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On the least squares estimator in a nearly unstable

sequence of stationary spatial AR models

Sándor Baran a,∗, Gyula Pap a
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Abstract

A nearly unstable sequence of stationary spatial autoregressive processes is investigated, when

the sum of the absolute values of the autoregressive coefficients tends to one. It is shown that

after an appropriate norming the least squares estimator for these coefficients has a normal limit

distribution. If none of the parameters equals zero than the typical rate of convergence is n.
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1. Introduction

Spatial autoregressive models have a great importance in many different fields of science
such as geography, geology, biology and agriculture, see e.g. [1] for a detailed discussion,
where the authors considered a general unilateral model having the form

Xk,ℓ =

p1∑

i=0

p2∑

j=0

αi,jXk−i,ℓ−j + εk,ℓ, α0,0 = 0. (1.1)

A particular case of the model (1.1) is the so-called doubly geometric spatial autoregres-
sive model

Xk,ℓ = αXk−1,ℓ + βXk,ℓ−1 − αβXk−1,ℓ−1 + εk,ℓ,
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introduced by Martin [11]. In fact, this is the simplest spatial model, since its nice product
structure ensures that it can be considered as some kind of combination of two autore-
gressive processes on the line, and several properties can be derived by the analogy of
one-dimensional autoregressive processes. The doubly geometric model was the first one
for which the nearly unstability has been studied. Bhattacharyya et al. [7] showed that
in the case when a sequence of stable models with αn → 1, βn → 1 was considered,
in contrast to the AR(1) model, the sequence of Gauss-Newton estimators (α̂n, β̂n) of
(αn, βn) were asymptotically normal, namely,

n3/2


α̂n − αn

β̂n − βn


 D−→ N (0,Σ)

with some covariance matrix Σ.
The doubly geometric model has several applications. Jain [10] used it in the study of

image processing, Martin [12], Cullis and Gleeson [9], Basu and Reinsel [2] in agricultural
trials, while Tjøstheim [15] in digital filtering.
In the present paper we study another special case of the model (1.1). We consider

the spatial autoregressive process {Xk,ℓ : k, ℓ ∈ Z} which is a solution of the spatial
stochastic difference equation

Xk,ℓ = αXk−1,ℓ + βXk,ℓ−1 + εk,ℓ (1.2)

with parameters (α, β) ∈ R
2. This model is stable (i.e. has a stationary solution) in case

|α|+ |β| < 1 (see [1]), and unstable if |α|+ |β| = 1. In a recent paper Paulauskas [13]
determined the exact asymptotic behavior of the variances of a nonstationary solution
of (1.2) with Xk,ℓ = 0 for k+ ℓ ≤ 0, while Baran et al. [5] in the same model clarified
the asymptotic properties of the least squares estimator (LSE) of (α, β) both in stable
and unstable cases.
We remark, that in case |α| + |β| < 1, if {εk,ℓ : k, ℓ ∈ Z} are independent and

identically distributed random variables, a stationary solution can be given by

Xk,ℓ =
∑

(i,j)∈Uk,ℓ

(
k + ℓ− i− j

k − i

)
αk−iβℓ−jεi,j , (1.3)

where Uk,ℓ := {(i, j) ∈ Z
2 : i ≤ k and j ≤ ℓ} and the convergence of the series is

understood in L2-sense.
We are interested in the asymptotic behaviour of the stationary solution of (1.2) in the

case when the parameters approach the boundary |α|+ |β| = 1. In order to determine
the appropriate speed of parameters one may use the idea of Chan and Wei [8] and
consider the order of

In := E


 ∑

(k,ℓ)∈Hn




(
Xk−1,ℓ

)2
Xk−1,ℓXk,ℓ−1

Xk−1,ℓXk,ℓ−1

(
Xk,ℓ−1

)2






that is exactly the observed Fisher information matrix about (α, β) when the innovations
εk,ℓ are normally distributed and the process is observed on a set Hn ⊂ Z

2, n ∈ N.
From Theorem 1.1 of [5] we obtain that

2



In ∼





n2σ2
α,βΓα,β, if |α|+ |β| < 1,

n5/2σ2
αΨα,β , if |α|+ |β| = 1, 0 < |α| < 1,

n3(4/3)I, if |α|+ |β| = 1, |α| ∈ {0, 1},
where

Γα,β := 2


 1 −̺α,β

−̺α,β 1


 , Ψα,β :=


 1 sign(αβ)

sign(αβ) 1


 ,

I denotes the two-by-two unit matrix and

σ2
α,β :=

(
(1 + α+ β)(1 + α− β)(1 − α+ β)(1 − α− β)

)−1/2
,

̺α,β :=





(1− α2 − β2)σ2
α,β − 1

2αβσ2
α,β

, if αβ 6= 0,

0 otherwise,

σ2
α :=

29/2

15
√
π|α|(1 − |α|)

.

Now, let αn := α−γ/an, βn := β−δ/an, |α|+|β| = 1, |αn|+|βn| < 1. As nonstationary
behaviour of Xk,ℓ becomes dominant when (αn, βn) is near the border, a reasonable
choice for the sequence an should retain the order of In to be n5/2 if 0 < |α| < 1

and n3 if |α| ∈ {0, 1}. Since we have σ2
αn,βn

∼ a
1/2
n for 0 < |α| < 1 and σ2

αn,βn
∼ an

for |α| ∈ {0, 1} while ̺αn,βn ∼ const in both cases, the above consideration yields
an = n.
In what follows we consider a nearly unstable sequence of stationary processes, i.e. for

each n ∈ N, we take a stationary solution {X(n)
k,ℓ : k, ℓ ∈ Z} of equation (1.2) with

parameters (αn, βn) defined as

αn := α− γn
n
, βn := β − δn

n
, |αn|+ |βn| < 1, (1.4)

where 0 ≤ |α| ≤ 1, |β| = 1 − |α| and γn → γ, δn → δ as n → ∞, (γ, δ) ∈ R
2. We

remark that in an earlier paper [3] the authors considered a similar sequence of stationary
processes where the autoregressive parameters were equal and their sum converged to 1.

For a set H ⊂ Z
2, the LSE (α̂

(n)
H , β̂

(n)
H ) of (αn, βn) based on the observations

{X(n)
k,ℓ : (k, ℓ) ∈ H} has the form


α̂

(n)
H

β̂
(n)
H


 =


 ∑

(k,ℓ)∈H




(
X

(n)
k−1,ℓ

)2
X

(n)
k−1,ℓX

(n)
k,ℓ−1

X
(n)
k−1,ℓX

(n)
k,ℓ−1

(
X

(n)
k,ℓ−1

)2






−1
∑

(k,ℓ)∈H


X

(n)
k−1,ℓX

(n)
k,ℓ

X
(n)
k,ℓ−1X

(n)
k,ℓ


 .

Consider the triangles Tk,ℓ := {(i, j) ∈ Z
2 : i + j ≥ 1, i ≤ k and j ≤ ℓ} for k, ℓ ∈ Z.

Note that Tk,ℓ = ∅ if k + ℓ ≤ 0.

Theorem 1.1 For each n ∈ N, let {X(n)
k,ℓ : k, ℓ ∈ N} be a stationary solution

of equation (1.2) with parameters (αn, βn) given by (1.4), and with independent and
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identically distributed random variables {ε(n)k,ℓ : k, ℓ ∈ Z} such that Eε
(n)
0,0 = 0, Var ε

(n)
0,0 =

1 and M := supn∈N E
∣∣ε(n)0,0

∣∣8 < ∞. Let (kn) and (ℓn) be sequences of integers such

that kn + ℓn → ∞ as n → ∞.

If 0 < |α| < 1, |β| = 1− |α| and

lim
n→∞

(kn + ℓn)n
−1/2

(
|γn|+ |δn|

)1/2
= ∞ (1.5)

holds then

(kn + ℓn)


α̂Tkn,ℓn

− αn

β̂Tkn,ℓn
− βn


 D−→ N2

(
0, |α||β|Ψ̄α,β

)

as n → ∞, where Ψ̄α,β denotes the adjoint matrix of Ψα,β.

If |α| ∈ {0, 1}, |β| = 1− |α| and

lim
n→∞

(kn + ℓn)n
−1
∣∣γ2

n − δ2n
∣∣1/2 = ∞ (1.6)

holds then let

[−∞,∞] ∋ ω := lim
n→∞

ωn, ωn := α
γn
δn

+ β
δn
γn

.

If |ω| > 1 then

(kn + ℓn)n
1/2
∣∣γ2

n − δ2n
∣∣−1/4


α̂Tkn,ℓn

− αn

β̂Tkn,ℓn
− βn


 D−→ N2

(
0,Θ−1

α,β,ω

)

as n → ∞, where

Θα,β,ω :=
1

4


 1 θ(α, β, ω)

θ(α, β, ω) 1




with

θ(α, β, ω) :=





−(α+ β) sign(ω)

|ω|+
√
ω2 − 1

if |ω| < ∞,

0 if |ω| = ∞.

Remark 1.2 Obviously, |ωn| > 1, so |ω| ≥ 1. Condition |ω| > 1 in Theorem 1.1 is
needed to ensure the regularity of Θα,β,ω. However, this condition can be omitted and
using similar arguments as in the proof of the second statement of Theorem 1.1, one can
easily show that if |α| ∈ {0, 1}, |β| = 1− |α| and (1.6) holds then

(kn + ℓn)n
1/2
∣∣γ2

n − δ2n
∣∣−1/4

Θ
1/2
α,β,ωn


α̂Tkn,ℓn

− αn

β̂Tkn,ℓn
− βn


 D−→ N2

(
0, I
)
,

where Θ
1/2
α,β,ωn

denotes the symmetric positive semidefinite square root of Θα,β,ωn.

Remark 1.3 Theorem 1.1 shows that in the typical case kn = ℓn = n and γn = γ 6= 0,
δn = δ 6= 0 if 0 < |α| < ∞, |β| = 1− |α| then the rate of convergence is n.
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Wemay suppose that (kn+ℓn) is monotone increasing. Observe, that
(
α̂
(n)
Tkn,ℓn

, β̂
(n)
Tkn,ℓn

)

and
(
α̂
(n)
Tekn,eℓn

, β̂
(n)
Tekn,eℓn

)
have the same distribution, where k̃n := [(kn+ℓn)/2] and ℓ̃n :=

[(kn+ ℓn+1)/2]. As k̃n+ ℓ̃n = kn+ ℓn, in Theorem 1.1 we may substitute (k̃n, ℓ̃n) for

(kn, ℓn). The sequence (k̃n, ℓ̃n) can be embedded into the sequence (k′n, ℓ
′
n), where

k′n := [n/2] and ℓ′n := [(n+1)/2], namely, k′qn = k̃n and ℓ′qn = ℓ̃n with qn := k̃n+ ℓ̃n.
Clearly k′n+ℓ′n = n. Consider the sequence (rn) defined by rn := k for qk ≤ n < qk+1.
Then rqn = n, and conditions (1.5) and (1.6) can be replaced by

lim
n→∞

nr−1/2
n

(
|γrn |+ |δrn |

)1/2
= ∞ (1.7)

and
lim
n→∞

nr−1
n

∣∣γ2
rn − δ2rn

∣∣1/2 = ∞, (1.8)

respectively.
Thus, to prove Theorem 1.1 it suffices to show that if 0 < |α| < 1, |β| = 1− |α| and

(1.7) holds then

n


α̂T[n/2],[(n+1)/2]

− αrn

β̂T[n/2],[(n+1)/2]
− βrn


 D−→ N2

(
0, |α||β|Ψ̄α,β

)
,

while in the case |α| ∈ {0, 1}, |β| = 1− |α| , |ω| > 1 and (1.8) holds we have

nr1/2n

∣∣γ2
rn − δ2rn

∣∣−1/4


α̂T[n/2],[(n+1)/2]

− αrn

β̂T[n/2],[(n+1)/2]
− βrn


 D−→ N2

(
0,Θ−1

α,β,ω

)
.

We remark that conditions (1.5) and (1.7) are exactly the same as conditions (4) and
(5) of [3], respectively.
To simplify notation we assume kn = [n/2], ℓn = [(n+1)/2] and (rn) is a monotone

increasing sequence of positive integers. One can write

α̂Tkn,ℓn

− αrn

β̂Tkn,ℓn
− βrn


 = B−1

n An,

with

An :=
∑

(k,ℓ)∈Tkn,ℓn


X

(rn)
k−1,ℓε

(rn)
k,ℓ

X
(rn)
k,ℓ−1ε

(rn)
k,ℓ


 , Bn :=

∑

(k,ℓ)∈Tkn,ℓn




(
X

(rn)
k−1,ℓ

)2
X

(rn)
k−1,ℓX

(rn)
k,ℓ−1

X
(rn)
k−1,ℓX

(rn)
k,ℓ−1

(
X

(rn)
k,ℓ−1

)2


 .

Concerning the asymptotic behaviour of the random vector An and random matrix Bn

we can formulate the following two propositions.

Proposition 1.4 If 0 < |α| < 1, |β| = 1− |α| and (1.7) holds then

n−2rn
−1/2

(
|γrn |+ |δrn |

)1/2
Bn

L2−→
(
32|α||β|

)−1/2
Ψα,β as n → ∞.

If |α| ∈ {0, 1}, |β| = 1− |α| and (1.8) holds then

n−2r−1
n

∣∣γ2
rn − δ2rn

∣∣1/2Bn
L2−→ Θα,β,ω

5



as n → ∞, where

ω := lim
n→∞

ωrn , ωrn := α
γrn
δrn

+ β
δrn
γrn

. (1.9)

Proposition 1.5 If 0 < |α| < 1, |β| = 1− |α| and (1.7) holds then

n−1r−1/4
n

(
|γrn |+ |δrn |

)1/4
An

D−→ N2

(
0,
(
32|α||β|

)−1/2
Ψα,β

)
as n → ∞.

If |α| ∈ {0, 1}, |β| = 1− |α| and (1.8) holds then

n−1r−1/2
n

∣∣γ2
rn − δ2rn

∣∣1/4An
D−→ N2

(
0,Θα,β,ω

)
as n → ∞.

In case |α| ∈ {0, 1}, |β| = 1 − |α|, and |ω| 6= 1, Θα,β,ω is a regular matrix, so
Propositions 1.4 and 1.5 imply the corresponding statement of Theorem 1.1. In the case
0 < |α| < 1, |β| = 1 − |α| we have B−1

n = B̄n/detBn, and in this situation the
statement of Theorem 1.1 is a consequence of the following propositions.

Proposition 1.6 If 0 < |α| < 1, |β| = 1− |α| and (1.7) holds then

n−4r−1/2
n

(
|γrn |+ |δrn |

)1/2
detBn

L2−→ 2
(
8|α||β|

)−3/2
as n → ∞.

Proposition 1.7 If 0 < |α| < 1, |β| = 1− |α| and (1.7) holds then

n−3r−1/2
n

(
|γrn |+ |δrn |

)1/2
B̄nAn

D−→ N2

(
0,
(
2(8αβ)2

)−1
Ψ̄α,β

)
as n → ∞.

Obviously, in the case 0 ≤ |α| ≤ 1, |β| = 1−|α| if n is large enough, the corresponding
sequences αrn and βrn have the same signs as α and β, respectively. Hence, similarly
to [5], it suffices to prove Propositions 1.6 and 1.7 for 0 < α, β < 1, α+ β = 1.

2. Covariance structure

Let {Xk,ℓ : k, ℓ ∈ Z} be a stationary solution of equation (1.2) with parameters
(α, β), |α| + |β| < 1. Clearly Cov(Xi1,j1 , Xi2,j2) = Cov(Xi1−i2,j1−j2 , X0,0) for all
i1, j1, i2, j2 ∈ Z. Let Rk,ℓ := Cov(Xk,ℓ, X0,0) for k, ℓ ∈ Z. The following lemma is a
natural generalization of Lemma 4 of [3] (see also [1]).

Lemma 2.1 Let α 6= 0 and β 6= 0. If k, ℓ ∈ Z with k · ℓ ≤ 0 then

Rk,ℓ = σ2
α,β

(
1 + α2 − β2 − σ−2

α,β

2α

)|k|(
2β

1 + β2 − α2 + σ−2
α,β

)|ℓ|

. (2.1)

If k, ℓ ∈ Z with k · ℓ ≥ 0 then

Rk,ℓ = R0,|k−ℓ| −
|k|∧|ℓ|−1∑

i=0

(|k − ℓ|+ 2i

i

)
αiβ|k−ℓ|+i. (2.2)
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Remark 2.2 If α > 0 and β > 0 then Rk,ℓ ≥ 0. If α < 0 or β < 0 we have

0 ≤ |Rk,ℓ| ≤ R̃k,ℓ := Cov(X̃k,ℓ, X̃0,0), k, ℓ ∈ Z,

where {X̃k,ℓ : k, ℓ ∈ Z} is a stationary solution of equation (1.2) with parameters
(|α|, |β|).

Besides representations (2.1) and (2.2) one can express the covariances as special cases
of Appell’s hypergeometric series F4(a, b, c, d;x, y) defined by

F4(a, b, c, d;x, y) :=

∞∑

m=0

∞∑

n=0

(a)m+n(b)m+n

(c)m(d)nm!n!
xmyn,

√
|x|+

√
|y| < 1,

where a, b, c, d ∈ N and (a)n := a(a+ 1) . . . (a+ n− 1) [6].

Lemma 2.3 Let α 6= 0 and β 6= 0. If k, ℓ ∈ Z with k · ℓ ≤ 0 then

Rk,ℓ = α|k|β|ℓ|F4

(
|k|+ 1, |ℓ|+ 1, |k|+ 1, |ℓ|+ 1;α2, β2

)
. (2.3)

If k, ℓ ∈ Z with k · ℓ ≥ 0 then

Rk,ℓ = α|k|β|ℓ|

(|k|+ |ℓ|
|k|

)
F4

(
|k|+ |ℓ|+ 1, 1, |k|+ 1, |ℓ|+ 1;α2, β2

)
.

Moreover, in this case we have

Rk,ℓ =
(
sign(α)

)|k|(
sign(β)

)|ℓ| ∞∑

i=0

(
|α|+ |β|

)|k|+|ℓ|+2i
P
(
S
(ν)
i,|k|+|ℓ|+i = |ℓ|+ i

)
, (2.4)

where S
(ν)
n,m := S

(ν)
n +S

(1−ν)
m , ν := |α|/

(
|α|+|β|

)
and S

(ν)
n and S

(1−ν)
m are independent

binomial random variables with parameters (n, ν) and (m, 1− ν), respectively.

Proof. The statements directly follow from representation (1.3) and from the indepen-
dence of the error terms εi,j . �

We remark, that as

F4

(
a, b, a, b;

−x

(1 − x)(1 − y)
,

−y

(1 − x)(1 − y)

)
=

(1− x)b(1− y)a

1− xy
,

representation (2.1) directly follows from (2.3).

Proposition 2.4 If αβ > 0, |α|+|β| < 1 then there exists a universal positive constant

K such that ∣∣Rk−1,ℓ+1 −Rk,ℓ

∣∣ ≤ K

(αβ)3/2
, k, ℓ ∈ Z.

Proof. Without loss of generality we may assume α > 0 and β > 0.

7



Suppose k > 0, ℓ ≥ 0, so (k − 1)(ℓ + 1) ≥ 0 and k · ℓ ≥ 0. Using notations
introduced in Lemma 2.3 with the help of (2.4) we obtain

Rk−1,ℓ+1 −Rk,ℓ =

∞∑

i=0

(α+ β)k+ℓ+2i∆k,ℓ,i(ν), (2.5)

where

∆i,k,ℓ(ν) := P
(
S
(ν)
i,k+ℓ+i = ℓ+ i+ 1

)
− P

(
S
(ν)
i,k+ℓ+i = ℓ+ i

)
.

According to Theorem 2.6 of [5] ∆i,k,ℓ(ν) can be approximated by

∆̃i,k,ℓ(ν) :=
1

(
2πν(1− ν)(k + ℓ+ 2i)

)1/2

(
exp

{
−
(
νℓ− (1− ν)k + 1

)2

2ν(1− ν)(k + ℓ+ 2i)

}

− exp

{
−

(
νℓ − (1− ν)k

)2

2ν(1− ν)(k + ℓ+ 2i)

})

where
∣∣∆̃i,k,ℓ(ν)−∆i,k,ℓ(ν)

∣∣ ≤ C̃
(
ν(1 − ν)(k + ℓ+ 2i)

)3/2

with some positive constant C̃. Thus, if in the right hand side of (2.5) we replace

∆i,k,ℓ(ν) with ∆̃i,k,ℓ(ν), the error of the approximation is

∞∑

i=0

(α+ β)k+ℓ+2i
∣∣∆̃i,k,ℓ(ν) −∆i,k,ℓ(ν)

∣∣ ≤ C̃
(
ν(1− ν)

)3/2 ζ(3/2) ≤
C

(αβ)3/2
,

where ζ(x) denotes Riemann’s zeta function.
To find an upper bound for the approximating sum consider first the case νℓ−(1−ν)k ≥

0. In this case

∞∑

i=0

(α+β)k+ℓ+2i
∣∣∆̃i,k,ℓ(ν)

∣∣≤
∞∑

i=0

2(νℓ−(1−ν)k)+ 1

π1/2
(
2ν(1−ν)(k+ℓ+2i)

)3/2 exp

{
−

(
νℓ−(1−ν)k

)2

2ν(1−ν)(k+ℓ+2i)

}

≤ ζ(3/2) + 1
(
ν(1−ν)

)3/2 +
1

2ν(1−ν)
Φ̃

(
νℓ− (1 − ν)k

(
2ν(1−ν)(k+ℓ)

)1/2

)
≤ ζ(3/2) + 2
(
ν(1−ν)

)3/2 ≤
ζ(3/2) + 2

(αβ)3/2
,

where Φ̃(x) is the error function defined by

Φ̃(x) :=
2

π1/2

x∫

0

e−t2/2dt, x > 0.

Case νℓ − (1− ν)k < 0 follows by symmetry.
In case k ≤ 0, ℓ < 0 implying (k − 1)(ℓ+ 1) ≥ 0 and k · ℓ > 0, we have

Rk−1,ℓ+1−Rk,ℓ =
∞∑

i=0

(α+β)−k−ℓ+2i
(
P
(
S
(ν)
i,−k−ℓ+i = −ℓ+i−1

)
−P
(
S
(ν)
i,−k−ℓ+i = −ℓ+i

))

and the statement can be proved similarly to the previous case.
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Now, suppose k > 0, ℓ < 0, so (k − 1)(ℓ + 1) ≤ 0 and k · ℓ ≤ 0. Using the form
(2.1) of the covariances direct calculations show

Rk−1,ℓ+1 −Rk,ℓ = Rk,ℓ

1− (α + β)2 + σ−2
α,β

2αβ
.

It is not difficult to see that 1− (α+ β)2 ≤ σ−2
α,β , so we have

∣∣Rk−1,ℓ+1 −Rk,ℓ

∣∣ ≤
∣∣Rk,ℓ

∣∣ σ
−2
α,β

αβ
≤ 1

αβ
.

In a similar way one can obtain the result for k ≤ 0, ℓ ≥ 0 that completes the proof. �

Using the notations of Lemma 2.3 with the help of the exponential approximation one
can easily have the analogue of Corollary 2.7 of [5].

Corollary 2.5 If αβ > 0, |α|+ |β| < 1 then there exists a constant C > 0 such that

for all k, ℓ > 1 and 0 ≤ i ≤ k + ℓ− 1 we have
∣∣∣P
(
S
(ν)
k,ℓ = i+ 1

)
− P

(
S
(ν)
k,ℓ = i

)∣∣∣ ≤ C

αβ(k + ℓ)
.

Remark 2.6 Using Theorem 2.4 of [5] it is not difficult to show that under conditions of
Corollary 2.5 there exists a constant D > 0 such that for all k, ℓ > 1 and 0 ≤ i ≤ k+ ℓ
we have ∣∣∣P

(
S
(ν)
k,ℓ = i

)∣∣∣ ≤ D

αβ(k + ℓ)1/2
.

Now, let {X(n)
k,ℓ : k, ℓ ∈ Z}, n ∈ N, be a nearly unstable sequence of stationary

processes described in Theorem 1.1. For each n ∈ N let us introduce the piecewise
constant random fields

Z
(n)
1,0 (s, t) := r−1/4

n X
(rn)
[ns]+1,[nt], Z

(n)
0,1 (s, t):= r−1/4

n X
(rn)
[ns],[nt]+1,

Y
(n)
1,0 (s, t) := r−1/2

n X
(rn)
[ns]+1,[nt], Y

(n)
0,1 (s, t):= r−1/2

n X
(rn)
[ns],[nt]+1, s, t ∈ R.

Proposition 2.7 Let s1, t1, s2, t2 ∈ R.

If 0 < |α| < 1, |β| = 1 − |α| and (1.7) holds then for all (i1, j1), (i2, j2) ∈{
(1, 0), (0, 1)

}
we have

lim
n→∞

(
|γrn |+|δrn|

)1/2
Cov

(
Z

(n)
i1,j1

(s1, t1), Z
(n)
i2,j2

(s2, t2)
)
= 0 if s1−s2 6= t1−t2,

lim sup
n→∞

(
|γrn |+|δrn|

)1/2∣∣∣Cov
(
Z

(n)
i1,j1

(s1, t1), Z
(n)
i2,j2

(s2, t2)
)∣∣∣≤ 1√

8|α||β|
if s1−s2= t1−t2.

If |α| ∈ {0, 1}, |β| = 1−|α| and (1.8) holds then for all (i1, j1), (i2, j2)∈
{
(1, 0), (0, 1)

}

we have

lim
n→∞

∣∣γ2
rn − δ2rn

∣∣1/2 Cov
(
Y

(n)
i1,j1

(s1, t1), Y
(n)
i2,j2

(s2, t2)
)
= 0 if s1−s2 6= t1−t2,

lim sup
n→∞

∣∣γ2
rn − δ2rn

∣∣1/2
∣∣∣Cov

(
Y

(n)
i1,j1

(s1, t1), Y
(n)
i2,j2

(s2, t2)
)∣∣∣ ≤ 1

2
if s1−s2 = t1−t2.
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Moreover, if s1 − s2 6= t1 − t2 then the convergence to 0 in both cases has an

exponential rate.

Proof. For simplicity we consider only the case 0 ≤ α, β ≤ 1. The other cases can be
handled in a similar way.
First, let 0 < α < 1, so β = 1 − α. Without loss of generality we may assume

αrn > 0, βrn > 0 and δrn > 0, γrn > 0. As

r−1/2
n σ2

αrn ,βrn
=

((
γrn+δrn

)(
2−γrn + δrn

rn

)(
2α−γrn − δrn

rn

)(
2(1−α)+

γrn − δrn
rn

))−1/2

we have

lim
n→∞

(
γrn + δrn

)1/2
r−1/2
n σ2

αrn ,βrn
=

1√
8α(1− α)

=
1√
8αβ

. (2.6)

Suppose s1 − s2 ≥ 0 ≥ t1 − t2, so [ns1]− [ns2] ≥ 0 ≥ [nt1]− [nt2]. By (2.1)

0 ≤ Cov
(
Z

(n)
1,0 (s1, t1), Z

(n)
1,0 (s2, t2)

)
≤ r−1/2

n σ2
αrn ,βrn

(
1− 1

̺rn

)n
2 |s1−s2|(

1 +
1

τrn

)−n
2 |t1−t2|

if n is large enough, where

̺rn :=
2αrn

2αrn−1−α2
rn+β2

rn+σ−2
αrn ,βrn

, τrn :=
2βrn

1+β2
rn−α2

rn + σ−2
αrn ,βrn

− 2βrn

. (2.7)

As
σ2
α,β =

(
(1 + α2 − β2)2 − 4α2

)−1/2
,

it is easy to see that ̺rn → ∞ and τrn → ∞ as n → ∞. Moreover, condition (1.7)
ensures that n̺−1

rn → ∞ and nτ−1
rn → ∞ as n → ∞. Hence, if s1 = s2 and t1 = t2,

lim
n→∞

(
γrn + δrn

)1/2
Cov

(
Z

(n)
1,0 (s1, t1), Z

(n)
1,0 (s2, t2)

)
=

1√
8αβ

,

otherwise it converges to 0 in exponential rate.
Further, let s1 − s2 > 0 and t1 − t2 > 0. In this case [ns1] − [ns2] ≥ 0 and

[nt1]− [nt2] ≥ 0, so by (2.2) we have

0≤Cov
(
Z

(n)
1,0 (s1, t1), Z

(n)
1,0 (s2, t2)

)
≤r−1/2

n σ2
αrn ,βrn

(
1+

1

τrn

)−|[ns1]−[ns2]−[nt1]+[nt2]|

. (2.8)

If s1− s2 6= t1− t2 then similarly to the previous case one can show that the right hand
side of (2.8) converges to 0 in exponential rate as n → ∞.
In case s1 − s2 = t1 − t2 we have

∣∣[ns1]− [ns2]− [nt1] + [nt2]
∣∣ ≤ 2, so by (2.8)

lim sup
n→∞

(
γrn + δrn

)1/2
Cov

(
Z

(n)
1,0 (s1, t1), Z

(n)
1,0 (s2, t2)

)
≤ 1√

8αβ
.

Obviously, the same results hold for the covariances Cov
(
Z

(n)
1,0 (s1, t1), Z

(n)
0,1 (s2, t2)

)
,

Cov
(
Z

(n)
0,1 (s1, t1), Z

(n)
1,0 (s2, t2)

)
and Cov

(
Z

(n)
0,1 (s1, t1), Z

(n)
0,1 (s2, t2)

)
.

Now, consider for example the case α = 1, β = 0. Without loss of generality we may
assume αrn > 0. Furthermore, |αrn |+ |βrn | < 1 implies γrn > 0 and |δrn | < γrn . As

r−1
n σ2

αrn ,βrn
=

((
γ2
rn − δ2rn

)(
2− γrn + δrn

rn

)(
2− γrn − δrn

rn

))−1/2

10



we have

lim
n→∞

(
γ2
rn − δ2rn

)1/2
r−1
n σ2

αrn ,βrn
=

1

2
. (2.9)

Again, suppose s1 − s2 ≥ 0 ≥ t1 − t2. The form of covariances (2.1) implies that if n
is large enough

0≤
∣∣∣Cov

(
Y

(n)
1,0 (s1, t1), Y

(n)
1,0 (s2, t2)

)∣∣∣≤r−1
n σ2

αrn ,βrn

(
1− 1

̺rn

)n
2 |s1−s2|(

1+
1

|τrn |
)−n

2 |t1−t2|

,

(2.10)
where ̺rn and τrn are defined by (2.7). Obviously, if s1 = s2 and t1 = t2 then (2.9)
implies

lim sup
n→∞

(
γ2
rn − δ2rn

)1/2∣∣∣Cov
(
Y

(n)
1,0 (s1, t1), Y

(n)
1,0 (s2, t2)

)∣∣∣ ≤ 1

2
. (2.11)

Further, we have ̺rn → ∞ as n → ∞ and now (1.8) ensures n̺−1
rn → ∞. Thus, as

1 + 1/|τrn | ≥ 1, if s1 6= s2 then

(
γ2
rn − δ2rn

)1/2∣∣∣Cov
(
Y

(n)
1,0 (s1, t1), Y

(n)
1,0 (s2, t2)

)∣∣∣→ 0 (2.12)

as n → ∞ in exponential rate. Now, let us assume s1 = s2 and t1 6= t2. Short
calculation shows
(
1 +

1

|τrn |
)−1

=
2|δrn |

2γrn − γ2
rn

−δ2rn
rn

+
(
γ2
rn − δ2rn

)1/2(γ2
rn

−δ2rn
rn

− 4
γrn

rn
+ 4
)1/2 . (2.13)

If |δ| < γ then

lim
n→∞

(
1 +

1

|τrn |
)−1

=
|δ|

γ + (γ2 − δ2)1/2
< 1,

so using (2.9) and (2.10) we obtain again (2.12). Further, condition (1.8) implies

lim
n→∞

n
(
γ2
rn − δ2rn

)1/2
= ∞.

Hence, with the help of (2.13) one can easily see that if |δ| = γ 6= 0, or δ = γ = 0 and
limn→∞ γrn |δrn |−1 = 1, we obtain |τrn | → ∞ and n|τrn |−1 → ∞ as n → ∞. Thus,
(2.9) and (2.10) imply (2.12) and the rate of convergence is again exponential. In case
δ = γ = 0 and limn→∞ γrn |δrn |−1 = |ω| > 1 we have

lim
n→∞

(
1 +

1

|τrn |
)−1

=
1

|ω|+ (ω2 − 1)1/2
< 1,

that implies (2.12). Finally, if δ = γ = 0 and limn→∞ γrn |δrn |−1 = ∞ then (2.12)
follows from

lim
n→∞

(
1 +

1

|τrn |
)−1

= 0.

Now, let s1 − s2 > 0 and t1 − t2 > 0. Lemma 2.1 and Remark 2.2 imply

0 ≤
∣∣∣Cov

(
Y

(n)
1,0 (s1, t1), Y

(n)
1,0 (s2, t2)

)∣∣∣ ≤ r−1
n σ2

αrn ,βrn

(
1 +

1

|τrn |
)−|[ns1]−[ns2]−[nt1]+[nt2]|

,

where τrn is defined by (2.7). If s1−s2 = t1−t2 then as
∣∣[ns1]−[ns2]−[nt1]+[nt2]

∣∣ ≤ 2
and 1 + 1/|τrn | ≥ 1, using (2.9) we obtain (2.11). Finally, if s1 − s2 6= t1 − t2 then to
prove (2.11) one has to do the same considerations as in the case s1 = s2 and t1 6= t2.
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In order to estimate the covariances we make use of the following lemma which is a
natural generalization of Lemma 2.8 of [5].

Lemma 2.8 Let ξ1, ξ2, . . . be independent random variables with Eξi = 0, Eξ2i = 1 for

all i ∈ N, and M4 := supi∈N Eξ4i < ∞. Let a1, a2, . . . , b1, b2, . . . , c1, c2 . . ., d1, d2 . . . ∈
R, such that

∑∞
i=1 a

2
i < ∞,

∑∞
i=1 b

2
i < ∞,

∑∞
i=1 c

2
i < ∞ and

∑∞
i=1 d

2
i < ∞. Let

X :=

∞∑

i=1

aiξi, Y :=

∞∑

i=1

biξi, Z :=

∞∑

i=1

ciξi, W :=

∞∑

i=1

diξi,

where the convergence of the infinite sums is understood in L2-sense. Then

Cov(XY,ZW ) =
∞∑

i=1

(Eξ4i − 3) aibicidi + Cov(X,Z)Cov(Y,W ) + Cov(X,W )Cov(Y, Z).

(2.14)
Moreover, if ai, bi, ci, di ≥ 0 then

0 ≤ Cov(XY,ZW ) ≤ M4 Cov(X,Z)Cov(Y,W ) +M4 Cov(X,W )Cov(Y, Z),

and

0 ≤ EXYZW ≤ M4

(
EXZ EYW + EXW EY Z + EXY EZW

)
.

Remark 2.9 Using the definitions of Lemma 2.8 from (2.14) one can easily see, that
∣∣Cov(XY,ZW )

∣∣ ≤ Cov(X̃Ỹ , Z̃W̃ ),

where

X̃ :=

∞∑

i=1

|ai|ξi, Ỹ :=

∞∑

i=1

|bi|ξi, Z̃ :=

∞∑

i=1

|ci|ξi, W̃ :=

∞∑

i=1

|di|ξi.

3. Proof of Proposition 1.4

Let us assume αrn 6= 0 and βrn 6= 0. Using the stationarity of
{
X

(rn)
k,ℓ : k, ℓ ∈ Z

}

and Lemma 2.1 we obtain

EBn =
∑

(k,ℓ)∈Tkn,ℓn


 Var

(
X

(rn)
0,0

)
Cov

(
X

(rn)
0,0 , X

(rn)
1,−1

)

Cov
(
X

(rn)
0,0 , X

(rn)
1,−1

)
Var

(
X

(rn)
0,0

)




=
(kn + ℓn)(kn + ℓn + 1)

2
σ2
αrn ,βrn


 1 Drn

Drn 1


 =

n(n+ 1)

2
σ2
αrn ,βrn


 1 Drn

Drn 1


 ,

where

Drn =

(
1 + α2

rn − β2
rn − σ−2

αrn ,βrn

2αrn

)(
2βrn

1 + β2
rn − α2

rn + σ−2
αrn ,βrn

)
.

If 0 < |α| < 1 and |β| = 1 − |α| then it is not difficult to see that σ−2
αrn ,βrn

→ 0

and in this way Drn → sign(αβ) as n → ∞. Hence, using the same arguments as in
the proof of (2.6) we obtain

lim
n→∞

n−2rn
−1/2

(
|γrn |+ |δrn |

)1/2
EBn =

(
32|α||β|

)−1/2
Ψα,β. (3.1)
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If |α| ∈ {0, 1} and |β| = 1 − |α|, again, we have σ−2
αrn ,βrn

→ 0 as n → ∞, and

similarly to the proof of (2.9) one can see

lim
n→∞

n−2rn
−1
∣∣γ2

rn − δ2rn
∣∣1/2n(n+ 1)

2
σ2
αrn ,βrn

=
1

4
.

Concerning the limit of Drn from the four possible cases that can be handled in the

same way we consider only the case α = 1, β = 0. In this case α
γrn

δrn
+ β

δrn
γrn

=
γrn

δrn
and we may assume αrn > 0 and thus |δrn | ≤ γrn (hence γrn > 0). Obviously,

lim
n→∞

1 + α2
rn − β2

rn − σ−2
αrn ,βrn

2αrn

= 1,

and

2βrn

1 + β2
rn − α2

rn + σ−2
αrn ,βrn

=

(
γrn − δrn

2rn
− sign(ω)

(
1− γrn − δrn

2rn

)1/2

×
(

γrn
|δrn |

(
1− γrn − δrn

2rn

)1/2
+
(γ2

rn

δ2rn
− 1
)1/2(

1− γrn + δrn
2rn

)1/2)
)−1

.

Hence,

lim
n→∞

Drn =

{
− sign(ω)

(
|ω|+ (ω2 − 1)1/2

)−1
if |ω| < ∞,

0 if |ω| = ∞,

where ω is the limit defined by (1.9) satisfying |ω| ≥ 1. Thus, we have

lim
n→∞

n−2rn
−1
∣∣γ2

rn − δ2rn
∣∣1/2EBn = Θα,β,ω. (3.2)

Observe, that limn→∞ Drn = limn→∞ θ(α, β, ωrn).
By Remark 2.9 in the remaining part of the proof we may assume αrn ≥ 0, βrn ≥ 0.

Hence, using Lemma 2.8 we have

Var

(
∑

(i,j)∈Tkn,ℓn

(
X

(rn)
i−1,j

)2
)

≤ 2M4

∑

(i1,j1)∈Tkn,ℓn

∑

(i2,j2)∈Tkn,ℓn

Cov

(
X

(rn)
i1−1,j1

, X
(rn)
i2−1,j2

)2
,

(3.3)

where M4 := supn∈N
E(ε

(n)
0,0 )

4, and from the stationarity of
{
X

(rn)
k,ℓ : k, ℓ ∈ Z

}
follows

that the triangle Tkn,ℓn can be replaced by Tn,0.
Now, (3.3) implies that if 0 < |α| < 1 and |β| = 1− |α|

n−4r−1
n

(
|γrn |+ |δrn |

)
Var

(
∑

(i,j)∈Tkn,ℓn

(
X

(rn)
i−1,j

)2
)

(3.4)

≤ 2M4

∫∫

T

∫∫

T

((
|γrn |+ |δrn |

)1/2
Cov

(
Z0,1(s1, t1), Z0,1(s2, t2)

))2
ds1dt1ds2dt2,

while for |α| ∈ {0, 1}, |β| = 1− |α| we have
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n−4r−2
n

∣∣γ2
rn − δ2rn

∣∣Var
(

∑

(i,j)∈Tkn,ℓn

(
X

(rn)
i−1,j

)2
)

(3.5)

≤ 2M4

∫∫

T

∫∫

T

(∣∣γ2
rn − δ2rn

∣∣1/2 Cov
(
Y0,1(s1, t1), Y0,1(s2, t2)

))2
ds1dt1ds2dt2,

where T :=
{
(s, t) ∈ R

2 : 0 ≤ s ≤ 1,−s ≤ t ≤ 0
}
. As the area of the triangle T is

finite and the integrands in both cases are uniformly bounded on T ×T , Fatou’s lemma
and Proposition 2.7 imply that the right hand sides of (3.4) and (3.5) converge to 0 as
n → ∞. In a similar way one can show

n−4κn Var

(
∑

(i,j)∈Tkn,ℓn

X
(rn)
i−1,jX

(rn)
i,j−1

)
→ 0 and n−4κn Var

(
∑

(i,j)∈Tkn,ℓn

(
X

(rn)
i,j−1

)2
)

→ 0,

as n → ∞, where

κn =

{
r−1
n

(
|γrn |+ |δrn |

)
if 0 < |α| < 1, |β| = 1− |α|,

r−2
n

∣∣γ2
rn − δ2rn

∣∣ if |α| ∈ {0, 1}, |β| = 1− |α|. (3.6)

that finishes the proof of Proposition 1.4. �

4. Proof of Proposition 1.5

To prove Proposition 1.5 we are going to use the same technique as in [3,5]. For a given
n ∈ N and 1 ≤ m ≤ n, let

An,m =


A(1)

n,m

A(2)
n,m


 :=

∑

(k,ℓ)∈Tkm,ℓm


X

(rn)
k−1,ℓε

(rn)
k,ℓ

X
(rn)
k,ℓ−1ε

(rn)
k,ℓ


 ,

where An,0 := (0, 0)⊤. Let Fn
m denote the σ-algebra generated by the random variables{

ε
(rn)
k,ℓ : (k, ℓ) ∈ Ukm,ℓm

}
. Obviously, An,n = An =

∑n
m=1(An,m − An,m−1). First we

show that
(
An,m−An,m−1,Fn

m

)
is a square integrable martingale difference. Let Rm :=

Tkm,ℓm \ Tkm−1,ℓm−1 , where R1 := Tk1,ℓ1 . Short calculation shows

An,m −An,m−1 = An,m,1 +
∑

(k,ℓ)∈Rm

ε
(rn)
k,ℓ An,m,2,k,ℓ, (4.1)

where An,m,1 =
(
A

(1)
n,m,1, A

(2)
n,m,1

)⊤
and An,m,2,k,ℓ =

(
Ãn,m,2,k−1,ℓ, Ãn,m,2,k,ℓ−1

)⊤
with

A
(1)
n,m,1 :=

∑

(k,ℓ)∈Rm

ε
(rn)
k,ℓ

∑

(i,j)∈Uk−1,ℓ\Ukm−1,ℓm−1

(
k + ℓ− 1− i− j

k − 1− i

)
αk−1−i
rn βℓ−j

rn ε
(rn)
i,j ,

A
(2)
n,m,1 :=

∑

(k,ℓ)∈Rm

ε
(rn)
k,ℓ

∑

(i,j)∈Uk,ℓ−1\Ukm−1,ℓm−1

(
k + ℓ− 1− i− j

k − i

)
αk−i
rn βℓ−1−j

rn ε
(rn)
i,j ,

Ãn,m,2,k,ℓ :=
∑

(i,j)∈Uk,ℓ∩Ukm−1,ℓm−1

(
k + ℓ− i− j

k − i

)
αk−i
rn βℓ−j

rn ε
(rn)
i,j . (4.2)
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We remark that for the odd values of m we have Rm =
km⋃

i=−ℓm+1

{
(i, ℓm)

}
, and

A
(1)
n,m,1 =

km∑

k=−ℓm+2

k−1∑

i=−∞

αk−1−i
rn ε

(rn)
k,ℓm

ε
(rn)
i,ℓm

, A
(2)
n,m,1 = 0, (4.3)

while for the even values Rm =
ℓm⋃

j=−km+1

{
(km, j)

}
, and

A
(2)
n,m,1 =

ℓm∑

ℓ=−km+2

ℓ−1∑

j=−∞

βℓ−1−j
rn ε

(rn)
km,ℓε

(rn)
km,j, A

(1)
n,m,1 = 0. (4.4)

The components of An,m,1 are quadratic forms of the variables
{
ε
(rn)
i,j : (i, j) ∈

Rm

}
, hence An,m,1 is independent of Fn

m−1. Further, the terms Ãn,m,2,k,ℓ are linear

combinations of the variables {ε(rn)i,j : (i, j) ∈ Ukm−1,ℓm−1}, thus they are measurable
with respect to Fn

m−1. Hence,

E
(
An,m −An,m−1 | Fn

m−1

)
= EAn,m,1 +

∑

(k,ℓ)∈Rm

An,m,2,k,ℓE
(
ε(rn)p,q | Fn

m−1

)
= 0.

By the Martingale Central Limit Theorem (see, e.g. [14, Theorem 4, p. 511]), the state-
ment in Proposition 1.5 is a consequence of the following two propositions, where 1H

denotes the indicator function of the set H .

Proposition 4.1 If 0 < |α| < 1, |β| = 1− |α| and (1.7) holds then

n−2r−1/2
n

(
|γrn |+ |δrn |

)1/2 n∑

m=1

E
(
(An,m −An,m−1)(An,m−An,m−1)

⊤
∣∣Fn

m−1

)

L2−→
(
32|α||β|

)−1/2
Ψα,β

as n → ∞.

If 0 < |α| ∈ {0, 1}, |β| = 1− |α| and (1.8) holds then

n−2r−1
n

∣∣γ2
rn − δ2rn

∣∣1/2
n∑

m=1

E
(
(An,m −An,m−1)(An,m −An,m−1)

⊤
∣∣Fn

m−1

) L2−→ Θα,β,ω

as n → ∞.

Proposition 4.2 If 0 < |α| < 1, |β| = 1− |α| and (1.7) holds then for all δ > 0

n−2r−1/2
n

(
|γrn |+ |δrn |

)1/2 n∑

m=1

E
(
‖An,m −An,m−1‖2

× 1

{
‖An,m−An,m−1‖≥δnr

1/4
n (|γrn |+|δrn |)−1/4

} ∣∣Fn
m−1

)

converges to 0 in probability as n → ∞.
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If 0 < |α| ∈ {0, 1}, |β| = 1− |α| and (1.8) holds then for all δ > 0

n−2r−1
n

∣∣γ2
rn − δ2rn

∣∣1/2
n∑

m=1

E
(
‖An,m −An,m−1‖2

× 1

{
‖An,m−An,m−1‖≥δnr

1/2
n |γ2

rn
−δ2rn |−1/4

} ∣∣Fn
m−1

)

converges to 0 in probability as n → ∞.

Proof of Proposition 4.1. Let Un
m := E

(
(An,m−An,m−1)(An,m−An,m−1)

⊤
∣∣Fn

m−1

)
.

From the definitions of An,m and Bm and from the independence of the error terms

ε
(rn)
k,ℓ follows that

EUn
m = E((An,m −An,m−1)(An,m −An,m−1)

⊤ = EBm − EBm−1,

where B0 is the two-by-two matrix of zeros. Thus, if 0 < |α| < 1 then (3.1) implies

lim
n→∞

n−2rn
−1/2

(
|γrn |+ |δrn |

)1/2 n∑

m=1

EUn
m →

(
32|α||β|

)−1/2
Ψα,β ,

while in the case |α| ∈ {0, 1} from (3.2) we have

lim
n→∞

n−2rn
−1
∣∣γ2

rn − δ2rn
∣∣1/2

n∑

m=1

EUn
m → Θα,β,ω,

where ω is the limit defined by (1.9).
Further, from the decomposition (4.1) follows

Un
m = EAn,m,1A

⊤
n,m,1 +

∑

(k,ℓ)∈Rm

An,m,2,k,ℓA
⊤
n,m,2,k,ℓ. (4.5)

This means that to complete the proof of the proposition we have to show

lim
n→∞

n−4κn Var

( n∑

m=1

∑

(k,ℓ)∈Rm

Ã2
n,m,2,k−1,ℓ

)
= 0, (4.6)

lim
n→∞

n−4κn Var

( n∑

m=1

∑

(k,ℓ)∈Rm

Ãn,m,2,k−1,ℓÃn,m,2,k,ℓ−1

)
= 0, (4.7)

lim
n→∞

n−4κn Var

( n∑

m=1

∑

(k,ℓ)∈Rm

Ã2
n,m,2,k,ℓ−1

)
= 0, (4.8)

where κn is defined by (3.6).
Now, consider

Var

( n∑

m=1

∑

(k,ℓ)∈Rm

Ã2
n,m,2,k,ℓ

)

=

n∑

m1=1

∑

(k1,ℓ1)∈Rm1

n∑

m2=1

∑

(k2,ℓ2)∈Tm2

Cov
(
Ã2

n,m1,2,k1,ℓ1 , Ã
2
n,m2,2,k2,ℓ2

)
.
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By Remark 2.9 in the remaining part of the proof we may assume αrn ≥ 0, βrn ≥ 0.
Hence, as by Lemma 2.8

Cov
(
Ã2

n,m1,2,k1,ℓ1 , Ã
2
n,m2,2,k2,ℓ2

)
≤ 2M4 Cov

(
Ãn,m1,2,k1,ℓ1 , Ãn,m2,2,k2,ℓ2

)2

and representation (1.3) implies

Cov
(
Ãn,m1,2,k1−1,ℓ1 , Ãn,m2,2,k2−1,ℓ2

)
≤ Cov

(
X

(rn)
k1,ℓ1

, X
(rn)
k2,ℓ2

)
,

we have

Var

( n∑

m=1

∑

(k,ℓ)∈Rm

Ã2
n,m,2,k,ℓ

)
≤ 2M4

∑

(k1,ℓ1)∈Tkn,ℓn

∑

(k1,ℓ1)∈Tkn,ℓn

Cov
(
X

(rn)
k1,ℓ1

, X
(rn)
k2,ℓ2

)2
.

Thus, using (3.4) and (3.5) for the cases 0 < |α| < 1 and |α| ∈ {0, 1}, respectively,
(4.6) follows from Proposition (2.7). In a similar way one can prove (4.7) and (4.8). �

Proof of Proposition 4.2. To prove the proposition it suffices to show

n−4κn

n∑

m=1

E
(
‖An,m −An,m−1‖4

∣∣Fm−1

) P−→ 0 (4.9)

as n → ∞, where κn is defined by (3.6). By the decomposition (4.1)

‖An,m −An,m−1‖4 ≤ 23‖An,m,1‖4 + 23
∥∥∥∥

∑

(k,ℓ)∈Rm

ε
(rn)
k,ℓ An,m,2,k,ℓ

∥∥∥∥
4

.

As An,m,1 is independent from Fn
m−1 we have E

(
‖An,m,1‖4

∣∣Fn
m−1

)
= E‖An,m,1‖4,

while the measurability of An,m,2,k,ℓ with respect to Fn
m−1 implies

E



∥∥∥∥

∑

(k,ℓ)∈Rm

ε
(rn)
k,ℓ An,m,2,k,ℓ

∥∥∥∥
4 ∣∣∣∣Fm−1


 ≤

(
(M4 − 3)+ + 3

)

 ∑

(k,ℓ)∈Rm

‖An,m,2,k,ℓ‖2



2

.

Hence, in order to prove (4.9), it suffices to show

lim
n→∞

n−4κn

n∑

m=1

E‖An,m,1‖4 = 0, (4.10)

lim
n→∞

n−4κn

n∑

m=1

E


 ∑

(k,ℓ)∈Rm

‖An,m,2,k,ℓ‖2



2

= 0. (4.11)

It is easy to see that using (4.3) and (4.4) we obtain

‖An,m,1‖4≤23

(
km∑

k=−ℓm+2

k−1∑

i=−∞

αk−1−i
rn ε

(rn)
k,ℓm

ε
(rn)
i,ℓm

)4

+23




ℓm∑

ℓ=−km+2

ℓ−1∑

j=−∞

βℓ−1−j
rn ε

(rn)
km,ℓε

(rn)
km,j




4

.

Using Lemma 12 of [4] a short calculation shows

E‖An,m,1‖4 ≤
(
(1− α2

rn)
−1 + (1− β2

rn)
−1
)
O(m2), as n → ∞,

and as κn

(
(1− α2

rn)
−1 + (1− β2

rn)
−1
)

is bounded we obtain (4.10).
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Furthermore, we have

E


 ∑

(k,ℓ)∈Rm

‖Anm,2,k,ℓ‖2



2

=
∑

(i1,j1)∈Rm

∑

(i2,j2)∈Rm

E

(
(Ã2

n,m,2,i1−1,j1 + Ã2
n,m,2,i1,j1−1)

× (Ã2
n,m,2,i2−1,j2 + Ã2

n,m,2,i2,j2−1)
)
.

¿From Lemma 2.8 follows

E
(
Ã2

n,m,2,i1,j1Ã
2
n,m,2,i2,j2

)
≤ 3M4EÃ

2
n,m,2,i1,j1EÃ

2
n,m,2,i2,j2 ,

while using (4.2) and representation (1.3) one can see

EÃ2
n,m,2,k,ℓ ≤ VarXk,ℓ = R0,0.

Thus,

E


 ∑

(k,ℓ)∈Rm

‖An,m,2,k,ℓ‖2



2

≤ 12M4R
2
0,0m

2 = 12M4σ
4
αrn ,βrn

m2

that together with (2.6) and (2.9) implies (4.11). �

5. Proof of Proposition 1.6

In what follows we will assume 0 < α < 1 and β = 1 − α, so without loss of
generality we may suppose αrn , βrn , γrn and δrn are all positive. Consider the
following expression of detBn

detBn =
∑

(i1,j1)∈Tkn,ℓn

∑

(i2,j2)∈Tkn,ℓn

W
(n)
i1,j1,i2,j2

,

where

W
(n)
i1,j1,i2,j2

:=
(
X

(rn)
i1,j1−1

)2(
X

(rn)
i2−1,j2

)2 −X
(rn)
i1−1,j1

X
(rn)
i1,j1−1X

(rn)
i2−1,j2

X
(rn)
i2,j2−1.

Using representation (1.3) from Lemma 2.8 we obtain.

EW
(n)
i1,j1,i2,j2

= A
(1,n)
i1,j1,i2,j2

+A
(2,n)
i1,j1,i2,j2

+A
(3,n)
i1,j1,i2,j2

+A
(4,n)
i1,j1,i2,j2

, (5.1)

where

18



A
(1,n)
i1,j1,i2,j2

:=
∑

(u,v)∈U(i1−1)∧i2,j1∧(j2−1)

(
E(ε

(rn)
0,0 )4−3

)(i1+j1−1−u−v

i1−1−u

)2(
i2+j2−1−u−v

i2−u

)2

× α2i1+2i2−2−4u
rn β2j1+2j2−2−4v

rn

−
∑

(u,v)∈Ui1∧i2−1,j1∧j2−1

(
E(ε

(rn)
0,0 )4−3

)(i1+j1−1−u−v

i1−1−u

)(
i1+j1−1−u−v

i1−u

)

×
(
i2+j2−1−u−v

i2−1−u

)(
i2+j2−1−u−v

i2−u

)
α2i1+2i2−2−4u
rn β2j1+2j2−2−4v

rn ,

A
(2,n)
i1,j1,i2,j2

:=Cov
(
X

(rn)
i1−1,j1

, X
(rn)
i2,j2−1

)2 − Cov
(
X

(rn)
i1−1,j1

, X
(rn)
i2,j2−1

)
Cov

(
X

(rn)
i1,j1−1, X

(rn)
i2−1,j2

)
,

A
(3,n)
i1,j1,i2,j2

:=Cov
(
X

(rn)
i1−1,j1

, X
(rn)
i2,j2−1

)2 − Cov
(
X

(rn)
i1−1,j1

, X
(rn)
i2−1,j2

)
Cov

(
X

(rn)
i1,j1−1, X

(rn)
i2,j2−1

)
,

A
(4,n)
i1,j1,i2,j2

:=Var
(
X

(rn)
i1−1,j1

)
Var
(
X

(rn)
i2,j2−1

)
−Cov

(
X

(rn)
i1−1,j1

, X
(rn)
i1,j1−1

)
Cov

(
X

(rn)
i2−1,j2

, X
(rn)
i2,j2−1

)

=σ2
αrn ,βrn

1− α2
rn − β2

rn − σ−2
αrn ,βrn

2α2
rnβ

2
rn

.

Short calculation shows
∣∣A(1,n)

i1,j1,i2,j2

∣∣ ≤ 2(M4 + 3)Cov
(
X

(rn)
i1−1,j1

, X
(rn)
i2,j2−1

)
,

so we have

n−4r−1/2
n

(
γrn + δrn

)1/2 ∑

(i1,j1)∈Tkn,ℓn

∑

(i2,j2)∈Tkn,ℓn

∣∣A(1,n)
i1,j1,i2,j2

∣∣

≤ 2(M4 + 3)

∫∫

T

∫∫

T

(
γrn + δrn

)1/2
Cov

(
Z0,1(s1, t1), Z0,1(s2, t2)

)
ds1dt1ds2dt2.

Hence, using the same arguments as in the proof of Proposition 1.4 Fatou’s lemma and
Proposition 2.7 imply

lim
n→∞

n−4r−1/2
n

(
γrn + δrn

)1/2 ∑

(i1,j1)∈Tkn,ℓn

∑

(i2,j2)∈Tkn,ℓn

A
(1,n)
i1,j1,i2,j2

= 0. (5.2)

Next consider A
(2,n)
i1,j1,i2,j2

= A
(2,n,1)
i1,j1,i2,j2

+A
(2,n,2)
i1,j1,i2,j2

, where

A
(2,n,1)
i1,j1,i2,j2

:=Cov
(
X

(rn)
i1−1,j1

, X
(rn)
i2,j2−1

)(
Cov

(
X

(rn)
i1−1,j1

, X
(rn)
i2,j2−1

)
−Cov

(
X

(rn)
i1−1,j1

, X
(rn)
i2−1,j2

))
,

A
(2,n,2)
i1,j1,i2,j2

:=Cov
(
X

(rn)
i1−1,j1

, X
(rn)
i2,j2−1

)(
Cov

(
X

(rn)
i1−1,j1

, X
(rn)
i2−1,j2

)
−Cov

(
X

(rn)
i1,j1−1, X

(rn)
i2−1,j2

))
.

With the help of Proposition 2.4 we can easily show

n−4r−1/2
n

(
γrn+δrn

)1/2 ∑

(i1,j1)∈Tkn,ℓn

∑

(i2,j2)∈Tkn,ℓn

∣∣A(2,n,1)
i1,j1,i2,j2

∣∣

≤
∫∫

T

∫∫

T

(
γrn+δrn

)1/2∣∣∣Cov
(
Z0,1(s1, t1), Z0,1(s2, t2)

)∣∣∣

×
∣∣∣R[ns1]−[ns2]−1,[nt1]−[nt2]+1 −R[ns1]−[ns2],[nt1]−[nt2]

∣∣∣ds1dt1ds2dt2

≤ K

(αrnβrn)
3/2

∫∫

T

∫∫

T

(
γrn+δrn

)1/2∣∣∣Cov
(
Z0,1(s1, t1), Z0,1(s2, t2)

)∣∣∣ds1dt1ds2dt2 → 0
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as n → ∞. Naturally, the same result can be proved for A
(2,n,1)
i1,j1,i2,j2

, so we have

lim
n→∞

n−4r−1/2
n

(
γrn + δrn

)1/2 ∑

(i1,j1)∈Tkn,ℓn

∑

(i2,j2)∈Tkn,ℓn

A
(2,n)
i1,j1,i2,j2

= 0. (5.3)

Using similar arguments one can also prove

lim
n→∞

n−4r−1/2
n

(
γrn + δrn

)1/2 ∑

(i1,j1)∈Tkn,ℓn

∑

(i2,j2)∈Tkn,ℓn

A
(3,n)
i1,j1,i2,j2

= 0. (5.4)

Further, as kn + ℓn = n, and A
(4,n)
i1,j1,i2,j2

does not depend on i1, j1, i2, j2 using (2.6)
we obtain

lim
n→∞

n−4r−1/2
n

(
γrn + δrn

)1/2 ∑

(i1,j1)∈Tkn,ℓn

∑

(i2,j2)∈Tkn,ℓn

A
(4,n)
i1,j1,i2,j2

=
2

(8αβ)3/2
. (5.5)

Finally, the combination of representation (5.1) and limits (5.2)–(5.5) yields

lim
n→∞

n−4r−1/2
n

(
γrn + δrn

)1/2
E detBn =

2

(8αβ)3/2
.

Now, let us deal with the variance of detBn. Short calculation shows

n−8r−1
n

(
γrn + δrn

)
Var

(
detBn

)
(5.6)

=
γrn + δrn
n8rn

∑

(i1,j1)∈Tkn,ℓn

∑

(i2,j2)∈Tkn,ℓn

∑

(i3,j3)∈Tkn,ℓn

∑

(i4,j4)∈Tkn,ℓn

Cov
(
W

(n)
i1,j1,i2,j2

,W
(n)
i3,j3,i4,j4

)

=

∫∫

T

∫∫

T

∫∫

T

∫∫

T

(
γrn+δrn

)(
Θ(1)

n (s1, t1, s2, t2, s3, t3, s4, t4)+Θ(2)
n (s1, t1, s2, t2, s3, t3, s4, t4)

+ 2Θ(3)
n (s1, t1, s2, t2, s3, t3, s4, t4)

)
ds1dt1ds2dt2ds3dt3ds4dt4,

where

Θ(1)
n (s1, t1, s2, t2, s3, t3, s4, t4)

:=Cov

(
Z

(rn)
1,0 (s1, t1)Z

(rn)
0,1 (s2, t2)

(
X

(n)
[ns1],[nt1]−1−X

(rn)
[ns1]−1,[nt1]

)(
X

(n)
[ns2]−1,[nt2]

−X
(rn)
[ns2],[nt2]−1

)
,

Z
(n)
1,0 (s3, t3)Z

(n)
0,1 (s4, t4)

(
X

(n)
[ns3],[nt3]−1−X

(rn)
[ns3]−1,[nt3]

)(
X

(n)
[ns4]−1,[nt4]

−X
(rn)
[ns4],[nt4]−1

))
,

Θ(2)
n (s1, t1, s2, t2, s3, t3, s4, t4) :=Cov

(
Z

(n)
1,0 (s1, t1)Z

(n)
0,1 (s1, t1)

(
X

(n)
[ns2],[nt2]−1−X

(rn)
[ns2]−1,[nt2]

)2
,

Z
(n)
1,0 (s3, t3)Z

(n)
0,1 (s3, t3)

(
X

(n)
[ns4],[nt4]−1−X

(rn)
[ns4]−1,[nt4]

)2)
,

Θ(3)
n (s1, t1, s2, t2, s3, t3, s4, t4) :=Cov

(
Z

(n)
1,0 (s1, t1)Z

(n)
0,1 (s1, t1)

(
X

(n)
[ns2],[nt2]−1−X

(rn)
[ns2]−1,[nt2]

)2
,

Z
(n)
1,0 (s3, t3)Z

(n)
0,1 (s4, t4)

(
X

(n)
[ns3],[nt3]−1−X

(rn)
[ns3]−1,[nt3]

)(
X

(n)
[ns4]−1,[nt4]

−X
(rn)
[ns4],[nt4]−1

))
.

By representation (1.3) the components Θ
(q)
n , q = 1, 2, 3, of the integrand in the right

hand side of (5.6) are linear combinations of covariances of form

Cov(εi1,j1εi2,j2εi3,j3εi4,j4 , εi5,j5εi6,j6εi7,j7εi8,j8), (5.7)

where the indices (ir, jr) ∈ Z
2, r = 1, 2, . . . , 8, run either on quarter planes U[nsq ],[ntq]−1

or on U[nsq ]−1,[ntq], q =
[
(r+1)/2

]
. Using the definitions of Lemma 2.3 we can express
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the coefficients of the linear combinations as products of 1/rn and two terms of form

(αrn + βrn)
[nsmr ]+[ntmr ]−1−ir−jrP

(
S
(νrn)

[nsmr ]+[ntmr ]−1−ir−jr
= [nsmr ]− 1− ir

)
, two terms

of form (αrn + βrn)
[nsmr ]+[ntmr ]−1−ir−jrP

(
S
(νrn)

[nsmr ]+[ntmr ]−1−ir−jr
= [nsmr ] − ir

)
and

four terms of form (αrn + βrn)
[nsmr ]+[ntmr ]−1−ir−jr∆̂

(n)
ir ,jr

(smr , tmr) with

∆̂
(n)
ir ,jr

(smr , tmr)

:=P
(
S
(νrn )

[nsmr ]+[ntmr ]−1−ir−jr
=[nsmr ]−ir

)
−P
(
S
(νrn )

[nsmr ]+[ntmr ]−1−ir−jr
=[nsmr ]−1−ir

)
,

where νrn = αrn/(αrn + βrn) and ∪8
r=1{mr} = {1, 2, 3, 4}. Corollary 2.5 implies that

there exists a positive constant C such that

∣∣∣∆̂(n)
ir ,jr

(smr , tmr)
∣∣∣ ≤ C

αrnβrn([nsmr ] + [ntmr ]− 1− ir − jr)
. (5.8)

Covariances of form (5.7) are equal to zero if the index sets
{
(ir, jr) : r = 1, 2, 3, 4

}

and
{
(ir, jr) : r = 5, 6, 7, 8

}
are disjoint. Besides the nonempty intersection of these

sets, to obtain nonzero covariances in (5.7) for each u ∈ {1, 2, . . . , 8} there should
exist at least one v ∈ {1, 2, . . . , 8} such that u 6= v and (iu, ju) = (iv, jv). Consider
first the case, when {1, 2, . . . , 8} is divided into two disjoint subsets {u1, u2, u3, u4}
and {v1, v2, v3, v4}, (iur , jur ) = (ivr , jvr ), r = 1, 2, 3, 4, holds and no other index pairs
are equal. This configuration yields the highest amount of terms when we express the

covariances of Θ
(q)
n , q = 1, 2, 3. Expression (5.6) shows that the sum of the corresponding

terms of n−8r−1
n

(
γrn + δrn

)
Var

(
detBn

)
can be rewritten as the sum of terms of form

∫∫

T

∫∫

T

∫∫

T

∫∫

T

(
R[nsm1 ]−[nsm2 ],[ntm1 ]−[ntm2 ]

−R[nsm1 ]−[nsm2 ]±1,[ntm1 ]−[ntm2 ]∓1

)

×
(
R[nsm3 ]−[nsm4 ],[ntm3 ]−[ntm4 ]

−R[nsm3 ]−[nsm4 ]±1,[ntm3 ]−[ntm4 ]∓1

)

×
(
γrn + δrn

)1/2
Cov

(
Z(n)
u1,v1(sm5 , tm5)Z

(n)
u2,v2(sm6 , tm6)

)

×
(
γrn + δrn

)1/2
Cov

(
Z(n)
u3,v3(sm7 , tm3)Z

(n)
u4,v4(sm8 , tm8)

)
ds1dt1ds2dt2ds3dt3ds4dt4,

where {mr : r = 1, 2, . . . , 8} = {1, 2, 3, 4}, (ur, vr) ∈ {(0, 1), (1, 0)}, r = 1, 2, 3, 4.
Fatou’s lemma, Lemma 2.1 and Propositions 2.4 and 2.7 imply that these terms of the
sum n−8r−1

n

(
γrn + δrn

)
Var

(
detBn

)
converge to 0 as n → ∞.

The next case is when {1, 2, . . . , 8} is divided into three disjoint subsets {u1, u2, u3}
and {v1, v2, v3} and {w1, w2} and either

(iur , jur ) = (ivr , jvr ) = (iwr , jwr ), r = 1, 2, and (iu3 , ju3) = (iv3 , jv3) (5.9)

or

(iur , jur ) = (ivr , jvr ), r = 1, 2, and (iu3 , ju3) = (iv3 , jv3) = (iw1 , jw1) = (iw1 , jw2)
(5.10)

holds and no other index pairs are equal. Inequality (5.8) implies that we have
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∑

(i,j)∈U[ns1]∧[ns2]∧[ns3]−1,[nt1]∧[nt2]∧[nt3]−1

P
(
Sα
[ns1]+[nt1]−1−i−j=[ns1]−i

)∣∣∆̂(n)
i,j (s2, t2)

∣∣∣
∣∣∆̂(n)

i,j (s3, t3)
∣∣∣

≤
[ns1]∧[ns2]∧[ns3]+[nt1]∧[nt2]∧[nt3]−2∑

m=−∞

C2

(αrnβrn)
2([ns2] + [nt2]− 1−m)([ns3] + [nt3]− 1−m)

×
[ns1]∧[ns2]∧[ns3]−1∑

i=m−[nt1]∧[nt2]∧[nt3]+1

P
(
Sα
[ns1]+[nt1]−1−m=[ns1]−i

)
≤ C2ζ(2)

(αrnβrn)
2
,

so the expressions of the above form are bounded uniformly in n and (sr, tr) ∈ T, r =
1, 2, 3. Similarly, by Remark 2.6 there exists a constant D > 0 such that

∑

(i,j)∈
⋂4

r=1
U[nsr ]+ur,[ntr ]+vr

( 4∏

r=1

P
(
Sα
[nsr ]+[ntr]−1−i−j=[nsr]−i−ur

))
≤ D3ζ(3/2)

(αrnβrn)
3/2

, (5.11)

where (ur, vr) ∈ {(0, 1), (1, 0)}, r = 1, 2, 3, 4.
It is not difficult to show that in the case described by (5.9) the corresponding part

of the sum n−8r−1
n

(
γrn + δrn

)
Var

(
detBn

)
can always be bounded from above by the

sum of components of the form
∫∫

T

∫∫

T

∫∫

T

∫∫

T

C2ζ(2)

(αrnβrn)
2

(
γrn + δrn

)1/2∣∣∣Cov
(
Z(n)
u1,v1(sm1 , tm1)Z

(n)
u2,v2(sm2 , tm2)

)∣∣∣

×
(
γrn + δrn

)1/2∣∣∣Cov
(
Z(n)
u3,v3(sm3 , tm3)Z

(n)
u4,v4(sm4 , tm4)

)∣∣∣ds1dt1ds2dt2ds3dt3ds4dt4

where {mr : r = 1, 2, 3, 4} ⊆ {1, 2, 3, 4} contains at least 3 different points and (ur, vr) ∈
{(0, 1), (1, 0)}, r = 1, 2, 3, 4. In this way by Fatou’s lemma and Proposition 2.7 we obtain
that the terms of n−8r−1

n

(
γrn + δrn

)
Var

(
detBn

)
corresponding to case (5.9) converge

to 0 as n → ∞. Using similar ideas and (5.11) the same can be proved in the case
(5.10).
The remaining terms of n−8r−1

n

(
γrn + δrn

)
Var

(
detBn

)
can be handled in a similar

way. �

6. Proof of Proposition 1.7

Similarly to Section 5 it is enough to consider the case 0 < α < 1 and β = 1 − α.
We have

n−3r−1/2
n

(
γrn + δrn

)1/2
B̄nAn =

(
n−2r−1/2

n

(
γrn + δrn

)1/2
B̄n − 1√

32αβ
1̄

) 1
n
An

+
1√
32αβ

1

n
1̄An,

where 1 denotes the two-by-two matrix of ones. Short straightforward calculations shows
(
n−2r−1/2

n

(
γrn + δrn

)1/2
B̄n − 1√

32αβ
1̄

) 1
n
An = Cn +Dn,

where
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Cn := n−1r−1/4
n

(
γrn + δrn

)1/4
diag(An)n

−2r−1/4
n

(
γrn + δrn

)1/4
B̄n(1, 1)

⊤,

Dn :=
(
n−2r−1/2

n

(
γrn + δrn

)1/2 ∑

(i,j)∈Tkn,ℓn

X
(rn)
i−1,jX

(rn)
i,j−1 −

1√
32αβ

) 1
n
Qn(1,−1)⊤.

Here diag(An) denotes the two-by-two diagonal matrix having An in its main diagonal
and

Qn := (1,−1)An =
∑

(i,j)∈Tkn,ℓn

(
X

(rn)
i−1,j −X

(rn)
i,j−1

)
εi,j . (6.1)

By Proposition 1.4

n−2r−1/2
n

(
γrn + δrn

)1/2 ∑

(i,j)∈Tkn,ℓn

X
(rn)
i−1,jX

(rn)
i,j−1 −

1√
32αβ

L2−→ 0 as n → ∞. (6.2)

Representation (1.3) and independence of the error terms ε
(rn)
i,j imply EQn = 0 and

EQ2
n =

∑

(i,j)∈Tkn,ℓn

E
(
X

(rn)
i−1,j −X

(rn)
i,j−1

)2
= (kn + ℓn)(kn + ℓn + 1)

(
R0,0 −R−1,1

)

=
n(n+ 1)

4αrnβrn

(
1 +

(γrn + δrn
rn

)1/2
σ2
αrn ,βrn

(γrn + δrn
rn

)1/2(γrn + δrn
rn

− 2
))

.

Taking into account (2.6) we obtain

lim
n→∞

1

n2
EQ2

n =
1

4αβ
(6.3)

that together with (6.2) implies Dn
P−→ (0, 0)⊤ as n → ∞.

1

n2

(γrn+δrn
rn

)1/4
E

(
B̄n(1, 1)

⊤
)
=

1

n2

(γrn+δrn
rn

)1/4 ∑

(k,ℓ)∈Tkn,ℓn

E



(
X

(rn)
k,ℓ−1

)2−X
(rn)
k−1,ℓX

(rn)
k,ℓ−1(

X
(rn)
k,ℓ−1

)2−X
(rn)
k−1,ℓX

(rn)
k,ℓ−1




=
(γrn+δrn

rn

)1/4n+ 1

2n

(
R0,0−R−1,1

)

1

1


=

(γrn+δrn
rn

)1/4 1

2n2
EQ2

n


1

1


→


0

0




as n → ∞. Furthermore, with the help of Lemma 2.8 we obtain

Var

( ∑

(k,ℓ)∈Tkn,ℓn

((
X

(rn)
k,ℓ−1

)2 −X
(rn)
k−1,ℓX

(rn)
k,ℓ−1

))

=
∑

(i1,j1)∈Tkn,ℓn

∑

(i2,j2)∈Tkn,ℓn

B
(1,n)
i1,j1,i2,j2

+ 2B
(2,n)
i1,j1,i2,j2

+B
(3,n)
i1,j1,i2,j2

+B
(4,n)
i1,j1,i2,j2

,

where
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B
(1,n)
i1,j1,i2,j2

:=
∑

(u,v)∈Ui1∧i2,j1∧j2−1

(
E(ε

(rn)
0,0 )4−3

)(i1+j1−1−u−v

i1−u

)2(
i2+j2−1−u−v

i2−u

)2

× α2i1+2i2−4u
rn β2j1+2j2−4−4v

rn

−
∑

(u,v)∈Ui1∧(i2−1),j1∧j2−1

2
(
E(ε

(rn)
0,0 )4−3

)(i1+j1−1−u−v

i1−u

)2(
i2+j2−1−u−v

i2−1−u

)

×
(
i2+j2−1−u−v

i2−u

)
α2i1+2i2−1−4u
rn β2j1+2j2−3−4v

rn

+
∑

(u,v)∈Ui1∧i2−1,j1∧j2−1

(
E(ε

(rn)
0,0 )4−3

)(i1+j1−1−u−v

i1−1−u

)(
i1+j1−1−u−v

i1−u

)

×
(
i2+j2−1−u−v

i2−1−u

)(
i2+j2−1−u−v

i2−u

)
α2i1+2i2−2−4u
rn β2j1+2j2−2−4v

rn ,

B
(2,n)
i1,j1,i2,j2

:=Cov
(
X

(rn)
i1,j1−1, X

(rn)
i2,j2−1

)(
Cov

(
X

(rn)
i1,j1−1, X

(rn)
i2,j2−1

)
−Cov

(
X

(rn)
i1,j1−1, X

(rn)
i2−1,j2

))
,

B
(3,n)
i1,j1,i2,j2

:=Cov
(
X

(rn)
i1,j1−1, X

(rn)
i2,j2−1

)(
Cov

(
X

(rn)
i1−1,j1

, X
(rn)
i2−1,j2

)
−Cov(X

(rn)
i1,j1−1, X

(rn)
i2−1,j2

))
,

B
(4,n)
i1,j1,i2,j2

:=Cov
(
X

(rn)
i1,j1−1, X

(rn)
i2−1,j2

)(
Cov

(
X

(rn)
i1−1,j1

, X
(rn)
i2,j2−1

)
−Cov

(
X

(rn)
i1,j1−1, X

(rn)
i2,j2−1

))
.

Hence, using the same arguments as in the proof of Proposition 1.6 (see (5.2) and (5.3))
one can verify

lim
n→∞

1

n4

(γrn + δrn
rn

)1/2
Var

( ∑

(k,ℓ)∈Tkn,ℓn

((
X

(rn)
k,ℓ−1

)2 −X
(rn)
k−1,ℓX

(rn)
k,ℓ−1

))
= 0.

Naturally, the same holds for the second component of n−2r
−1/4
n

(
γrn +δrn

)1/4
B̄n(1, 1)

⊤,
that means

n−2r−1/4
n

(
γrn + δrn

)1/4
B̄n(1, 1)

⊤ L2−→ (0, 0)⊤ as n → ∞. (6.4)

Proposition 1.5 and (6.4) imply Cn
P−→ (0, 0)⊤ as n → ∞, so to prove the asymptotic

normality of n−3n−1/2
(
γrn + δrn

)1/2
B̄nAn it suffices to show the asymptotic normality

of n−11̄An = n−1Qn(1,−1)⊤.
For a given n ∈ N and 1 ≤ m ≤ n let Qn,m := (1,−1)An,m. Obviously Qn,n = Qn

and from (4.1) we have

Qn,m −Qn,m−1 = A
(1)
n,m,1 −A

(2)
n,m,1 +

∑

(k,ℓ)∈Rm

ε
(rn)
k,ℓ

(
Ãn,m,2,k−1,ℓ − Ãn,m,2,k,ℓ−1

)
. (6.5)

As
(
Qn,m −Qn,m−1,Fn

m

)
is a square integrable martingale difference, similarly to the

proof of Proposition 1.5 the statement of Proposition 1.7 follows from the propositions
below.

Proposition 6.1 If 0 < α < 1, β = 1− α and (1.7) holds then

1

n2

n∑

m=1

E
(
(Qn,m −Qn,m−1)

2
∣∣Fn

m−1

) P−→ 1

4αβ
as n → ∞.
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Proposition 6.2 If 0 < α < 1, β = 1− α and (1.7) holds then for all δ > 0

1

n2

n∑

m=1

E
(
(Qn,m −Qn,m−1)

2
1{|Qn,m−Qn,m−1|≥δn}

∣∣Fn
m−1

)
P−→ 0 as n → ∞.

Proof of Proposition 6.1. The proof is very similar to that of Proposition 4.1. Let
V n
m := E

(
(Qn,m −Qn,m−1)

2
∣∣Fn

m−1

)
. The statement of Proposition 6.1 will follow from

lim
n→∞

1

n2

n∑

m=1

EV n
m =

1

4αβ
and lim

n→∞

1

n4
Var

( n∑

m=1

V n
m

)
= 0. (6.6)

By the martingale property of Qn,m we have

n∑

m=1

EV n
m =

n∑

m=1

(
EQ2

n,m − EQ2
n,m−1

)
= EQ2

n

that together with (6.3) implies the convergence of the means in (6.6). Furthermore,
representations (6.1) of Qm

n and (4.5) of Um
n imply

V n
m = (1,−1)UnU

n
m(1,−1)⊤ = E

(
A

(1)
n,m,1−A

(2)
n,m,1

)2
+
∑

(k,ℓ)∈Rm

(
Ãn,m,2,k−1,ℓ−Ãn,m,2,k,ℓ−1

)2
.

Using representation (1.3), definition (4.2) and Lemma 2.8 one can verify

Var

(
n∑

m=1

V n
m

)
= Var

( n∑

m=1

∑

(k,ℓ)∈Rm

(
Ãn,m,2,k−1,ℓ − Ãn,m,2,k,ℓ−1

)2
)

≤
∑

(i1,j1)∈Tkn,ℓn

∑

(i2,j2)∈Tkn,ℓn

Gn,i1,j1,i2,j2 +Hn,

where

Gn,i1,j1,i2,j2 := Cov

((
X

(rn)
i1−1,j1

−X
(rn)
i1,j1−1

)2
,
(
X

(rn)
i2−1,j2

−X
(rn)
i2,j2−1

)2)

and n−4Hn → 0 as n → ∞. As X
(rn)
k−1,ℓ −X

(rn)
k,ℓ−1 is also a linear combination of the

variables
{
ε
(rn)
i,j : (i, j) ∈ Uk,ℓ

}
, by Lemma 2.8 we have

∑

(i1,j1)∈Tkn,ℓn

∑

(i2,j2)∈Tkn,ℓn

Gn,i1,j1,i2,j2

≤
∑

(i1,j1)∈Tkn,ℓn

∑

(i2,j2)∈Tkn,ℓn

(
2M4L

(1)
n,i1,j1,i2,j2

+(M4−3)+L
(2)
n,i1,j1,i2,j2

)

+ (M4−3)+




kn∑

i=−ℓn+1

ℓn∑

j1=−i+1

ℓn∑

j2=−i+1

L
(3)
j1,j2

(αrn) +

ℓn∑

j=−kn+1

kn∑

i1=−j+1

kn∑

i2=−j+1

L
(3)
i1,i2

(βrn)


 ,

where
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L
(1)
n,i1,j1,i2,j2

:= Cov
(
X

(rn)
i1−1,j1

−X
(rn)
i1,j1−1, X

(rn)
i2−1,j2

−X
(rn)
i2,j2−1

)2
,

L
(2)
n,i1,j1,i2,j2

:=
∑

(u,v)∈Ui1∧i2−1,j1∧j2−1

(αrn + βrn)
2(i1+j2+i2+j2−2−2u−2v)

×
(
P
(
S
(νrn )
i1+j1−1−u−v = i1 − u

)
− P

(
S
(νrn )
i1+j1−1−u−v = i1 − 1− u

))2

×
(
P
(
S
(νrn )
i2+j2−1−u−v = i2 − u

)
− P

(
S
(νrn )
i2+j2−1−u−v = i2 − 1− u

))2
,

L
(3)
i1,i2

(ν) :=

i2∧i2−1∑

u=−∞

ν2(i1+i2−2−2u) ≤ 1

1− ν2
, 0 < |ν| < 1.

Obviously,

1

n4

∑

(i1,j1)∈Tkn,ℓn

∑

(i2,j2)∈Tkn,ℓn

L
(1)
n,i1,j1,i2,j2

=

∫∫

T

∫∫

T

(
r1/2n Cov

(
Z

(n)
0,1 (s1, t1)−Z

(n)
1,0 (s1, t1), Z

(n)
0,1 (s2, t2)−Z

(n)
1,0 (s2, t2)

))2
ds1dt1ds2dt2,

where due to (1.7), Propositions 2.4, 2.7 and Fatou’s lemma the right hand side converges
to 0 as n → ∞. Furthermore, using Remark 2.6 one can find an upper bound for

L
(2)
n,i1,j1,i2,j2

, namely

L
(2)
n,i1,j1,i2,j2

≤ Dζ(5/4)

(αrnβrn)
3(i1 ∨ i2 + j1 ∨ j2)1/4

with some positive constant D. Hence,

1

n4

∑

(i1,j1)∈Tkn,ℓn

L
(2)
n,i1,j1,i2,j2

≤ 20Dζ(5/4)

(αrnβrn)
3n1/4

→ 0

as n → ∞. Finally, if νrn denotes one of the sequences αrn or βrn we have

lim
n→∞

1

n4

kn∑

i=−ℓn+1

ℓn∑

j1=−i+1

ℓn∑

j2=−i+1

L
(3)
j1,j2

(νrn) ≤ lim
n→∞

1

n(1− ν2rn)
= 0,

that completes the proof. �

Proof of Proposition 6.2. Using the same techniques as in the proof of Proposition
4.2 with the help of representation (6.5) one can show that

1

n4

n∑

m=1

E
(
(Qn,m −Qn,m−1)

4
∣∣Fn

m−1

) P−→ 0 as n → ∞.
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