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Abstract
Semiparametric linear transformation models have received much attention due to its high flexibility
in modeling survival data. A useful estimating equation procedure was recently proposed by Chen
et al. (2002) for linear transformation models to jointly estimate parametric and nonparametric terms.
They showed that this procedure can yield a consistent and robust estimator. However, the problem
of variable selection for linear transformation models is less studied, partially because a convenient
loss function is not readily available under this context. In this paper, we propose a simple yet
powerful approach to achieve both sparse and consistent estimation for linear transformation models.
The main idea is to derive a profiled score from the estimating equation of Chen et al. (2002), construct
a loss function based on the profile scored and its variance, and then minimize the loss subject to
some shrinkage penalty. Under regularity conditions, we have shown that the resulting estimator is
consistent for both model estimation and variable selection. Furthermore, the estimated parametric
terms are asymptotically normal and can achieve higher efficiency than that yielded from the
estimation equations. For computation, we suggest a one-step approximation algorithm which can
take advantage of the LARS and build the entire solution path efficiently. Performance of the new
procedure is illustrated through numerous simulations and real examples including one microarray
data.
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1. Introduction
In the last three decades, various semiparametric models have been proposed and extensively
studied for the analysis of censored survival data. Among them, the proportional hazards model
(Cox, 1972) and its associated partial likelihood principle (Cox, 1975) are commonly used in
practice due to its nice theoretical properties and empirical performance. However, the
proportional hazards assumption is often too restrictive and may be violated in some biomedical
applications. Thus, other semiparametric models which relax such an assumption provide
useful alternatives. For example, if the hazard functions of two treatment groups converge to
the same limit, the proportional odds model (Pettitt, 1982, 1984; Bennett, 1983; Dabrowska
and Doksum, 1988; Murphy et al. 1997) is preferable to the proportional hazards model. More
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generally, a class of linear transformation models (Bickel et al., 1993; Cheng et al., 1995; Fine
et al., 1998; Zeng and Lin, 2006; Zeng and Lin, 2007) have been proposed as a flexible
alternative approach to modeling survival data. The linear transformation model is specified
by

(1.1)

where H is an unknown monotone increasing function, Z = (Z1,⋯,Zd)′ are the d-dimensional
covariates, β = (β1,⋯,βd)′ is the regression parameter vector, and ε has a known continuous
distribution that is independent of Z. Linear transformation models form a rich class and include
the proportional hazards (PH) model and the proportional odds (PO) model as special cases:
the PH model corresponds to an error with the extreme value distribution and the PO model to
an error following the logistic distribution. In addition, if ε follows the standard normal
distribution, the model (1.1) naturally generalizes the usual Box-Cox transformation models.

In this paper, we consider the problem of model selection and estimation for (1.1) when the
true model has a sparse representation, i.e. some components of β are exactly zero. Let  =
{j : βj ≠ 0, j = 1,⋯,d}. Our goal is to discover the important index set  and estimate the
corresponding coefficients consistently. Variable selection is fundamental to survival data
analysis, since it helps medical researchers build more interpretable models without
information loss and in the long run leads to better disease diagnosis and treatment. Traditional
procedures include stepwise selection and best subset procedures. However, these procedures
may suffer from high computational cost and selection variability (Breiman, 1996). Recently
some shrinkage methods have been proposed for Cox’s proportional hazards model based on
the penalized partial likelihood, including the LASSO (Tibshirani 1997), the SCAD (Fan and
Li, 2002) and the adaptive LASSO (Zou 2006;Zhang and Lu, 2007). For the proportional odds
model, Lu and Zhang (2007) suggested the penalized marginal likelihood method for variable
selection.

There has been less development for variable selection in semiparametric linear
transformational models. This is partially due to substantial challenges in fitting linear
transformation models: the lack of a convenient loss function and the need of estimating an
infinite-dimensional parameter. Furthermore, most estimation procedures for linear
transformation models are based on estimating equations (e.g., Cheng et al., 1995; Fine et al.,
1998; Chen et al., 2002), which makes it difficult to incorporate a shrinkage penalty for variable
selection as done for Cox’s proportional hazards model. In this paper, we propose a simple yet
powerful approach to achieve both sparse and consistent estimation for linear transformation
models. The main idea is to derive a profiled score from the estimating equation of Chen et al.
(2002), construct a loss function based on the profile score and its variance, and then minimize
the constructed loss subject to some shrinkage penalty. Variable selection for estimating
equations has drawn a lot of attention in other contexts and been recently studied by Fu
(2003), Qu and Li (2006), and Johnson et al. (2008). In particular, Johnson et al. (2008)
proposed an effective procedure which directly penalizes the estimation equation. It is noted
that their procedure does not yield exactly zeros, while our estimator penalizes a quadratic loss
constructed from the estimation equations and has sparsity property.

Our estimator is closely related to the least squares approximation (LSA) procedure of Wang
and Leng (2007). For the likelihood or more general loss based estimation procedures, Wang
and Leng (2007) proposed to penalize the second-order Taylor expansion of the loss function
instead of the loss function itself subject to a shrinkage penalty. They showed that this quadratic
approximation problem is not only easier to implement but also yields consistent and sparse
estimators for parametric models. In this paper, we have generalized the idea to estimating

Zhang et al. Page 2

J Multivar Anal. Author manuscript; available in PMC 2011 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



procedures where a loss function is not readily available, for example, the estimation equation
estimator. The new estimator is generally different from LSA, but we show that its one-step
estimation is asymptotically equivalent to the LSA. Compared to existing work for linear
transformation models, the new procedure makes several unique contributions: (i) it lays down
a general framework to construct a loss function based on the estimation equations, so that the
penalized method can be adopted for sparse estimation; (ii) the profiled score takes care of the
nonparametric component in a natural fashion; (iii) the new estimator has an improved
efficiency over the estimator resulted from the estimation equations.

The remainder of this article is organized as follows. Section 2 proposes the new estimator for
linear transformation models and studies asymptotic properties of the resulting estimator.
Section 3 introduces the computational algorithms for computing the estimates. Section 4
derives the variance estimates of the estimates and discusses the selection of the regularization
parameter. Sections 5 is devoted to simulation studies and real data analysis. Final remarks are
given in Section 6. Major technical derivations are contained in the Appendix section.

2. New Estimation for Linear Transformation Models
2.1. Methods

Assume that the failure time T is from model (1.1). In the presence of censoring, we observe
the event time T ̃i = min(Ti, Ci) and the censoring indicator δi = I(Ti ≤ Ci), where Ci is the
censoring time of subject i and I(·) is the indicator function. Here we assume that the censoring
variable Ci is independent of Ti given Zi. Suppose a random sample of n individuals is chosen,
then the observations consist of (T ̃i, δi, Zi), i = 1,…,n. Without loss of generality, we assume

that Z’s are standardized such that , for j = 1,⋯,d.

Let Ni(t) = δiI(T ̃i ≤ t) and Yi(t) = I(T ̃i ≥ t) respectively denote the counting and at-risk processes
of the ith subject. In addition, define

(2.1)

where Λ(·) is the known cumulative hazard function of ε and (β0, H0) are the true values of
(β, H). Using the counting process and its associated martingale theory (Fleming and
Harrington, 1991; Andersen et al., 1993), one can show that Mi(t) is a mean zero martingale
process. To estimate β and H, Chen et al. (2002) proposed a novel martingale-representation
based estimating equation approach, which solves the following equations:

(2.2)

Given β, the left-hand side of the second equation of (2.2) is monotone in H and therefore has
the unique solution, denoted by H ̃(·; β). Denote the solutions to (2.2) as β̃n and H ̃(·; β̃n). For
convenience, we call them as the EE (estimation equation) estimator in the rest of paper. Chen
et al. (2002) studied their theoretical properties and showed that  in
distribution as n → ∞, where Σ has a sandwich form Σ = A−1V (A−1)′. They also suggested
Ãn/n and Ṽn/n respectively as a consistent estimator of A and V, where Ãn ≡ Ãn{β̃n, H ̃(·; β̃n)}
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and Ṽn ≡ Ṽn{β̃n, H ̃(·; β̃n)}. See Chen et al. (2002) Section 2 for the expressions of A, V, Ãn and
Ṽn. We can define , which is a consistent estimator of Σ.

Variable selection is often challenging for the estimation procedure based on solving (2.2),
since there is not a convenient loss function available and the estimation involves an infinite
dimensional parameter H. To tackle these difficulties, we develop a new estimate procedure
in several steps. Firstly, we introduce the notion of the “profiled” score, which is computed by
plugging H ̃ into the left-side of the first equation in (2.2):

(2.3)

Note that the score Un depends on H implicitly. Secondly, we use Un and its variance estimate
to construct a loss function as

(2.4)

where the inverse variance  of the profiled score Un is the weight matrix. Later on, we show
that this particular choice of weight can provide gain in estimation efficiency. We will refer to
Dn as the weighted profiled score squares (WPSS). Dn is a continuous function in β. To achieve
sparse estimation, we finally propose minimizing

(2.5)

where the weights wj’s are pre-selected non-negative constants and λ > 0 is the tuning
parameter. When the weights wj’s are all equal to one, the selection procedure is based on the
LASSO penalty (Tibshirani 1997). A general choice of wj’s in (2.5) leads to the adaptive
LASSO penalty, recently studied in various contexts including linear models (Zou, 2006), LAD
regression models (Wang et al., 2007), the Cox proportional hazard models (Zhang and Lu,
2007;Zou, 2008), the proportional odds model (Lu and Zhang, 2007) and regression models
with auto-regressive errors (Wang et al., 2007). The weight wj’s are leverage factors used to
adjust penalties on individual regression coefficients, taking large values for unimportant
covariates and small values for important covariates. In this paper, we use wj = 1/|β̃j|, where
β̃n = (β̃1,⋯,β̃d)′. As shown in the next section, any root-n consistent estimator of β can be used
to construct the weights w, and they will assure the consistency the new estimator for both
model estimation and variable selection in theory

2.2. Asymptotic Properties
Now consider the following estimator

(2.6)

In this section, we study the asymptotic properties of β̂n. Without loss of generality, we assume
that the true important index set  = {1,⋯,q}, where q is an integer and 0 ≤ q ≤ d. Therefore
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we have , where β01 contains the first q nonzero components. We further
decompose the covariance matrix

where Σ11 is the first q × q submatrix of Σ. In addition, write , where β̂n1 consists
of all the nonzero coefficients.

In order to study the asymptotic properties of the new estimator, we assume the following
regularity conditions used in Chen et al. (2002):

(c1) The covariates Z are bounded with probability 1;

(c2) β0 belongs to the interior of a known compact set ℬ0 and H0 has a continuous and
positive derivative;

(c3) λ(·) ≡ Λ̇(·) is positive, ψ(·) ≡ λ̇(·)/λ(·) is continuous, and limt→−∞ λ(t) = 0 = limt→−∞
ψ(t);

(c4) τ is finite, satisfying P(T > τ) > 0 and P(C = τ) > 0;

(c5) A and V are finite and non-degenerate.

(c6)  for some finite and positive definite W.

In the following theorems, we establish the , selection consistency, and
asymptotic normality of the proposed estimator. The proofs are given in the Appendix sections.

THEOREM 1 Under the regularity conditions,

i. , then ‖β̂n − β0‖ = Op(n−1/2).

ii. (Selection consistency) If  and nλ → ∞, then P(β̂n2 = 0) → 1.

Remark 1: Based on the theoretical proof given in the Appendix, we can conclude that any
root-n consistent estimator of β can be used to construct the weights w’s. Both Theorems 1 and
2 hold as long as the reciprocal of weights are root-n consistent for β.

THEOREM 2 (Asymptotic normality) Under the regularity conditions, if  and nλ →
∞, then as n → ∞,

Remark 2: It is easy to see that, the efficiency of the new estimator for nonzero components is
improved over that of the corresponding full model estimator obtained from the estimation
equation because . The efficiency gain of the new estimator is due to the

weight matrix  used in (2.4). If the weight is chosen as the constant matrix, say, the identify
matrix, such an improvement in efficiency is not warranted.

Zhang et al. Page 5

J Multivar Anal. Author manuscript; available in PMC 2011 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



3. Computational Algorithm
To solve the minimization problem (2.6), we start with an initial estimator β̂[0] and approximate
Un(β) by its first order Taylor expansion around β̂[0]. Based on the theoretical results of Chen
et al. (2002), we have the following linear approximation for Un at the initial point

where Ãn/n can be regarded as the asymptotic derivative of  with respect to β. Then the
objective function D can be locally approximated by a quadratic form

where . With some algebraic derivation, this leads to the following
quadratic optimization problem

(3.1)

where . Since D ̃n(β) is quadratic in β, the corresponding
minimization problem can be easily solved using standard packages for computing LASSO,
such as the shooting algorithm (Fu 1998), the algorithm proposed by Osborne et al. (2000),
and lars algorithm (Efron et al., 2004). For the PEE estimator, we propose the following
iterative algorithm:

ALGORITHM:

step 1: Choose an initial estimator β̂[0].

step 2: Solve the second equation of (2.2) to obtain H ̃(·; β̂[0]).

step 3: Minimize (3.1) and denote the solution as β̂[1].

step 4: Set β̂[0] = β̂[1].

step 5: Go to step 2 until convergence.

Note that the algorithm above needs to update H ̃ iteratively by solving (2.2) at each step, which
can be computationally expensive in practice. Interestingly, if the initial estimator β̂[0] is chosen
good enough, one does not have to iterate the algorithm until its convergence and one-step
iteration is often sufficient. In particular, we suggest using the initial estimate β̂[0] = β̃n, from
Un(β̃n) = 0, due to its consistency. It is known that β̃n is , which assures that the
initial estimate is pretty close to the true parameter. The optimization problem in (3.1) then
becomes

(3.2)
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Remark 3: Interestingly, the one-step solution is asymptotically equivalent to the LSA
procedure (Wang and Leng, 2007) if there were a loss function to start with. In this sense, the
new procedure can be regarded as a generalization of the LSA to complicated models where
the LSA is not directly applicable due to the unavailability of a loss function.

The one-step procedure is in the same spirit of the one-step M-estimation (Le Cam, 1956). A
good overview of the one-step M-estimation can be found in Le Cam and Yang (1990) and
van der Vaart (1998). Similar discussions are also given by Fan and Li (2001) and Zou and Li
(2008) for the SCAD estimator. Our empirical experience shows that one-step iteration
performs very well for the new estimator. Another advantage of the one-step procedure is that
the entire solution path can be obtained using the lars package (Efron et al., 2004) in R.
Consequently, we suggest using the one-step estimator in practice and will demonstrate its
empirical performance in Section 6.

4. Variance Estimation and Parameter Tuning
In the following, we suggest two estimation formula for the covariance of the nonzero estimates
β̂n1. These two estimators are asymptotically equivalent. The first estimator is based on the

asymptotic normality result given in Theorem 3. Correspondingly, we can partition  as

Then the covariance of β̂n1 can be approximated as

(4.1)

Next, we derive a sandwich formula to approximate the covariance of β̂n1. Fan and Li (2001)
suggested that the local quadratic approximation (LQA) can be used to derive a sandwich
formula for computing the covariance of the nonzero SCAD estimates. In the following, we
apply the LQA approach to derive the covariance estimate for the nonzero PEE estimates. For
any nonzero βj, we can approximate its weighted L1 penalty with a local quadratic function

The nonzero PEE estimates is obtained by one-step optimization problem in (3.2), which can
be approximated by the following ridge-type regression

(4.2)

where . The solution of (4.2) is

(4.3)
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where E1 is the submatrix of E corresponding to the nonzero estimates. This leads to a sandwich
formula for the covariance estimation:

(4.4)

Remark 3. In theory, the optimal parameter λ in (4.4) goes to zero very fast, so the covariance
estimator based on the sandwich formula is asymptotically equivalent to the asymptotic
estimator given in (4.1). For finite samples, the sandwich estimator is generally smaller than
the asymptotic estimator, due to the non-vanishing term λD1. This pattern is also observed in
our numerical studies presented in next section.

To tune the parameter λ, many selection criteria such as cross validation (CV), generalized
cross validation (GCV), BIC and AIC selection can be used. Wang and Leng (2007) proved
that the BIC criterion is consistent for the LSA estimator, i.e. the optimal λ chosen by the BIC
can identify the true model with probability tending to one. Similarly, we can show that the
BIC criterion for the PEE estimator is also consistent. Our empirical experience also suggests
that the BIC gives the best performance for parameter tuning. So BIC is applied for parameter
tuning in all the following numerical examples. To be specific,

. Here dfλ is the number of nonzero
coefficients in β̂λ, a simple estimate for the degree of freedom (Zou et al. 2007).

5. Numerical Studies
5.1. Simulation Examples

Both the proportional hazards (PH) and proportional odds (PO) models are considered in our
numerical study. For each example, we compare our new estimators with the original
estimating equation method (EE) of Chen et al. (2002). In addition, for the PH models, we also
compare with the penalized partial likelihood (PPL) estimator proposed by Zhang and Lu
(2007); for the PO models, we compare with the penalized marginal likelihood (PML) estimator
of Lu and Zhang (2007). BIC is used for choosing the regularization parameter for each method.

We compare all the methods with regard to their overall mean squared error (MSE), point
estimation accuracy, and the variable selection performance. Following Tibshirani (1997), we
compute the MSE ≡ (β̂n − β0)TΣX(β̂n − β0) and report the average MSE over 500 simulations
for each method. Here ΣX is the population covariance matrix of the covariates. In term of
variable selection performance, we compare the average numbers of correct and incorrect zero
coefficients selected by each method. The numbers in parentheses are the standard errors. We
also demonstrate and compare the performance of the proposed two formula for covariance
estimation: the estimator (4.1) based on the asymptotic results and the sandwich formula (4.4).

The base design involves nine covariates (Z1, …,Z9), which are marginally standard normal
with pairwise correlation corr(zj, zk) = ρ|j−k|. A moderate correlation between covariates with
ρ = 0.5 is considered. The true coefficients β0 = (−1, −0.9, 0, 0, 0, −0.8, 0, 0, 0)′. Censoring
times are generated from the uniform distribution over [0, c0], where c0 is chosen to get the
desired censoring rate. We consider two censoring rates: 25% and 40%, and two sample sizes:
n = 100 and n = 200.

Table 1 summarizes the model estimation and variable selection results for EE, PEE, and PPL
for the PH model under four different settings. Overall, the PEE gives the smallest MSE in all
the settings, showing substantial improvement over the original EE estimator, and the PPL is
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slightly worse than the PEE. For example, when n = 100 and the censoring rate is 40%, their
average MSEs are respectively: EE 0.277, PEE 0.143, and PPL 0.177. When n = 200 and the
censoring rate is 25%, their average MSEs are respectively: EE 0.087, PEE 0.051, and PPL
0.053. With regard to variable selection, the PPL gives the model sizes closest to the truth 3,
the PEE gives slightly larger sizes, and the EE always gives the full model. For example, when
n = 100 and the censoring rate is 40%, their model sizes are respectively: PEE 3.620 and PPL
3.150. When n = 200 and the censoring rate is 25%, their model sizes are respectively: PEE
3.250 and PPL 3.034. Note that the PPL is based on the partial likelihood estimation and has
the oracle property (Zhang and Lu, 2007), so it is expected to be asymptotically optimal. In
this finite sample setting, we have observed that the new estimator PEE performs well and
gives comparable results with the PPL. When the sample size n increases, all the methods
demonstrate better performance. Table 2 summarizes the model estimation and variable
selection results for EE, PEE, and PML for the PO model. Again, we observe that the PEE
gives the smallest MSE in all the settings. Similar patterns are discovered as in the PH example;
see details in Table 2.

In summary, we observe that the PEE estimate gives much better improvement than the original
EE, in terms of both model estimation and variable selection. Compared with other likelihood
based methods, the PEE also gives comparable results. The unique features of the PEE include:
it can handle both the PH and PO models in one unified framework; the estimator is easy to
compute; its entire solution path can be obtained by taking advantage of existing software
LARS (Efron. et al., 2004).

To test the accuracy of the standard error formula proposed in Section 4, we compare the sample
standard errors (SEs) with their estimates. In Table 3, we summarize the average estimated

 given by the asymptotic estimator (4.1), the average estimated  given by the sandwich
formula (4.4), and those from Monte Carlo simulations (SE), when n = 200 and the censored
rate 25% and 40%, for both PH and PO models. The estimated standard errors of both methods
are reasonably close to the sample standard errors. Overall, the asymptotic estimator (4.1) gives
a better estimation than the sandwich formula. We also noted all the estimates tend to slightly
under-estimate the actual Monte Carlo standard errors. This is mainly because these two
formula are derived when either assuming a fixed λ or letting λ converge to zero quickly, which
does not take into account the variability due to different λ’s chosen across runs. Similar
patterns were observed for shrinkage methods in other situations (e.g., Tibshirani, 1997;Zhang
and Lu, 2007).

5.2. Primary Biliary Cirrhosis Data Analysis
The primary biliary cirrhosis (PBC) data was gathered from the Mayo Clinic trial in primary
biliary cirrhosis of liver conducted between 1974 and 1984. This data is provided in Therneau
and Grambsch (2000), and a more detailed account can be found in Dickson et al. (1989). In
this study, 312 patients from a total of 424 patients who agreed to participate in the randomized
trial are eligible for the analysis. For each patient, clinical, biochemical, serologic, and
histological parameters are collected. Of those, 125 patients died before the end of follow-up.
We study the dependence of the survival time on the following selected covariates: (1)
continuous variables: age (in years), alb (albumin in g/dl), alk (alkaline phosphatase in U/liter),
bil (serum bilirunbin in mg/dl), chol (serum cholesterol in mg/dl), cop (urine copper in µg/
day), plat (platelets per cubic ml/1000), prot (prothrombin time in seconds), sgot (liver enzyme
in U/ml), trig (triglycerides in mg/dl); (2) categorical variables: asc (0, absence of ascites; 1,
presence of ascites), ede (0 no edema; 0.5 untreated or successfully treated; 1 unsuccessfully
treated edema), hep (0, absence of hepatomegaly; 1, presence of hepatomegaly), sex (0 male;
1 female), spid (0, absence of spiders; 1, presence of spiders), stage (histological stage of
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disease, graded 1, 2, 3 or 4), trt (1 control, 2 treatment). We restrict our attention to the 276
observations without missing values. All seventeen variables are included in the model.

This data has been previously analyzed in literature with various estimation and variable
selection methods. Tibshirani (1997) fitted the PH model with the stepwise selection and with
the LASSO penalty based on the partial likelihood (PL) approach. Zhang and Lu (2007) further
studied the PPL estimation with the SCAD and the adaptive LASSO penalty. We fit the PEE
for the PH model and compare results with other methods. Table 4 summarizes the estimated
coefficients and the standard errors for various models. We found that the PEE selects eight
variables: age, oed,bil,alb, cop, sgot, prot and stage, which is the same set of variables chosen
by the PPL and the stepwise selection. Figure 1 depicts the solution path of the PEE estimator.

5.3. Lung Cancer Data Analysis
The data comes from the Veteran’s Administration lung cancer trial (Prentice, 1973). In this
trial, 137 males with advanced inoperable lung cancer were randomized to either a standard
treatment or chemotherapy. There are six covariates: Treatment (1=standard, 2=test), Cell type
(1=squamous, 2=small cell, 3=adeno, 4=large), Karnofsky score, Months from Diagnosis, Age,
and Prior therapy (0=no, 10=yes).

This data set has been analyzed by many authors. It was found that the proportional hazards
model may not fit the data well. For example, Bagdonavicius et al. (2003) considered the
generalized linear proportional hazards (GLPH) model (Bagdonavicius and Nikulin, 2002), a
natural alternative to the proportional hazards model. Their method rejected the proportional
hazards model in the favor of the GLPH model. In addition, Lam and Kuk (2001), fitted the
proportional odds model to a subset of the data of 97 patients with no prior therapy based on
the marginal likelihood approach, and Chen et al. (2002) fitted the linear transformation model
to the same subset of data using the martingale based estimating equations. Only two variables
Cell type and Karnofsky score were included in their analysis. They concluded that both Cell
type and Karnofsky score are significant.

For variable selection, Lu and Zhang (2007) fitted the PO model with all the covariates, using
the penalized marginal likelihood (PML) with the LASSO and the adaptive LASSO penalty.
Here we fit the same model with the PEE approach and BIC is used for parameter tuning. Table
5 summarizes the estimated coefficients and their standard errors by different methods. We
see that both the PEE and the PML select Cell type (small vs large, adeno vs large) and
Karnofsky score as important variables. This result is in good agreement with Lam and Kuk
(2001) and Chen et al. (2002). The bottom plot of Figure 1 depicts the solution path of the PEE
estimator, obtained by fitting the LARS package (Efron et. al. 2004) in R.

5.4. Microarray Data (DLBCL) Analysis
We now apply the PEE method to the high dimensional microarray gene expression data of
Rosenwald et al. (2002). The data consists of 240 diffuse large B-cell lymphoma (DLBCL)
patients, and the expressions of 7, 399 genes for each patient. Patients’ survival times were
recorded, and among them, 138 patients died during the follow-up method. There are two
purposes for this study; firstly, to predict patients’ survival time using gene expression
information; secondly, to identify important genes contributing to survival outcomes. This data
was analyzed by Li and Luan (2005). For data of such high dimensionality, a common practice
is to first conduct a preliminary gene filtering based on some univariate analysis, and then apply
a more sophisticated model-based analysis. Following Li and Luan (2005), we concentrate on
the top 50 genes selected using univariate Cox score.
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The data are randomly divided into two sets: the first 160 patients for the training set and the
remaining 80 patients for the testing set. The PH model is assumed. We apply both the PEE
and the PPL, and BIC is used for parameter tunings. The PEE selects totally 20 genes and the
PPL selects 13 genes. We notice that 9 out of 13 genes selected by PPL are also identified by
the PEE. To further confirm the contribution of the selected genes by the PEE, we also evaluate
the prediction performance of the PH model built with the training set on both the training and
the testing data sets. Figure 2 shows that the Kaplan-Meier estimates of survival functions for
the high-risk and low-risk groups of patients, defined by the predicted risk scores. The cut-off
value was determined by the median of the estimated scores from the training set, and the same
cutoff was applied to the testing data. It is seen that the model both fits the training data and
predicts the testing data pretty well, achieving a good separation of the two-risk groups. The
log-rank test of differences between two survival curves gives p-values of 0 and 0.0384 for the
training and testing data, respectively.

6. Discussion
The class of semiparametric linear transformation models has become more popular due to its
high flexibility. In this paper, we have proposed a method to improve upon the martingale
equations based estimation procedure of Chen et al. (2002) and achieve sparse estimation. It
was shown that the new estimator achieves a higher efficiency than the estimator of Chen et
al. (2002). The numerical results also demonstrate the competitive performance of the new
estimator for both variable selection and model estimation.

The proposed penalized estimating equation estimator was constructed based on a set of
estimating equations, i.e. the martingale difference equation for the unknown transformation
function and the martingale integral equation for the regression parameters as in Chen et al.
(2002). As a consequence, the estimator of the regression parameters is consistent and
asymptotically normal but in general not efficient. In the two listed papers (Dabrowska,
2005; 2006), a general class of M-estimators for the semiparametric transformation models
was considered. This class also includes a special choice of the score equation corresponding
to an asymptotically efficient estimator of the regression parameters. Actually, the martingale
estimating equation based estimator considered in this paper is a special case of the general
class of M-estimators. Therefore, to construct more efficient estimators, it is possible to
construct the loss function based on the score equations for the general class of M-estimators.
However, the corresponding computation can be much more intensive than the estimating
equations considered in this paper. This is an interesting problem which deserves further
investigation.

APPENDIX. PROOFS OF THEOREMS
LEMMA 1: Under the regularity conditions (c1) – (c6), we have

where A and Ãn are given in Chen et al. (2002). Since the proof is similar as Chen et al.
(2002), we omit it here.

Proof of Theorem 1. Recall that
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(A.1)

where . It is sufficient to show that (A.1) has a  local
minimizer. Following Fan and Li (2002), we only need to show that, for any arbitrarily small
ε > 0, there exists a sufficiently large constant C such that

(A.2)

where r = (r1,⋯,rd). Lemma 1 suggests that Un(β) has the following asymptotic representation

Then we have

Thus, for any vector r we have

(A.3)

In addition, the penalty term can be bounded as

(A.4)

Combining (A.3) and (A.4), we have

(A.5)

Since ‖β̃n − β0‖ = Op(n−1/2), we have, for 1 ≤ j ≤ q,
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In addition, since , we have

Let ν*(M) refers the minimal eigenvalue of M. Recall that ‖r‖ ≥ C. In (A.5), the first term is

uniformly larger than . So, with the probability tending to one, the first
term in (A.5) is uniformly larger than 0.5ν*(Σ−1)C2, which is quadratic in C. Furthermore, the

second term in (A.5) is uniformly bounded by , which is linear in C with

the coefficient . Therefore, as long as C is sufficiently large, the first
term in (A.5) always dominates the other two terms with arbitrarily large probability. Therefore
(A.2) holds and it completes the proof.

Proof of Theorem 2. We will show the sparsity of the PEE estimator, i.e., β̂n2 = 0 with
probability one as n → ∞. It is sufficient to show that for any sequence β1 satisfying that ‖β1
− β10‖ = Op(n−1/2) and any constant C,

For any β1 satisfying that ‖β1 − β10‖ = Op(n−1/2), we will show that, ∂Q(β)/∂βj and βj have the
same sign for βj ∈ (−C n−1/2, C n−1/2) for j = q + 1,⋯,d, with probability tending to 1. For each
β in a neighborhood of β0, by Lemma 1, we have the following asymptotic representations

which lead to

Thus, for j = q + 1,⋯ ,d, we have

Note that n1/2(β̃j − 0) = Op(1), we have

(A.6)

Since nλn → ∞, the sign of  in (A.6) is completely determined by the sign of βj when
n is large, and they always have the same sign.
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Proof of Theorems 3. According to Theorem 2, with probability tending to one,

 must be the global minimizer of the objective function

Note that . Then β̂n1 is the minimizer of

Therefore, we have the following normal equation

(A.7)

where G(β̂n1) = (0.5λ sign(β̂1)/|β̃1|,⋯ ,0.5λ sign(β̂q)/|β̃q|)′. Using the theorem’s condition
, for each component in , we have

Then (A.7) implies that

(A.8)

which converges in distribution to normal with mean 0 and variance-covariance matrix

since .
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Figure 6.1.
The first plot shows the PEE solution path for PBC data fitted with PH model, and the second
plot for lung cancer data fitted with PO model. The solid vertical line denotes the PEE estimates
tuned with the BIC criterion.
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Figure 6.2.
Kaplan-Meier estimates of survival curves for high-risk and low-risk groups of patients using
the selected genes by the PEE.
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Table 6.4

Estimation and variable selection for PBC data with the PH model.

Covariate EE PEE PPL

trt −0.109 (0.234) 0 (−) 0 (−)

age 0.029 (0.012) 0.017 (0.007) 0.019 (0.010)

sex −0.386 (0.346) 0 (−) 0 (−)

asc 0.053 (0.469) 0 (0) 0 (−)

hep 0.024 (0.263) 0 (−) 0 (−)

spid 0.098 (0.279) 0 (−) 0 (−)

oed 1.013 (0.486) 0.576 (0.241) 0.671 (0.377)

bil 0.079 (0.024) 0.099 (0.018) 0.095 (0.020)

chol 0.001 (0.000) 0 (−) 0 (−)

alb −0.811 (0.286) −0.755 (0.211) −0.612 (0.280)

cop 0.003 (0.001) 0.003 (0.001) 0.002 (0.001)

alk 0.000 (0.000) 0 (−) 0 (−)

sgot 0.004 (0.002) 0.002 (0.001) 0.002 (0.001)

trig −0.001 (0.001) 0 (−) 0 (−)

plat 0.001 (0.001) 0 (−) 0 (−)

prot 0.238 (0.103) 0.193 (0.066) 0.103 (0.108)

stage 0.450 (0.171) 0.413 (0.121) 0.367 (0.142)

PH stands for proportional hazards model.
EE stands for the estimation equation estimate.
PEE stands for the PEE estimate obtained with BIC.
PPL stands for the penalized partial likelihood with ALASSO penalty (Zhang and Lu, 2007).
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Table 6.5

Estimation and variable selection results for lung cancer data with the PO model.

Covariate EE PEE PML

Treatment 0.307 (0.317) 0 (−) 0 (−)

squamous vs large −0.617 (0.482) 0 (−) 0 (−)

small vs large 0.972 (0.473) 0.483 (0.197) 0.706 (0.356)

adeno vs large 1.418 (0.371) 1.139 (0.261) 0.841 (0.397)

Karnofsky −0.055 (0.009) −0.052 (0.008) −0.053 (0.008)

Months from Diagnosis 0.000 (0.015) 0 (−) 0 (−)

Age −0.010 (0.017) 0 (−) 0 (−)

Prior therapy 0.008 (0.040) 0 (−) 0 (−)

PO stands for proportional odds model.
EE stands for the estimation equation estimate.
PEE stands for the PEE estimate obtained with BIC.
PML stands for the penalized marginal likelihood with ALASSO penalty (Lu and Zhang, 2007).
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