B0} and r(θ) = 0

for all θ ∈ Θ0. Consider the composite null hypothesis

H0 : θT ∈ Θ0 versus H1 : θT ∈ Θ\Θ0. (3.23)

This is equivalent to

H0 : θT ∈ s(B0) versus H1 : θT ∈ Θ\s(B0).

Using (3.14), the φ-divergenceDφ(Θ0, θT ), between the set of distributions {Pθ such that θ ∈ Θ0}
and the p.m. PθT , can be written as Dφ(Θ0, θT ) = infθ∈Θ0

supα∈Θ PθT h(θ, α). Hence, it

can be estimated by

D̂φ(Θ0, θT ) := inf
θ∈Θ0

D̂φ(θ, θT ) := inf
θ∈Θ0

sup
α∈Θ

Pnh(θ, α).

We use D̂φ(Θ0, θT ) to perform statistical test pertaining to (3.23). Since Dφ(Θ0, θT ) :=

infθ∈Θ0
Dφ (θ, θT ) is positive under H1 and takes value 0 only under H0 (provided that the

infimum is attained on Θ0), we reject H0 whenever D̂φ(Θ0, θT ) takes large values. The

following theorem provides the limit distribution of D̂φ(Θ0, θT ) under the null hypothesis

H0.

Theorem 3.7. Let us assume that the conditions in theorem 3.5 are satisfied. Under H0,

the statistics 2n
φ′′(1)D̂φ(Θ0, θT ) converge in distribution to a χ2 random variable with l

degrees of freedom.

The following theorem gives the limit laws of the test statistics 2n
φ′′(1)D̂φ(Θ0, θT ) under the

alternative hypothesis H1 : θT ∈ Θ\Θ0. We will use the following assumptions.

(C.1) The minimum of θ 7→ Dφ(θ, θT ) on Θ0 is attained at some point, say θ∗ := s(β∗)

with β∗ ∈ B0; uniqueness then follows by strict convexity of φ and model identifi-

ability assumption;

(C.2) There exists a neighborhoodN(β∗) of β∗ and a neighborhoodN(θT ) of θT such that

the first and second order partial derivatives (w.r.t. α and β) of f(s(β), α, x)ps(β)(x)

are dominated on N(β∗) × N(θT ) by λ-integrable functions. The third partial
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derivatives (w.r.t. β and α) of h(s(β), α, x) are dominated on N(β∗) ×N(θT ) by

some PθT -integrable functions;

(C.3) The integrals PθT ‖(∂/∂α)h(s(β∗), θT )‖2, PθT ‖(∂/∂β)h(s(β∗), θT )‖2,
PθT

∥∥(∂2/∂α2)h(s(β∗), θT )
∥∥, PθT

∥∥(∂2/∂β2)h(s(β∗), θT )
∥∥ and

PθT

∥∥(∂2/∂β∂α)h(s(β∗), θT )
∥∥ are finite, and the matrix

A :=

[
A11 A12

A21 A22

]

is non singular, whereA11 := PθT (∂
2/∂β2)h(s(β∗), θT ), A22 := PθT (∂

2/∂α2)h(s(β∗), θT )

and A12 = AT
21 := PθT (∂

2/∂β∂α)h(s(β∗), θT ).

(C.4) The integral PθT ‖h(s(β∗), θT )‖2 is finite.

Denote β̂φ and α̂φ(β̂φ) the min-max optimal solution of

D̂φ(Θ0, θT ) := inf
β∈B0

sup
α∈Θ

Pnh(s(β), α),

and let B(β∗, n−1/3) :=
{
β ∈ B0; ‖β − β∗‖ ≤ n−1/3

}
, cn := (β̂T

φ , α̂φ(β̂φ)
T )T , c∗ := (β∗T , θTT )

T

and F the matrix defined by

F := PθT

[
(∂/∂β)h(s(β∗), θT )

(∂/∂α)h(s(β∗), θT )

] [
(∂/∂β)h(s(β∗), θT )

(∂/∂α)h(s(β∗), θT )

]T
.

(C.5) The estimates β̂φ and α̂φ(β̂φ) exist and are consistent estimators for β∗ and θT

respectively.

Theorem 3.8. Assume that conditions (C.1-2-3-4-5) hold. Then, under the alternative

hypothesis H1, we have

(a)
√
n (cn − c∗) converges in distribution to a centered multivariate normal random

variable with covariance matrix V = A−1FA−1.

(b) If additionally the condition (C.6) holds, then
√
n
(
D̂φ(Θ0, θT )−Dφ(Θ0, θT )

)
con-

verges in distribution to a centered normal random variable with variance

σ2
φ(β

∗, θT ) = PθT h(s(β
∗), θT )

2 − (PθT h(s(β
∗), θT ))

2 . (3.24)

Remark 3.9. Using theorem 3.7, the estimate D̂φ(Θ0, θT ) can be used to perform sta-

tistical tests (asymptotically of level ǫ) of the null hypothesis H0 : θT ∈ Θ0 against the

alternative H1 : θT ∈ Θ\Θ0. Since Dφ(Θ0, θT ) is nonnegative and takes value zero only

when θT ∈ Θ0, the tests are defined through the critical region

Cφ(Θ0, θT ) :=

{
2n

φ′′(1)
D̂φ(Θ0, θT ) > ql,ǫ

}
, (3.25)
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where ql,ǫ is the (1− ǫ)-quantile of the χ2 distribution with l degrees of freedom. Note that

these tests are all consistent, since D̂φ(Θ0, θT ) are n-consistent estimates of Dφ(Θ0, θT ) =

0 under H0, and
√
n-consistent estimate of Dφ(Θ0, θT ) > 0 under H1; see theorem 3.7

and theorem 3.8 part (c). Further, the asymptotic result (c) in theorem 3.8 above can be

used to give an approximation to the power function θT 7→ β(θT ) := PθT (Cφ(Θ0, θT )). We

obtain then the following approximation

β(θT ) ≈ 1− FN

( √
n

σφ(β∗, θT )

[
φ′′(1)

2n
ql,ǫ −Dφ(Θ0, θT )

])
(3.26)

where FN is the cumulative distribution function of a normal variable with mean zero and

variance one. An important application of this approximation is the approximate sample

size (3.27) below that ensures a power β for a given alternative θT ∈ Θ\Θ0. Let n0 be the

positive root of the equation

β = 1− FN

( √
n

σφ(β∗, θT )

[
φ′′(1)

2n
ql,ǫ −Dφ(Θ0, θT )

])

i.e., n0 =
(a+b)−

√
a(a+2b)

2Dφ(Θ0,θT )2
where a = σ2

φ(β
∗, θT )

[
F−1
N (1− β)

]2
and b = φ′′(1)ql,ǫDφ(Θ0, θT ).

The required sample size is then

n∗ = [n0] + 1 (3.27)

where [.] is used here to denote “integer part of”.

Remark 3.10. (An other view at the generalized likelihood ratio test for com-

posite hypotheses, and approximation of the power function through KLm-

divergence). In the particular case of the KLm-divergence, i.e., when φ(x) = φ0(x) :=

− log x+ x− 1, we obtain from (3.25) the critical area

CKLm(Θ0, θT ) =

{
2 log

supα∈Θ
∏n

i=1 pα(Xi)

supθ∈Θ0

∏n
i=1 pθ(Xi)

> ql,ǫ

}
,

which is to say that the test obtained in this case is precisely the generalized likelihood

ratio test associated to (3.23). The power approximation and the approximate sample size

guaranteeing a power β for a given alternative (for the GLRT) are given by (3.26) and

(3.27), respectively, where φ is replaced by φ0 and Dφ by KLm.

4. Non regular models. A simple solution for the case of mixture models

The test problem for the number of components of a finite mixture has been extensively

treated when the total number of components k is equal to 2, leading to a satisfactory

solution; the limit distribution of the generalized likelihood ratio statistic is non standard,

since it is 0.5δ0 + 0.5χ2(1), a mixture of a Dirac mass at 0 and a χ2(1) with weights
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equal to 1/2; see e.g. Titterington et al. (1985) and Self and Liang (1987). When k > 2,

the problem is much more involved. Self and Liang (1987) obtained the limit distribution

of the generalized likelihood ratio statistic, which is non standard and complex. This

result yields formidable numerical difficulties for the calculation of the critical value of

the test. In section 5.1 below, we propose a unified treatment for all these cases, with

simple and standard limit distribution both when the parameter θT is an interior or a

boundary point of the parameter space Θ. On the other hand, confidence regions for the

mixture parameter θT even when k = 2 are intractable through the generalized likelihood

ratio statistic. Indeed, the limit law of the generalized likelihood ratio statistic depends

heavily on the fact that θ is a boundary or an interior point of the parameter space. For

example, when k = 2, the limit distribution of the generalized likelihood ratio statistic is

0.5δ0 + 0.5χ2(1) when θ = 0 and χ2(1) when 0 < θ < 1. Therefore, the confidence level is

not defined uniquely. At the opposite, we will prove in section 5.3 that the proposed dual

χ2-statistic yields quite standard confidence regions even when k > 2.

4.1. Notations. Let
{
P

(1)
a1 ; a1 ∈ A1

}
, . . .,

{
P

(k)
ak ; ak ∈ Ak

}
be k-parametric models where

A1, . . . , Ak are k (k ≥ 2) sets in Rd1 , . . . ,Rdk and d1, . . . , dk ∈ N∗. Denote Pθ the mixture

model

Pθ :=

k∑

i=1

wiP
(i)
ai (4.1)

where 0 ≤ wi ≤ 1,
∑

wi = 1 and

θ ∈ Θ :=

{
(w1, . . . , wk, a1, . . . , ak)

T ∈ [0, 1]k ×A1 × · · · ×Ak such that

k∑

i=1

wi = 1

}
,

(4.2)

and assume that the model is identifiable. Let k0 ∈ {1, . . . , k − 1}. We test if (k − k0)

components in (4.1) have null coefficients. We assume that their labels are k0 + 1, ..., k.

Denote Θ0 the subset of Θ defined by

Θ0 := {θ ∈ Θ such that wk0+1 = · · · = wk = 0} .

On the basis of an i.i.d sample X1, . . . ,Xn with distribution PθT , θT ∈ Θ, we intend to

perform tests of the hypothesis

H0 : θT ∈ Θ0 against the alternative H1 : θT ∈ Θ \Θ0. (4.3)

It is known that the generalized likelihood ratio test, based on the statistic

2 log λ := 2 log
supθ∈Θ

∏n
i=1 pθ(Xi)

supθ∈Θ0

∏n
i=1 pθ(Xi)

, (4.4)
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is not valid for this problem, since the asymptotic approximation by χ2 distribution does

not hold in this case; the problem is due to the fact that the null value of θT is not in the

interior of the parameter space Θ. We clarify now this problem. For simplicity, consider

a mixture of two known densities p0 and p1 with p0 6= p1:

pθ = (1− θ)p0 + θp1 where θ ∈ Θ := [0, 1]. (4.5)

Given data X1, . . . ,Xn with distribution PθT , θT ∈ [0, 1], consider the test problem

H0 : θT = 0 against the alternative H1 : θT > 0. (4.6)

The generalized likelihood ratio statistic for this test problem is

Wn(0) := 2log
L(θ̂)

L(0)
, (4.7)

where L(θ) :=
∏n

i=1 [(1− θ)p0(Xi) + θp1(Xi)] for all θ ∈ [0, 1], and θ̂ is the MLE of θ.

Using the strict concavity of the function θ ∈ [0, 1] 7→ l(θ) := logL(θ), it is clear that

θ̂ = 0 whenever l′+(0), the derivative on the right at θ = 0 of θ 7→ l(θ), is nonpositive.

Hence, we can write

P0 {Wn = 0} ≥ P0

{
θ̂ = 0

}
= P0

{
l′+(0) ≤ 0

}
= P0

{
n∑

i=1

p0(Xi)

p1(Xi)
− n ≤ 0

}

= P0

{
√
n

(
1

n

n∑

i=1

p0(Xi)

p1(Xi)
− 1

)
≤ 0

}
(4.8)

which, by the CLT, tends to 1/2 (if 1 6= E(Y 2
i ) < ∞ where Yi := p0(Xi)/p1(Xi)) since the

random variables Yi are i.i.d with E(Yi) = 1 under H0. This proves that the convergence

in distribution of the generalized likelihood ratio statistic Wn(0) to a χ2 random variable

(underH0) does not hold. Under suitable regularity conditions we can prove that the limit

distribution of the statistic Wn in (4.7) is 0.5δ0 + 0.5χ2
1, a mixture of the χ2-distribution

and the Dirac measure at zero; see Self and Liang (1987).

Moreover, in the case of more than two components and k − k0 ≥ 2, the limit distri-

bution of the GLR statistic (4.4) under H0 is complicate and not standard (not a χ2

distribution) which poses some difficulty in determining the critical value that will give

correct asymptotic size; see Self and Liang (1987). On the other hand, the likelihood ratio

statistic

Wn(θ) := 2log
L(θ̂)

L(θ)
(4.9)

can not be used to construct asymptotic confidence region for the parameter θT since its

limit law is not the same when θT = 0 and θT > 0.



22 MICHEL BRONIATOWSKI∗ AND AMOR KEZIOU∗∗

0 2 4 6 8 10
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

x

C
um

ul
at

iv
e 

di
st

rib
ut

io
n 

fu
nc

tio
n

n=200, rep.=1000

 

 

likelihood ratio c.d.f
c.d.f. of its limit law

0 2 4 6 8 10
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

x

C
um

ul
at

iv
e 

di
st

rib
ut

io
n 

fu
nc

tio
n

n=500, rep.=1000

 

 

likelihood ratio c.d.f
c.d.f of its limit law

0 2 4 6 8 10
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

x

C
um

ul
at

iv
e 

di
st

rib
ut

io
n 

fu
nc

tio
n

n=1000, rep=1000

 

 

likelihood ratio c.d.f
c.d.f of its limit law

Figure 1. Empirical distribution of the GLR and its limit distribution

In figure 1, we illustrate the accuracy of the approximation of distribution of the GLR

by its limit 0.5δ0 + 0.5χ2
1; we plot the cumulative distribution function (c.d.f) of both the

limit law, and the observed GLR’s obtained from 1000 independent runs of samples with

sizes n = 200, n = 500 and n = 1000, with P0 = N (0, 1) and P1 = N (0.5, 1).

4.2. A simple solution to the problem of testing the number of components

in a mixture. We propose the following simple solution : Consider the following set of

signed finite measures

pθ := (1− θ)p0 + θp1 where θ ∈ R. (4.10)

This set (of signed finite measures with mass one) obviously contains the mixture model

(4.5). In particular, the null value of θT (i.e., θT = 0) is an interior point of the parameter

space R. The likelihood ratio test (for a model of signed measures) cannot be used since

the log-likelihood l(θ) may be infinite (when θ < 0 or θ > 1). In the context of divergences,

this means that the estimate K̂Lm(P0, PθT ) may be infinite if we consider the model (4.10),

which is due to the fact that the corresponding convex function φ(x) = − log x + x − 1

is infinite on R−. This suggests to use a divergence associated to a convex function φ

which is finite on all R, for instance, the χ2-divergence (which is associated to the convex
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function φ(x) = 1
2(x − 1)2). So, in order to perform a test asymptotically of level ǫ for

(4.6), we propose to use the following estimate of the χ2-divergence between P0 and PθT

χ̃2(0, θT ) = sup
α∈Θe

{P0f(0, α) − Png(0, α)} , (4.11)

where f(0, α) = p0/pα − 1 and g(0, α) = 1/2(p0/pα + 1)(p0/pα − 1) as a consequence of

definitions (3.9) and (3.8), and Θe is the new parameter space which we define as follows

Θe :=

{
α ∈ R such that

∫
|f(0, α)| dP0 is finite

}
.

The value of the parameter θT under the null hypothesis H0, i.e., θT = 0, is in the interior

of the new parameter space Θe which is generally non void. Hence, under conditions of

theorem 3.2 where Θ is replaced by Θe and θ by zero, under H0 the statistic 2nχ̃2(0, θT )

converges in distribution to a χ2 random variable with one degree of freedom; the critical

region takes then the form

CR :=
{
2nχ̃2(0, θT ) > q1,ǫ

}
, (4.12)

where q1,ǫ is the (1 − ǫ)-quantile of the χ2 distribution with one degree of freedom. Ob-

viously other divergences which are associated to convex functions finite on all R can be

used. The use of the χ2-divergence is recommended. Indeed, for regular cases (for ex-

ample for multinomial goodness-of-fit tests) χ2-test is equivalent (in Pitman sense) to the

generalized likelihood ratio one; see also Cressie and Read (1984) sections 3.1 and 3.2 for

other motivations in favor of the χ2 approach.

In figure 2, we illustrate the accuracy of the approximation of the distribution of the

proposed dual χ2-statistic by the χ2(1); we plot the cumulative distribution function

(c.d.f) of both the limit law, and the dual χ2-statistic obtained from 1000 independent

runs of samples with sizes n = 200, n = 500 and n = 1000, with P0 = N (0, 1) and

P1 = N (0.5, 1). We observe that the approximation is as satisfactory as it is in figure 1

for the GLR case, so that the extension of the model to signed finite measures does not

affect the quality of the approximation of the limit distribution.

4.3. Confidence regions for the mixture parameters. We propose the following

solution to the confidence region problem when the parameter may be a boundary value

of the parameter space: The estimate

χ̃2(θ, θT ) = sup
α∈Θe(θ)

{Pθf(θ, α)− Png(θ, α)} , (4.13)

where

Θe(θ) :=

{
α ∈ R such that

∫
|f(θ, α)| dPθ is finite

}
,
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Figure 2. Empirical distribution of the dual χ2-statistic and its limit law

can be used to construct asymptotic confidence region for the parameter θT with level

(1− ǫ) defined by

C :=
{
θ ∈ Θ such that 2nχ̃2(θ, θT ) ≤ q1,ǫ

}
.

In fact, limn→∞ PθT (θT ∈ C) = 1 − ǫ both when θT = 0 or θT > 0 since the statistic

2nχ̃2(θT , θT ) converges in distribution to χ2 random variable with one degree of freedom

both when θT = 0 or θT > 0. We give now the form of the critical region and the confidence

region in the multivariate case, i.e., in the case of the general model (4.1). For all θ ∈ Θ,

define the set

Θe(θ) :=

{
α ∈ Rk ×A1 × · · · ×Ak such that

k∑

i=1

αi = 1 and

∫
|f(θ, α)| dPθ is finite

}
,

and the statistic

χ̃2(Θ0, θT ) := inf
θ∈Θ0

χ̃2(θ, θT ) := inf
θ∈Θ0

sup
α∈Θe(θ)

{Pθf(θ, α)− Png(θ, α)} .

Under some conditions similar to that in theorems 3.1, 3.2 and 3.3, we can prove, under

the null hypothesis H0 in (4.3), that the statistic 2nχ̃2(Θ0, θT ) converges in distribution

to χ2 random variable with (k − k0) degrees of freedom. Also, the statistic 2nχ̃2(θ, θT )
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when θ = θT converges in distribution to χ2 random variable with d := k−1+d1+ · · ·+dk

degrees of freedom in both case when θT is a boundary value or not. Hence, the critical

region is given by

CR :=
{
2nχ̃2(Θ0, θT ) > qk−k0,ǫ

}
,

and

C :=
{
θ ∈ Θ such that 2nχ̃2(θ, θT ) ≤ qd,ǫ

}

is an asymptotic confidence region for θT of level ǫ both when θT is a boundary value or

not.

4.4. Approximation of the power function of the likelihood ratio statistic: sim-

ulation results. In the context of the exponential model pθ(x) = θ exp {θx}, we consider
the problem of testing

H0 : θT = 1 versus H1 : θT 6= 1

using the GLR. We recall that the power function of the GLR test is

θT 7→ β(θT ) := PθT

{
2nK̂Lm (1, θT ) ≥ q1,0.5

}
(4.14)

and its approximation is

β̂(θT ) = 1− FN

( √
n

σφ(1, θT )

[
1

2n
q1,0.05 −KLm(1, θT )

])
(4.15)

where FN is the cumulative distribution function of a normal random variable with mean

zero and variance one, and φ(x) = − log x + x − 1; see remarks 3.3 and 3.4 above. The

power function (4.14) is plotted (with continuous line) for sample sizes n = 50, n = 100,

n = 300 and n = 500, and for different values of θT . Each power entry was obtained

from 1000 independent runs. The approximation (4.15) is plotted as a function of θT by a

dashed line. We observe (see figure 3) that the approximation is accurate for alternatives

which are not “close to” the null hypothesis even for moderate sample sizes.

5. Concluding remarks and possible developments

We have addressed the parametric estimation and test problems. We have introduced

new estimation and test procedure using divergence minimization and duality technique

for discrete or continuous parametric models, avoiding the smoothing method. The pro-

cedure leads to optimal estimates for the parameter model and for the divergences. It

includes both the discrete (finite or infinite) and the continuous support cases. It extends

the maximum likelihood method for both estimation and test problems. Moreover, the

procedure and the divergences framework permit to obtain the limit laws of the proposed
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Figure 3. Approximation of the power function

estimates and the test statistics both under the null and the alternative (simple or com-

posite) hypotheses, including the generalized likelihood ratio statistic. As a by-product,

we obtain explicit power functions in a general case for simple or composite parametric

test problems, and approximations of the minimal sample size which guarantees a desired

power for a given alternative. A new test and new asymptotic confidence regions are pro-

posed in the case where the parameter may be a boundary value of the parameter space.

Many problems remain to be studied in the future, such as the choice of the divergence

which leads to an “optimal” (in some sense) estimate or test in terms of efficiency and

robustness, construction of convergent estimates and test statistics by divergence when

the maximum likelihood is not consistent (for example for location family for which the

expectation does not exists), the Bartlett correctability and the large deviation properties

of the proposed statistics D̂φ.

6. Appendix

Proof of proposition 3.1. (1) We will prove the consistency of the estimate D̂φ(θ, θT ).

We have ∣∣∣D̂φ(θ, θT )−Dφ(θ, θT )
∣∣∣ = |Pnh(θ, α̂φ(θ))− PθT h(θ, θT )| := |A|,
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which implies

Pnh(θ, θT )− PθT h(θ, θT ) ≤ A ≤ Pnh(θ, α̂φ(θ))− PθT h(θ, α̂φ(θ)).

Both the RHS and the LHS terms in the above display go to 0, under condition (c.2).

This implies that A tends to 0.

(2) For the consistency of α̂φ(θ), we refer to van der Vaart (1998) theorem 5.7.

Proof of theorem 3.2. (a) Using (A.1), simple calculus give

PθT (∂/∂α)h(θ, α) = 0 (6.1)

and

PθT (∂
2/∂α2)h(θ, θT ) = −

∫
φ′′(pθ/pθT )(p

2
θ/p

3
θT
)p′θT p

′
θT

T dλ =: −S. (6.2)

Observe that the matrix S is symmetric and positive since the second derivative φ′′ is

nonnegative by the convexity of φ. Let Un(θT ) := Pn(∂/∂α)h(θ, θT ), and use (6.1) and

(A.2) in connection with the Central Limit Theorem (CLT) to see that

√
nUn(θT ) → N (0,M). (6.3)

Also, let Vn(θT ) := Pn(∂
2/∂α2)h(θ, θT ), and use (6.2) and (A.2) in connection with the

Law of Large Numbers (LLN) to conclude that

Vn(θT ) → −S (a.s). (6.4)

Using the fact that Pn(∂/∂α)h(θ, α̂) = 0 and a Taylor expansion of Pn(∂/∂α)h(θ, α̂) in α̂

around θT , we obtain

0 = Pn(∂/∂α)h(θ, α̂) = Pn(∂/∂α)h(θ, θT ) + (α̂− θT )
TPn(∂

2/∂α2)h(θ, θT ) + op(n
−1/2).

Hence,
√
n (α̂− θT ) = −Vn(θT )

−1√nUn(θT ) + op(1). (6.5)

Using (6.3) and (6.4) and Slutsky theorem, we conclude then

√
n (α̂− θT ) → N (0, Vφ(θ, θT )) (6.6)

where Vφ(θ, θT ) is given in part (a) of theorem 3.2. When θT = θ, direct calculus shows

that Vφ(θ, θT ) = I−1
θT

.

(b) Assume that θT = θ. From (6.5), using the convergence (6.4), we get

√
n (α̂− θT ) = S−1√nUn(θT ) + op(1). (6.7)
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On the other hand, a Taylor expansion of [2n/φ′′(1)] D̂φ(θ, θT ) = [2n/φ′′(1)]Pn(∂/∂α)h(θ, α̂)

in α̂ around θT , using the fact that Pnh(θ, θT ) = 0 when θT = θ, gives

2n

φ′′(1)
D̂φ(θ, θT ) =

2n

φ′′(1)
UT
n (α̂− θT ) +

2n

φ′′(1)
(α̂− θT )

TVn(α̂− θT ) + op(1).

Use (6.4), (6.7) and the fact that S = −φ′′(1)IθT when θT = θ to conclude that

2n

φ′′(1)
D̂φ(θ, θT ) = φ′′(1)

−2√
nUT

n I
−1
θT

√
nUn + op(1).

Finally, use the convergence (6.3) and the fact that M = φ′′(1)2IθT when θ = θT , to con-

clude that [2n/φ′′(1)] D̂φ(θ, θT ) converges in distribution to a χ2 variable with d degrees

of freedom when θ = θT .

(c) Assume that θT 6= θ. A Taylor expansion of D̂φ(θ, θT ) = Pnh(θ, α̂), in α̂ around

θT , using the fact that PθT (∂/∂α)h(θ, θT ) = 0, gives D̂φ(θ, θT ) = Pnh(θ, θT ) + op(n
−1/2).

Hence,

√
n
(
D̂φ(θ, θT )−Dφ(θ, θT )

)
=

√
n [Pnh(θ, θT )− PθT h(θ, θT )] + op(1),

which under assumption (A.3), by the CLT, converges in distribution to a centred normal

variable with variance σ2
φ(θ, θT ) = PθT h(θ, θT )

2 − (PθT h(θ, θT ))
2.

Proof of theorem 3.3. (a) For any α = θT + un−1/3 with |u| ≤ 1, consider a Taylor

expansion of Pnh(θ, α) in α around θT , and use (A.1) to see that

nPnh(θ, α)− nPnh(θ, θT ) = n2/3uTUn + 2−1n1/3uTVnu+O(1) (a.s.)

uniformly on u with |u| ≤ 1. Now, use (6.4) and the fact that Un = O
(
n−1/2(log log n)1/2

)

(a.s) to conclude that

nPnh(θ, α)− nPnh(θ, θT ) = O
(
n1/6(log log n)1/2

)
− 2−1uTSun1/3 +O(1) (a.s.)

uniformly on u with |u| ≤ 1. Hence, uniformly on the surface of the ball B (i.e., uniformly

on u with |u| = 1), we have

nPnh(θ, α)− nPnh(θ, θT ) ≤ O
(
n1/6(log log n)1/2

)
− 2−1cn1/3 +O(1) (a.s.) (6.8)

where c is the smallest eigenvalue of the matrix S. Note that c is positive since S is

positive definite (it is symmetric, positive and non singular by assumption A.2). In view

of (6.8), by the continuity of α 7→ Pnh(θ, α) − nPnh(θ, θT ) and since it takes value zero

on α = θT and is asymptotically negative on the surface of B, it holds that as n → ∞,

with probability one, α 7→ Pnh(θ, α) attains its maximum value at some point α̃φ(θ) in
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the interior of the ball B, and therefore the estimate α̃φ(θ) satisfies Pn(∂/∂α)h(θ, α̃) = 0

and α̃− θT = O(n−1/3).

The proofs of parts (b), (c) and (d) are similar to those of parts (a), (b) and (d) in theorem

3.2. Hence, they are omitted.

Proof of proposition 3.4. We prove (1). For all θ ∈ Θ, under condition (c.4-5-6),

we prove that supθ∈Θ ‖α̂φ(θ) − θT ‖ tends to 0. By the very definition of α̂φ(θ) and the

condition (c.5), we have

Pnh(θ, α̂φ(θ)) ≥ Pnh(θ, θT )

≥ PθT h(θ, θT )− op(1),

where op(1) does not depend upon θ (due to condition (c.5)). Hence, we have for all θ ∈ Θ

PθT h(θ, θT )− PθT h(θ, α̂φ(θ)) ≤ Pnh(θ, α̂φ(θ))− PθT h(θ, α̂φ(θ)) + op(1). (6.9)

The RHS term is less than sup{θ,α∈Θ} |Pnh(θ, α)− PθT h(θ, α)| +op(1) which, by (c.5),

tends to 0. Let ǫ > 0 be such that supθ∈Θ ‖α̂φ(θ) − θT ‖ > ǫ. There exists some an ∈ Θ

such that ‖α̂φ(an) − θT ‖ > ǫ. Together with (c.5.a), there exists some η > 0 such that

PθT h(an, θT )− PθT h(an, α̂φ(an)) > η. We then conclude that

P

{
sup
θ∈Θ

‖α̂φ(θ)− θT ‖ > ǫ

}
≤ P {PθT h(an, θT )− PθT h(an, α̂φ(θ)) > η} ,

and the RHS term tends to 0 by (6.9). This concludes the proof of part (1).

We prove (2). By the very definition of θ̂φ, conditions (c.5) and (c.6) and part (1), we

have

Pnh(θ̂φ, α̂φ(θ̂φ)) ≤ Pnh(θT , α̂φ(θT ))

≤ PθT h(θT , α̂φ(θ̂φ))− op(1),

from which

PθT h(θ̂φ, α̂φ(θ̂φ))− PθT h(θT , α̂φ(θ̂φ)) ≤ PθT h(θ̂φ, α̂φ(θ̂φ))− Pnh(θ̂φ, α̂φ(θ̂φ)) + op(1)

≤ sup
{θ,α∈Θ}

|Pnh(θ, α)− PθT h(θ, α)| + op(1).(6.10)

Further, by part (1) and condition (c.5.b), for any positive ǫ, there exists η > 0 such that

P
{
‖θ̂φ − θT ‖ > ǫ

}
≤ P

{
PθT h(θ̂φ, α̂φ(θ̂φ))− PθT h(θT , α̂φ(θ̂φ)) > η

}
,

and the RHS term, under condition (c.5), tends to 0 by (6.10). This concludes the proof.
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Proof of theorem 3.5. Under condition (A.5), simple calculus give

PθT

∂

∂α
h(θT , θT ) = PθT

∂

∂θ
h(θT , θT ) = PθT

∂2

∂α∂θ
h(θT , θT ) = PθT

∂2

∂θ∂α
h(θT , θT ) = 0,

(6.11)

− PθT

∂2

∂α2
h(θT , θT ) = PθT

∂2

∂θ2
h(θT , θT ) = φ′′(1)IθT , (6.12)

and

PθT

[
∂

∂θ
h(θT , θT )

] [
∂

∂θ
h(θT , θT )

]T
= PθT

[
∂

∂α
h(θT , θT )

] [
∂

∂α
h(θT , θT )

]T

= −PθT

[
∂

∂α
h(θT , θT )

] [
∂

∂θ
h(θT , θT )

]T

= φ′′(1)
2
IθT . (6.13)

Denote Un(θ, θT ) := Pn(∂/∂α)h(θ, θT ), Vn(θ, θT ) := Pn(∂
2/∂α2)h(θ, θT ), S(θ, θT ) :=

−PθT (∂
2/∂α2)h(θ, θT ) and aTn :=

(
(θ̂φ − θT )

T , (α̂φ(θ̂φ)− θT )
T
)T

. Under conditions (A.4-

5), by a Taylor expansion, we obtain

√
nan =

√
n

[
1

φ′′(1)I
−1
θT

0

0 −1
φ′′(1)I

−1
θT

] [
−Pn

∂
∂θh(θT , θT )

−Pn
∂
∂αh(θT , θT )

]
+ op(1).

We therefore deduce, by the CLT, that, under condition (A.6),
√
nan converges in distri-

bution to a centred normal variable with covariance matrix

V =

[
I−1
θT

I−1
θT

I−1
θT

I−1
θT

]
,

which completes the proof of theorem 3.5.

Proof of theorem 3.6. (a) Using condition (A.5) and (6.11), we can write

Un(θ, θT ) := Un(θT , θT ) + o(n−1/3) (a.s.) (6.14)

and

Vn(θ, θT ) := Vn(θT , θT ) +O(n−1/3) (a.s.), (6.15)

uniformly on θ ∈ B(θT , n
−1/3). On the other hand, for any α = θT + un−1/3 with |u| ≤ 1,

by a Taylor expansion using condition (A.5), we obtain

nPnh(θ, α)− nPnh(θ, θT ) = n2/3uTUn(θ, θT ) + 2−1n1/3uTVn(θ, θT )u+O(1) (a.s.)

uniformly on θ ∈ B(θT , n
−1/3) and u with |u| ≤ 1. Combining this with (6.14) and (6.15)

to see that

nPnh(θ, α)− nPnh(θ, θT ) = n2/3uTUn(θT , θT ) + 2−1n1/3uTVn(θT , θT )u+ o(n1/3) (a.s.)
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uniformly on θ ∈ B(θT , n
−1/3) and u with |u| ≤ 1. Now, from this, using the fact that

Un(θT , θT ) = O
(
n−1/2(log log n)1/2

)
(a.s.) and Vn(θT , θT ) = −S(θT , θT ) + o(1) (a.s.), we

obtain

nPnh(θ, α)− nPnh(θ, θT ) = O
(
n1/6(log log n)1/2

)
− 2−1n1/3uTS(θT , θT )u+ o(n1/3) (a.s.)

(6.16)

uniformly on θ ∈ B(θT , n
−1/3) and u with |u| ≤ 1. Hence, uniformly on α in the surface

of the ball B(θT , n
−1/3) (i.e., uniformly on u with |u| = 1), we have

nPnh(θ, α)−nPnh(θ, θT ) ≤ O
(
n1/6(log log n)1/2

)
−2−1φ′′(1)cn1/3+o(n1/3) (a.s.) (6.17)

(uniformly on θ ∈ B(θT , n
−1/3)) where c > 0 is the smallest eigenvalue of the matrix IθT =

φ′′(1)−1S(θT , θT ). Hence, by the continuity of the function α 7→ nPnh(θ, α)−nPnh(θ, θT )

and since it takes value zero when α = θT and is asymptotically negative with respect

to α on the surface of B, it holds that, as n tends to ∞, with probability one, the

function α 7→ Pnh(θ, α) attains it maximum value at some point α̃φ(θ) in the interior of

B(θT , n
−1/3), and this holds for all θ ∈ B(θT , n

−1/3). Further, since (6.16) holds uniformly

on θ ∈ B(θT , n
−1/3), we conclude that

α̃φ(θ)− θT = O(n−1/3) (a.s.) uniformly on θ ∈ B(θT , n
−1/3). (6.18)

We now prove that, as n → ∞, with probability one, the function θ 7→ Pn(θ, α̂φ(θ)) attains

its minimum value at some point θ̃φ in the interior of the ball B(θT , n
−1/3). Here, α̃φ(θ)

is any value in the interior of B(θT , n
−1/3) which maximizes α 7→ Pnh(θ, α). It exists by

the above arguments. For any θ = θT + vn−1/3 with |v| ≤ 1, by a Taylor expansion of

nPnh(θ, α̃φ(θ)) in θ and α̃φ(θ) around θT , and a Taylor expansion of nPnh(θT , α̃φ(θT )) in

α̃φ(θT ) around θT , using (6.18) and (6.11), we obtain

nPnh(θ, α̃φ(θ))− nPnh(θT , α̃φ(θT )) = n2/3vTPn(∂/∂θ)h(θT , θT ) +

2−1n1/3vT
[
Pn(∂

2/∂θ2)h(θT , θT )
]
v + o(n1/3) (a.s.)

uniformly on v with |v| ≤ 1. Hence, from this, using the fact that

Pn(∂/∂θ)h(θT , θT ) = O
(
n−1/2(log log n)1/2

)
(a.s.) and Pn(∂

2/∂θ2)h(θT , θT ) = φ′′(1)IθT +

o(1) (a.s.), we conclude that

nPnh(θ, α̃φ(θ))−nPnh(θT , α̃φ(θT )) = O
(
n1/6(log log n)1/2

)
+2−1φ′′(1)vT IθT vn

1/3+o(n1/3) (a.s.)

uniformly on v with |v| ≤ 1. Hence, uniformly on θ in the surface of the ball B(θT , n
−1/3)

(i.e., uniformly on v with |v| = 1), we obtain

nPnh(θ, α̃φ(θ))−nPnh(θT , α̃φ(θT )) ≥ O
(
n1/6(log log n)1/2

)
+2−1φ′′(1)cn1/3+o(n1/3) (a.s.)
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where c > 0 is the smallest eigenvalue of IθT . This implies that

n2/3Pnh(θ, α̃φ(θ))−n2/3Pnh(θT , α̃φ(θT )) ≥ O
(
n−1/6(log log n)1/2

)
+2−1φ′′(1)c+o(1) (a.s.)

uniformly on θ in the surface of the ball B(θT , n
−1/3). The left hand side of the above

display equals zero when θ = θT and is positive when θ is in the surface of the ball

B(θT , n
−1/3) (for n sufficiently large). This implies that, as n → ∞, with probability one,

the function θ 7→ Pnh(θ, α̃φ(θ)) attains its minimum value at some point θ̃φ in the interior

of the ball B. This concludes the proof of part (a).

(b) See the proof of theorem 3.5.

Proof of theorem 3.7. We have

D̂φ(Θ0, θT ) := inf
β∈B0

sup
α∈Θ

Pnh (s(β), α) .

= Pnh
(
s(β̂), α̂

)
,

in which as in the proof of theorem 3.5, s(β̂) and α̂ are solutions of the system of equations





Pn
∂
∂βh

(
s(β̂), α̂

)
= 0

Pn
∂
∂αh

(
s(β̂), α̂

)
= 0.

In the first equation the partial derivative is intended w.r.t. the first variable β in s(β) and

in the second one w.r.t. the second variable α. A Taylor expansion of Pn
∂
∂βh

(
s(β̂), α̂

)

and Pn
∂
∂αh

(
s(β̂), α̂

)
in a neighborhood of (βT , θT ) gives

[
−Pn

∂
∂βh(s(βT ), θT )

−Pn
∂
∂αh(s(βT ), θT )

]
=

[
PθT

∂2

∂β2h(s(βT ), θT ) PθT
∂2

∂β∂αh(s(βT ), θT )

PθT
∂2

∂α∂βh(s(βT ), θT ) PθT
∂2

∂β2h(s(βT ), θT )

]
bn + op(1),

(6.19)

where bn :=
(
(β̂ − βT )

T , (α̂− θT )
T
)T

. This implies that bn = Op(n
−1/2). So, by a Taylor

expansion of D̂φ(Θ0, θT ) around (βT , θT ), we obtain

2n

φ′′(1)
T φ
n = UT

n A
−1Un − V T

n B−1Vn + op(1), (6.20)

where

Un :=

√
n

φ′′(1)
Pn

∂

∂α
h (s(βT ), θT ) , Vn :=

√
n

φ′′(1)
Pn

∂

∂β
h(s(βT ), θT ),

A := − 1

φ′′(1)
PθT

∂2

∂α2
h(s(βT ), θT ), B :=

1

φ′′(1)
PθT

∂2

∂β2
h(s(βT ), θT ).
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By (6.12), it holds A = IθT . On the other hand,

∂

∂β
h (s(βT ), θT ) =

[
∂

∂β
s(βT )

]T ∂

∂s(β)
h (s(βT ), θT )

= [S(βT )]
T ∂

∂s(β)
h (s(βT ), θT ) .

Moreover, using the fact that φ′(1) = 0, we can see that ∂
∂s(β)h (s(βT ), θT ) = − ∂

∂αh (s(βT ), θT ),

which implies

PθT

∂

∂β
h (s(βT ), θT ) = [S(βT )]

T

[
−PθT

∂

∂α
h (s(βT ), θT )

]
.

In the same way, we obtain

PθT

∂2

∂β2
h (s(βT ), θT ) = [S(βT )]

T

[
−PθT

∂2

∂α2
h (s(βT ), θT )

]
[S(βT )] .

It follows that Vn = [S(βT )]
TUn and B = [S(βT )]

T IθTS(βT ). Combining this result with

(6.20), we get

2n

φ′′(1)
D̂φ(Θ0, θT ) = UT

n

[
I−1
θT

− S(βT )B
−1S(βT )

T
]
Un + op(1),

which is precisely the asymptotic expression for the Wilks likelihood ratio statistic for

composite hypotheses. The proof is completed following therefore the same arguments as

for the Wilks likelihood ratio statistic; see e.g. Sen and Singer (1993) chapter 5.

Proof of theorem 3.8. The proofs of part (a) and (b) are similar to the proofs of part

(a) and (b) of theorem 3.7, hence they are omitted.

(c) Using (3.4) and (3.14 ), we can see that Dφ(Θ0, θT ) can be written as

Dφ(Θ0, θT ) := inf
β∈B0

Dφ(s(β), θT ) = Dφ(s(β
∗), θT )

= sup
α∈Θ

PθT h(s(β
∗), α) = PθT h(s(β

∗), θT ). (6.21)

On the other hand, by a Taylor expansion of D̂φ(Θ0, θT ) = Pnh(s(β̂), α̂φ(β̂)) in β̂ and

α̂φ(β̂) around β∗ and θT , we obtain

D̂φ(Θ0, θT ) = Pnh(s(β
∗), θT ) + op(n

−1/2).

Combining this with (6.21) to conclude that

√
n
[
D̂φ(Θ0, θT )−Dφ(Θ0, θT )

]
=

√
n [Pnh(s(β

∗), θT )− PθT h(s(β
∗), θT )] + op(1)

which, by the CLT, converges to a centred normal variable with variance

σ2
φ(β

∗, θT ) = PθT h(s(β
∗), θT )

2 − (PθT h(s(β
∗), θT ))

2 .



34 MICHEL BRONIATOWSKI∗ AND AMOR KEZIOU∗∗

This ends the proof.
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