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Summary

In this article, we propose a computationally efficient approach to estimate (large) p-dimensional

covariance matrices of ordered (or longitudinal) data based on an independent sample of size n. To

do this, we construct the estimator based on a k-band partial autocorrelation matrix with the

number of bands chosen using an exact multiple hypothesis testing procedure. This approach is

considerably faster than many existing methods and only requires inversion of (k + 1)-dimensional

covariance matrices. The resulting estimator is positive definite as long as k < n (where p can be

larger than n). We make connections between this approach and banding the Cholesky factor of

the modified Cholesky decomposition of the inverse covariance matrix (Wu and Pourahmadi,

2003) and show that the maximum likelihood estimator of the k-band partial autocorrelation

matrix is the same as the k-band inverse Cholesky factor. We evaluate our estimator via extensive

simulations and illustrate the approach using high-dimensional sonar data.
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1 Introduction

Estimating a covariance matrix is essential in multivariate data analysis. Although the

sample covariance matrix is an unbiased estimator of the covariance matrix of a Gaussian

random vector, it has poor properties if the dimension (p) is large. In addition, covariance

matrices are often sparse for large p. This area has seen an upsurge in practical and

theoretical approaches due to a plethora of high dimensional data. Regularizing large sample
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covariance matrices has been proposed using ridge regression (Warton, 2008; Witten and

Tibshirani, 2009) and discriminant analysis (Friedman, 1989). Furrer and Bengtsson (2007)

consider ‘tapering’ the sample covariance matrix by gradually shrinking the off-diagonal

elements toward zeros. Johnstone and Lu (2007) consider a regularization of principal

components using a sparse basis and thresholding. Fan, Fan and Lv (2008) impose sparsity

on the covariance matrix via a factor model.

Covariance matrices have special features under ordered (longitudinal) data, such as Xi and

Xj being closer to independence or conditional independence as |i − j| increases. Wu and

Pourahmadi (2003) exploit this feature by banding the Cholesky factor of the inverse

covariance matrix and use an information based approach (the AIC) to determine the

number of bands. Bickel and Levina (2008) achieve sparsity by directly banding the sample

covariance matrix while Rothman et. al. (2010) band the Cholesky factor of the covariance

matrix. The former uses ‘tapering’ to maintain positive-definiteness (Furrer and Bengtsson,

2007). In addition, the latter two methods use cross-validation to find the number of bands,

which can be computationally intensive. A nice review of high-dimensional covariance

estimation can be found in Pourahmadi (2011).

In this article, we present a method for ordered/longitudinal data based on banding a

different matrix, the partial autocorrelation matrix, which has favorable properties including

the estimator guaranteed to be positive-definite (w/o any adjustment), even for n < p, and

being based on exact, small sample results (not asymptotics). Computationally the estimator

finds the number of bands sequentially, so if the estimate has k bands, only (k + 1)-

dimensional matrices need to be inverted (not p-dimensional, where p is often large). There

are also interesting connections to the banding approach in Wu and Pourahmadi (2003),

which we point out here.

Our paper is arranged as follows. In section 2, we briefly review the partial autocorrelation

matrix. In section 3, we introduce three new theoretical results which will allow us to

develop an algorithm to easily estimate the non-zero elements in a banded partial

autocorrelation matrix and develop a sequential multivariate hypothesis testing set-up (to

estimate the number of bands), based on exact small sample results. Section 4 makes

connections of our estimator to the banding estimator proposed in Wu and Pourahmadi

(2003). Sections 5 and 6 investigate the operating characteristics of our procedure via risk

simulations and apply it to two real data examples.

2 Review of Partial Autocorrelations

We first review reparameterizing the correlation matrix R = (ρj,k) using the elements in the

partial autocorrelation matrix Π = (πj,k). In the partial autocorrelation matrix, πj,j = 1 and for

1 ≤ j < k ≤ p, πj,k is the partial autocorrelation between Yj and Yk adjusted for the intervening

variables, . In particular, for a mean-zero Y , let 

be the vector of the intervening responses, and  ( ) be the linear least squares predictor

of Yj (Yk) given . The partial autocorrelation πj,k between Yj and Yk is

. The partial autocorrelations can be also be written directly
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as a function of the marginal correlations (Joe, 2006). We refer to the reader to Daniels and

Pourhamadi (2009) for these recursive expressions.

In longitudinal data, we expect the matrix of partial autocorrelations to be sparse as the

elements correspond to conditional independencies (for multivariate normal responses) and

are an intuitive parameterization in such settings. An AR(1) correlation matrix corresponds

to a partial autocorrelation matrix with one non-zero band with equal elements; however, the

corresponding marginal correlation matrix is full. More generally the partial autocorrelation

will have k non-zero bands under a k-th order ante-dependence model (Gabriel, 1962;

Zimmerman and Nunez-Anton, 2010). This parameterization has further advantages in that

one can simultaneously address the partial autocorrelations and the marginal variances as

opposed to related decompositions like the modified Cholesky decomposition which allows

modeling of autoregressive coefficients and the prediction (or innovation) variances.

3 Banding the Partial Autocorrelation Matrix

For a p × p matrix M = [mij] and any k ∈ {0, 1, 2, … , p − 1}, we define a k-band matrix of

M (Bickel and Levina (2008)) as Bk(M) = [mijI (|i − j| ≤ k)]. Here we band the partial

autocorrelation matrix, Π = (πj,k). The computational attractiveness of our approach will rely

on estimating the partial autocorrelations one band at a time and then for each band, doing a

simple hypothesis test of whether to add another band. For the proposed procedure, the

largest matrices we will need to manipulate will be (k + 1)-dimensional matrices where k is

the number of bands. In Section 3.1, we state the results necessary for the validity of our

banding estimation approach (with proofs in the supplementary materials).

3.1 Key New Theoretical Results

In the following, we assume the data, {Yi : i = 1, …, n} are independent and identically

distributed (iid) multivariate normal p-vectors with mean 0 and covariance matrix . We state

and prove three key results that provide the foundation for our approach. The proofs of all

three results can be found in the Supplementary materials. The first result states that the

inverse of a correlation matrix constructed from a banded partial autocorrelation matrix only

requires inversion of low dimensional matrices.

Result 1—Inverting the correlation matrix constructed from a k-band partial

autocorrelation matrix only requires inversion of (k + 1)-dimensional matrices, and its

precision matrix is also a k-band matrix.

The second result states that we can compute the maximum likelihood estimate (mle) of a k-

band partial autocorrelation matrix one band at a time (starting from the first band). This

will be much more efficient than having to manipulate the entire p-dimensional matrix. We

can do this since the mle of the partial autocorrelations in band j only depends on the mle of

the partial autocorrelations in the bands < j, not those > j.

In particular, we introduce a sequential procedure to estimate the partial autocorrelations in

each band and show that is equivalent to the mle ( ) of full multivariate normal likelihood

L(Π|y1, …, yn). Let f(yij, …, yik|Πjk) be the marginal pdf of the random sub-vector
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 of a multivariate normal random vector Yi, and let  be

the likelihood function based on this subvector of Y . We define an objective function G(πjk)

as follows:

(1)

where Πjk denotes the subset {πj+1,j, πj+2,j+1, ߪ, πk,k−1, πj+2,j , Ȧ, πk,j}, for k = 2, … , p, and j

= k − 1, … , 1.

Since πj,k for j, k ∈ {1, 2, …, p} and k ≠ j, independently vary in (−1, 1) (see Result S2 in

the supplementary materials), we can estimate π1,2, π2,3, …, πp−1,p, π1,3, …, πp−2,p, …, π1,p

sequentially by maximizing the product of the objective functions in (1) for l = 1, … , p − 1,

(2)

where . The form of the estimating equations can

be found in the supplementary materials. The maximizer of this objective function for each

πj,j+l is equivalent to the mle of Π based on the multivariate normal likelihood which we

state formally in the following theorem.

Theorem 1—The mle  of the partial autocorrelation coefficients based on the multivariate

normal likelihood function L(Π|y1, y2, …, yn) is equal to  in (2 ).

Since the estimated lag k partial autocorrelation ecoefficients are invariant to the estimated

partial autocorrelation coefficients for lag greater than k, we obtain the following corollary.

Corollary 1—Let  be the mle of partial autocorrelation matrix based on the multivariate

normal likelihood function L(Σ|y1, y2, …, yn) and  based on (2 ). Then the mle ( ) of a k-

band partial autocorrelation matrix is equivalent to the corresponding  of a k-band matrix.

This result allows us to compute the mle of a k-band Π efficiently (actually by just solving

quadratic equations; see the supplementary materials for details).

The third result is the final piece needed to do an exact sequential hypothesis testing

procedure to estimate the number of bands as it provides the sampling distribution of the

partial autocorrelations in bands j ≥ k + 1 of a k–band matrix.

Theorem 2—Suppose Y1, Y2, …, Yn are iid N(0,DRD) and Π = (πj,t)p×p is the partial

autocorrelation matrix of R. Then, for n ≥ p + 1, under the hypothesis of a k-band matrix, the

mle’s of πj,j+l, denoted as , l = 1, … , p − 1 follow independent shifted Beta

distributions on (−1, 1) with parameters
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3.2 Procedure to estimate the partial autocorrelation matrix

We use the three results from the previous section to construct a procedure for banding the

partial autocorrelation matrix. To estimate the number of bands (k) of a partial

autocorrelation matrix Π = (πj,k), the strategy will be sequentially testing the null hypothesis

that each band is zero starting from the first band. Implicitly, if the jth band is zero, the

subsequent bands, j + 1, … , p − 1 are zero as well. In general, for πk = (π1,1+k, …, πp−k,p),

we construct multiple tests under the following hypotheses:

We choose the band as the first k for which H0 can not be rejected. Note we just need to test

the partial autocorrelations in the kth band under the assumption of a true band k − 1 matrix.

Since under the null hypothesis, the partial autocorrelations are independent (shifted) Beta

distributions as given in Theorem 2, we adjust for multiple testing using a Bonferroni

correction to account for the (p − k) tests in band k. In addition, from Result 1 we only need

to manipulate (k + 1) dimensional matrices for a k-band matrix.

For n ≤ p and lag l (k > l), all (p − l) sample partial autocorrelations are not independent,

only each set of n − l adjacent ones. Based on empirical checks, the correlations appear to

very small and as a result, we still use the Bonferroni correction. We explore the operating

characteristics of this procedure via simulations in Section 5.

4 Connections with Banding the inverse Cholesky factor

Wu and Pourahmadi (2003) proposed banding the (modified) Cholesky factor of the inverse

covariance matrix (Pourahmadi, 1999). We briefly review the details next. As before, we

assume the p-dimensional vector Y is distributed as Y ~ N(0, Σ). As such, it is easy to show

that

where , , and . The coefficients and

variances here are the parameters in the modified Cholesky decomposition given as AΣAT=

D, where A is a unit lower triangular matrix having ones on its diagonal and −ajt as its (j, t)th

element (for t < j), and D is a diagonal matrix with  as its diagonal entries

(Pourahmadi, 1999). The parameters, ajt and , are often called generalized autoregressive

parameters and innovation variances, respectively.

From linear model theory, it follows that for a k-band matrix, the mle of the components of

the Cholesky factor,  are independently distributed within bands (but not across bands) as
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where  is the jth diagonal entry of , , and  is the

mle of the innovation variances for the k-band matrix.

Given this result, to estimate the number of bands (k), we can sequentially test the null

hypothesis that each band of A is zero starting from the first band just as we did for the

partial autocorrelation matrix. Since the components in each band of the Cholesky factor are

independent t-distributions, we again adjust for multiple testing using a Bonferroni

correction. Note that, unlike with the partial autocorrelations, when we reject the null

hypothesis and move to the next band, we need to recompute all the estimates of the

generalized autoregressive parameters from the previous bands.

Wu and Pourahmadi (2003) chose the number of bands (k) using the following form of the

Akaike Information Criterion (AIC),

where  and  with  and

. They set the maximum number of bands to be ⌊p⅓⌋.

We now state a result that provides insight in using the (AIC) criterion for banding the

partial autocorrelation matrix or the inverse Cholesky factor.

Result 2

The mle of the k-band modified Cholesky decomposition is equal to the mle of the k-band

partial autocorrelation matrix when combined with the mle’s of the marginal variances.

Proof

This result holds due to the following facts. 1. The modified Cholesky factor of the inverse

covariance matrix with k bands corresponds to an inverse covariance matrix with k bands

(Proposition 1, Rothman et al., 2010). 2. The partial autocorrelation matrix with k bands

corresponds to an inverse covariance matrix with k bands (Result 1). As such, the mle of the

k-band Modified choleski factor (with the innovation variances) and the k-band partial

autocorrelation matrix (with marginal variances), are equal since mle’s are invariant to a

one-to-one transformation and both estimators are just re-parameterizations of a k-band

inverse covariance matrix.
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Given Result 2, we can use this same criterion for banding the partial autocorrelation matrix

by forming the corresponding covariance matrix using the mle’s of the marginal variances.

We compare the sequential hypothesis testing to the AIC criterion in the simulations.

5 Simulations

To evaluate our banding method, we conducted simulations using several true matrices.

Scenario 1 was an AR(1) correlation matrix with lag 1 correlation equal to 0.7 (1 band).

Scenario 2 was a matrix formed by banding (4, 9, or 14 bands) the sample partial

autocorrelation matrix of the Metal data (for p = 60); for more details on the data, see

Section 6. Note the true matrices in scenario 2 were not stationary or smooth. For scenario 1,

we considered: 1) fixed dimension matrices (p = 60) with varying sample sizes (n), 2) fixed

sample size (n = 100) with varying dimension (p). We generated 100 replicated datasets for

each scenario from a multivariate normal distribution with mean zero and covariance matrix

given by the correlation matrices above.

We compared our estimator (using α = 0.05) to the sample correlation matrix ( ), the

sequential hypothesis testing using the modified Cholesky decomposition (α = .05), and an

information based approach (AIC in Section 4) based on the mle of the covariance matrix

formed from the k-band partial autocorrelation matrix; note we did not use the

recommendation of Wu and Pourahmadi that the maximum band should be ⌊p⅓⌋ as this

resulted in very poor performance for several scenarios. We used the average Frobenius

matrix norm of the difference between estimated and true correlation matrices over the

replicated datasets to compare the estimators. The results here using Frobenius norm were

similar to those using other matrix norms. The estimated number of bands (k) was obtained

by averaging the estimated bands over the replicated datasets.

Tables 1 and 2 summarize the simulation results. In Table 1 (scenario 1), the risk results

indicated that all the estimators had much lower risk than the sample correlation matrix

(which was not surprising). Also, the risks and the estimated number of bands were very

similar among the two sequential testing approaches and the AIC approach with the AIC

approach doing the best by a very small margin.

Table 2 contains the simulation results for scenario 2, which corresponded to a nonstationary

correlation matrix with 4, 9 or 14 bands. Again, all the proposed estimators had much

smaller risk than sample correlation matrix. Among the two sequential testing estimators,

the results were essentially indistinguishable. And compared to the AIC approach, the AIC

approach generally resulted in a slightly smaller risk and was able to detect more bands for

the small sample size cases. The lack of independence of all (p−k) tests in each band appear

to have minimal influence on the results as both sequential testing approaches gave very

similar results. Other simulation scenarios with similar conclusions can be found in the

supplementary materials. In summary, all three approaches performed quite similarly.

6 Application to Sonar Data

We illustrate our approach on two data sets, the Metal and Rock data of the sonar data,

which is available at http:www.ics.uci.edu/smelearn/MLRepository.html. This data set
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contains 111 (97) signals from a Metal cylinder (Rock), where each signal has 60 frequency

energy measurements ranging from 0.0 to 1.0. These signals were measured at different

angles for the same objects. Previous analysis of the data assumed the signals were iid

normal random vectors. Images of absolute sample correlation matrices of the data in Figure

1 (hot to cool corresponds to 1.0 to 0.0) indicate a general pattern of decaying correlations

with increasing lag, which motivates the banded estimator here. The estimated number of

bands using both sequential testing procedures was 3 for rock data and 6 for metal data,

respectively. For the information based banding approach, the number of bands was 4 and

11, respectively. The images of estimated correlation matrices based on these estimators are

shown in Figure 1. Subfigures (a) – (c) for the metal data show that most of the nonzero

marginal correlations up to lag 31 are captured quite well and Subfigures (d) – (f) for the

Rock data show similar results up to lag 18. All the estimators are computationally very fast,

taking less than one second with Matlab R2010a.

7 Discussion

We have proposed k-band estimators for a correlation matrix that are positive definite even

when n ≤ p and whose computation only requires inversion of at most (k + 1)-dimensional

matrices. The algorithm for the estimator relies on exact distributional results under the null

hypothesis for n > p. The estimator can be computed very quickly.

We have made connections between banding the partial autocorrelation matrix and the

modified Cholesky factor of the inverse covariance matrix (Wu and Pourahmadi, 2003).

Sequential hypothesis testing using either factorization results in essentially the same results.

In addition, implementing the AIC approach of Wu and Pourahmadi appears to do

marginally better (and gives an equivalent result for banding the partial autocorrelation

matrix or Cholesky factor) once the upper bound of ⌊p⅓⌋ on the number of bands was

removed. The key with these approaches is to start with a zero band matrix and move

sequentially until stopping (based on not rejecting the relevant null hypothesis or the AIC

increasing). The sequential hypothesis testing under the partial autocorrelations has some

computational advantage as the estimates from previous bands do not need to be recomputed

as the number of bands increases.

The modified Cholesky factorization and the variance/correlation decomposition (implicit in

using the partial autocorrelation matrix) correspond to different sets of dependence

parameters (generalized autoregressive parameters vs. partial autocorrelations) and variance

parameters (innovation vs. marginal variances). The latter might be preferred for smoothing

bands one at a time as the interpretation of the partial autocorrelations in the jth band does

not depend on autocorrelations in bands larger than j unlike the generalized autoregressive

parameters. In addition, it is often preferred to smooth marginal variances (for

interpretation) than innovation variances.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Panels a and d are the images of sample correlation matrices of Metal and Rock data,

respectively. Panels b and c (e and f) are images of estimated correlation matrices of metal

(rock) data for 3 (6) bands (estimated by sequential testing) and 4 (11) bands (estimated by

AIC).
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Table 1

Results for scenario 1

p=60 R AIC Chol-Testing PAC-Testing

Size (n) Risk (Var) EB Risk (Var) EB Risk (Var) EB Risk (Var)

30 10.76 (0.20) 1.00 2.29 (0.08) 1.09 2.36 (0.15) 1.09 2.36 (0.15)

60 7.49 (0.11) 1.00 1.61 (0.06) 1.04 1.63 (0.07) 1.04 1.63 (0.07)

100 5.87 (0.08) 1.00 1.24 (0.03) 1.06 1.26 (0.04) 1.06 1.26 (0.04)

n=100 R̂ AIC Chol-Testing PAC-Testing

Dim (p) Risk (Var) EB Risk (Var) EB Risk (Var) EB Risk (Var)

30 2.82(0.07) 1.00 0.82 (0.03) 1.01 0.82 (0.03) 1.01 0.82 (0.03)

100 9.83(0.08) 1.00 1.62 (0.03) 1.07 1.66 (0.06) 1.06 1.65 (0.05)

200 19.87(0.06) 1.00 2.28 (0.03) 1.06 2.33 (0.08) 1.06 2.33 (0.08)

Note: Frobenius matrix norms (Risk) and Monte Carlo variance (Var) over 100 replicates based on the banded partial autocorrelation estimator by
multiple hypotheses testing (PAC-Testing), banded Cholesky factors of inverse covariance matrix by multiple hypotheses testing (Chol-Testing) or
(AIC) for scenario 1. ρ = 0.7. EB is the estimated number of bands.
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Table 2

Results for scenario 2

p=60 R̂ AIC Chol-Testing PAC-Testing

Size(n) Band Risk (Var) EB Risk (Var) EB Risk (Var) EB Risk (Var)

4 10.74(0.39) 3.59 4.51(0.34) 3.35 4.53(0.38) 3.30 4.55(0.40)

30 9 10.30(0.64) 4.78 7.76(1.18) 3.83 8.08(1.06) 3.45 8.27(0.87)

14 10.15(0.69) 5.04 9.53(0.98) 3.78 9.78(0.72) 3.49 9.96(0.59)

4 7.40(0.21) 3.97 3.14(0.19) 3.96 3.18(0.19) 3.95 3.17(0.19)

60 9 7.33(0.33) 8.46 4.96(0.55) 7.29 5.33(1.04) 7.11 5.37(1.17)

14 7.23(0.47) 10.69 6.24(1.53) 7.56 7.19(2.26) 7.32 7.27(2.37)

4 5.76(0.10) 4.00 2.35(0.08) 4.04 2.36(0.08) 4.04 2.36(0.08)

100 9 5.65(0.18) 9.00 3.70(0.18) 8.71 3.87(0.41) 8.71 3.87(0.41)

14 5.51(0.19) 13.62 4.35(0.19) 12.00 4.62(0.85) 11.98 4.61(0.86)

4 2.56(0.03) 4.00 1.07(0.02) 4.05 1.07(0.02) 4.05 1.07(0.02)

500 9 2.52(0.05) 9.00 1.63(0.04) 9.01 1.63(0.04) 9.01 1.63(0.04)

14 2.48(0.04) 14.00 1.94(0.04) 14.08 1.94(0.04) 14.07 1.94(0.04)

Note: Frobenius matrix norms (Risk) and Monte Carlo variance (Var) over 100 replicates based on the banded partial autocorrelation estimator by
multiple hypotheses testing (PAC-Testing), banded Cholesky factors of inverse covariance matrix by multiple hypotheses testing (Chol-Testing) or
(AIC) for scenario 2. EB is the estimated number of bands.
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