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Abstract

Recently it is observed that the generalized exponential distribution can be used

quite effectively to analyze lifetime data in one dimension. The main aim of this paper

is to define a bivariate generalized exponential distribution so that the marginals have

generalized exponential distributions. It is observed that the joint probability density

function, the joint cumulative distribution function and the joint survival distribution

function can be expressed in compact forms. Several properties of this distribution

have been discussed. We suggest to use the EM algorithm to compute the maximum

likelihood estimators of the unknown parameters and also obtain the observed and

expected Fisher information matrices. One data set has been re-analyzed and it is

observed that the bivariate generalized exponential distribution provides a better fit

than the bivariate exponential distribution.
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1 Introduction

Gupta and Kundu (1999) introduced the generalized exponential (GE) distribution as a

possible alternative to the well known gamma or Weibull distribution. The generalized

exponential distribution has lots of interesting properties and it can be used quite effectively

to analyze several skewed life time data. In many cases it is observed that it provides better

fit than Weibull or gamma distributions. Since the distribution function of the GE is in

closed form, it can be used quite easily for analyzing censored data also. The frequentest and

Bayesian inferences have been developed for the unknown parameters of the GE distribution.

The readers are referred to the review article of Gupta and Kundu (2007) for a current

account on GE distribution.

Although quite a bit of work has been done in the recent years on GE distribution,

but not much attempt has been made to extend this to the multivariate set up. Recently

Sarhan and Balakrishnan (2007) has defined a new bivariate distribution using the GE

distribution and exponential distribution and derived several interesting properties of this

new distribution. Although they obtained the new bivariate distribution from the GE and

exponential distributions, but the marginal distributions are not in known forms. In fact it

is not known to the authors the existence of any bivariate distribution whose marginals are

generalized exponential distributions.

The main aim of this paper is to provide a bivariate generalized exponential (BVGE)

distribution so that the marginal distributions are GE distributions. In this connection, it

may be mentioned here that Arnold (1967) provided some general techniques to construct

multivarite distribution with specified marginals. We have adopted one of those techniques.

The proposed BVGE distribution has three parameters but the scale and location parame-

ters can be easily introduced. The joint cumulative distribution function (CDF), the joint
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probability density function (PDF) and the joint survival distribution function (SDF) are in

closed forms, which make it convenient to use in practice.

The maximum likelihood estimators (MLEs) can be used to estimate the four unknown

parameters when the scale parameter is also present. Although, the MLEs as expected

can not be obtained in explicit forms, but the EM algorithm can be used quite effectively to

obtain the MLEs. We also provide the observed and expected Fisher information matrices for

practical users. Recently Meintanis (2007) analyzed one data and concluded that bivariate

Marshal and Olkin (1967) exponential distribution provided a very good fit. We have re-

analyzed the same data set and it is observed that the proposed BVGE distribution provides

a much better fit than the Marshal and Olkin bivariate exponential model and provided

some justification also.

The rest of the paper is organized as follows. In section 2, we define the BVGE dis-

tribution and discuss its different properties. The EM algorithm to compute the MLEs of

the unknown parameters is provided in section 3. The analysis of a data set is provided in

section 4. Finally we conclude the paper in section 5.

2 Bivariate Generalized Exponential Distribution

The univariate GE distribution has the following CDF and PDF respectively for x > 0;

FGE(x;α, λ) =
(
1− e−λx

)α
, fGE(x;α, λ) = αλe−λx

(
1− e−λx

)α−1
. (1)

Here α > 0 and λ > 0 are the shape and scale parameters respectively. It is clear that for

α = 1, it coincides with the exponential distribution. From now on a GE distribution with

the shape parameter α and the scale parameter λ will be denoted by GE(α, λ). For brevity

when λ = 1, we will denote it by GE(α) and for α = 1, it will be denoted by Exp(λ).
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From now on unless otherwise mentioned, it is assumed that α1 > 0, α2 > 0, α3 > 0, λ > 0.

Suppose U1 ∼ GE(α1, λ), U1 ∼ GE(α2, λ) and U3 ∼ GE(α3, λ) and they are mutually

independent. Here ‘∼’ means follows or has the distribution. Now define X1 = max{U1, U3}

and X2 = max{U2, U3}. Then we say that the bivariate vector (X1, X2) has a bivariate

generalized exponential distribution with the shape parameters α1, α2 and α3 and the scale

parameter λ. We will denote it by BVGE(α1, α2, α3, λ). Now for the rest of the discussions

for brevity, we assume that λ = 1, although the results are true for general λ also. The

BVGE distribution with λ = 1 will be denoted by BVGE(α1, α2, α3). Before providing the

joint CDF or PDF, we first mention how it may occur in practice.

Stress Model: Suppose a system has two components. Each component is subject to

individual independent stress say U1 and U2 respectively. The system has an overall stress U3

which has been transmitted to both the components equally, independent of their individual

stresses. Therefore, the observed stress at the two components are X1 = max{U1, U3} and

X2 = max{U2, U3} respectively.

Maintenance Model: Suppose a system has two components and it is assumed that each

component has been maintained independently and also there is an overall maintenance. Due

to component maintenance, suppose the lifetime of the individual component is increased

by Ui amount and because of the overall maintenance, the lifetime of each component is

increased by U3 amount. Therefore, the increased lifetimes of the two component are X1 =

max{U1, U3} and X2 = max{U2, U3} respectively.

The following results will provide the joint CDF, joint PDF and conditional PDF.

Theorem 2.1: If (X1, X2) ∼ BVGE(α1, α2, α3), then the joint CDF of (X1, X2) for x1 > 0,

x2 > 0, is

FX1,X2
(x1, x2) = (1− e−x1)α1(1− e−x2)α2(1− e−z)α3 , (2)
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where z = min{x1, x2}.

Proof: Trivial and therefore it is omitted.

Corollary 2.1: The joint CDF of the BVGE(α1, α2, α3) can also be written as

FX1,X2
(x1, x2) = FGE(x1;α1)FGE(x2, α2)FGE(z;α3)

= FGE(x1;α1 + α3)FGE(x2, α2) if x1 < x2

= FGE(x1;α1)FGE(x2, α2 + α3) if x2 < x1

= FGE(x;α1 + α2 + α3) if x1 = x2 = x.

Theorem 2.2: If (X1, X2) ∼ BVGE(α1, α2, α3), then the joint PDF of (X1, X2) for x1 > 0,

x2 > 0, is

fX1,X2
(x1, x2) =





f1(x1, x2) if 0 < x1 < x2 <∞

f2(x1, x2) if 0 < x2 < x1 <∞

f0(x) if 0 < x1 = x2 = x <∞,

where

f1(x1, x2) = fGE(x1;α1 + α3)fGE(x2;α2)

= (α1 + α3)α2

(
1− e−x1

)α1+α3−1 (
1− e−x2

)α2−1
e−x1−x2

f2(x1, x2) = fGE(x1;α1)fGE(x2;α2 + α3)

= (α2 + α3)α1

(
1− e−x1

)α1−1 (
1− e−x2

)α2+α3−1
e−x1−x2

f0(x) =
α3

α1 + α2 + α3

fGE(x;α1 + α2 + α3)

= α3

(
1− e−x

)α1+α2+α3−1
e−x.

Proof: The expressions for f1(·, ·) and f2(·, ·) can be obtained simply by taking
∂2FX1,X2

(x1, x2)

∂x1∂x2

for x1 < x2 and x2 < x1 respectively. But f0(·) can not be obtained in the same way. Using
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the facts that

∫ ∞

0

∫ x2

0
f1(x1, x2)dx1dx2 +

∫ ∞

0

∫ x1

0
f2(x1, x2)dx2dx1 +

∫ ∞

0
f0(x)dx = 1, (3)

∫ ∞

0

∫ x2

0
f1(x1, x2)dx1dx2 = α2

∫ ∞

0

(
1− e−x

)α1+α2+α3−1
e−xdx (4)

and
∫ ∞

0

∫ x1

0
f2(x1, x2)dx2dx1 = α1

∫ ∞

0

(
1− e−x

)α1+α2+α3−1
e−xdx (5)

note that

∫ ∞

0
f0(x)dx = α3

∫ ∞

0

(
1− e−x

)α1+α2+α3−1
e−xdx =

α3

α1 + α2 + α3

. (6)

Therefore, the result follows.

Comment 2.1: From Theorem 2.2 and Theorem 2.3, it easily follows that if we take 0 <

αi < 1, i = 1, 2, 3, and α1 + α3 = α2 + α3 = 1, then both X1 and X2 are exponentially

distributed. Let, α3 = α and α1 = 1 - α and α2 = 1 - α, then the joint PDF of (X1, X2)

takes the form;

fX1,X2
(x1, x2) =





fGE(x1; 1)fGE(x2; 1− α) if x1 < x2,

fGE(x1; 1− α)fGE(x2; 1) if x1 > x2

α
2−α

fGE(x; 2− α) if x1 = x2 = x.

(7)

Therefore the joint PDF as given in (7) has exponential marginals.

The BVGE distribution has both an absolute continuous part and an singular part,

similar to Marshall and Olkin’s bivariate exponential model. The function fX1,X2
(·, ·) may

be considered to be a density function for the BVGE distribution if it is understood that

the first two terms are densities with respect to two-dimensional Lebesgue measure and the

third term is a density function with respect to one dimensional Lebesgue measure, see for

example Bemis, Bain and Higgins (1972). It is well known that although in one dimension

the practical use of a distribution with this property is usually pathological, but they do
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arise quite naturally in higher dimension. In case of BVGE distribution, the presence of a

singular part means that if X1 and X2 are BVGE distribution, then X1 = X2 has a positive

probability. In many practical situations it may happen that X1 and X2 both are continuous

random variables, but X1 = X2 has a positive probability, see Marshall and Olkin (1967)

in this connection. The following result will provide explicitly the absolute continuous part

and the singular part of the BVGE distribution function.

Theorem 2.3: If (X1, X2) ∼ BVGE(α1, α2, α3), then

FX1,X2
(x1, x2) =

α1 + α2

α1 + α2 + α3

Fa(x1, x2) +
α3

α1 + α2 + α3

Fs(x1, x2),

where for z = min{x1, x2},

Fs(x1, x2) =
(
1− e−z

)α1+α2+α3

and

Fa(x1, x2) =
α1 + α2 + α3

α1 + α2

(1− e−x1)α1(1− e−x2)α2(1− e−z)α3 −
α3

α1 + α2

(1− e−z)α1+α2+α3 ,

here Fs(·, ·) and Fa(·, ·) are the singular and the absolute continuous parts respectively.

Proof: To find Fa(x1, x2) from FX1,X2
(x1, x2) = pFa(x1, x2) + (1− p)Fs(x1, x2), 0 ≤ p ≤ 1,

we compute

∂2FX1,X2
(x1, x2)

∂x1∂x2

= pfa(x1, x2) =





f1(x1, x2) if x1 < x2,

f2(x1, x2) if x1 > x2,

from which p may be obtained as

p =
∫ ∞

0

∫ x2

0
f1(x1, x2)dx1dx2 +

∫ ∞

0

∫ x1

0
f2(x1, x2)dx2dx1 =

α1 + α2

α1 + α2 + α3

and

Fa(x1, x2) =
∫ x1

0

∫ x2

0
fa(u, v)dudv.
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Once p and Fa(·, ·) are determined, Fs(·, ·) can be obtained by subtraction.

Alternatively, probabilistic arguments are also can be provided as follows. Suppose A is

the following event: A = {U1 < U3} ∩ {U2 < U3}, then P (A) =
α3

α1 + α2 + α3

.

Therefore,

FX1,X2
(x1, x2) = P (X1 ≤ x1, X2 ≤ x2|A)P (A) + P (X1 ≤ x1, X2 ≤ x2|A

′)P (A′). (8)

Moreover for z as defined before,

P (X1 ≤ x1, X2 ≤ x2|A) = (1− e−z)α1+α2+α3 , (9)

and P (X1 ≤ x1, X2 ≤ x2|A
′) can be obtained by subtraction.

Clearly, (1 − e−z)α1+α2+α3 is the singular part as its mixed second partial derivative is

zero when x1 6= x2, and P (X1 ≤ x1, X2 ≤ x2|A
′) is the absolute continuous part as its mixed

partial derivative is a density function.

Corollary 2.2: The joint PDF of X1 and X2 can be written as follows for z = min{x1, x2};

fX1,X2
(x1, x2) =

α1 + α2

α1 + α2 + α3

fa(x1, x2) +
α3

α1 + α2 + α3

fs(z),

where

fa(x1, x2) =
α1 + α2 + α3

α1 + α2

×





fGE(x1;α1 + α3)fGE(x2;α2) if x1 < x2

fGE(x1;α1)fGE(x2;α2 + α3) if x1 > x2

and

fs(x) = (α1 + α2 + α3)e
−x(1− e−x)α1+α2+α3−1 = fGE(x;α1 + α2 + α3).

Clearly, here fa(x1, x2) and fs(z) are the absolute continuous part and singular part respec-

tively.

Comment 2.2: Using the joint PDF of X1 and X2, the different product moments Xm
1 X

n
2

can be obtained in terms of infinite series similar to the one dimensional GE distribution,

see Gupta and Kundu (1999).
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From Theorem 2.3, it is clear that as α3 → 0, FX1,X2
(x1, x2)→ (1− e−x1)α1(1− e−x2)α2 ,

i.e., X1 and X2 become independent. Moreover, since

A = (U1 < U3) ∩ (U2 < U3) = {max{U1, U2} < U3} = {X1 = X2},

and P (A) =
α3

α1 + α2 + α3

, therefore, as α3 →∞, P (A) = P (X1 = X2)→ 1. It implies that

for fixed α1 and α2, as α3 varies from 0 to∞, the correlation between X1 and X2 varies from

0 to 1.

The following theorem provides the marginal and the conditional results of the BVGE

distribution.

Theorem 2.4: If (X1, X2) ∼ BVGE(α1, α2, α3), then

(a) X1 ∼ GE(α1 + α3) and X2 ∼ GE(α2 + α3)

(b) The conditional distribution ofX1 givenX2 = x2, say FX1|X2=x2
(x1), is a convex combina-

tion of an absolute continuous distribution function and a discrete (degenerate) distribution

function as follows;

FX1|X2=x2
(x1) = p2G2(x1) + (1− p2)H2(x1),

where

G2(x1) =
1

p2

×





α2

α2+α3
(1− e−x2)−α3 × (1− e−x1)α1+α3 if x1 < x2

(1− e−x1)α1 − α3

α2+α3
(1− e−x2)α1 if x1 > x2,

H2(x) =





0 if x < x2

1 if x ≥ x2

and

p2 = 1−
α3

α2 + α3

(1− e−x2)α1 .

(c) The conditional distribution of X1 given X2 ≤ x2, say FX1|X2≤x2
(x1), is an absolute
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continuous distribution function as follows;

P (X1 ≤ x1|X2 ≤ x2) = FX1|X2≤x2
(x1) =





(1− e−x1)α1+α3(1− e−x2)−α3 if x1 ≤ x2

(1− e−x1)α1 if x1 > x2

Proof: Trivial and therefore it is omitted.

Comment 2.3: Since the joint survival function and the joint CDF have the following

relation

SX1,X2
(x1, x2) = 1− FX1

(x1)− FX2
(x2) + FX1,X2

(x1, x2),

therefore, the joint survival function of X1 and X2 also can be expressed in a compact form.

Comment 2.4: Using Theorem 2.4, different moments of X1, X2, and conditional moments

of X1|X2 = x2 or X1|X2 ≤ x2 can be obtained in terms of infinite series.

An important property of the independent GE random variables X1 and X2 is that

max{X1, X2} is also GE. If X1 and X2 are dependent but (X1, X2) is BVGE, then

P (max{X1, X2} ≤ x) = P (X1 ≤ x,X2 ≤ x) = P (U1 ≤ x, U2 ≤ x, U3 ≤ x) = (1−e−x)α1+α2+α3 ,

that is the maximum of X1 and X2 is also GE.

It is also interesting to observe that for all 0 < x1, x2 <∞,

FX1,X2
(x1, x2) ≥ FX1

(x1)FX2
(x2).

Since

F̄X1,X2
(x1, x2)− F̄X1

(x1)F̄X2
(x2) = FX1,X2

(x1, x2)− FX1
(x1)FX2

(x2),

therefore,

F̄X1,X2
(x1, x2) ≥ F̄X1

(x1)F̄X2
(x2).

Now we discuss the dependency properties of X1 and X2.
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(i) Since FX1,X2
(x1, x2) ≥ FX1

(x1)FX2
(x2) for all x1, x2, therefore, they will be positive

quadrant dependent, i.e, for every pair of increasing functions h1(·) and h2(·),

Cov(h1(X1), h2(X2)) ≥ 0.

(ii) From part (b) of Theorem 2.4 it easily follows that for every x1, P (X1 ≤ x1|X2 = x2) is a

decreasing function of x2, therefore X2 is positive regression dependent of X1. By symmetry

it follows that X1 is positive regression dependent of X2.

(iii) From part (c) of Theorem 2.4 it easily follows that for every x1, P (X1 ≤ x1|X2 ≤ x2) is

a decreasing function of x2, therefore X1 is left tail decreasing in X2. By symmetry it follows

that X2 is left tail decreasing in X1.

3 Maximum Likelihood Estimation

In this section we address the problem of computing the maximum likelihood estimators

(MLEs) of the unknown parameters of BVGE distribution based on a random sample. The

problem can be written as follows: Suppose {(X11, X21), . . . , (X1n, X2n)} is a random sample

from BVGE(α1, α2, α3, λ), the problem is to find the MLEs of the unknown parameters. We

consider two cases separately, (a) α3 is known, (b) α3 is unknown. We use the following

notation

I1 = {i;X1i < X2i}, I2 = {X1i > X2i}, I0 = {X1i = X2i = Yi}, I = I1 ∪ I2 ∪ I3,

|I1| = n1, |I2| = n2, |I0| = n0, and n0 + n1 + n2 = n.

Based on the observations, the log-likelihood function can be written as

l(α1, α2, α3, λ) = n lnλ+ n1 ln(α1 + α3) + n1 lnα2 + (α1 + α3 − 1)
∑

i∈I1

ln(1− e−λx1i)
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+ (α2 − 1)
∑

i∈I1

ln(1− e−λx2i) + n2 lnα1 + n2 ln(α2 + α3)

+ (α1 − 1)
∑

i∈I2

ln(1− e−λx1i) + (α2 + α3 − 1)
∑

i∈I2

ln(1− e−λx2i)

+ n0 lnα3 + (α1 + α2 + α3 − 1)
∑

i∈I0

ln(1− e−λyi)

− λ(
∑

i∈I0

yi +
∑

i∈I1∪I2

x1i +
∑

i∈I2∪I2

x2i).

Case 1: α3 is known.

In this case for fixed λ, the MLEs of α1 and α2, say α̂1(λ) and α̂2(λ) respectively, can be

obtained as the solutions of the following equations;

n1

(α1 + α3)
+
n2

α1

= −
∑

i∈I0

ln(1− exp(−λyi))−
∑

i∈I1∪I2

ln(1− e−λx1i) (10)

n2

(α2 + α3)
+
n1

α2

= −
∑

i∈I0

ln(1− exp(−λyi))−
∑

i∈I1∪I2

ln(1− e−λx2i). (11)

It is not difficult to show that both the quadratic equations (10) and (11) have exactly one

positive root each and they are

α̂1(λ) =
(−k1α3 + n1 + n2) +

√
(−k1α3 + n1 + n2)2 + 4k1n2α3

2k1

(12)

α̂2(λ) =
(−k2α3 + n1 + n2) +

√
(−k2α3 + n1 + n2)2 + 4k2n1α3

2k2

, (13)

where

k1 = −


∑

i∈I0

ln(1− exp(−λyi)) +
∑

i∈I1

ln(1− exp(−λx1i)) +
∑

i∈I2

ln(1− exp(−λx1i))


 ,

k2 = −


∑

i∈I0

ln(1− exp(−λyi)) +
∑

i∈I1

ln(1− exp(−λx2i)) +
∑

i∈I2

ln(1− exp(−λx2i))


 .

Once α̂1(λ) and α̂2(λ) are obtained, the MLE of λ can be obtained by maximizing the profile

log-likelihood of λ. It can be obtained as a solution of the following fixed point type equation;

g(λ) = λ, (14)



13

where

g(λ) = n


∑

i∈I0

yi +
∑

i∈I1∪I2

x1i +
∑

i∈I1∪I2

x2i − α̂1(λ)
∑

i∈I1

x1ie
−λx1i

(1− e−λx1i)

−(α̂2(λ)− 1)
∑

i∈I1

x2ie
−λx2i

(1− e−λx2i)
− (α̂1(λ)− 1)

∑

i∈I2

x1ie
−λx1i

(1− e−λx1i)

−α̂2(λ)
∑

i∈I2

x2ie
−λx2i

(1− e−λx2i)
− (α̂1(λ) + α̂2(λ))

∑

i∈I1

x1ie
−λx1i

(1− e−λx1i)



−1

. (15)

Simple iterative procedure as follows can be used to compute the MLEs. We start with

the initial guess of λ as λ(0). Obtain α̂1(λ0) and α̂2(λ0) from (12) and (13). Compute

λ(1) = g(λ(0)) using (15). Replace λ(0) by λ(1) and repeat the process. The process continues

until |λ(i) − λ(i+1)| < ε, where ε is some pre-assigned tolerance level.

Case 2: α3 is also unknown.

In this case we suggest EM algorithm to compute the MLEs of the unknown parameters.

We treat this as a missing value problem as follows. Assume that for a bivariate random

vector (X1, X2), there is an associate random vector (∆1,∆2), ∆1 = 1 or 3, if U1 > U3 or

U1 < U3 and similarly, ∆2 = 2 or 3, if U2 > U3 or U2 < U3 respectively. Therefore, if

X1 = X2, then ∆1 = ∆2 = 3, but if X1 < X2 or X1 > X2, then (∆1,∆2) is missing. If

(x1, x2) ∈ I1, then the possible values of (∆1,∆2) are (1,2) and (3,2), similarly, if (x1, x2) ∈ I2,

then (∆1,∆2) can take (1,3) and (1,2) with non-zero probabilities.

Now we provide the ‘E’-step and ‘M’-step of the EM algorithm. In the ‘E’-step, we

treat the observations belong to I0 as the complete observations. If the observation (x1, x2)

belongs to either I1 or I2, we treat it as a missing observation. If (x1, x2) ∈ I1, we form the

‘pseudo observation’ by fractioning (x1, x2) to two partially complete ‘pseudo observation’ of

the form (x1, x2, u1(γ)) and (x1, x2, u2(γ)). Here γ = (α1, α2, α3, λ), and the fractional mass

u1(γ), u2(γ) assigned to the ‘pseudo observation’ (x1, x2) is the conditional probability that

the random vector (∆1,∆2) takes the values (1,2) and (3,2) respectively, given that X1 < X2.
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Similarly, if (x1, x2) ∈ I2, we form the ‘pseudo observation’ of the form (x1, x2, w1(γ)) and

(x1, x2, w2(γ)). Here the fractional mass w1(γ), w2(γ) assigned to the ‘pseudo observation’

(x1, x2) is the conditional probability that the random vector (∆1,∆2) takes the values (1,2)

and (1,3) respectively, given that X1 > X2. Since

P (U3 < U1 < U2) =
α1α2

(α1 + α3)(α1 + α2 + α3)
, P (U1 < U3 < U2) =

α2α3

(α1 + α3)(α1 + α2 + α3)
,

therefore,

u1(γ) =
α1

α1 + α3

and u2(γ) =
α3

α1 + α3

.

Similarly,

w1(γ) =
α2

α2 + α3

and w2(γ) =
α3

α2 + α3

.

From now on we write u1(γ), u2(γ), w1(γ), w2(γ) as u1, u2, w1, w2 respectively. The log-

likelihood function of the ‘pseudo data’ can be written as

lpseudo(α1, α2, α3, λ) = n0 lnα3 + n0 lnλ+ (α1 + α2 + α3 − 1)
∑

i∈I0

ln(1− e−λyi)− λ
∑

i∈I0

x1i

+ u1


n1 lnα1 + 2n1 lnλ− λ

∑

i∈I1

x1i + (α1 + α3 − 1)
∑

i∈I1

ln(1− e−λx1i)




+ u2


n1 lnα3 + 2n1 lnλ− λ

∑

i∈I1

x1i + (α1 + α3 − 1)
∑

i∈I1

ln(1− e−λx1i)




+ n1 lnα2 − λ
∑

i∈I1

x2i + (α2 − 1)
∑

i∈I1

ln(1− e−λx2i)

+ w1


n2 lnα2 + 2n2 lnλ− λ

∑

i∈I2

x2i + (α2 + α3 − 1)
∑

i∈I2

ln(1− e−λx2i)




+ w2


n2 lnα3 + 2n2 lnλ− λ

∑

i∈I2

x2i + (α2 + α3 − 1)
∑

i∈I2

ln(1− e−λx2i)




+ n2 lnα1 − λ
∑

i∈I2

x1i + (α1 − 1)
∑

i∈I2

ln(1− e−λx1i)

= n0 lnα3 + lnλ(n0 + 2(n1 + n2)) + (α1 + α2 + α3 − 1)
∑

i∈I0

ln(1− e−λx1i)

− λ(
∑

i∈I0

yi +
∑

i∈I1∪I2

x1i +
∑

i∈I1∪I2

x2i) + lnα1(u1n1 + n2) + lnα2(w1n2 + n1)

+ (α1 + α3 − 1)
∑

i∈I1

ln(1− e−λx1i) + (α2 + α3 − 1)
∑

i∈I2

ln(1− e−λx2i)
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+ (α2 − 1)
∑

i∈I1

ln(1− e−λx2i) + (α1 − 1)
∑

i∈I2

ln(1− e−λx1i).

Now the ‘M’ step involves the maximization of the lpseudo(α1, α2, α3, λ) with respect to

α1, α2, α3 and λ at each step. For fixed λ, the maximization of lpseudo(α1, α2, α3, λ) occurs

at

α̂1(λ) =
n1u1 + u2∑

i∈I0 ln(1− e−λyi) +
∑

i∈I1∪I2 ln(1− e−λx1i)

α̂2(λ) =
n1 + w1n2∑

i∈I0 ln(1− e−λyi) +
∑

i∈I1∪I2 ln(1− e−λx2i)

α̂3(λ) =
n0 + n1u2 + n2w2∑

i∈I0 ln(1− e−λyi) +
∑

i∈I1 ln(1− e−λx1i) +
∑

i∈I2 ln(1− e−λx2i)
,

and λ̂, which maximizes lpseudo(α1, α2, α3, λ) can be obtained as a solution of the following

fixed point equation;

g(λ) = λ, (16)

where

g(λ) =


∑

i∈I0

yi +
∑

i∈I1∪I2

x1i +
∑

i∈I1∪I2

x2i − (α̂1(λ) + α̂2(λ) + α̂3(λ)− 1)
∑

i∈I0

yie
−λyi

(1− e−λyi)

−(α̂1(λ) + α̂3(λ)− 1)
∑

i∈I1

x1ie
−λx1i

(1− e−λx1i)
− (α̂2(λ) + α̂3(λ)− 1)

∑

i∈I2

x2ie
−λx2i

(1− e−λx2i)

−(α̂2(λ)− 1)
∑

i∈I1

x2ie
−λx2i

(1− e−λx2i)
− (α̂1(λ)− 1)

∑

i∈I2

x1ie
−λx1i

(1− e−λx1i)


 (n0 + 2n1 + 2n2).

Now we describe how to compute (i+1)-th step from the i-th step in the EM algorithm.

• Step 1: Suppose at the i-th step the estimates of α1, α2, α3 and λ are α
(i)
1 , α

(i)
2 , α

(i)
3

and λ(i) respectively.

• Step 2: Compute u1, u2, w1, w2 using α
(i)
1 , α

(i)
2 , α

(i)
3 and λ(i).

• Step 3: Find λ(i+1) by solving (16) similarly as (14).
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• Step 4: Once λ(i+1) is obtained, compute α
(i+1)
1 = α̂1(λ

(i+1)), α
(i+1)
2 = α̂2(λ

(i+1)),

α
(i+1)
3 = α̂3(λ

(i+1)).

4 Data Analysis

For illustrative purposes we have analyzed one data set to see how the proposed model and

the EM algorithm works in practice. The data set has been obtained from Meintanis (2007)

and it is presented in Table 1. The data represent the football (soccer) data where at least

one goal scored by the home team and at least one goal scored directly from a penalty kick,

foul kick or any other direct kick (all of them together will be called as kick goal) by any

team have been considered. Here X1 represents the time in minutes of the first kick goal

scored by any team and X2 represents the first goal of any type scored by the home team.

In this case all possibilities are open, for example X1 < X2, or X1 > X2 or X1 = X2 = Y

(say). Meintanis (2007) used the Marshal-Olkin distribution to analyze the data. We would

like to analyze the data using BVGE model.

Before going to analyze the data using BVGE model, we fit the GE distribution to

X1 and X2 separately. The MLEs of the shape and scale parameters of the respective

GE distribution for X1 and X2 are (3.121, 0.0449) and (1.678, 0.0413) respectively. The

Kolmogorov-Smirnov distances between the fitted distribution and the empirical distribution

function and the corresponding p values (in brackets) for X1 and X2 are 0.119 (0.667) and

0.121(0.654) respectively. Based on the p values GE distribution can not be rejected for the

marginals.

First we try to fit the model under the assumption that U3 is exponentially distributed,

i.e. α3 = 1. In this case using the iterative algorithm (15), the MLEs of α1, α2 and λ are

1.385, 0.477 and 0.0373 respectively. Here, we started the iteration with the initial guess of
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2005-2006 X1 X2 2004-2005 X1 X2

Lyon-Real Madrid 26 20 Internazionale-Bremen 34 34
Milan-Fenerbahce 63 18 Real Madrid-Roma 53 39
Chelsea-Anderlecht 19 19 Man. United-Fenerbahce 54 7
Club Brugge-Juventus 66 85 Bayern-Ajax 51 28
Fenerbahce-PSV 40 40 Moscow-PSG 76 64
Internazionale-Rangers 49 49 Barcelona-Shakhtar 64 15
Panathinaikos-Bremen 8 8 Leverkusen-Roma 26 48
Ajax-Arsenal 69 71 Arsenal-Panathinaikos 16 16
Man. United-Benfica 39 39 Dynamo Kyiv-Real Madrid 44 13
Real Madrid-Rosenborg 82 48 Man. United-Sparta 25 14
Villarreal-Benfica 72 72 Bayern-M. TelAviv 55 11
Juventus-Bayern 66 62 Bremen-Internazionale 49 49
Club Brugge-Rapid 25 9 Anderlecht-Valencia 24 24
Olympiacos-Lyon 41 3 Panathinaikos-PSV 44 30
Internazionale-Porto 16 75 Arsenal-Rosenborg 42 3
Schalke-PSV 18 18 Liverpool-Olympiacos 27 47
Barcelona-Bremen 22 14 M. Tel-Aviv-Juventus 28 28
Milan-Schalke 42 42 Bremen-Panathinaikos 2 2
Rapid-Juventus 36 52

Table 1: UEFA Champion’s League data

α as one and the iteration converges in 6 steps.

Now we fit the BVGE model under the assumptions that all the four parameters are

unknown. Although we have some ideas about the values of α1 + α3 and α2 + α3, but we

do not know about their individual values. We have an idea about the value of λ from

the marginal λ’s. For λ = (0.0449 + 0.0413)/2 = 0.0431, we plot the profile log-likelihood

function of α3 in Figure 1 and it is clear that the approximate value of α3 should be close to

one. Therefore, we get initial guesses of α1 and α2 also. We start the EM algorithm with the

initial guesses of α1, α2, α3 and λ as 2.0, 0.5, 1.0 and 0.04 respectively. The EM algorithm

converges in 6-steps and MLEs of α1, α2, α3 and λ are 1.445, 0.468, 1.170 and 0.0390. Since

Max{X1, X2} also follows GE(α1 + α2 + α3), we can obtain the initial guesses as follows.

We fit GE distributions to X1, X2 and to max{X1, X2} and take the initial estimates of λ
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Figure 1: Profile log-likelihood function of α3.

as the average of the three estimates. Once we get the estimates of λ we can obtain initial

estimates of α1, α2 and α3 from three linear equations. We obtain the initial estimates of λ

in this case as 0.043 and using this value of λ we obtain the initial estimates of α1, α2 and α3

as 2.55, 0.35 and 1.37 respectively. Using these initial values the EM algorithm converges to

the same values after 11 iterations. We have computed the MLEs using direct maximization

also (using grid search method) and we obtained the same estimates. Therefore, the EM

algorithm works quite well in this case.

The corresponding 95% confidence intervals are obtained from the EM algorithm as

suggested by Louis (1982) and they are as follows: (0.657, 2.233), (0.167, 0.769), (0.651,

1.689) and (0.028, 0.050) for α1, α2, α3 and λ respectively. We have computed the K-

S distance and the corresponding p values also (reported in brackets) between the fitted

the GE(1.445+1.170=2.615, 0.0390) and GE(0.468+1.170=1.638, 0.0390) to the empirical

distribution functions of X1 and X2 respectively. They are 0.103 (0.824) and 0.100 (0.852)

respectively. Therefore, based on the marginals we can say that the BVGE distribution can
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be used quite effectively in this case.

Now we try to test whether BVGE or Marshal-Olkin (MO) provides better fit to the

above data set. It may be mentioned that the MO model can not be obtained as a sub

model from BVGE model. Therefore, the standard chi-square test can not be applied. We

use the AIC and BIC to check the model validity. In case of BVGE, based on the above

estimates the log-likelihood value is -20.59 and in case of MO model, using the estimates

obtained by Meintanis (2007), the log-likelihood value becomes -44.57. The corresponding

AIC (BIC) values are 49.18 (48.40) and 95.14 (94.56) respectively. Therefore, both the

criteria suggest that BVGE provides a better fit than the MO model.

To see further why BVGE provides a better fit than the MO model, we look at the scaled

TTT plot as suggested by Aarset (1987), which provides an idea of the shape of the hazard

function of a distribution. For a family with the survival function S(y) = 1 − F (y), the

scaled TTT transform, with H−1(u) =
∫ F−1(u)

0
S(y)dy defined for 0 < u < 1 is g(u) =

H−1(u)/H−1(1). The corresponding empirical version of the scaled TTT transform is given

by gn(r/n) = H−1
n (r/n)/H−1

n (1) = [(
r∑

i=1

yi:n) + (n− r)yr:n]/(
n∑

i=1

yi:n), where r = 1, . . . , n and

yi:n, i = 1, . . . , n represent the order statistics of the sample. It has been shown by Aarset

(1987) that the scaled TTT transform is convex (concave) if the hazard rate is decreasing

(increasing), and for bathtub (unimodal) hazard rates, the scaled TTT transform is first

convex (concave) and then concave (convex). We plot the scaled TTT transform for X1

and X2 separately in Figure 2. From the Figure 2 it is quite apparent that both X1 and

X2 have increasing hazard function and that also explains why BVGE, which may have

increasing hazard functions for the marginals, provides better fit than MO model, which has

only constant hazard functions for the marginals.
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Figure 2: Scaled TTT transform for X1 and X2.

5 Conclusions

In this paper we have proposed bivariate generalized exponential distribution function whose

marginals are generalized exponential distributions. It is observed that the BVGE distribu-

tion is a singular distribution and it has an absolute continuous part and a singular part.

Since the joint distribution function and the joint density function are in closed forms,

therefore this distribution can be used in practice for non-negative and positively correlated

random variables. Although the maximum likelihood estimators of the unknown parameters

can not be obtained in closed form but the EM algorithm works quite well and it can be

effectively used to compute the MLEs. It may be mentioned that along the same line as

Block and Basu (1974) bivariate exponential model, an absolute continuous version of the

BVGE also can be obtained. Work is in progress in this direction and it will be reported

else where.
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Appendix

Expected Fisher Information Matrix

Let the Fisher Information matrix be;

I = E




∂2L
∂α2

1

∂2L
∂α1∂α2

∂2L
∂α1∂α3

∂2L
∂α1∂λ

∂2L
∂α2∂α1

∂2L
∂α2

2

∂2L
∂α2∂α3

∂2L
∂α2∂λ

∂2L
∂α3∂α1

∂2L
∂α3∂α2

∂2L
∂α2

3

∂2L
∂α3∂λ

∂2L
∂λ∂α1

∂2L
∂λ∂α2

∂2L
∂λ∂α3

∂2L
∂λ2




(17)

Before providing the all the elements of the Fisher information matrix, we introduce the

following notation. If Z ∼ GE(α, λ), then

ξ(α) = E

[
Z2e−λZ

(1− e−λZ)2

]

=
α

(α− 2)λ2

[
ψ′(1)− ψ′(α− 1) + (ψ(α)− ψ(1))2

]

+
α

(α− 1)λ2

[
ψ′(1)− ψ(α) + (ψ(α)− ψ(1))2

]
if α > 2

= αλ
∫ ∞

0
z2e−2λz(1− e−λz)α−3dz if 0 < α ≤ 2,

η(α) = E

[
Ze−λZ

(1− e−λZ)

]

=
1

λ

[
α

α− 1
(ψ(α)− ψ(1))− (ψ(α+ 1)− ψ(1))

]
if α > 2

= αλ
∫ ∞

0
ze−2λz(1− e−λz)α−2dz if 0 < α ≤ 1,

where ψ(·) and ψ′(·) are the digamma function and its derivative respectively, see Gupta

and Kundu (1999) for details. Suppose (X11, X21), . . . , (X1n, X2n) is a random sample from
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BVGE(α1, α2, α3, λ) and n0, n1, n2, I0, I1 and I2 are same as defined in section 4. For brevity

we further denote α̃ = α1 + α2 + α3. We need the following results;

E(n1) = nP (X1 < X2) = n
α2

α̃
, E(n2) = nP (X2 < X1) = n

α1

α̃
, E(n0) = nP (X1 = X2) = n

α3

α̃
.

Lemma A.1: Let V0 ∼ GE(α̃, λ), V1 ∼ GE(α1 + α3, λ) and V2 ∼ GE(α2 + α3, λ) be

three independent random variables and g(·) is a Borel measurable function, then

E(g(Xi)|i ∈ I1) = E(g(V1))−
α1 + α3

α̃
E(g(V0))

E(g(Xi)|i ∈ I2) =
α1

α̃
E(g(V0))

E(g(Xi)|i ∈ I0) =
α3

α̃
E(g(V0))

E(g(Yi)|i ∈ I1) =
α2

α̃
E(g(V0))

E(g(Yi)|i ∈ I2) = E(g(V2))−
α2 + α3

α̃
E(g(V0)).

Proof of Lemma A.1: Note that

E(g(Xi)|i ∈ I1) = (α1 + α3)α2

∫ ∞

0

∫ ∞

x
g(x)(1− e−λx)α1+α3−1(1− e−λy)α2−1e−λxe−λydydx

= (α1 + α3)
∫ ∞

0
g(x)(1− e−λx)α1+α3−1e−λx

[
1− (1− e−λx)α2

]
dx

= E(g(V1))−
α1 + α3

α̃
E(g(V0)).

The others also can be obtained similarly.

Now we obtain

E

[
∂2L

∂α2
1

]
= −E

[
n1

(α1 + α3)2
+
n2

α2
1

]
= −

n

α̃

[
α2

(α1 + α3)2
+

1

α1

]

E

[
∂2L

∂α2
2

]
= −E

[
n2

(α2 + α3)2
+
n1

α2
2

]
= −

n

α̃

[
α1

(α2 + α3)2
+

1

α2

]

E

[
∂2L

∂α2
3

]
= −E

[
n1

(α1 + α3)2
+

n2

(α2 + α3)2
+
n0

α2
3

]
= −

n

α̃

[
α2

(α1 + α3)2
+

α1

(α2 + α3)2
+

1

α3

]

E

[
∂2L

∂λ2

]
= −E


 1

λ2
+ (α1 + α3 − 1)

∑

i∈I1

X2
1ie
−λX1i

(1− e−λX1i)2
+ (α2 − 1)

∑

i∈I1

X2
2ie
−λX2i

(1− e−λX2i)2
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+(α1 − 1)
∑

i∈I2

X2
1ie
−λX1i

(1− e−λX1i)2
+ (α2 + α3 − 1)

∑

i∈I2

X2
2ie
−λX2i

(1− e−λX2i)2

+(α̃− 1)
∑

i∈I0

Y 2
i e
−λYi

(1− e−λYi)2




= −n

[
1

λ2
+
α2(α1 + α3 − 1)

α̃

[
ξ(α1 + α3)−

α1 + α3

α̃
ξ(α̃)

]
+ (α2 − 1)

(
α2

α̃

)2

ξ(α̃)

+(α1 − 1)
(
α1

α̃

)2

ξ(α̃) +
α1(α2 + α3 − 1)

α̃

[
ξ(α2 + α3)−

α2 + α3

α̃
ξ(α̃)

]

+ (α̃− 1)
(
α3

α̃

)2

ξ(α̃)

]

E

[
∂2L

∂α1∂λ

]
= E


∑

i∈I0

Yie
−λYi

(1− e−λYi)


+ E


 ∑

i∈∪I1∪I2

X1ie
−λX1i

(1− e−λX1i)




= n
[
η(α1 + α3)−

α1 + α3

α̃
η(α̃) +

α1

α̃
η(α̃) +

α3

α̃
η(α̃)

]
= nη(α1 + α3)

E

[
∂2L

∂α2∂λ

]
= E


 ∑

i∈I1∪I2

X2ie
−λX2i

(1− e−λX2i)
+

∑

i∈I0

Yie
−λYi

(1− e−λYi)




= n
[
α2

α̃
η(α̃) + η(α2 + α3)−

α2 + α3

α̃
η(α̃) +

α3

α̃
η(α̃)

]
= nη(α2 + α3)

E

[
∂2L

∂α3∂λ

]
= E


∑

i∈I0

Yie
−λYi

(1− e−λYi)
+

∑

iI1

X1ie
−λX1i

(1− e−λX1i)
+

∑

i∈I2

X2ie
−λX2i

(1− e−λX2i)




= n
[
η(α2 + α3)−

α2 + α3

α̃
η(α̃) + η(α1 + α3)−

α1 + α3

α̃
η(α̃) +

α3

α̃
η(α̃)

]

= n(η(α1 + α3) + nη(α2 + α3))

E

[
∂2L

∂α1∂α2

]
= E

[
∂2L

∂α1∂α3

]
= E

[
∂2L

∂α2∂α3

]
= 0.

Observed Fisher Information Matrix

For convenience we just present the observed Fisher information matrix obtained from

the EM algorithm using the idea of Louis (1982). Using the same notation as Louis (1982),

the observed Fisher information matrix can be written

Fobs = B − SST ,

here B is the negative of the second derivative of the log-likelihood function and S is the

derivative vector. We just provide the elements of the matrix B and the vector S. We use



24

the following notation for brevity;

a0 =
∑

i∈I0

ln(1−e−λ̂yi), a11 =
∑

i∈I1

ln(1−e−λ̂x1i), a12 =
∑

i∈I2

ln(1−e−λ̂x1i), a21 =
∑

i∈I1

ln(1−e−λ̂x2i),

a22 =
∑

i∈I2

ln(1− e−λ̂x2i), b0 =
∑

i∈I0

yie
−λ̂yi

1− e−λ̂yi

, b11 =
∑

i∈I1

x1ie
−λ̂x1i

1− e−λ̂x1i

, b12 =
∑

i∈I2

x1ie
−λ̂x1i

1− e−λ̂x1i

,

b21 =
∑

i∈I1

x2ie
−λ̂x2i

1− e−λ̂x2i

, b22 =
∑

i∈I2

x2ie
−λ̂x2i

1− e−λ̂x2i

, c0 =
∑

i∈I0

y2
i e
−λ̂yi

1− e−λ̂yi

, c11 =
∑

i∈I1

x2
1ie
−λ̂x1i

1− e−λ̂x1i

,

c12 =
∑

i∈I2

x2
1ie
−λ̂x1i

1− e−λ̂x1i

, c21 =
∑

i∈I1

x2
2ie
−λ̂x2i

1− e−λ̂x2i

, c22 =
∑

i∈I2

x2
2ie
−λ̂x2i

1− e−λ̂x2i

, d0 =
∑

i∈I0

yi, d11 =
∑

i∈I1

x1i,

d12 =
∑

i∈I2

x1i, d21 =
∑

i∈I1

x2i, d22 =
∑

i∈I2

x2i.

Using the above notations we obtain;

S(1) = a0 +
n1u1 + n2

α̂1

+ a11 + a12, S(2) = a0 +
w1n2 + n1

α̂2

+ a21 + a22,

S(3) =
1

α̂3

(n0 + n1u1 + n2w2) + a0 + a11 + a22

S(4) =
1

λ̂
(n0 +2n1 +2n2)+ b0(α̂1+ α̂2 + α̂3)+(d0+d11 +d12 +d21 +d22)+ b11(α̂1 + α̂3−1))+

b22(α̂1 + α̂3 − 1) + b21(α̂1 − 1) + b12(α̂2 − 1),

and

B(1, 1) =
(n1u1 + n2)

α̂2
1

, B(2, 2) =
(w1n2 + n1)

α̂2
2

, B(3, 3) =
(n0 + n1u1 + n2w2)

α̂2
3

,

B(4, 4) =
1

λ̂2
+c0(α̂1+α̂2+α̂3−1)+c11(α̂1+α̂3−1)+c22(α̂2+α̂3−1)+c21(α̂1−1)+c12(α̂2−1)

B(1, 4) = B(4, 1) = b0 + b11 + b21, B(2, 4) = B(4, 2) = b0 + b12 + b22,

B(3, 4) = B(4, 3) = b0+b11+b22, B(1, 2) = B(2, 1) = B(1, 3) = b(3, 1) = B(2, 3) = B(3, 2) = 0.

References

[1] Aarset, M.V. (1987), “How to identify a bathtub hazard rate?”, IEEE Transactions

on Reliability, vol. 36, 106 -108.



25

[2] Arnold, B. (1967), “A note on multivariate distributions with specified marginals”,

Journal of the American Statistical Association, vol. 62 1460–1461.

[3] Bemis, B., Bain, L.J. and Higgins, J.J. (1972), “Estimation and hypothesis testing

for the parameters of a bivariate exponential distribution”, Journal of the American

Statistical Association, vol. 67, 927-929.

[4] Block, H., Basu, A. P. (1974), “A continuous bivariate exponential extension”,

Journal of the American Statistical Association, vol. 69, 1031 - 1037.

[5] Gupta, R. D. and Kundu, D. (1999), “Generalized exponential distributions”, Aus-

tralian and New Zealand Journal of Statistics, vol. 41, 173 - 188.

[6] Gupta, R. D. and Kundu, D. (2007), “Generalized exponential distributions: ex-

isting results and some recent developments”, Journal of Statistical Planning and

Inference, vol. 137, 3525 - 3536.

[7] Louis, T. A. (1982), “Finding the observed information matrix when using the EM

algorithm”, Journal of the Royal Statistical Society, Series B 44, 2, 226233.

[8] Marshall, A.W. and Olkin, I. (1967), “A multivariate exponential distribution”,

Journal of the American Statistical Association, vol. 62, 30 - 44.

[9] Meintanis, S.G. (2007), “Test of fit for Marshall-Olkin distributions with applica-

tions”, Journal of Statistical Planning and inference, vol. 137, 3954-3963.

[10] Sarhan, A. and Balakrishnan, N. (2007), “A new class of bivariate distribution and

its mixture”, Journal of the Multivariate Analysis, vol. 98, 1508 - 1527.


