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Abstract
Multivariate regression is a common statistical tool for practical problems. Many multivariate
regression techniques are designed for univariate response cases. For problems with multiple
response variables available, one common approach is to apply the univariate response regression
technique separately on each response variable. Although it is simple and popular, the univariate
response approach ignores the joint information among response variables. In this paper, we
propose three new methods for utilizing joint information among response variables. All methods
are in a penalized likelihood framework with weighted L1 regularization. The proposed methods
provide sparse estimators of conditional inverse co-variance matrix of response vector given
explanatory variables as well as sparse estimators of regression parameters. Our first approach is
to estimate the regression coefficients with plug-in estimated inverse covariance matrices, and our
second approach is to estimate the inverse covariance matrix with plug-in estimated regression
parameters. Our third approach is to estimate both simultaneously. Asymptotic properties of these
methods are explored. Our numerical examples demonstrate that the proposed methods perform
competitively in terms of prediction, variable selection, as well as inverse covariance matrix
estimation.
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1. Introduction
Parameter estimation and variable selection are two important goals in linear regression
analysis. In traditional statistical procedures, these two objectives are often achieved
separately. For example, parameter estimation can be done by the least squares regression
method and variable selection can be achieved by certain subset selection techniques.
However, with a large number of predictors available in practice, these methods may not be
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feasible. When the dimension gets large, the least squares method may have an overfitting
problem which reduces predictive accuracy. When the dimension is larger than the sample
size, the least squares regression solution cannot even be calculated directly. In terms of
variable selection, the all subset selection method can be unstable because the procedure is
not continuous [3], and it can be computationally infeasible when the dimension is large. To
solve these problems, a large number of methods have been proposed based on the
regularization framework. Some well-known methods include the least absolute shrinkage
and selection operator (LASSO) proposed by Tibshirani [18], the nonnegative garrote
proposed by Breiman [2], and the smoothly clipped absolute deviation (SCAD) proposed by
Fan and Li [6]. These regularized methods can help to avoid overfitting. More importantly,
these techniques can perform parameter estimation and variable selection simultaneously.

With multiple response variables available, the standard approach to model them is to
regress each response variable separately on the same set of explanatory variables. All
marginal univariate regression procedures including the above methods can be applied to
each response. However, this approach may not be optimal since they do not utilize the
information among response variables. To solve this multi-response regression problem,
Breiman and Friedman [4] proposed a method, called the curd and whey that uses the
relationship among response variables to improve predictive accuracy. They showed that
their method can outperform separate univariate regression approaches when there are
correlations among the response variables. However, their method did not address the topic
of variable selection. Recently, Yuan et al. [21] proposed a method based on dimension
reduction. Their idea is to obtain dimension reduction by encouraging sparsity among
singular values of the parameter matrix. However, their approach focuses on dimension
reduction rather than variable selection. Thus, it does not give a subset of explanatory
variables for each response. Variable selection can be a very important issue when the
number of explanatory variables is large or when explanatory variables are highly
correlated. To relate with variable selection, Turlach et al. [19] proposed a penalized method
using the max-L1 penalty to select a common subset of explanatory variables for multiple
response regression. Their method aims to select a subset which can be used as predictors
for all response variables. However, this assumption may be too strong when each response
has different sets of explanatory variables.

Recently, Rothman et al. [16] proposed a penalized log-likelihood approach with the
multivariate Gaussian assumption. In this paper, we further extend their method and propose
three approaches to tackle the multiple response regression problem via utilizing the joint
information among multiple response variables. To handle the problem, we need to estimate
two parameter matrices, the regression parameter matrix B and the conditional inverse
covariance matrix of response variables C = Σ−1. The first two approaches are plug-in
methods, i.e., plugging in an estimator of one parameter matrix to solve the other one. The
third approach tries to jointly estimate both parameter matrices. In particular, the first
proposed method maximizes a sparse penalized log-likelihood using a previously estimated
inverse covariance matrix Ĉ. Similarly, the second proposed method maximizes a sparse
penalized log-likelihood using a previously estimated regression parameter matrix B̂. The
last proposed method simultaneously estimates regression parameters and the inverse
covariance matrix by maximizing a doubly penalized joint likelihood function. These
methods involve two penalty terms: the weighted L1 penalty on the inverse covariance
matrix C and the weighted L1 penalty on the regression parameter matrix B. Note that the
joint approach is more general than that of Rothman et al. [16], which used unweighted L1
penalty terms. Our framework allows flexible weights on the penalty terms and it is more
general. To handle the computational difficulty of high dimensional problems, we
recommend some prescreening procedure to eliminate noise variables before further
estimation.
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In the following sections, we describe the new proposed methods in more details with
theoretical justification and numerical examples. In Section 2, we introduce our proposed
methodology. Section 3 explores the corresponding theoretical properties. Section 4
develops coordinate descent computational algorithms to obtain solutions for proposed
methods. A prescreening step is suggested for the joint method to speed up the computation.
Section 5 provides some brief results of our numerical examples. We conclude the paper
with some discussion in Section 6. The proofs of the theorems are provided in Appendix.

2. Methodology
Consider the regression problem of p covariates and m response variables. Suppose the data
contain n observations. Let yi = (yi1, …, yim)T; i = 1, …, n, be m-dimensional responses and
Y = [y1, …, yn]T be the n × m response matrix. Let xi = (xi1, …, xip)T; i = 1, …, n, be p-
dimensional predictors and X = [x1, …, xn]T be the n × p design matrix. For simplicity of
notations, let yk = (y1k, …, ynk)T be the k-th response vector (k = 1, …, m) and xj = (x1j, …,
xnj)T be the j-th predictor (j = 1, …, p). Consider the following model,

where B = {βjk}; j = 1, …, p, k = 1, …, m, is an unknown p × m parameter matrix. The
errors εi = (εi1, …, εim)T; i = 1, …, n, are i.i.d. m-dimensional random vectors following a
multivariate normal distribution N(0, Σ) with the nonsingular covariance matrix Σ.

Our goal is to estimate B so that we can use X to predict Y. A simple way to estimate B is to
build m single response models separately and the least squares solution is denoted by B̂S =
(XT X)−1XT Y, provided that XT X is nonsingular. However, this approach ignores
information on Σ. When Σ is diagonal, this separate modeling approach can work well.
However, when Σ is not diagonal, we sometimes have strong correlations among the
response variables. The separate modeling approach does not make use of the joint
information among the response variables. To produce a better estimator, we consider to
incorporate Σ in the estimation procedure of B. Denote Σ−1 by C. If we assume that Σ is
known, the log-likelihood for B conditional on X is

(1)

up to a constant not depending on B. Interestingly, although the maximum likelihood
function involves Σ, the corresponding maximum likelihood estimate turns out to be
identical to the least squares estimate using the separate maximum likelihood method. This
implies that the maximizer of (1) does not take any advantage from the known information
on Σ. However, when we impose penalties on the likelihood, the joint method can bring
some advantage in estimation.

In this paper, we propose to build multivariate regression models through joint shrinkage.
The goal is to utilize the joint information among the m response variables to improve
estimation and prediction. Since Σ is involved in the joint estimation and it is often
unknown, we consider three different approaches: two plug-in methods and the doubly
penalized approach. The plug-in approach in Section 2.1 uses some estimator Ĉ for C to
plug in the penalized likelihood function and then estimate B jointly. The plug-in approach
in Section 2.2 estimates C after plugging in a reasonable estimator of B. The doubly
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penalized approach in Section 2.3 estimates C and B simultaneously via regularizing the
estimation of both C and B.

For discussion, we first assume that Σ is known. To regress Y on X, we can model them
separately, such as applying the LASSO for m different responses. Alternatively, we can use
joint shrinkage estimation for the m response variables simultaneously. To demonstrate the
difference between separate shrinkage and joint shrinkage, we consider a simple toy

example for illustration. Suppose that m = 2, p = 1, and XT X = 1. Let  be the

least squares solution and assume that both  and  are positive and . With
the penalty parameter λ, the separate LASSO solution is given by

(2)

where [u]+ = u if u ≥ 0 and [u]+ = 0 if u < 0. In the joint shrinkage estimation, however, the
solution is given by

(3)

We can show that (3) is equivalent to

(4)

and the solution of (4) is given by

(5)

Compared with the separate LASSO solution (2), the solution (5) obtains more shrinkage if
ρ is positive, while negative ρ results in less shrinkage. Figure 1 provides some insight on
the reason why the amount of shrinkage changes with ρ for the joint method. Solid curves in
Figure 1 are contour curves of (B – B̂S)C(B – B̂S)T as the quadratic function of B and
dashed lines correspond to the penalty function. When ρ is positive, the quadratic function
increases along the 45° line to the horizontal axis slower than the case when ρ is zero. Note
that the solution of the joint method with ρ = 0 is identical to the separate LASSO solution.
Thus, the solution of (4) can be closer to the origin with more shrinkage than the solution
with ρ = 0. On the other hand, the quadratic function with negative increases faster along the
45° line to the horizontal axis. Thus, the solution of (4) tends to be closer to the least squares
solution than the solution with ρ = 0. Therefore, the joint method can help us to produce
more accurate estimators via utilizing the joint information through C.

We propose three approaches, including two plug-in methods and one joint method. In
Sections 2.1 and 2.2, we introduce two different plug-in penalized likelihood methods, one
is for multiple response regression and the other one is for inverse covariance estimation. In
the plug-in method for multiple response regression, we estimate C prior to the step of
regression and then use the estimator of C to produce a better estimator of B. In the plug-in
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method for inverse covariance estimation, we estimate B first and then estimate C with the
estimator B̂ available. In Section 2.3, we estimate B and C together via double penalization.
Section 2.4 provides some guidance on three proposed methods and model selection.

2.1. Plug-in Joint Weighted LASSO Estimator
To ensure that estimation of B includes the information on Σ, we propose a joint penalized
likelihood method, namely the plug-in joint weighted LASSO (PWL) estimator. In
particular, the corresponding penalized likelihood function is as follows

(6)

Here λ1 is a tuning parameter and wjk ≥ 0; j = 1, …, p, k = 1, …, m, are prespecified weights
for the L1-penalty of βjk. If C is an m × m diagonal matrix with diagonal entries

( ), then y1, …, ym are mutually independent. In that case, the minimizer of (6) is
equivalent to the weighted LASSO solution obtained by applying the weighted LASSO

separately to each response vector yk with the penalty parameter .
However, if C is not diagonal, the minimizer of (6) can be different from the separate
penalized likelihood method which handles each response vector yk separately. Our
numerical examples indicate that the joint method can be more accurate when the response
variables are highly correlated.

In practice, C is often not available. Thus, we need to estimate it. To estimate C, we assume

that  is an (m+p)-dimensional random vector following a multivariate normal

distribution N(μ, Σy,x), where . Because Σ is the covariance matrix of

yi conditioned on xi, it can be expressed by . Therefore, we can
estimate Σ by first estimating Σy,x. To estimate Σy,x, we adapt the Graphical LASSO
(GLASSO) method proposed by Friedman et al. [7]. The GLASSO method considers the
problem of estimating the inverse covariance matrix in the context of sparse Gaussian
graphical models [12]. This technique was also considered by Yuan and Lin [23], Banerjee
et al. [1] and Rothman et al. [15].

The GLASSO estimator, , is given as the minimizer of the following penalized
likelihood function

(7)

Here z̄ is the sample mean, || Σy,x
−1|| is the sum of the absolute values of the off-diagonal

elements of Σy,x
−1, and λ0 is a tuning parameter.

The PWL method is a two-step procedure. With the estimate Σ̂ available, the PWL method
solves the following problem
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(8)

where  and Ĉ = Σ̂−1.

2.2. Plug-in Weighted Graphical LASSO Estimator
In Section 2.1, we propose a plug-in method, PWL, which estimates C first and then
estimates B given Ĉ. In this section, we propose another plug-in method to estimate C. In
particular, we first estimate B by using univariate regression techniques. With the estimator
B̂ available, we propose a penalized likelihood method, the plug-in weighted graphical
LASSO (PWGL) estimator, by solving

(9)

where C = {cst}; s = 1, …, m, t = 1, …, m. Here λ2 is a tuning parameter and vst ≥ 0; s = 1,
…, m, t = 1, …, m, are prespecified weights for the L1 penalty of cst.

2.3. Doubly Penalized Maximum Likelihood Estimator
In Sections 2.1 and 2.2, we propose two plug-in methods. PWL estimates C first and then
estimates B given Ĉ while PWGL estimates B first and then estimates C given B̂. In this
section, we propose to estimate (B, C) simultaneously. Since yi|xi ~ N(BTxi, Σ), the log-
likelihood of (B, C) conditional on X is

(10)

It can be shown that the maximum likelihood estimator of B is also given by (XT X)−1XTY.
Interestingly, the resulting estimator of B is the same as the ordinary least square estimator,
which can be obtained without using the information on the relationship among the response
vectors y1, …, ym. To incorporate the information among different response variables in
estimation of B, we propose a joint penalized method, the doubly penalized maximum
likelihood (DML) estimator, by solving

(11)

Note that the objective function in (11) is not convex with respect to (B, C). The
corresponding optimization can be unstable sometimes when p ≥ n. This is because the first
term in (11) can dominate the other terms if some diagonal elements of tr (Y – XB)T (Y –
XB)} are zeros, which may occur when p ≥ n. This can be shown by taking a diagonal
matrix C and increasing the values of its diagonal elements corresponding to the zero
diagonal entries in tr (Y − XB)T (Y − XB). As a result, the numerical solution of C in (11)
can have some large diagonal entries. In practice, the solution of C with very large diagonal
entries is not desirable as it leads to very small residual variances of the corresponding
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response variables. We recommend to first use the plug-in method in Section 2.1 or separate
modeling methods to screen the variables and reduce the dimensions. Then one can apply
the joint method on the reduced set of variables. As shown in our simulation examples, the
joint method can often outperform the plug-in methods when p is moderate compared to n.

2.4. Model Selection
Two plug-in methods are preferable if one of B and C is of main interest and the other is
already well estimated. Another advantage of two plug-in methods is that they have lower
computational cost than the joint method. On the other hand, the joint method does not
require good estimate of B or C. Even though the joint method is computationally more
intensive, it often performs better than two plug-in methods in the sense that it optimizes the
log-likelihood of (B, C) jointly.

The tuning parameters λ1 and λ2 in (8), (9) and (11) control the sparsity of the resulting
estimators of (B, C). They can be selected either using validation sets or through K-fold
cross-validation. The K-fold cross-validation method randomly splits the dataset into K
segments of equal sizes. For the k-th fold, we denote the estimated regression parameter
matrix and the estimated inverse covariance matrix using all data excluding those in the k-th

segment and the tuning parameters λ1 and λ2 by ( ). We also denote the data in
the k-th segment as (Y(k), X(k)). Specifically, for the PWL method, we select the optimal
tuning parameter λ̂1 which minimizes the prediction error as follows,

(12)

where  is the Frobenius norm of a matrix. For the PWGL method, we select the optimal
tuning parameter λ̂2 which minimizes the predictive negative log-likelihood as follows,

(13)

where nk is the sample size of the k-th segment. For the DML method, we first select the
optimal λ̂1 by using (12) with a prespecified λ2 and select λ̂2 by using (13) with the
selected optimal λ̂1. It helps to avoid a two dimensional grid search of (λ1, λ2). We have
found in simulations that the selected optimal λ̂1s are almost identical for a wide range of
prespecified λ2.

In the use of validation sets, we split the dataset into two parts, the training set and the
validation set. With a pair of (λ1, λ2), we first estimate (B, C) using the training set. The
prediction error and the predictive negative log-likelihood of the resulting estimator are
obtained using the validation set as (Y(k), X(k)) in (12) and (13). The validation set is not
used to construct the final estimator with the selected (λ̂1, λ̂2), while the K -fold cross-
validation uses all data for the final estimator with (λ̂1, λ̂2).

3. Asymptotic Properties
To investigate a sparse regression technique, it is necessary to investigate its asymptotic
behaviors. Fan and Li [6] pointed out that a good variable selection procedure should have
oracle properties. Asymptotically with probability tending to 1, a procedure with oracle
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properties can identify the true underlying subset of predictor variables. The resulting
estimator of the procedure also asymptotically performs as well as if the true underlying
subset were known in advance. In this section, we study the asymptotic behavior of our three
proposed methods. In particular, we show that with a proper choice of (λ1, λ2), all three
methods enjoy the oracle properties.

For the asymptotic analysis, we use the set-up of Fan and Li [6], Yuan and Lin [23] and Zou

[25]. The technical derivation uses the results in Knight and Fu [10]. Let ; j = 1, …,
p, k = 1, …, m, be the true regression parameter matrix and ; s = 1, …, m, t = 1, …,

m, be the true inverse covariance matrix. Let  and . Then
we assume the following conditions for our theoretical results:

(A1)  where A is a positive definite matrix.

(A2) The cardinality of , | | = q1 > 0.

(A3) There exists β̃jk which is a -consistent estimator of ; j = 1, …, p, k = 1, …,
m.

(A4) The cardinality of , | | = q2 > 0.

(A5) There exists c̃st which is a -consistent estimator of ; s = 1, …, m, t = 1, …,
m.

Note that conditions (A3) and (A5) are generally satisfied by maximum likelihood
estimators or L2 regularized maximum likelihood estimators with proper choices of penalty
parameters. For example, the least square estimator of B can be used as the β̃jks and the
inverse of residual sample covariance matrix can be used as c̃sts. For the theoretical analysis,

we define wjk and vst as ; j = 1, …, p, k = 1, …, m, γ > 0, and ; s = 1, …, m, t
= 1, …, m, respectively.

In Sections 3.1 and 3.2, we show the plug-in estimators enjoy the oracle properties. Section
3.3 develops the asymptotic theory that reveals the oracle properties of the DML solution.

3.1. Oracle properties of the PWL solution
In this section, we first show that with the known C*, the minimizer of (6) is consistent in
variable selection and has the asymptotic normality. Then we show that with a consistent
estimator of C*, the PWL estimator also enjoys the same properties.

Define the true regression parameter vector as . Let 

be the estimator of β* obtained by minimizing (6) with the penalty parameter λ1,n. Let 
be the q1-dimensional true parameter vector which consists of nonzero components in β*.

Let  be the corresponding estimators of . Let D = (C* ⊗ A)  be the q × q matrix
obtained by removing the (j + (k −1)m)-th row and column of C* ⊗ A for (j, k) ∉ . Then

the following lemma shows the oracle properties of the penalized likelihood estimator 
with the known C*, as the minimizer of (6) defined previously.

Lemma 1—(Oracle properties of the minimizer of (6), , with the known C*) Suppose

that  and  as n → ∞. Under the conditions (A1)–(A3), we have the
following results:
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1.
(Selection consistency)  if ;

2.
(Asymptotic normality) .

Lemma 1 tells us that the penalized maximum likelihood estimator with the known C*
satisfies the oracle properties. Since C* is typically unknown in practice, one often uses an
estimator for C*. With slight modification of Lemma 1, we can show that the PWL solution
also enjoys the oracle properties. Denote the PWL estimator of β* with the penalty

parameter λ1,n as . Let  be the corresponding estimator of .

Theorem 1—(Oracle properties of the PWL solution) In addition to the assumptions in
Lemma 1, suppose that Ĉ is a consistent estimator of C*. Under the conditions (A1)–(A3),
we have the following results:

1.
(Selection consistency)  if ;

2.
(Asymptotic normality) .

Theorem 1 states that with a consistent estimator of C*, variable selection in the PWL is
consistent and the resulting estimator still enjoys the asymptotic normality.

3.2. Oracle properties of the PWGL solution
In this section, we show the oracle properties of the PWGL solution. To this end, we first
show the oracle properties of the solution of

(14)

with the known B*. Then we show that with a consistent estimator of B*, the PWGL
estimator still enjoys the same properties.

Denote by Ĉ(1) the minimizer of (14) with the known B*. Let  be the matrix obtained

from Ĉ(1) by replacing  with 0 if . Then the following lemma shows the oracle
properties of Ĉ(1).

Lemma 2—(Oracle properties of the minimizer of (14), Ĉ(1), with known B*) Suppose that

 and λ2,n → ∞ as n → ∞. Under the conditions (A1), (A4) and (A5), we have
the following results:

1.
(Selection consistency)  if ;

2. (Asymptotic distribution) ,

where V (U) = tr(UΣUΣ) + tr(UW) and W is an m × m random symmetric matrix
such that vec(W) ~ N(0, Λ) in which cov(wij, wkl) = cov(ε1iε1j, ε1kε1l). The

minimum is taken over all symmetric matrices U satisfying ujk = 0 if .

In Lemma 2, we show that the penalized maximum likelihood estimator with the known B*
satisfies the oracle properties. Since B* is typically unknown in practice, one often applies
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an univariate regression technique to obtain an estimator for B*. With slight modification of
Lemma 2, we can show that the PWGL solution also enjoys the oracle properties. Denote

the PWGL estimator of C* with the penalty parameter λ2,n as Ĉ(2). Let  be the matrix

obtained from Ĉ(2) by replacing  with 0 if . Then the following theorem shows the
oracle properties of the PWGL estimator.

Theorem 2—(Oracle properties of the PWGL solution) In addition to the assumptions in
Lemma 2, suppose that B̂ is a consistent estimator of B*. Under the above conditions, we
have the following results:

1.
(Selection consistency)  if ;

2. (Asymptotic distribution) ,

where V(U) = tr(UΣUΣ) + tr(UW) and W is an m × m random symmetric matrix
such that vec(W) ~ N(0, Λ) in which cov(wij, wkl) = cov(ε1iε1j, ε1kε1l). The

minimum is taken over all symmetric matrices U satisfying ujk = 0 if .

Theorem 2 states that with a consistent estimator of B*, the PWGL solution satisfies the
oracle properties.

3.3. Oracle properties of the DML solution
In Sections 3.1 and 3.2, we establish the oracle properties of plug-in estimators. In this
section, we explore oracle properties of the DML solution in which (B̂, Ĉ) are obtained
together. First, we show that with a proper choice of (λ1, λ2), there exists a -consistent
local minimizer of (11). Then we show that this local minimizer enjoys the oracle properties
as a solution of the DML estimator.

The following lemma shows the existence of a local minimizer of (11) which is -
consistent.

Lemma 3—Suppose that  and . Under the conditions (A1)–(A5),
there exists a local minimizer of (11) such that

From Lemma 3, it is clear that there exists a -consistent doubly penalized maximum
likelihood estimator. As the DML estimator of (B*, C*), denote by (B̂(n), Ĉ) the -
consistent local solution of (11) with the penalty parameter (λ1,n, λ2,n). Let β̂(n) = vec(B̂(n))

and let  be the corresponding estimator of . Let Ĉ0 be the matrix obtained from Ĉ by

replacing ĉjk with 0 if . We now show that with a proper choice of (λ1, λ2), the DML
estimator as this local minimizer enjoys the oracle properties in the following theorem.

Theorem 3—(Oracle properties of the DML solution) Suppose that  and

. In addition to that, suppose that  and *lamda;2,n → ∞. Under
the conditions (A1)–(A5), we have the following results:
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1.
 if ;

2. ;

3. limn P(ĉjk = 0) = 1 if ;

4. ,

where V (U) = tr(UΣUΣ) + tr(UW) and W is a m × m random symmetric matrix
such that vec(W) ~ N(0, Λ) in which cov(wij, wkl) = cov(ε1iε1j, ε1kε1l). The

minimum is taken over all symmetric matrices U satisfying ujk = 0 if .

4. Computational Algorithm
In this section, we describe computational algorithms to solve problems (8), (9), and (11). In
particular, we apply the GLASSO algorithm for (9). To solve the problems (8) and (11), we
apply the coordinate-descent algorithm as described in Peng et al. [14], which can be viewed
as a modification of the shooting algorithm [8]. The basic idea of the coordinate-descent
algorithm is to optimize each parameter at one time while holding the other parameters fixed
at the current solution. The corresponding optimization at each step can be very simple to
solve.

We now describe the coordinate-descent algorithm for the PWL method in details. Denote Ĉ
by (ĉij)m×m. Then (8) is equivalent to minimizing

(15)

Consider (15) as a function of βjk with other coefficients fixed. Then the minimizer of (15)
is equivalent to

This problem is essentially a one-dimensional LASSO optimization which has a closed form
solution. Therefore, the algorithm can be summarized as follows:

Algorithm 1: the Coordinate-Descent Algorithm for the PWL Method
Step 1

(Initial value). Set the separate LASSO solution ; j = 1, …, p, k = 1, …,
m, as the initial value for B.

Step 2 (Updating rule). For j = 1, …, p and k = 1, …, m,

,if q ≠ j and r ≠ k,
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where  and .

Step 3 (Iteration). Repeat Step 2 until convergence. Our stopping rule is that the
change of the objective function in (8) is less than δ = 0.1.

To be computationally more efficient, we combine the above algorithm with the active
shooting algorithm proposed by Peng et al. [14]. The basic idea of the active shooting
algorithm is to update the coefficients within the active set until convergence instead of
iterating all coefficients at each step. The active set is defined as the set of currently nonzero
coefficients and it is typically small. Once the coefficients in the active set converge, then
we continue to update other coefficients. This step can speed up the algorithm significantly
if the final solution is very sparse.

Next we describe the problem (9) in the GLASSO framework. Since (9) is equivalent to
minimizing

(16)

we can apply the GLASSO algorithm [7] to solve (9) by substituting the sample covariance

matrix with . Therefore, the algorithm for (9) proceeds as follows:

Algorithm 2: the GLASSO Algorithm for the PWGL Method
Step 1 (Estimator of B) Set the separate LASSO solution as the estimator, B̂, of B.

Step 2 (Estimator of C) Given B̂, apply the GLASSO algorithm to solve (16).

Next, we combine Algorithm 1 and the GLASSO algorithm to solve problem (11) for the
doubly penalized method DML in Section 2.3. The algorithm can be summarized as follows:

Algorithm 3: the Coordinate-Descent Algorithm for the DML Method
Step 1

(Initial values of B and C). Set the separate LASSO solution ; j = 1, …,
p, k = 1, …, m, as the initial value for B and the solution of (9), C(old), as the
initial value of C.

Step 2 (B updating rule). For a given C(old), update B(old) → B(new) with

This step can be solved using the Algorithm 1.

Step 3 (C updating rule). For a given B(new), update C(old) → C(new) by

This can be solved using the GLASSO algorithm.
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Step 4 (Iteration). Repeat Steps 2 and 3 until convergence. Our stopping rule is that
the change of the objective function in (11) is less than δ = 0.1.

Based on our experiment, the coordinate-descent algorithm works very efficiently. Since the
DML method involves estimation of both B and C, the computation can be intensive when
the dimension is high. We consider a prescreening step to speed up the computation. In
particular, we adapt the group lasso method considered by Yuan and Lin [22] and Meier et
al. [11]. The basic idea of the group lasso method is to employ group penalty in the
regression problem so that model selection can be achieved in terms of group selection. In
our multiple response variable regression problem, (βj1, …, βjm); j = 1, …, p, can be
considered as p groups. Therefore, for the prescreening step, the group lasso estimator,
B̂group of B, is given as the minimizer of the following penalized function

where λ is a tuning parameter. We screen out a variable if the corresponding coefficients are
estimated as zeros for all response variables. In other words, we remove the variable xj from

our model if . This prescreening step can not only speed up the
computation, but also improve the prediction performance as shown in our examples.

5. Numerical Examples
In this section, our proposed methods are compared with several existing methods. The first
existing method we compare is the curds and whey (CW) method proposed by Breiman and
Friedman [4]. The other two methods are the separate ridge regression (RR) and the separate
LASSO. In particular, we apply the RR and the LASSO to each response variable
separately. Separate LASSO solutions are constructed by a modification of the LARS
algorithm proposed by Efron et al. [5]. The main idea of this modified LARS algorithm was
also considered by Osborne et al. [13]. In this paper, some brief summaries of the results are
provided. All details about numerical examples can be found in the online supplement
materials.

In simulated examples, all methods are compared in two ways, B estimation and C
estimation. Performance of B estimation is compared in terms of prediction and variable
selection. For the comparison of C estimation, we use the entropy criterion [9, 24] which
measures the difference of two matrices. In terms of prediction, overall, the proposed DML
method works the best. The PWL method also works reasonably well in all cases, although
it is not as accurate as the DML estimator. In the example where the true inverse covariance
matrix is not sparse, LASSO gives the worst prediction performance while the other
methods show similar performance. This implies that joint approaches outperform separate
approaches with the joint information. DML outperforms LASSO and PWL in terms of
identification of zero coefficients. We also notice that the ratios of correctly identified zeros
for PWL and DML increase as the sample size increases. This supports the selection
consistency shown in Section 3. When the dimension of predictor variables is low, the DML
estimator gives the best performance in C estimation. When the dimension of predictor
variables is close to the sample size, PWGL outperforms DML. Since the DML method
simultaneously estimates both B and C, with a small sample size, the C estimation may not
be as good.
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We apply our methodology to a Glioblastoma multiforme (GBM) cancer data set studied by
the Cancer Genome Atlas (TCGA) Research Network [17]. As noted in [20], GBM is the
most common primary form of brain tumor in adults. In terms of prediction, our method,
DML, performs best even though the difference between DML and the separate LASSO is
not statistically significant in view of the standard errors. In terms of the number of included
genes in models, PWL and DML construct sparser models than the separate LASSO. One
possible explanation is that there may be some strong positive correlations among
microRNAs which are response variables. As we have discussed in the toy example of
Section 2, with strong positive correlations among response variables, joint methods tend to
obtain more shrinkage than the separate LASSO. To explore this further, correlations among
microRNAs are examined. Some strong postive correlations among the microRNAs are
detected while negative correlations are not strong. Interestingly, with much fewer number
of gene expressions than the separate LASSO, PWL and DML perform competitively in
terms of prediction accuracy.

6. Discussion
In this paper, we have proposed three methods for utilizing joint information among
response variables in a penalized likelihood framework with weighted L1 regularization. Our
theoretical investigation shows that our proposed estimators enjoy oracle properties.
Simulated examples and an application to the GBM cancer data set demonstrate that our
proposed methods perform competitively.

Our current study assumes Gaussian distribution of the response vector. One future research
direction is to extend the proposed method with other distributional assumptions. Although
we mainly focus on the weighted L1 penalty, our methods can be directly extended for other
penalty functions as well. It will be interesting to compare the performance of various
choices of penalty in this context.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix A. Proof of Lemma 1

Appendix A.1. Asymptotic normality
Let Ỹ = ((y1)T, …, (ym)T)T be the nm-dimensional response vector and ε̃ be the
corresponding nm-dimensional error vector which consists of εik; i = 1, …, n, k = 1, …, m.
Let β̃ = (β11, …, βp1, …, β1m, …, βpm)T be the pm-dimensional vector and X̃ = Im ⊗ X.
Then the minimizer of (6) is equivalent to
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Let  and

Let û(n) = argminu Vn(u) and then . Note that û(n) = argminu Vn(u) =
argminu{Vn(u) – Vn(0)} and

(A.1)

We know that . For the second term of

the right hand side of (A.1), note that ε̃ ~ N(0, Σ ⊗ In). Thus,  where Z ~

N(0, C ⊗ A) as . Now we consider
the last term of the right hand side of (A.1):

•
If , then  as

.

•
if , then . Note that

 and . By the Slutsky’s

theorem, .

By combining above statements and using the Slutsky’s theorem again, we obtain the
following:

where  consists of ujk for (j, k) ∈  and  ~ N(0, D).

Let û = argminu V(u). Then we have
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Note that Vn(u) – Vn(0) is convex and so argminu(Vn(u) – Vn(0)) →d argminu V(u). Since

 ~ N(0, D), thus . Finally, we have that  as n
→ ∞.

Appendix A.2. Selection consistency

We need to show that ∀(j, k) ∉ , . For fixed (j, k) ∉ , let .

Then  and so we have that  by the KKT
conditions, where x̃jk is (j + (k − 1))-th row of X̃. Therefore,

. Note that

From the asymptotic normality part, we know that  converges in distribution

to some normal random vector. We also have that , where (C ⊗
A)jk,jk is the (j + (k − 1))-th diagonal element of C ⊗ A. As

 with , we have

. Therefore, as n → ∞.

Appendix B. Proof of Theorem 1
The proof is similar to that of Lemma 1 except we replace C by Ĉ.

Appendix B.1. Asymptotic normality
Note that (8) is equivalent to

Let  and

Let  and then . We can show that
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where Vn(u) is defined in the proof of Lemma 1. As Ĉ is a consistent estimator of C,

 and . From the proof of Lemma 1, we
also know that Vn(u) – Vn(0) →d V(u). By combining the above statements and using the
Slutsky’s theorem, we have that . By using the same arguments as in the

proof of Lemma 1, finally we have that  as n → ∞.

Appendix B.2. Selection consistency

Now it suffices to show that ∀(j, k) ∉ ,  as n → ∞. For fixed (j, k) ∉ ,

let . Then  and so we have that 
by the KKT conditions. Therefore,

. Note that

From the asymptotic normality part and the fact that Ĉ is consistent, we know that

 converges in distribution to some normal random vector. We also have that

. As , we have

. Therefore,  as n → ∞.

Appendix C. Proof of Lemma 2

Let . With given B*, define Q(C) as

(C.1)

Appendix C.1. Selection consistency
Using the definition of Q(C) in (C.1), define Vn(U) as
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Using a similar argument as in the proof of Theorem 1 in Yuan and Lin (2007), it can be
shown that

Note that as , and , we have

On the other hand,  by the central limit theorem as .
Therefore, Vn(U) can be written as

where Wn →d N(0, Λ). Denote by Û the minimizer of Vn(U). Note that λ2,n → ∞ and

. Therefore, if , P (ûjk = 0) → 1 as n → ∞. This completes the proof of
the variable selection consistency.

Appendix C.2. Asymptotic distribution

Suppose U satisfies that ujk = 0 if . Then, Vn(U) can be written as

By using the Slutsky’s theorem, we have that

Since Vn(U) and V(U) are both convex and V(U) has a unique minimum, argmin Vn(U) →d
argmin V(U). From the fact that

.
This completes the proof of the asymptotic distribution.
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Appendix D. Proof of Theorem 2

With a -consistent estimator B̂ of B, let . Define Q(C) as

(D.1)

By using the above definition, define Vn(U) as

Note that

Therefore, by the proof of Lemma 2 and the Slutsky’s theorem, it suffices to show that

(D.2)

The left-hand side of (D.2) can be written as

where we add and subtract XB in the first term. Since  , (B̂-
B = op(1) and , (D.2) holds.

Appendix E. Proof of Lemma 3
Define Q(B, C) for the jointly penalized likelihood as

(E.1)

To show the results, we use the similar idea of the proof of Theorem 1 in Fan and Li [6]. It
suffices to show that for any given δ > 0, there exists a large constant D such that
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(E.2)

where U = (vec(U1)T, vec(U2)T)T. Using the definition of Q(B, C) in (E.1), define Vn(U) as

Since  for  and  for ,

(E.3)

For the first term and the second term on the right-hand side of (E.3), it has been shown in
Lemma 2 that

Let U1 = vec(U1). For the third term on the right-hand side of (E.3), as , note that

For the fourth term on the right-hand side of (E.3), we have

Note that  where Z has multivariate normal distribution of
dimension n × m. By combining above statements, we have
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As  and , we have

Therefore,

(E.4)

By choosing a sufficiently large D, Vn(U) > 0 uniformly on {U : ||U || = D} with the
probability greater than 1-δ as C* and A are positive-definite, Wn = Op(1), and Zn = Op(1).
Therefore, (E.2) holds. This completes the proof of this lemma.

Appendix F. Proof of Theorem 3
As defined in Lemma 3, define Q(B, C) for the jointly penalized likelihood as

Note that (B̂(n), Ĉ) is a -consistent local minimizer of Q(B, C). As B̂(n) = argminB Q(B,
Ĉ) and Ĉ is -consistent, the oracle properties of B̂(n) hold by Theorem 1. Similarly, since
Ĉ = argminC Q(B̂(n), C) and B̂(n) is -consistent, the oracle properties of Ĉ hold by
Theorem 2. These complete the proof of this theorem.
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Figure 1.
Contour plots for the toy example to illustrate the change of shrinkage with ρ for the joint
method.
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