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Mathématique, Université Libre de Bruxelles, Campus de la Plaine CP 210, 1050

Bruxelles, BELGIUM

Abstract

The so-called independent component (IC) model states that the observed p-vector X

is generated via X = ΛZ +µ, where µ is a p-vector, Λ is a full-rank matrix, and the
centered random vector Z has independent marginals. We consider the problem of
testing the null hypothesis H0 : µ = 0 on the basis of i.i.d. observations X1, . . . ,Xn

generated by the symmetric version of the IC model above (for which all ICs have
a symmetric distribution about the origin). In the spirit of Hallin & Paindaveine
(2002a), we develop nonparametric (signed-rank) tests, which are valid without any
moment assumption and are, for adequately chosen scores, locally and asymptot-
ically optimal (in the Le Cam sense) at given densities. Our tests are measurable
with respect to the marginal signed ranks computed in the collection of null residuals
Λ̂−1Xi, where Λ̂ is a suitable estimate of Λ. Provided that Λ̂ is affine-equivariant, the
proposed tests, unlike the standard marginal signed-rank tests developed in Puri &
Sen (1971) or any of their obvious generalizations, are affine-invariant. Local powers
and asymptotic relative efficiencies (AREs) with respect to Hotelling’s T 2 test are
derived. Quite remarkably, when Gaussian scores are used, these AREs are always
greater than or equal to one, with equality in the multinormal model only. Finite-
sample efficiencies and robustness properties are investigated through a Monte-Carlo
study.
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1 Introduction

Let X1, . . . , Xn be a sample of p-variate random vectors generated by the
location-scatter model

Xi = ΛZi + µ, i = 1, . . . , n,

where the p-vector µ is the location center, the full-rank p × p matrix Λ is
called the mixing matrix, and the Zi’s are i.i.d. standardized p-variate random
vectors. We consider the multivariate one-sample location problem, that is,
we wish to test H0 : µ = 0 versus H1 : µ 6= 0 (any other null value µ0 can be
tested by replacing Xi with Xi − µ0). Of course, different standardizations of
the Zi’s lead to different location-scatter models—and to different definitions
of µ and Λ. Such models include

• The multinormal model: Zi has a standard multinormal distribution. This
is a parametric model with mean vector µ and covariance matrix Σ = ΛΛ′.

• The elliptic model: Zi has a spherical distribution around the origin (OZi
D
=

Zi for any orthogonal p× p matrix O; throughout,
D
= stands for equality in

distribution) with Med[‖Zi‖2] = χ2
p,.5, where Med[·] denotes the population

median and χ2
ℓ,α denotes the α quantile of the χ2

ℓ distribution. This is a
semiparametric model with symmetry center µ and scatter matrix Σ = ΛΛ′

(in the multinormal submodel, Σ is the covariance matrix).
• The symmetric independent component (IC) model: the components of Zi

are independent and symmetric (−Z
(r)
i

D
= Z

(r)
i ) with Med[(Z

(r)
i )2] = χ2

1,.5,
r = 1, . . . , p. This is a semiparametric model with symmetry center µ and
mixing matrix Λ (again, in the multinormal submodel, Σ = ΛΛ′ is the co-
variance matrix). This model is used in the so-called independent component
analysis (ICA), where the problem is to estimate Λ.

• The symmetric nonparametric model: Zi has a distribution symmetric

around the origin (−Zi
D
= Zi). Then, neither Λ nor Σ are uniquely defined.

Note that the semiparametric/nonparametric models above do not require any
moment assumption, and that µ, irrespective of the model adopted, is properly
identified as the center of symmetry of Xi. The assumption of symmetry is
common in the one-sample location case. It is for example quite natural in
the classical matched pairs design for the comparison of two treatments: if for
pair i, i = 1, . . . , n, the response variable is X1i = Yi + ε1i +µ1 for treatment 1
and X2i = Yi +ε2i +µ2 for treatment 2, with mutually independent Yi, ε1i, and

ε2i (
D
= ε1i), then the difference used in the analysis, namely Xi = X2i −X1i, is

symmetric about µ = µ2−µ1. The literature proposes a vast list of multivariate
one-sample location tests. Some of the tests do not require symmetry; note
however that only in the symmetric case the different tests are for the same
population quantity. The tests include
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• The Hotelling’s T 2 test, which is equivalent to the Gaussian likelihood ratio
test (and actually is uniformly most powerful affine-invariant at the multi-
normal), is asymptotically valid (i.e., asymptotically meets the nominal level
constraint) under any distribution with finite variances. However, its power
is poor away from the multinormal (particularly so under heavy tails), and
it is also very sensitive to outlying observations.

• The optimal signed-rank scores tests by Hallin and Paindaveine (2002a,b)
are based on standardized spatial signs (or Randles’ interdirections; see Ran-
dles (1989) for the corresponding sign test) and the ranks of Mahalanobis
distances between the data points and the origin. They do not require any
moment assumption and are optimal (in the Le Cam sense) at correctly
specified (elliptical) densities. They are affine-invariant, robust, and highly
efficient under a broad range of densities (AREs of their Gaussian-score
version with respect to Hotelling’s test are uniformly larger than or equal
to one in the elliptic model). Later Oja & Paindaveine (2005) showed that
interdirections together with the so-called lift-interdirections allow for build-
ing hyperplane-based versions of these tests. All these tests however strictly
require ellipticity.

• The signed-rank scores tests by Puri & Sen (1971) combine marginal signed-
rank scores tests in the widest symmetric nonparametric model. Unfortu-
nately, these tests are not affine-invariant and may be poorly efficient for
dependent margins. Invariant tests are obtained if the data points are first
transformed to invariant coordinates; see Chakraborty & Chaudhuri (1999)
and Nordhausen et al. (2006).

• The spatial sign and signed-rank tests (for a review, see Möttönen & Oja,
1995), which are based on spatial signs and signed ranks, are also valid
in the symmetric nonparametric model. They improve over the Puri and
Sen tests in terms of efficiency, but not in terms of affine-invariance. Again,
affine-invariance can be achieved if the data is first transformed by using
any scatter matrix (the spatial sign test based on Tyler (1987)’s scatter
matrix is strictly distribution-free in the elliptic model and even in the
wider directional elliptic model; see Randles (2000)).

• The sign and signed-rank tests by Hettmansperger et al. (1994, 1997) are
based on multivariate Oja signs and ranks. They can be used in all models
above, are asymptotically equivalent to spatial sign and signed-rank tests in
the spherical case, and are affine-invariant. However, at the elliptic model,
their efficiency (as well as that of the spatial sign and signed-rank tests)
may be poor when compared with the Hallin and Paindaveine tests.

Only the Hallin & Paindaveine (2002a,b) and Oja & Paindaveine (2005) tests
combine robustness and affine-invariance with a locally optimal—and uni-
formly excellent—power behavior. The required ellipticity assumption, how-
ever, may not be appropriate in practice. This model assumption is often easily
discarded just by a visual inspection of bivariate scatter plots or marginal den-
sity plots; equidensity contours should be elliptical, and the marginal densities
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should be similar in shape. The IC model which serves as an alternative exten-
sion of the multivariate normal model cannot be ruled out as easily in practice.
Of course, more statistical tools should be developed for the important model
choice problem.

This paper introduces signed-rank tests which enjoy the nice properties of the
Hallin & Paindaveine (2002a) ones (absence of moment assumption, robust-
ness, affine-invariance, Le Cam optimality at prespecified densities, uniform
dominance over Hotelling for Gaussian scores, etc.), but are valid in the sym-
metric IC model. The proposed tests are marginal signed-rank tests (with
optimal scores) applied to the residuals Λ̂−1Xi, i = 1, . . . , n, where Λ̂ is a suit-
able (see Section 3) estimate of the mixing matrix Λ. Although they are based
on marginal signed-rank statistics, our tests, unlike the marginal Puri and Sen
signed-rank tests or any of their obvious generalizations, are affine-invariant.

The outline of the paper is as follows. Section 2 defines more carefully the
IC models under consideration. Section 3 introduces the proposed tests and
studies their asymptotic null behavior. In Section 4, we explain how to choose
score functions to achieve Le Cam optimality at prespecified densities, derive
the local powers of our tests under contiguous alternatives, and compute their
AREs with respect to Hotelling’s T 2 test. Section 5 discusses the practical
implementation of our tests and presents a simulation that investigates their
finite-sample efficiencies and robustness properties. Finally, the appendix col-
lects proofs of technical results.

2 IC models and identifiability

In the absolutely continuous case, the IC model will be indexed by the location
vector µ, mixing matrix Λ, and the pdf g of the standardized vectors. The loca-
tion vector µ is a p-vector and Λ belongs to the collection Mp of invertible p×p
matrices. As for g, it throughout belongs to the collection F of densities of ab-
solutely continuous p-vectors Z = (Z(1), . . . , Z(p))′ whose marginals are (i) mu-
tually independent, (ii) symmetric about the origin (i.e., −Z(r) D

= Z(r) for all
r), and (iii) standardized so that Med[(Z(r))2] = χ2

1,.5 for all r = 1, . . . , p. Any

g ∈ F of course decomposes into z = (z(1), . . . , z(p))′ 7→ g(z) =:
∏p

r=1 gr(z
(r)).

Denote then by P n
µ,Λ,g, g ∈ F , the hypothesis under which the p-variate ob-

servations X1, . . . , Xn are generated by the model Xi = ΛZi + µ, i = 1, . . . , n,
where Zi = (Z

(1)
i , . . . , Z

(p)
i )′, i = 1, . . . , n are i.i.d. with pdf g. Clearly, the likeli-

hood, under P n
µ,Λ,g, is given by Ln

µ,Λ,g = |det Λ|−n∏n
i=1(

∏p
r=1 gr(e

′
rΛ

−1(Xi−µ))),
where er is the vector with a one in position r and zeros elsewhere.

In the symmetric IC model above, the location parameter µ is the unique
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center of symmetry of the common distribution of the Xi’s and therefore
is a well-defined parameter. In sharp contrast, the parameters Λ and g are
not identifiable: letting P be any p × p permutation matrix and S be any
p × p diagonal matrix with diagonal entries in {−1, 1}, one can write Xi =
(ΛPS)(SP−1Zi) + µ =: Λ̃Z̃i + µ, where Z̃i still satisfies (i), (ii) and (iii)
above. If g̃ is the density of Z̃i, then P n

µ,Λ,g = P n
µ,Λ̃,g̃

. This indeterminacy can

be avoided by requiring, for instance, that marginal densities are given in a
specified (e.g., kurtosis) order and that the entry having largest absolute value
in each column of Λ is positive.

In the independent component analysis (ICA) one wishes to find an estimate
of any Λ such that Λ−1Xi has independent components. If Λ−1Xi has inde-
pendent components then so has DSPΛ−1Xi, where D is any diagonal matrix
with positive diagonal elements. This same identifiability problem is well rec-
ognized in the ICA literature, and it has been proven (see, e.g., Theis (2004)
for a simple proof) that these three sources of non-identifiability are the only
ones, provided that not more than one IC is Gaussian, an assumption that is
therefore made throughout in the ICA literature. Note that the third source
of non-identifiability D is avoided in our model building by fixing the scales
of the marginals of Zi in (iii) above. In the classical ICA the estimation of Λ
is the main goal, whereas in our problem it is only a primary device to yield
the components used for the testing. The sign-change or permutation of the
components will not be a problem in our test construction. We naturally also
would like to deal with distributions where there are more than one Gaussian
IC. In particular, we do not want to rule out the multinormal case, for which
all ICs are Gaussian! Quite fortunately, the resulting lack of identifiability will
not affect the behavior of our tests (we discuss this further in Section 5).

3 The proposed tests

Define the (null) residual associated with observation Xi and value Λ of
the mixing matrix as Zi(Λ) := Λ−1Xi. The signed ranks of these residu-

als are the quantities Si(Λ)Ri(Λ), with Si(Λ) := (S
(1)
i (Λ), . . . , S

(p)
i (Λ))′ and

Ri(Λ) := (R
(1)
i (Λ), . . . , R

(p)
i (Λ))′, i = 1, . . . , n, where S

(r)
i (Λ) := I

[Z
(r)
i (Λ)>0]

−
I
[Z

(r)
i (Λ)<0]

is the sign of Z
(r)
i (Λ) and R

(r)
i (Λ) is the rank of |Z(r)

i (Λ)| among

|Z(r)
1 (Λ)|, . . . , |Z(r)

n (Λ)|. Let K(r) : (0, 1) → R, r = 1, . . . , p be score func-
tions and consider the corresponding p-variate score function K defined by
u = (u(1), . . . , u(p))′ 7→ K(u) := (K(1)(u(1)), . . . , K(p)(u(p)))′. We throughout
assume that the K(r)’s are (i) continuous, (ii) satisfy

∫ 1
0 (K(r)(u))2+δ du < ∞

for some δ > 0, and (iii) can be expressed as the difference of two monotone
increasing functions. These assumptions are required for Hájek’s classical pro-
jection result for linear signed-rank statistics; see, e.g., Puri & Sen (1985),
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Chapter 3 (actually, Hájek’s result requires square-integrability rather than
the reinforcement of square integrability in (ii); we will need the latter how-
ever to control the unspecification of Λ; see the proof of Lemma 3.3 below).

The (K-score version of the) test statistic we propose is then

QK(Λ) := (TK(Λ))′Γ−1
K TK(Λ),

where TK(Λ) := n−1/2∑n
i=1 TK;i(Λ) := n−1/2∑n

i=1[Si(Λ)⊙K(Ri(Λ)
n+1

)] and ΓK :=

diag(E[(K(1)(U))2], . . . , E[(K(p)(U))2]); throughout, ⊙ denotes the Hadamard
(i.e., entrywise) product and U stands for a random variable that is uniformly
distributed over (0, 1).

The asymptotic behavior of QK(Λ) can be investigated quite easily by using
the representation result in Lemma 3.1 below. In order to state this result, we
define z = (z(1), . . . , z(p))′ 7→ G+(z) := (G

(1)
+ (z(1)), . . . , G

(p)
+ (z(p)))′, where G

(r)
+

stands for the cdf of |Z(r)
1 (Λ)| under P n

0,Λ,g. Symmetry of gr yields G
(r)
+ (t) =

2G(r)(t)−1, where t 7→ G(r)(t) =
∫ t
−∞ gr(s) ds is the cdf of Z

(r)
1 (Λ) under P n

0,Λ,g.

Lemma 3.1 Define TK;g(Λ) := n−1/2∑n
i=1 TK;g;i(Λ) := n−1/2∑n

i=1[Si(Λ) ⊙
K(G+(|Zi(Λ)|))], where |Zi(Λ)| := (|Z(1)

i (Λ)|, . . . , |Z(p)
i (Λ)|)′. Then, for any

Λ ∈ Mp and g ∈ F , E[‖TK(Λ) − TK;g(Λ)‖2] = o(1) as n → ∞, under P n
0,Λ,g.

Lemma 3.1 implies that under the null—hence also under sequences of con-
tiguous alternatives (see Section 4.2 for the form of those alternatives)—TK(Λ)
is asymptotically equivalent to TK;g(Λ), where g is the “true” underlying noise
density. Since TK;g(Λ) is a sum of i.i.d. terms, the asymptotic null distribution
of TK(Λ) then follows from the multivariate CLT.

Lemma 3.2 For any Λ ∈ Mp, TK(Λ), under ∪g∈F{P n
0,Λ,g}, is asymptotically

multinormal with mean zero and covariance matrix ΓK.

It readily follows from Lemma 3.2 that QK(Λ), under ∪g∈F{P n
0,Λ,g}, is asymp-

totically chi-square with p degrees of freedom. The resulting test therefore
consists in rejecting the null at asymptotic level α iff QK(Λ) > χ2

p,1−α.

Of course, as already mentioned, Λ in practice is unspecified and should be re-
placed with some suitable estimate Λ̂. The choice of this estimate is discussed
in Section 5, but we will throughout assume that Λ̂ is (i) root-n consistent,
(ii) invariant under permutations of the observations, and (iii) invariant un-
der individual reflections of the observations with respect to the origin (i.e.,
Λ̂(s1X1, . . . , snXn) = Λ̂(X1, . . . , Xn) for all s1, . . . , sn ∈ {−1, 1}). The replace-
ment of Λ with Λ̂ in QK(Λ) yields the genuine test statistic Q̂K := QK(Λ̂).
The following result establishes that this replacement has no effect on the
asymptotic null behavior of the test (see the appendix for a proof).
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Lemma 3.3 For any Λ ∈ Mp, TK(Λ̂) = TK(Λ) + oP (1) (hence also Q̂K =
QK(Λ) + oP (1)) as n → ∞, under ∪g∈F{P n

0,Λ,g}.

The following theorem, which is the main result of this section, is then a direct
corollary of Lemmas 3.2 and 3.3.

Theorem 3.1 Under ∪Λ∈Mp ∪g∈F {P n
0,Λ,g}, Q̂K is asymptotically χ2

p, so that,
still under ∪Λ∈Mp ∪g∈F {P n

0,Λ,g}, the test φK that rejects the null as soon as

Q̂K > χ2
p,1−α has asymptotic level α.

The behavior of our tests under local alternatives will be studied in Section 4.

Let us finish this section with some particular cases of the proposed test statis-
tics Q̂K . To this end, write Ŝi and R̂i for the empirical signs Si(Λ̂) and ranks
Ri(Λ̂), respectively. Then (i) sign test statistics are obtained with constant
score functions (K(r)(u) = 1 for all r, say). The resulting test statistics are

Q̂S = T̂ ′
ST̂S =

1

n

n
∑

i,j=1

Ŝ ′
iŜj =

1

n

n
∑

i,j=1

p
∑

r=1

Ŝ
(r)
i Ŝ

(r)
j . (1)

(ii) Wilcoxon-type test statistics, associated with linear score functions (K(r)(u) =
u for all r, say), take the form

Q̂W = 3 T̂ ′
W T̂W =

3

n(n + 1)2

n
∑

i,j=1

p
∑

r=1

Ŝ
(r)
i Ŝ

(r)
j R̂

(r)
i R̂

(r)
j . (2)

(iii) Gaussian (or van der Waerden) scores are obtained with K(r)(u) =
Φ−1

+ (u) = Φ−1((u + 1)/2), where Φ is the cdf of the standard normal dis-
tribution. The corresponding test statistics are

Q̂vdW = T̂ ′
vdWT̂vdW =

1

n

n
∑

i,j=1

p
∑

r=1

Ŝ
(r)
i Ŝ

(r)
j Φ−1

+

(

R̂
(r)
i

n + 1

)

Φ−1
+

( R̂
(r)
j

n + 1

)

. (3)

As we show in the next section, this van der Waerden test is optimal in the
Le Cam sense (more precisely, locally and asymptotically maximin) at the
multinormal submodel.

4 Optimality, local powers, and AREs

In this section, we exploit Le Cam’s theory of asymptotic experiments in order
to define versions of our tests that achieve Le Cam optimality under correctly
specified noise densities. We also study the behavior of our tests under se-
quences of local alternatives and compare their asymptotic performances with
those of Hotelling’s T 2 test in terms of asymptotic relative efficiencies (AREs).
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4.1 Local asymptotic normality and optimal signed-rank tests

The main technical result here is the locally and asymptotically normal (LAN)
structure of the IC model with respect to µ, for fixed values of Λ and g.
Such LAN property requires more stringent assumptions on g. Define accord-
ingly FLAN as the collection of noise densities g ∈ F that (i) are absolutely
continuous and (ii) have finite Fisher information for location, i.e., Igr :=
∫∞
−∞(ϕgr(z))2gr(z) dz < ∞ for all r, where, denoting by g′

r the a.e.-derivative
of gr, we let ϕgr := −g′

r/gr. For g ∈ FLAN, define the p-variate optimal location
score function ϕg by z = (z(1), . . . , z(p))′ 7→ ϕg(z) := (ϕg1(z

(1)), . . . , ϕgp(z
(p)))′.

We then have the following LAN result, which is an immediate corollary of
the more general result established in Oja et al. (2008).

Proposition 4.1 For any Λ ∈ Mp and g ∈ FLAN, the family of distributions
Pn

Λ,g := {P n
µ,Λ,g, µ ∈ R

p} is LAN. More precisely, for any p-vector µ and any
bounded sequence of p-vectors (τn), we have that (letting Si(µ, Λ) stand for the
sign of Zi(µ, Λ) := Λ−1(Xi − µ)) (i) under P n

µ,Λ,g, as n → ∞,

log
(

dP n
µ+n−1/2τn,Λ,g/dP n

µ,Λ,g

)

= τ ′
n∆

(n)
µ,Λ,g −

1

2
τ ′
nΓΛ,gτn + oP (1),

with central sequence ∆
(n)
µ,Λ,g := n−1/2(Λ−1)′

∑n
i=1 ϕg(Zi(µ, Λ)) = n−1/2(Λ−1)′

∑n
i=1[Si(µ, Λ)⊙ϕg(|Zi(µ, Λ)|)] and information matrix ΓΛ,g := (Λ−1)′IgΛ

−1 :=

(Λ−1)′diag(Ig1 , . . . , Igp)Λ
−1, and that (ii) still under P n

µ,Λ,g, ∆
(n)
µ,Λ,g is asymp-

totically multinormal with mean zero and covariance matrix ΓΛ,g.

Fix now some noise density f ∈ FLAN. Le Cam’s theory of asymptotic ex-
periments (see, e.g., Chapter 11 of Le Cam (1986)) implies that an f -optimal
(actually, locally and asymptotically maximin at f) test for H0 : µ = 0 versus
H1 : µ 6= 0, under fixed Λ ∈ Mk, consists, at asymptotic level α, in rejecting
the null as soon as

Qf (Λ) :=
(

∆
(n)
0,Λ,f

)′
Γ−1

Λ,f ∆
(n)
0,Λ,f > χ2

p,1−α.

Letting Kf be the p-variate score function defined by K(r) := ϕfr ◦ F−1
+r ,

r = 1, . . . , p (with the same notation as in Section 3), one straightforwardly
checks that Qf(Λ) = (TKf ;f(Λ))′ Γ−1

Kf
TKf ;f(Λ), which, by Lemmas 3.1 and 3.3

(provided that the score function Kf satisfies the assumptions of Section 3), is

asymptotically equivalent to Q̂Kf
under P n

0,Λ,f . Therefore, denoting by Fopt
LAN

the collection of densities f ∈ FLAN for which the Kfr ’s (i) are continuous, (ii)
satisfy

∫ 1
0 (Kfr(u))2+δ du < ∞ for some δ > 0, and (iii) can be expressed as the

difference of two monotone increasing functions, we have proved the following.

Theorem 4.1 For any f ∈ Fopt
LAN, the test φKf

that rejects the null as soon as

Q̂Kf
> χ2

p,1−α (i) has asymptotic level α under ∪Λ∈Mp ∪g∈F {P n
0,Λ,g} and (ii)
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is locally and asymptotically maximin, at asymptotic level α, for ∪Λ∈Mp ∪g∈F
{P n

0,Λ,g} against alternatives of the form ∪µ6=0 ∪Λ∈Mp {P n
µ,Λ,f}.

This justifies the claim (see the end of the previous section) stating that the
van der Waerden version of the proposed signed-rank tests is optimal at the
multinormal model. More generally, Theorem 4.1 indicates how to achieve Le
Cam optimality at a fixed (smooth) noise density f .

4.2 Local powers and asymptotic relative efficiencies

Local powers of our signed-rank tests φK under local alternatives of the
form P n

n−1/2τ,Λ,g
, g ∈ FLAN can be straightforwardly computed from the fol-

lowing result (the proof is given in the appendix).

Theorem 4.2 Fix g ∈ FLAN and define IK,g := diag(IK(1),g1
, . . . , IK(p),gp

),

with IK(r),gr
:= E[K(r)(U) ϕgr((G

(r)
+ )−1(U))], where U is uniformly distributed

over (0, 1). Then, Q̂K is asymptotically χ2
p(τ

′(Λ−1)′IK,gΓ
−1
K IK,gΛ

−1τ) under
P n

n−1/2τ,Λ,g
, where χ2

ℓ(c) stands for the noncentral chi-square distribution with ℓ
degrees of freedom and noncentrality parameter c.

This also allows for computing asymptotic relative efficiencies (AREs) with
respect to our benchmark competitor, namely Hotelling’s T 2 test. In the fol-
lowing result (see the appendix for a proof), we determine these AREs at
any g belonging to the collection F2

LAN of noise densities in FLAN with finite
variances. We want to stress however that our signed-rank tests φK , unlike
Hotelling’s test, remain valid without such moment assumption, so that, when
the underlying density does not admit a finite variance, the ARE of any φK

with respect to Hotelling’s test actually can be considered as being infinite.

Theorem 4.3 Fix g ∈ F2
LAN. Then the asymptotic relative efficiency of φK

with respect to Hotelling’s T 2 test, when testing H0 : µ = 0 against H1(τ) :
µ = n−1/2τ , under mixing matrix Λ ∈ Mp and noise density g, is given by

AREΛ,τ,g[φK , T 2] =
τ ′(Λ−1)′IK,gΓ

−1
K IK,gΛ

−1τ

τ ′(Λ−1)′Σ−1
g Λ−1τ

, (4)

where Σg := diag(σ2
g1

, . . . , σ2
gp

), with σ2
gr

:=
∫ z
−∞ z2gr(z) dz.

For p = 1, φK (resp., T 2) boils down to the standard univariate location
signed-rank test φuniv

K based on the score function K (resp., to the one-sample
Student test St), and the ARE in (4) reduces to the well-known result

AREuniv
Λ,τ,g[φ

univ
K , St] =

σ2
g I2

K,g

E[K2(U)]
, (5)
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which does not depend on τ , nor on Λ. For p ≥ 2, however, the ARE in (4)

depends on τ and Λ. Letting v = (v(1), . . . , v(p))′ :=
Σ

−1/2
g Λ−1τ

‖Σ−1/2
g Λ−1τ‖

, we can write

AREΛ,τ,g[φK , T 2] =
p
∑

r=1

(v(r))2
σ2

r I2
K(r),gr

E[(K(r)(U))2]
=

p
∑

r=1

(v(r))2 AREuniv
Λ=1,τ (r),gr

[φuniv
K(r), St],

(6)
which shows that AREΛ,τ,g[φK , T 2] can be seen as a weighted mean of the cor-
responding univariate AREs (those of the univariate signed-rank tests with
respect to Student’s). The weights depend on the shift τ through the “stan-
dardized” shift Λ−1τ ; if the latter is in the direction of the rth coordinate axis,
then AREΛ,τ,g[φK , T 2] = AREuniv

Λ=1,τ (r),gr
[φuniv

K(r), St]. In all cases, irrespective of
τ and Λ, AREΛ,τ,g[φK , T 2] always lies between the smallest and the largest
“univariate” AREs in {AREuniv

Λ=1,τ (r),gr
[φuniv

K(r), T
2], r = 1, . . . , p}.

This explains that it is sufficient to give numerical values for these univariate
AREs. Such values are provided in Table 1, for various scores (sign, Wilcoxon,
and van der Waerden scores, as well as scores achieving optimality at fixed
t distributions) and various underlying densities (t, Gaussian, and power-
exponential densities with lighter-than-normal tails). Power-exponential den-
sities refer to densities of the form gη(r) = cη exp(−aηr

2η), where cη is a
normalization constant, η > 0 determines the tail weight, and aη > 0 stan-
dardizes gη in the same way as the marginal densities in F (see Section 2).

underlying density

t3 t6 t12 N e2 e3 e5

S 1.621 0.879 0.733 0.637 0.411 0.370 0.347

W 1.900 1.164 1.033 0.955 0.873 0.881 0.907

score vdW 1.639 1.093 1.020 1.000 1.129 1.286 1.533

t12 1.816 1.151 1.040 0.981 0.973 1.024 1.102

t6 1.926 1.167 1.026 0.936 0.820 0.800 0.779

t3 2.000 1.124 0.944 0.820 0.569 0.479 0.385

Table 1
AREs of various univariate signed-rank tests (with sign, Wilcoxon, and van der
Waerden scores, as well as scores achieving optimality under t12, t6, and t3 densities)
with respect to Student’s test, under t (with 3, 6, 12 degrees of freedom), Gaussian,
and power-exponential densities (with tail parameter η = 2, 3, 5).

All numerical values for the van der Waerden signed-rank test φvdW in Table 1
are larger than one, except in the normal case, where it is equal to one. This
is an empirical illustration of the Chernoff and Savage (1958) result showing
that AREuniv

Λ=1,τ,g[φ
univ
vdW , St] ≥ 1 for all τ and g (with equality iff g is Gaussian).

Hence, (6) entails that, in the IC model under consideration, the AREs of our
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p-variate van der Waerden test φvdW , with respect to Hotelling’s, are always
larger than or equal to one, with equality in the multinormal model only.

Coming back to the general expressions of our AREs in (4) and (6), it is clear
(in view of (5)) that, in order to maximize the local powers/AREs above with
respect to the score function K, one should maximize the cross-information
quantities IK(r),gr

, r = 1, . . . , p. The Cauchy-Schwarz inequality shows that

IK(r),gr
is maximal at K(r) = ϕgr ◦ (G

(r)
+ )−1, which confirms the rule for deter-

mining optimal score functions that was derived in Section 4.1.

5 Practical implementation and simulations

In this section, we first focus on the main issue for the practical implemen-
tation of our tests, namely the estimation of the mixing matrix Λ. Several
approaches are possible, but the approach presented in Oja et al. (2006) is
chosen here. Then finite-sample efficiencies and robustness properties of our
tests are investigated through Monte-Carlo studies.

Computations were done using the statistical software package R 2.6.0 (R De-
velopment Core Team, 2007). Note that the proposed method for estimating Λ
is implemented in the R-package ICS (Nordhausen et al., 2007a), whereas the
tests proposed in this paper are implemented in the R-package ICSNP (Nord-
hausen et al., 2007b). Both packages are available on the CRAN website.

5.1 Estimation of Λ

An interesting way to obtain a root-n consistent estimate of Λ is to use two
different root-n consistent scatter matrix estimates as in Oja et al. (2006).

Let X be a p-variate random vector and denote its cdf by FX . A scatter matrix
functional S (with respect to the null value of the location center, namely the
origin) is a p × p matrix-valued functional such that S(FX) is positive defi-
nite, symmetric, and affine-equivariant in the sense that S(FAX) = AS(FX)A′,
∀A ∈ Mp. Examples of scatter matrices are the covariance matrix Scov(FX) :=
E[XX ′], the scatter matrix based on fourth-order moments Skurt(FX) :=
E [(X ′(Scov(FX))−1X)XX ′] , and Tyler (1987)’s scatter matrix STyl defined
implicitly by STyl(FX) = E [(X ′(STyl(FX))−1X)−1XX ′] .

As we now show, the mixing matrix Λ can be estimated by using a couple of dif-
ferent scatter matrices (S1, S2). Recall that our tests require a root-n consistent
estimate of Λ under the null, that is, under Pn

0 := {P n
0,Λ,g, Λ ∈ Mp, g ∈ F}.

11



However, since Λ is not identifiable in Pn
0 (see Section 2), estimation of Λ is

an ill-posed problem. We therefore restrict to a submodel by using a couple
of scatter matrices (S1, S2) as follows.

Define the model Pn
0 (S1, S2) as the collection of probability distributions of

(X1, . . . , Xn) generated by Xi = ΛZi, i = 1, . . . , n, where Zi = (Z
(1)
i , . . . , Z

(p)
i )′,

i = 1, . . . , n are i.i.d. from a distribution FZ for which S1(FZ) = I and
S2(FZ) = Ω, where Ω = (Ωij) is diagonal with Ω11 > Ω22 > . . . > Ωpp(> 0).
Theorem 5.3 of Tyler et al. (2008) and our assumption that Z has independent
and symmetric marginals imply that Sℓ(FZ), ℓ = 1, 2 are diagonal matrices, so
that this submodel actually only imposes that the quantities Ωrr, r = 1, . . . , p
are pairwise different. Before discussing the severity of this restriction, we
note that Pn

0 (S1, S2) takes care of the permutation (and scale) indetermina-
tion by merely assuming that the ICs are first standardized in terms of their
“S1-scales” and then ordered according to their “(S1, S2)-kurtoses”. As for the
signs of the ICs, they can be fixed by requiring, e.g., that the entry having
largest absolute value in each column of Λ is positive (and similarly with Λ̂);
see Section 2.

Most importantly, the affine-equivariance of S1 and S2 then implies that

(S2(FX))−1S1(FX)(Λ−1)′ = (Λ−1)′Ω−1 (7)

(where X stands for a p-variate random vector with the same distribution
as Xi, i = 1, . . . , n), that is, Λ−1 and Ω−1 list the eigenvectors and eigenvalues
of (S2(FX))−1S1(FX), respectively. Replacing S1(FX) and S2(FX) with their
natural estimates Ŝ1 and Ŝ2 in (7) yields estimates Λ̂ and Ω̂. Clearly, if Ŝ1

and Ŝ2 are root-n consistent, then Λ̂ is root-n consistent as well. Since our
tests are based on statistics that are invariant under heterogeneous rescaling
and reordering of the ICs, their versions based on such a Λ̂ will remain valid
(i.e., will meet the asymptotic level constraint) independently of the particular
signs, scales, and order of the ICs fixed above in Pn

0 (S1, S2). Note that their
optimality properties, however, require to order the scores Kfr , r = 1, . . . , p
according to the corresponding “(S1, S2)-kurtoses”.

As we have seen above, the only restriction imposed by Pn
0 (S1, S2) is that the

“(S1, S2)-kurtoses” of the ICs are pairwise different, so that the ordering of the
ICs is well-defined. Note that this rules out cases for which two (or more) ICs
would be identically distributed. More precisely, consider the case for which
exactly k(≥ 2) ICs are equally distributed and the distributions of the remain-
ing p − k ICs are pairwise different. Then the estimator Λ̂ above allows for
recovering the p−k ICs with different distributions, but estimates the remain-
ing k ones up to some random rotation. Note however that if those k ICs are
Gaussian, the components of Λ̂−1X—conditional on this random rotation—
converge in distribution to Z (since—possibly rotated—uncorrelated Gaussian
variables with a common scale are independent), so that the asymptotic null
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distribution of our test statistics is still χ2
p (also unconditionally, since this

conditional asymptotic distribution does not depend on the value of the ran-
dom rotation). As a conclusion, while our tests, when based on such Λ̂, would
fail being valid when several ICs share the same distribution, they are valid in
the case where the only equally distributed ICs are Gaussian, which includes
the important multinormal case.

If however one thinks that ruling out equally distributed non-Gaussian ICs is
too much of a restriction, then he/she can still use a root-n consistent estimator
of Λ that does not require this assumption. See for example Hyvärinen et al.
(2001) for an overview.

5.2 Finite-sample performances

We conducted a simulation study in the trivariate case (p = 3) in order to
evaluate the finite-sample performances of our signed-rank tests.

We started by generating i.i.d. centered random vectors Zi = (Z
(1)
i , Z

(2)
i , Z

(3)
i )′,

i = 1, . . . , n (we used n = 50 and n = 200) with marginals that are standard-

ized so that Med[(Z
(r)
1 )2] = 1, r = 1, 2, 3. We considered four settings with the

following marginal distributions for Z
(1)
1 , Z

(2)
1 , and Z

(3)
1 :

Setting I: t9, Gaussian, and power-exponential with η = 2 (see Section 4.2)
distributions

Setting II: t3, t6, and Gaussian distributions
Setting III: t1, t6, and Gaussian distributions
Setting IV: three Gaussian distributions (the multinormal case).

Denoting by Iℓ the ℓ-dimensional identity matrix, samples were then obtained
from the IC models Xi = ΛZi + µ, i = 1, . . . , n, with mixing matrix Λ = I3

(this is without loss of generality, since all tests involved in this study are
affine-invariant) and location values µ = 0 (null case) and µ = n−1/2τℓer, ℓ =
1, 2, 3, 4, r = 1, 2, 3, (cases in the alternative), where τ1 = 2.147, τ2 = 3.145,
τ3 = 3.966, and τ4 = 4.895 were chosen so that the asymptotic powers of
Hotelling’s T 2 test, in Setting IV, are equal to .2, .4, .6, and .8, respectively.

First, we studied the sensitivity of our tests with respect to the choice of the
estimator Λ̂ in Setting I. To this end, we considered three estimators in the
class of estimators introduced in Section 5.1:

(1) The estimator Λ̂1 is based on S1 = Scov and S2 = Skurt; root-n consistency
of Λ̂1 requires finite eighth-order moments.

(2) The estimate Λ̂2 is based on S1 = STyl and S2 = SDüm, where SDüm stands
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for Dümbgen (1998)’s scatter matrix (which is the symmetrized version of
STyl); although Λ̂2 is root-n consistent without any moment assumption,

it does not fulfill the assumptions of Section 3, since SDüm (hence also Λ̂2)
is not invariant under individual sign changes of observations.

(3) Finally, defining Srank = E[Ψ−1
p (F‖S−1/2

Tyl
X‖(‖S

−1/2
Tyl X‖)) XX′

X′S−1
Tyl

X
], where Ψp

denotes the distribution function of a χ2
p random variable, the estimate Λ̂3,

based on S1 = STyl and S2 = Srank fulfills all the assumptions of Section 3
and is root-n consistent without any moment conditions.

For the sake of comparison, we also considered the unrealistic case for which Λ
is known. For brevity reasons we refrain from showing the results and only
point out that the behavior of our tests does not depend much on the choice
of the estimator for Λ. Actually even knowing the true value of Λ did not show
to be of any clear advantage. However, it is crucial that the estimator Λ̂ that
is used is root-n consistent, which, in Setting I, is the case of Λ̂i, i = 1, 2, 3. In
Settings I, II and III, the “(S1, S2)-kurtoses” from (1), (2) and (3) order the
marginal distributions in the same way.

Second, we compared, in Settings I to IV, several versions of our tests with
Hotelling’s T 2 test. We considered the following signed-rank tests: the sign
test based on Q̂S in (1), the Wilcoxon test based on Q̂W in (2), and the van
der Waerden test based on Q̂vdW in (3). In each setting, we also included
the corresponding optimal signed-rank test (based on Q̂Kf

in Section 4.1); we

denote by Q̂I
opt, Q̂II

opt, and Q̂III
opt the statistics of these setting-dependent tests

(the optimal test in Setting IV is the van der Waerden test based on Q̂vdW).
Of course, these optimal tests use the unspecified underlying density, which
is unrealistic, but this is done in order to check how much is gained, in each
setting, by using optimal scores. Since the properties of the proposed tests are
not very sensitive to the choice of Λ̂, each signed-rank test was based on the
estimator Λ̂3 (only the latter satisfies our assumptions on Λ̂ in all settings).
All tests were performed at asymptotic level 5%.

Figures 1 to 4 report rejection proportions (based on 5,000 replications) and
asymptotic powers of the above tests in Settings I to IV, respectively. We
should stress that preliminary simulations showed that, under the null in Set-
ting I, the van der Waerden test and the test based on Q̂I

opt, when based on
their asymptotic chi-square critical values, are conservative and significantly
biased at small sample size n = 50. In order to remedy this, we rather used crit-
ical values based on the estimation of the (distribution-free) quantile of the test
statistic under µ = 0 and under known value Λ = I3 of the mixing parameter.
These estimations, just as the asymptotic chi-square quantile, are consistent
approximations of the corresponding exact quantiles under the null, and were
obtained, for the van der Waerden test and the test based on Q̂I

opt, as the em-
pirical 0.05-upper quantiles q.95 of the corresponding signed-rank test statistics
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Fig. 1. Rejection proportions (for n = 50 and n = 200, based on 5, 000 replications)
and asymptotic powers, in Setting I, of Hotelling’s T 2 test and of the Λ̂3-based
versions of the sign, Wilcoxon, van der Waerden, and Setting I-optimal signed-rank
tests. The integer r indicates in which coordinate the shift occurs.

in a collection of 10, 000 simulated (standard) multinormal samples, yielding
qvdW
.95 = 7.239 and qopt,I

.95 = 6.859, respectively. These bias-corrected critical
values both are smaller than the asymptotic chi-square one χ2

3,.95 = 7.815, so
that the resulting tests are uniformly less conservative than the original ones.
Note that these critical values were always applied when any of those tests
were used with n = 50 since in practice one does not know the underlying
distribution. In all other cases (i.e., for all other tests at n = 50, and for all
tests at n = 200), the asymptotic chi-square critical value χ2

3,.95 was used.

Based on the simulation studies we therefore recommend that for small sam-
ple sizes one should calculate the p-value based on simulations or just use
a conditionally distribution-free test version. This is not a problem with the
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Fig. 2. Rejection proportions (for n = 50 and n = 200, based on 5, 000 replications)
and asymptotic powers, in Setting II, of Hotelling’s T 2 test and of the Λ̂3-based
versions of the sign, Wilcoxon, van der Waerden, and Setting II-optimal signed-rank
tests. The integer r indicates in which coordinate the shift occurs.

current speed of computers, and all three approaches have been implemented
in the package ICSNP. Our simulations show that alternative ways to calcu-
late p-values are needed especially when one of the score functions Kfr used
is associated with a light-tailed density fr.

A glance at the rejection proportions under the null in Figures 1 to 4 shows
that all signed-rank tests appear to satisfy the 5% probability level constraint.
In particular, for n = 50, the bias-corrected versions of the tests based on Q̂vdW

and on Q̂I
opt are reasonably unbiased, whereas the asymptotic χ2

3 approxima-
tion seems to work fine in all other cases. Note that Hotelling’s T 2 test satisfies
the 5% probability level constraint also in Setting III, which was unexpected
since one of the marginals (the t1 distributed one) has infinite second-order
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Fig. 3. Rejection proportions (for n = 50 and n = 200, based on 5, 000 replications)
and asymptotic powers, in Setting III, of Hotelling’s T 2 test and of the Λ̂3-based
versions of the sign, Wilcoxon, van der Waerden, and Setting III-optimal signed-rank
tests. The integer r indicates in which coordinate the shift occurs.

moments whereas in all other settings Hotelling’s T 2 seems to reject too often.

As for the power properties, the proposed signed-rank tests behave uniformly
well in all settings, unlike Hotelling’s test, which, for instance, basically never
detects the shift in the t1 component of Setting III (still, it should be noticed
that, in the same setting, Hotelling’s test works pretty well if the shift is
another component; we will explain this unexpected behavior of Hotelling’s
test in Section 5.3 below). In Setting II (see Figure 2), Hotelling’s test competes
reasonably well with our tests for small sample sizes, when the shift occurs in a
heavy-tailed component. For larger sample sizes, however, our tests outperform
Hotelling’s and, except for Q̂S, behave essentially as Hotelling’s test when the
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Fig. 4. Rejection proportions (for n = 50 and n = 200, based on 5, 000 replications)
and asymptotic powers, in Setting IV, of Hotelling’s T 2 test and of the Λ̂3-based
versions of the sign, Wilcoxon, and van der Waerden (which is optimal in Setting IV)
signed-rank tests. Without loss of generality (since the underlying distribution is
spherically symmetric), the shift occurs in the first coordinate only.

shift occurs in the Gaussian component (this is totally in line with the ARE
values in Table 1). Note that when a light-tailed component is present as
in Setting I (see Figure 1), our tests perform as expected. Furthermore the
proposed tests also work well in the multinormal model (Figure 4), although Λ̂3

is there only a random rotation; see the comments at the end of Section 5.1.

As a conclusion, our optimal tests exhibit very good finite-sample perfor-
mances in IC models, both in terms of level and power.

5.3 Robustness evaluation

In this section, we investigate the robustness properties of the proposed signed-
rank tests (in the bivariate case) by studying their power functions under
contamination, and by comparing the results with Hotelling’s test.

Starting with bivariate i.i.d. random vectors Zi = (Z
(1)
i , Z

(2)
i )′, i = 1, . . . , n

(we used n = 50 in this section) with centered t3 and Gaussian marginals
in the first and second components, respectively (still standardized so that

Med[(Z
(r)
1 )2] = 1, r = 1, 2), we generated bivariate observations according to

Xi = ΛZi + τ√
n
(0, 1)′, i = 1, . . . , n, where Λ = I2 and where τ = 3.301 is so

that the asymptotic power of Hotelling’s test (at asymptotic level α = .05)
is .5. For any fixed δ = (δ(1), δ(2))′ ∈ R

2, denote then by X(δ) the sample of
size n obtained by replacing the first observation X1 with X1 + δ.
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Fig. 5. Estimates of the power functions power(δ, T 2), power(δ,QvdW(Λ)),
power(δ,QvdW(Λ̂1)), and power(δ,QvdW(Λ̂3)). The sample size is n = 50 and the
estimation is based on 1, 000 replications.

Clearly, the value of a test statistic computed on X(δ)—hence, also the power
of the corresponding test—depends on δ. For any test φ rejecting H0 : µ = 0
at asymptotic level α whenever Q > χ2

2,1−α, we define the power function of φ
as δ 7→ power(δ, Q) := P [Q(X(δ)) > χ2

2,1−α]. Of course, this function can be
estimated by generating a large number of independent samples X(δ) and by
computing rejection frequencies.

We estimated the power functions over δ = (±5i,±5j)′, with i, j = 0, . . . , 10,
of Hotelling’s T 2 test and of two versions of the van der Waerden signed-rank
tests based on (3): the first one (resp., the second one) is based on Λ̂1 (resp.,
on Λ̂3), where Λ̂i, i = 1, 3 are as in Section 5.2. To be in line with what we
did there, all van der Waerden tests were based on an estimate (under the
null) of the exact (at n = 50) distribution-free 95%-quantile of the known-Λ
van der Waerden test statistic. In this bivariate case, this estimated quantile,
based on 10, 000 independent values of this statistic, took the value 5.354
(< 5.991 = χ2

2,.95).

Figure 5 presents the estimated power functions (based on 1,000 replications)
of Hotelling’s T 2 test and of the Λ̂3-based van der Waerden test. Results for
the Λ̂1-based version of the latter are not shown since they are very similar to
those of the Λ̂3-based one (which is actually surprising since one would guess
that the lack of robustness of Λ̂1 would severely affect the test).
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Quite unexpectedly, for δ(2) = 0, the power of Hotelling’s test does not suffer
under the value of δ(1). It is even so that compared with the non-contaminated
case δ = 0, for which the power functional of Hotelling has the value .516, the
functional shows higher power for |δ(1)| < 10 and 0 < δ(2) ≤ 10. However, if
|δ(2)| is large, the power drops quickly, especially so when there is no or little
contamination in δ(1). The power can then drop even below the size value
of .05; e.g., at δ = (0,−20)′, it is only .012.

The puzzling robustness of Hotelling’s test with respect to an outlying obser-
vation in the first variate can be explained as follows. Let X = (X1 X2 · · · Xn)
be a sample of i.i.d. p-variate observations (whose common distribution admits
finite second-order moments) and partition it into

(

X1

X2

)

=

(

X11 X21 · · · Xn1

X12 X22 · · · Xn2

)

,

where the Xi1’s are random variables and the Xi2’s are (p−1)-random vectors.
Now, by using (14) in Rencher (1993), it can be shown that, if one replaces
X1 = (X11, X

′
12)

′ with (X11+δ, X ′
12)

′ and lets δ → ∞, then, under the assump-
tion (as in the setting above) that the Xi2’s are i.i.d. with mean τ/

√
n and co-

variance matrix Σ22, limδ→∞ T 2(X) = T 2(X2)+1+oP(1)
L→ χ2

p−1(τ
′Σ−1

22 τ)+1,
as n → ∞, where

L→ denotes convergence in law. This is to be compared with
the asymptotic χ2

p(τ
′Σ−1

22 τ) distribution of T 2(X) under the assumption that
the Xi = (X ′

i1, X
′
i2)

′’s are i.i.d. with mean (0, τ ′)′ and with an arbitrary co-
variance matrix such that Var[Xi2] = Σ22. For small dimensions p, obtaining
(by contaminating a single observation) a χ2

p−1(τ
′Σ−1

22 τ)+1 distribution rather

than the expected χ2
p(τ

′Σ−1
22 τ) one can bias the results considerably.

Hence, one can say that an outlier in one variate (i) destroys all information
about that variate and (ii) biases the result for the “remaining data”. This
also explains the unexpected behavior of Hotelling’s test in Setting III of Sec-
tion 5.2: the t1-distributed variate can be seen as a completely contaminated
variate which therefore basically contains no information; still, Hotelling’s test
can detect shifts in the remaining variates.

Figure 5 shows that on the other hand the test based on QvdW(Λ̂3) proves
much more robust than Hotelling’s and is hardly affected by the value of δ1.
Note that if the contamination δ2 is negative (resp., positive), the power of
this test slightly goes down (resp., up) as δ1 goes through the Zi1 data cloud.
This slight decrease (resp., increase) of the power function can be explained by
the fact that, for any negative (resp., positive) value of δ2, the contaminated
observation—with the scale used in our setting—immediately gets the smallest
(resp., largest) rank assigned. The range of the QvdW(Λ̂3)-power function in
Figure 5 goes from .193 to .582, which is comparable with those associated
with QvdW(Λ) (from .263 to .576) and with QvdW(Λ̂1) (from .237 to .580).
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A Proofs of Lemmas 3.1, 3.2, and 3.3

In this section, we will write, T
(r)
K (Λ) (resp., T

(r)
K;g(Λ)) for the rth component

of TK(Λ) (resp., of TK;g(Λ)), r = 1, . . . , p.

Proof of Lemma 3.1. Fix Λ ∈ Mp, g ∈ F , and r ∈ {1, . . . , p}. Then, un-

der P n
0,Λ,g, the vector of signs (S

(r)
1 (Λ), . . . , S(r)

n (Λ)) collects i.i.d. random vari-

ables with P n
0,Λ,g[S

(r)
i (Λ) = 1] = P n

0,Λ,g[S
(1)
i (Λ) = −1] = 1/2, (ii) the vector of

ranks (R
(r)
1 (Λ), . . . , R(r)

n (Λ)) is uniformly distributed over the set of all permu-
tations of {1, 2, . . . , n}, and (iii) the vector of signs is independent of the vector
of ranks. Consequently, Hájek’s classical projection result for signed rank linear
statistics (see, e.g., Puri and Sen 1985, Chapter 3) yields that E[(T

(r)
K (Λ) −

T
(r)
K;g(Λ))2] = E[(n−1/2∑n

i=1 S
(r)
i (Λ)[K(r)(

R
(r)
i (Λ)

n+1
) − K(r)(G

(r)
+ (|Z(r)

i (Λ)|))])2] is
o(1) under P n

0,Λ,g, as n → ∞, which establishes the result. �

Note that this also shows that E[(K(r)(R
(r)
1 (Λ)/(n+1))−K(r)(G

(r)
+ (|Z(r)

1 (Λ)|)))2]

= E[(n−1/2∑n
i=1 S

(r)
i (Λ)[K(r)(R

(r)
i (Λ)/(n+1))−K(r)(G

(r)
+ (|Z(r)

i (Λ)|))])2] is o(1)
as n → ∞, under P n

0,Λ,g.

Proof of Lemma 3.2. Fix Λ ∈ Mp and g ∈ F . For any r = 1, . . . , p, the

CLT shows that T
(r)
K;g(Λ) is, under P n

0,Λ,g, asymptotically normal with mean

zero and variance E[(K(r)(U))2]. Therefore, the mutual independence (still

under P n
0,Λ,g) of T

(r)
K;g(Λ), r = 1, . . . , p entails that TK;g(Λ) is asymptotically

multinormal with mean zero and covariance matrix ΓK . The result then follows
from Lemma 3.1. �

It remains to prove Lemma 3.3. We do so by showing that, for any Λ ∈ Mp,
g ∈ F , and r ∈ {1, . . . , p},

E[(T
(r)
K (Λ̂) − T

(r)
K (Λ))2] = o(1) (A.1)
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as n → ∞, under P n
0,Λ,g. In the rest of this section, we therefore fix such Λ, g,

and r. All expectations and stochastic convergences will then be under P n
0,Λ,g,

and we will write Z
(r)
i , S

(r)
i , and R

(r)
i for Z

(r)
i (Λ), S

(r)
i (Λ), and R

(r)
i (Λ), respec-

tively. Finally, we will denote the empirical counterparts of these quantities
(based on Λ̂) by Ẑ

(r)
i , Ŝ

(r)
i , and R̂

(r)
i .

We will need the following preliminary result.

Lemma A.1 As n → ∞, (i) Ẑ
(r)
1 −Z

(r)
1 = oP (1), (ii) E[(K(r)(R̂

(r)
1 /(n+1))−

K(r)(G
(r)
+ (|Z(r)

1 (Λ)|)))2] = o(1) and (iii) E[|Ŝ(r)
1 − S

(r)
1 |a] = o(1) for any a > 0.

Proof of Lemma A.1. (i) Denoting by ‖A‖L the sup norm of the array A,

we have |Ẑ(r)
1 − Z

(r)
1 | ≤ ‖Ẑ1 − Z1‖ ≤ ‖Λ̂−1 − Λ−1‖L‖X1‖. The claim therefore

follows from the root-n consistency of Λ̂.

(ii) Applying Lemma 2 of Peters & Randles (1990), with α = (vec Λ) and

g(X, α) = |e′r[Λ−1X]| yields that (R̂
(r)
1 /(n+1))−G

(r)
+ (|Z(r)

1 |) is o(1) as n → ∞
(note that Conditions (a)-(b) of that lemma are fulfilled: (a) is our root-n
consistency assumption on Λ̂, whereas (b) can be checked exactly along the
same lines as in Peters & Randles (1990), once it is noticed that ||e′r[(Λ +
n−1/2L)−1X]| − |e′r[Λ−1X]|| ≤ ‖[(Λ + n−1/2L)−1 −Λ−1]X‖, for any fixed p× p
matrix L).

Now, the continuity of K(r) entails that

K(r)
(

R̂
(r)
1

n + 1

)

− K(r)(G
(r)
+ (|Z(r)

1 |)) (A.2)

is oP (1) as n → ∞. To prove that this convergence also holds in quadratic
mean (which is precisely Part (ii) of the lemma), it is sufficient to show
that (A.2) is uniformly integrable. The second term in (A.2) is of course uni-

formly integrable since the integrable random variable Kr(G
(r)
+ (|Z(1r)

1 |)) does

not depend on n. As for the first term in (A.2), recall that K(r)(R
(r)
1 /(n +

1)) − K(r)(G
(r)
+ (|Z(r)

1 |)) = oL2(1) as n → ∞ (see the remark after the proof

of Lemma 3.1), which implies that K(r)(
R

(r)
1

n+1
) is uniformly integrable. Finally,

the latter uniform integrability and the invariance of Λ̂ under permutations

of the observations in turn imply that K(r)(
R̂

(r)
1

n+1
) is uniformly integrable. We

conclude that (A.2) is indeed uniformly integrable, and the result follows.

(iii) Since Ŝ
(r)
1 − S

(r)
1 = (|Ẑ(r)

1 |−1 − |Z(r)
1 |−1)Ẑ

(r)
1 + |Z(r)

1 |−1(Ẑ
(r)
1 − Z

(r)
1 ), we

have |Ŝ(r)
1 − S

(r)
1 | ≤ 2|Ẑ(r)

1 − Z
(r)
1 |/|Z(r)

1 | =: Y
(r)
1 . Now, fix some δ > 0. Then,

for all η > 0, P [Y
(r)
1 > δ] ≤ P [Y

(r)
1 I

[|Z(r)
1 |<η]

> δ/2] + P [Y
(r)
1 I

[|Z(r)
1 |≥η]

> δ/2]

≤ P [|Z(r)
1 | < η]+P [Y

(r)
1 I

[|Z(r)
1 |≥η]

> δ/2] =: p
(n)
1 +p

(n)
2 , say. For all ε > 0, there
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exists η = η(ε) such that p
(n)
1 < ε/2. As for p

(n)
2 , note that Y

(r)
1 I

[|Z(r)
1 |≥η]

≤
(2/η)|Ẑ(r)

1 − Z
(r)
1 |, so that Part (i) of the lemma entails that p

(n)
2 < ε/2 for

large n. We conclude that |Ŝ(r)
1 −S

(r)
1 | ≤ Y

(r)
1 converges to zero in probability,

which establishes the result (since |Ŝ(r)
1 − S

(r)
1 | is bounded). �

Proof of Lemma 3.3. We have to prove (A.1). Since the proof of Lemma 3.1

establishes that E[(T
(r)
K (Λ) − T

(r)
K;g(Λ))2] = o(1) as n → ∞, it is sufficient

to show that E[(T
(r)
K (Λ̂) − T

(r)
K;g(Λ))2] = o(1) as n → ∞. To do so, write

T
(r)
K (Λ̂)−T

(r)
K;g(Λ) = H1 +H2, with H1 := n−1/2∑n

i=1 Ŝ
(r)
i (K(r)(R̂

(r)
i /(n+1))−

K(r)(G
(r)
+ (|Z(r)

i |))) and H2 := n−1/2∑n
i=1 (Ŝ

(r)
i −S

(r)
i ) K(r)(G

(r)
+ (|Z(r)

i |)). Then,
by using the invariance of Λ̂ under individual reflections of the observations
about the origin, we obtain

E[(H1)
2] =

1

n

n
∑

i=1

E[(Ŝ
(r)
i )2(K(r)(R̂

(r)
i /(n + 1)) − K(r)(G

(r)
+ (|Z(r)

i |)))2]

=E[(K(r)(R̂
(r)
1 /(n + 1)) − K(r)(G

(r)
+ (|Z(r)

1 |)))2]

and, by using Holder’s inequality,

E[(H2)
2] =

1

n

n
∑

i=1

E[(Ŝ
(r)
i − S

(r)
i )2 (K(1))2(G

(r)
+ (|Z(r)

i |))] =

E[(Ŝ
(r)
1 − S

(r)
1 )2 (K(r)(G

(r)
+ (|Z(r)

1 |)))2] ≤ (E[(Ŝ
(r)
1 − S

(r)
1 )

2dδ
δ ])

δ
dδ (E[(K(r)(U))dδ ])

2
dδ ,

where dδ := 2 + δ, U is uniformly distributed over (0, 1), and δ > 0 is the
real number involved in our assumptions on K(r) (see the beginning of Sec-

tion 3). By applying Lemma A.1(ii)-(iii), we then conclude that E[(T
(r)
K (Λ̂)−

T
(r)
K;g(Λ))2] ≤ 2(E[(H1)

2] + E[(H2)
2]) is o(1) as n → ∞. �

B Proofs of Theorems 4.2 and 4.3

Proof of Theorem 4.2. Fix Λ ∈ Mp and g ∈ FLAN. Applying successively
Lemmas 3.3 and 3.1 yields that, as n → ∞, under P n

0,Λ,g,

Q̂K = (TK;g(Λ))′Γ−1
K TK;g(Λ) + oP (1). (B.1)

Recall that TK;g(Λ), under P n
0,Λ,g, is asymptotically multinormal with mean

zero and covariance matrix ΓK ; see the proof of Lemma 3.2. Now, it is easy to
see that, under P n

0,Λ,g, TK;g(Λ) and the local log-likelihood log(dP n
n−1/2τ,Λ,g

/dP n
0,Λ,g)

asymptotically are jointly multinormal with covariance IK,gΛ
−1τ . Le Cam’s

third Lemma thus yields that TK;g(Λ), under P n
n−1/2τ,Λ,g

, is asymptotically
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multinormal with mean IK,gΛ
−1τ and covariance matrix ΓK . The result then

follows from the fact contiguity implies (B.1) holds also under P n
n−1/2τ,Λ,g

. �

Proof of Theorem 4.3. Fix Λ ∈ Mp and g ∈ F2
LAN. In this proof, all

expectations, variances, and covariances are under P n
0,Λ,g.

Since Var[X1] = ΛΣgΛ
′ (where Σg is defined in the statement of the the-

orem), we have that S := 1
n

∑n
i=1(Xi − X̄)(Xi − X̄)′ = ΛΣgΛ

′ + oP (1) as
n → ∞, under P n

0,Λ,g. Consequently, letting Zi := Zi(Λ) = Λ−1Xi and Z̄ :=
1
n

∑n
i=1 Zi, Hotelling’s test statistic T 2 satisfies T 2 = nX̄ ′S−1X̄ + oP (1) =

(
√

nZ̄)′Σ−1
g (

√
nZ̄)+oP (1) as n → ∞, under P n

0,Λ,g, hence also under P n
n−1/2τ,Λ,g

(from contiguity). Clearly,
√

nZ̄ is asymptotically multinormal with mean zero
and covariance matrix Σg under P n

0,Λ,g. Proceeding as in the previous proof,
one then shows that

√
nZ̄ and the local log-likelihood log(dP n

n−1/2τ,Λ,g
/dP n

0,Λ,g)
asymptotically are jointly multinormal under P n

0,Λ,g, with asymptotic covari-
ance Λ−1τ . Le Cam’s third Lemma thus implies that

√
nZ̄, under P n

n−1/2τ,Λ,g
,

is asymptotically multinormal with mean Λ−1τ and covariance matrix Σg.
Therefore, T 2 is asymptotically χ2

p(τ
′(Λ−1)′Σ−1

g Λ−1τ) under P n
n−1/2τ,Λ,g

.

This establishes the result since the AREs of φK with respect to Hotelling’s T 2

test are obtained by computing the ratios of the noncentrality parameters in
their respective asymptotic distributions under local alternatives. �
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