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Abstract

For multiple multivariate datasets, we derive conditions under which Generalized Canonical Cor-

relation Analysis (GCCA) improves classification performance of the projected datasets, compared

to standard Canonical Correlation Analysis (CCA) using only two data sets. We illustrate our

theoretical results with simulations and a real data experiment.
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Stiefel manifold

1. Introduction

With the advent of big data acquisition technology, collected datasets have grown faster than our

understanding of how to make optimal use of them. It is common to find collections/measurements

of related objects, such as the same article in different languages, similar talks given by different

presenters, similar weather patterns in different years, etc. It remains to determine how much the

available big data helps us in statistical analysis; simply throwing every collected dataset into the

mix may not yield an optimal output. Thus it is natural and important to understand theoretically

when and how additional datasets improve the performance of various statistical analysis tasks

such as regression, clustering, classification, etc. This is our motivation to explore the following

classification problem.

Let (X,Y ) ∼ FXY be an Rm × {1, . . . ,K} random pair, where X is the feature vector and

Y is the class label. In statistical pattern recognition (see, e.g., [1], [2]) one seeks a classifier

g : Rm → {1, . . . ,K} such that the probability of misclassification L(g) = P{g(X) 6= Y } is

∗Corresponding author
Email addresses: cshen6@jhu.edu (Cencheng Shen), msun8@jhu.edu (Ming Sun), mtang10@jhu.edu (Minh

Tang), cep@jhu.edu (Carey E. Priebe)

Preprint submitted to Elsevier June 30, 2014

ar
X

iv
:1

30
4.

79
81

v5
  [

st
at

.M
L

] 
 2

6 
Ju

n 
20

14



acceptably small. Because modern datasets are often multi-dimensional, the feature vector X is

assumed to be a multivariate random variable of dimension m and it is often beneficial to carry out

the classification in some lower dimension d (1 ≤ d < m) as m is usually large. Therefore dimension

reduction is applied to first embed X from Rm to Rd, prior to subsequent classification.

Herein we consider only linear projections, which are commonly used and are the foundation

for many nonlinear methods. We denote a linear projection from Rm to Rd by an m× d matrix A;

then A
′
X (the ′ sign denotes transpose) is the projected feature vector in Rd. It follows that the

classification error for a given classifier g (whose domain is Rd from now on) is LA = P{g(A
′
X) 6=

Y }.

Given a distribution FXY , a classifier g, and a non-empty set of linear projections A, we define

an optimal projection A∗ ∈ arg minA∈A{LA} and denote the corresponding minimum error as LA∗ .

The set A and the existence of A∗ are discussed in Section 2 and Assumption 1. Roughly speaking,

LA∗ is the minimum error one can hope to achieve by choosing A cleverly among linear projections.

Assuming that the classifier g is specified, the crucial step is to choose the dimension reduction

method. If we have only X available as the feature vector, then PCA (Principal Component

Analysis) [3] is a natural choice, which is applied for classification in [4]. On the other hand, if

there is an auxiliary feature Z1 of dimension m1 available, that is, (X,Z1, Y ) ∼ FXZ1Y on Rm ×

Rm1 ×{1, . . . ,K}, then CCA (Canonical Correlation Analysis) [5] is applicable on the pair (X,Z1)

to derive the projection A, which is used in [6]. In general, if there are S auxiliary features {Zs ∈

Rms , s = 1, . . . , S} (we always assume 1 ≤ d ≤ min {m,m1, . . . ,mS}), then GCCA (Generalized

Canonical Correlation Analysis) [7] is applicable on (X,Z1, · · · , ZS) to derive A based on X and

the auxiliary features {Zs}.

Note that our classification task remains the same, so that at the classification step we observe

only X but not {Zs}; and so by “GCCA/CCA is applicable” we mean “GCCA/CCA can be used

to derive the projection matrix A for use in the classifier g(A
′
X)”. Furthermore, although CCA

is a special case of GCCA, for clarity purposes we shall assume that GCCA uses at least two

auxiliary features whenever GCCA is compared to CCA. If we consider those auxiliary features as

extra datasets available for use, GCCA can make use of additional datasets compared to CCA, but

we do not know whether these additional datasets will allow GCCA to outperform CCA. At this

moment, we should also point out that another popular approach combines GCCA/CCA into the

supervised learning step explicitly as a classification rule [8], [9], [10], which is empirically more
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suitable if classification is the only purpose; while in our setting we first apply GCCA/CCA to

project the data, followed by the supervised learning step based on the projected data and known

labels, which is a more general and more classical view in exploring given data and can be followed

by other inference tasks such as testing, clustering, classification, etc. These two approaches are not

in conflict with each other: one may first apply GCCA/CCA to project the data without the labels,

followed by classification using supervised CCA (which in fact is equivalent to linear discriminant

analysis in the two-class case [8]).

The above setting leads to the following questions. Does GCCA perform better than CCA in

classification when using additional auxiliary features? From an application point of view, do ad-

ditional datasets help in the later classification task, and what type of datasets should be included

as auxiliary features in deriving the projection? It turns out the answer is not simple. We consider

these questions theoretically, by deriving conditions on the auxiliary features that imply the supe-

riority of GCCA. Let us say the joint feature (X,Z1, · · · , ZS) ∼ FS+1, and a projection matrix A

derived from GCCA/CCA using X and s auxiliary features is denoted by As+1. Our main objective

is to derive sufficient conditions on F3 such that if max {LA2
} = LA∗ , then LA3

= LA∗ , as well

as sufficient conditions such that LA∗ = LA3
< min {LA2

}; and their generalizations to FS+1 with

arbitrary s ≥ 2. (Note that when there are two auxiliary features, A2 may come from applying

CCA to either (X,Z1) or (X,Z2); hence the ‘max’ and ‘min’.) Equivalently, the objective is to

demonstrate that additional datasets can be useful for the classification task when conditions are

satisfied. The necessary prerequisites are discussed in Section 2. The sufficient conditions and the

following theorems are shown in Section 3. Some discussions are offered in Section 4 to relate the

results to practical scenarios such as high-dimensional data and functional data, in addition to the

classical multivariate setting the theorems are based on. Our theoretical results are illustrated via

simulations, as well as a real data experiment on Wikipedia documents, in Section 5. All proofs are

put into Section 6, including brief comments to elaborate on the sufficient conditions.

2. Preliminaries

Given two auxiliary features Z1 and Z2, the joint distribution of (X,Z1, Z2) is denoted by

F3 ∈ Ω3, where Ω3 is a family of multivariate distributions on R(m+m1+m2). The overall covariance
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matrix of F3 is denoted by

ΣF3
=


ΣX ΣXZ1

ΣXZ2

Σ
′

XZ1
ΣZ1

ΣZ1Z2

Σ
′

XZ2
Σ
′

Z1Z2
ΣZ2

 ∈ R(m+m1+m2)×(m+m1+m2).

The overall covariance matrix, along with the individual ΣX , ΣZ1 and ΣZ2 , are all assumed finite

and positive semi-definite with rank no less than d.

We can consider GCCA/CCA either with the population covariances or with the sample co-

variances. For our theoretical analysis we consider the population covariances directly, while in

the numerical section we use the sample covariances, which are asymptotically equivalent in the

classical multivariate setting under standard regularity conditions [11].

Identifying the CCA projection A2 = A2(X,Z1) can be approached as the problem of finding

two sets of unit-length canonical vectors {ai} and {bi} to maximize the correlation between a
′

iX

and b
′

iZ1 for each i = 1, . . . , d. (The size of ai is m × 1 and the size of bi is m1 × 1.) That is, we

wish to identity

arg max
ai,bi

ρ{a′iX,b
′
iZ1} =

a
′

iΣXZ1
bi√

a
′
iΣXai

√
b
′
iΣZ1bi

, (1)

subject to the uncorrelated constraints

ρ{a′iX,a
′
jX}

=
a
′

iΣXaj√
a
′
iΣXai

√
a
′
jΣXaj

= 0 and ρ{b′iZ1,b
′
jZ1} =

b
′

iΣZ1bj√
b
′
iΣZ1

bi

√
b
′
jΣZ1

bj
= 0,∀j < i.

Then the m × d matrix A2 = [a1, . . . , ad] is the CCA projection matrix for X, and A
′

2X ∈ Rd is

the projected feature vector. Alternatively, a different A2 = A2(X,Z2) can be identified. Note that

the arguments to A2 – (X,Z1) or (X,Z2) – represent the choice of auxiliary features, and will be

suppressed if the choice is clear or irrelevant in the context.

To identify the GCCA projection A3 based on (X,Z1, Z2), we are looking for three sets of

unit-length canonical vectors {ai}, {bi} and {ci} as follows:

arg max
ai,bi,ci

(ρr{a′iX,b
′
iZ1}

+ ρr{b′iZ1,c
′
iZ2}

+ ρr{a′iX,c
′
iZ2}

)

subject to ρ{a′iX,a
′
jX}

= ρ{b′iZ1,b
′
jZ1} = ρ{c′iZ2,c

′
jZ2} = 0, ∀j < i,

(2)
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where the exponent r in the GCCA formulation (2) indicates the specific GCCA criterion. A

common practice is to set r = 1 or 2, which maximizes either the sum of correlations or the sum of

squared correlations [7]. Then A3 = [a1, . . . , ad] is the desired GCCA projection. In general, given

FS+1 we can derive the GCCA projection As+1 for any 1 ≤ s ≤ S, and CCA is merely a special

case for s = 1. Because our results are shown to hold for any r ≥ 1, we implicitly take r = 1 unless

mentioned otherwise.

Given ΣX , we shall call an m × d matrix A = [a1, . . . , ad] a “potential” GCCA projection if

and only if its columns {ai} are of unit-length and satisfy the uncorrelated constraints. The set

containing all potential GCCA projections is denoted by A = {A| ρ{a′iX,a
′
jX}

= 0 ∀i 6= j and ‖ai‖ =

1 ∀i}. As a different choice of auxiliary features yields a different projection, we denote the set

containing the GCCA projections A3 by A3 and the set containing all CCA projections A2 by A2,

as well as the set As+1 in general. Clearly the elements of As+1 as well as A depend on ΣX . Note

that the PCA projection is also an element of A, but this is not of our concern in this paper. An

important special case: A represents the Stiefel manifold [12] (containing all orthogonal projections

onto dimension d linear subspaces) when ΣX is a multiple of the identity.

Note that the original GCCA/CCA algorithm does not require the norm of ai to be the same

for all i. We choose them to be unit-length consistently in order to avoid scaling issues in the

classification step (alternatively, it is a common practice to set a
′

iΣXai = 1 for all i, which is

equivalent for our purposes). Also note that the choice of the GCCA/CCA projections can be

arbitrary. For example, let ΣX and ΣZ1 be identity matrices and all the singular values of ΣXZ1 be

the same; then A2(X,Z1) can be chosen arbitrarily in the Stiefel manifold Vd,m. In this case A2 has

md− d2+d
2 degrees of freedom, where md comes from the dimension freedom by repeating singular

values and d2+d
2 comes from the unit-length requirement and uncorrelated constraints. But if ΣXZ1

does not have repeating singular values, A2 represents a fixed subspace and has d2−d
2 degrees of

freedom, which is implied by the fact that two m×d matrices A and B represent the same subspace

if and only if AA
′

= BB
′
. The same phenomenon applies for any GCCA projection As+1.

Returning to the classification problem: given a classifier g : Rd → {1, . . . ,K} for the low-

dimensional feature vector A
′
X, the error LA may differ for different A ∈ A. Clearly A is compact

for finite ΣX and {LA|A ∈ A} is bounded between [0, 1], but an optimal low-dimensional projec-

tion (with respect to the classification error) is not guaranteed to exist. We make the following

assumption to avoid non-existence:
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Assumption 1. Given a classifier g, we assume for the theory in the sequel that an optimal pro-

jection A∗ = arg minA∈A{LA} exists for any finite ΣX of rank at least d.

For example, if the class-conditional distributions FX|Y=k admit probability density functions

fX|Y=k for k = 1, . . . ,K, then the assumption always holds. (In this case LA is continuous with

respect to A, and thus {LA|A ∈ A} is compact and admits a minimum.)

By this assumption, the minimum error LA∗ always exists and it follows that LAs+1 ≥ LA∗

always holds for any s. Note that the optimal projection A∗ need not be unique, since the existence

suffices for our purposes. Now we are able to define the notion that GCCA improves CCA using

LA∗ .

Definition 1. Assuming the existence of A∗, we say GCCA improves CCA within a family of

distributions Ω3 if and only if {F3 ∈ Ω3|LA2 = LA∗ , ∀A2 ∈ A2} ⊂ {F3 ∈ Ω3|LA3 = LA∗ , ∀A3 ∈

A3}.

In general, we say the set of GCCA projections As+1 improves the set of GCCA projections

At+1 within ΩS+1 (1 ≤ s, t ≤ S) if and only if {FS+1 ∈ ΩS+1|LAt+1
= LA∗ , ∀At+1 ∈ At+1} ⊂

{FS+1 ∈ ΩS+1|LAs+1 = LA∗ , ∀As+1 ∈ As+1}. (Here the notation “⊂” indicates proper subset.)

Put in words, suppose GCCA improves CCA within Ω3. Then the optimality of the CCA projections

implies the optimality of the GCCA projection, and there exists F3 such that the GCCA projection is

optimal while at least one of the CCA projections is not. Such improvement implies that additional

datasets should be used, though it is not equivalent to LA3
≤ LA2

.

If Ω3 includes every possible multivariate distribution, then GCCA fails to improve CCA. For

example, if Z1 and Z2 are both positively correlated to X but Z1 and Z2 are negatively correlated,

then it might happen that A2 is optimal while A3 is not. Hence it is not always a good idea

to incorporate additional auxiliary features, and we shall look for a family Ω3 imposing certain

relationships among X and {Zs} such that GCCA is guaranteed to improve CCA.

First, we transform X by centering and whitening, so that the population mean is zero and

the population covariance matrix becomes the identity matrix. Then A consists of orthogonal

projections onto dimension d linear subspaces, and there exists an orthogonal matrix such that the

feature vector can be rotated to guarantee A∗ is equivalent to the subspace Rd spanned by the first

d coordinate axes. We denote the transformed random variable by X̃ = HX(X − E(X)), where

E(X) is the expectation for centering and HX is a non-singular m ×m matrix for whitening and
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rotation. Since the optimal projection for X̃ is spanned by the first d coordinate axes, the form of

X̃ based on the class label Y = {1, . . . ,K} can be expressed as:

X̃ = HX(X − E(X))
law
=


U111 + U212 + · · ·+ UK1K

W

 , (3)

where 1k is the class label indicator taking value k with probability pk and
∑K

k=1 pk = 1, each

Uk ∈ Rd is the marginal distribution of X̃ under class k, and W ∈ Rm−d is the “irrelevant” marginal

of X̃. By the above transformation it holds that E(W ) = 0(m−d)×1 and E(WW
′
) = I(m−d)×(m−d),

where I denotes the identity matrix. Clearly HX always exists, and there are multiple choices for

HX if A∗ is not unique. Now we impose our conditions on FS+1 and define what we call the similar

family.

3. Main Results

Definition 2. We say the family of distributions Ω∗S+1 is the similar family if and only if it includes

every FS+1 such that (X,Z1, · · · , ZS) ∼ FS+1 satisfies the following conditions:

Condition (1): For each A∗, there exists non-singular matrices HX ∈ Rm×m and HZs ∈ Rms×ms

for all s = 1, . . . , S, such that Equation (3) holds and there exist non-negative scalars qsk with

Z̃s = HZs
(Zs − E(Zs))

law
=


qs1U111 + qs2U212 + · · ·+ qsKUK1K + es

Ws

 , (4)

where es represents independent noise and Ws ∈ Rms−d. Note that unlike HX , HZs need only be

non-singular and Zs are not necessarily whitened and rotated.

Condition (2): E(UkU
′

k) = I, and Uk is uncorrelated with W and Ws, for all k = 1, . . . ,K and

s = 1, . . . , S.

Condition (3): σ1(E(WsW
′

t )) ≤ σ1(E(WW
′

s))σ1(E(WW
′

t )) for all 1 ≤ s 6= t ≤ S, where we

denote σi(Σ) as the ith largest singular value for any matrix Σ henceforth.

Condition (4): (qsk1
− qsk2

)(qtk1
− qtk2

) > 0 for all 1 ≤ s < t ≤ S and k1, k2 = 1, . . . ,K; namely

the ordering of coefficients qsk is consistent throughout Zs.
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The purpose of condition (1) is to guarantee that the marginal distribution restricted to A∗

of every transformed auxiliary feature under each class is a scalar multiple of the corresponding

marginal of X̃ plus error. The possible non-uniqueness of A∗ is (mostly) avoided by requiring

(1) to hold for any A∗, though the transformation matrices and respective scalars probably differ

under different A∗. Condition (2) is to simplify the analysis, without which the proof is much more

complex. Given conditions (1) and (2), conditions (3) and (4) are technical conditions used in the

proof, implying certain relationships among features. Interpreted by words, condition (3) implies the

“noisy” dimensions (where W and Ws live in) among the auxiliary features should be less related,

while condition (4) implies the “signal” dimensions (where Uk lives) among the auxiliary features

should be more related. In this case GCCA is more likely to extract information from the “signal”

dimensions, for which utilizing additional datasets is likely to improve the classification error. As we

will see in the numerical experiments, this interpretation is useful for judging qualitatively whether

additional datasets should be included, even if A∗ is unknown or condition (2) is not satisfied. And

we will provide additional comments at the end of the proof section to discuss the magnitude of qsk

and its potential impact on the sufficient conditions and model selection.

Theorem 1. GCCA improves CCA in the similar family Ω∗3.

Therefore it is beneficial to use the GCCA projection A3 within the similar family Ω∗3, whose

conditions are sufficient but not necessary for GCCA to improve CCA. Equivalently, deriving the

projection using additional datasets helps the classification task when the sufficient conditions are

satisfied.

Furthermore, the similar family can be decomposed into three disjoint subsets as follows:

Ω∗3 = {F3 ∈ Ω∗3|max {LA2} = LA3 = LA∗} ∪ {F3 ∈ Ω∗3|max {LA2} > LA3 = LA∗} ∪ {F3 ∈

Ω∗3|max {LA2
} > LA∗ and LA3

> LA∗}, with all the subsets shown to be non-empty and proper

in the proof (we can also replace all the ‘max’ by ‘min’). Specifically, if the optimal A∗ is known

(which may be difficult in practice), then one can check which subset a given F3 ∈ Ω∗3 belongs

to according to Inequality (6) and Inequality (7) in the proof below. When the distribution lies

in the first or the second subset above, the GCCA projection performs no worse than the CCA

projections, and adding a “qualified” additional dataset yields better classification result.

It is natural to consider a generalization to Ω∗S+1 because there may be many additional datasets

satisfying the conditions. Indeed we have an easy generalization of the above theorem.
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Corollary 1. For any S ≥ S
′ ≥ 2, the set of GCCA projections AS′+1 improves the set of CCA

projections A2 in the similar family Ω∗S+1.

Under a simplified setting, we can also show that the set of GCCA projections continue to

improve when additional auxiliary features are included in deriving the projections. This means in

the context of the similar family, additional datasets will always improve the performance in the

classification task.

Corollary 2. Let us replace condition (4) by a simplifying condition (4’): Ws = Wt and qsk = qtk

for all 1 ≤ s, t ≤ S. Namely the auxiliary features follow the same distribution for s = 1, . . . , S.

Then for any S ≥ S′ ≥ 2, the set of GCCA projections AS′+1 always improves the set of GCCA

projections AS′ in the similar family Ω∗S+1.

4. Discussions

Since our analysis is carried out on the population covariance instead of the sample covariance,

our results so far rely on the fact that the sample covariance converges to the population covariance

as dimension reduction methods including GCCA/CCA are mostly carried out on the sample data.

Let us provide some justifications for the high-dimensional data case, where the dimension m is

large when compared to the number of training observations n′ such that the covariance convergence

is not guaranteed.

For high-dimensional data, if the sample covariance is still close to the true covariance with

high probability as discussed in [13] and [14], then our results still apply and GCCA improves CCA

in the similar family with high probability. Otherwise our conditions in Definition 2 cannot be

directly used to justify the GCCA/CCA behavior on sample covariances of high-dimensional data.

However, one may heuristically claim that if GCCA is better than CCA in the population model for

the classification task, then GCCA is expected to be better than CCA for the sample data: Since

the classification error is actually a function of the data, if LA3
< LA2

for A2 and A3 derived from

the population model, then at a suitable level of n′/m we can have Prob{LA3
< LA2

} > 0.5 for

A2 and A3 derived from the sample data, because this probability converges to 1 in the classical

multivariate setting where n′/m → ∞. (A point of interest is to derive the minimum level n′/m,

which may depend on the classifier we use. For our simulations on the synthetic data generated
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within the similar family, it seems the minimum level is no larger than 1 in order for GCCA to be

better than CCA.)

In practice one rarely applies CCA directly on data of very high dimension with m > n. Of-

ten one opts to use kernel CCA [15], [16], sparse CCA [17], [18] or functional CCA [19], [20]

to deal with noisy high-dimensional data, assuming that the data intrinsically lives in some low-

dimensional linear subspace. For example, instead of working on (X,Y ) ∈ Rm where m is very

large, kernel/functional CCA works on (f(X), g(Y )) by assuming appropriate f and g exist for

nonlinear/functional data. But the analysis of sparse/functional CCA will be quite different and

difficult when penalty terms are introduced in the constraints, which requires numerical methods

to solve and gives different GCCA/CCA transformations that cannot be efficiently expressed in

matrix notation.

Another aspect worth noting is that a similar conclusion may be reached for clustering. This is

because GCCA makes it easier to find the optimal subspace than CCA under the same conditions,

as long as one is able to define an optimal subspace A∗ in terms of some clustering algorithm with

respect to a specific performance index. However, we do not pursue this direction here because it

is more challenging to evaluate clustering performance than classification performance.

Furthermore, since GCCA/CCA does not make use of label information in the dimension reduc-

tion step, it is natural to compare with some existing algorithms such as p-LDA (penalized linear

discriminant analysis) [8], [21] and `1-SVM (1-norm support vector machine) [22], [23], which make

use of labels and may work for data of high/unknown dimensions. Even though we will include

their classification results in the numerical section for benchmark purposes, our target is not to

find the best method for a given dataset. In addition to being more appropriate for an exploratory

task, there are other reasons that applying unsupervised dimension reduction methods first is more

favorable than doing supervised dimension reduction directly, e.g., it is easier and faster to use

unsupervised dimension reduction for real data, it may be slow and difficult to choose a suitable

penalty term in p-LDA, the data before dimension reduction may not have access to the labels or

may be different from the data on which we perform classification as in the transfer learning task

[24], etc.

At last, the choice of projection dimension d is crucial for the classification (or any inference)

performance, especially when working with real data of unknown true dimension. There are a

number of papers on dimension choice for projecting a single dataset [25], [26] but not for multiple
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correlated datasets, which may be an interesting point to pursue. Still, our results are always

valid no matter the choice of d, which means GCCA improves CCA for any d when conditions are

satisfied.

5. Numerical Experiments

To investigate the performance of the GCCA/CCA projections in classification, we present

both numerical simulations and a real data experiment. We use sample covariances to derive the

GCCA projections with the GCCA algorithm implemented according to [10] (though no covariance

matrix regularization is required in our experiments in contrast to their RGCCA algorithm; and

we apply Gram-Schmidt to all output vectors in the iteration of the algorithm to enforce the

uncorrelated constraints of all the canonical vectors), and the usual LDA as our main classification

rule for the following supervised learning. Whenever applicable, we also include p-LDA and `1-

SVM classification results based on the single dataset to compare with the LDA classification results

based on the GCCA/CCA projected dataset. Note that our previous numerical work illustrating

GCCA improvement under kNN (k-nearest neighbor) classifier is available in [27].

5.1. Numerical Simulations

We start with four random variables U1, U2 ∈ R3 and V1, V2 ∈ R6 all independently normally

distributed. The parameters are set as follows: E(U1U
′
1) = E(U2U

′
2) = I3×3, E(U1) = −E(U2) =

0.23×1, E(V1V
′
1) = E(V2V

′
2) = 0.5I6×6, E(V1) = E(V2) = 06×1.

The three random variables X,Z1, Z2 ∈ R9 are constructed as follows:

X
law
=

[
U111 + U212

V1 + V2

]
, Z1

law
=

[
0.6U111 + 0.4U212 + e1

V1 + e3

]
, Z2

law
=

[
0.6U111 + 0.4U212 + e2

V2 + e4

]
, (5)

where e1, e2
i.i.d.∼ N(0, 0.75I3×3), e3, e4

i.i.d.∼ N(0, 0.5I6×6), 11 and 12 are class label indicators

having equal probability. Using LDA, it is clear that at d = 3 the ideal optimal projection A∗

uniquely represents the subspace spanned by the first d coordinate axes. Hence we can fit the joint

distribution into Definition 2 with d = 3, such that q11 = q21 = 0.6, q12 = q22 = 0.4, W = V1 + V2,

W1 = V1 + e3, W2 = V2 + e4, etc. This joint distribution satisfies the required conditions, so

it belongs to Ω∗3. Further, by checking Inequality (6) and Inequality (7) in the proof, the joint

distribution is actually an element of the subset {F3 ∈ Ω∗3|max {LA2
} > LA3

= LA∗} ∈ Ω∗3. So we
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expect GCCA to outperform CCA when projected onto R3. Note that in this case we can explicitly

calculate L∗ for the population model, which is 36.45%.

For each Monte Carlo replicate, n = 1500 observations are generated for each random variable.

That is, {x(1), . . . , x(1500)} for X, {z(1)1 , . . . , z
(1500)
1 } for Z1 and {z(1)2 , . . . , z

(1500)
2 } for Z2. All data

points are used to learn the GCCA/CCA projections respectively for d = 3. (One may instead derive

the projections based on the training data only, which is asymptotically equivalent to deriving the

projections from all the available data if the testing data is distributed the same as the training.)

Then the first 1000 points generated from X are projected and used to train the classifier; the

remaining 500 points are projected and used for classification error testing. The classification

error is recorded separately for the CCA projections A2(X,Z1) and A2(X,Z2) and for the GCCA

projections A3, using both sum of correlation (r = 1) and sum of squared correlation (r = 2)

criteria. The above is done for 500 Monte Carlo replications, and we show in Table 1 the average

classification error and the average difference between the derived GCCA/CCA subspace and the

optimal subspace for each projection (we use the Hausdorff distance [28] for the difference between

subspaces). The average GCCA classification error is lower than that of CCA as expected, and is

fairly close to the optimal error L∗. In this case the average errors using the p-LDA and `1-SVM

are 37.37% and 36.50% respectively (the penalty terms are always chosen based on cross-validation

for the best performances and benchmark purposes). Note that the standard deviations for the

average errors of all the methods are within 0.3%, and those for the distance of the subspaces are

within 0.002, which are the same for all the later simulations. Also note that the distances of the

subspaces are not expected to be 0, because the A∗ we use is the ideal optimal subspace for the

population model and different from the optimal subspace for the sample data; but even so, it seems

that the classification error is positively correlated to the distance of the subspaces.

To investigate the effect of higher dimension and less sample data, we repeat the same procedure

three times, for m = 20 with n = 1500, m = 50 with n = 1500, and m = 50 with n = 75 (50 points

used for training and the remaining 25 used for testing). The settings are the same with d = 3

fixed, e.g., the dimensions of Ui stay at 3 but the dimensions of Vi are increased as m increases. The

results are shown in Table 2, Table 3 and Table 4. A higher dimension or a smaller training size

means the sample covariance does a worse job in approximating the population covariance, possibly

making the differences between the derived GCCA/CCA subspace and the optimal subspace larger

as m increases and/or n decrease; but still GCCA is better than CCA for the classification task
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projections CCA on (X,Z1) CCA on (X,Z2) GCCA (r = 1) GCCA (r = 2)

average error (LA) 42.03% 41.89% 37.00% 38.16%

‖A−A∗‖ 1.688 1.591 0.714 0.989

Table 1: GCCA Improves CCA in simulation at m = 9, n = 1500

projections CCA on (X,Z1) CCA on (X,Z2) GCCA (r = 1) GCCA (r = 2)

average error (LA) 47.02% 46.18% 42.84% 44.19%

‖A−A∗‖ 2.161 2.037 1.364 1.825

Table 2: GCCA Improves CCA in simulation at m = 20, n = 1500

projections CCA on (X,Z1) CCA on (X,Z2) GCCA (r = 1) GCCA (r = 2)

average error (LA) 47.58% 46.02% 42.41% 44.31%

‖A−A∗‖ 2.197 2.161 1.643 1.895

Table 3: GCCA Improves CCA in simulation at m = 50, n = 1500

in all the tables, reflecting our heuristic argument in the discussion section. This time the average

errors using the p-LDA and `1-SVM are 39.01% and 39.27% at m = 20 with n = 1500, 38.91%

and 38.81% at m = 50 with n = 1500, and 47.43% and 45.76% at m = 50 with n = 75, most of

which turn out to be slightly better than using LDA on GCCA projected data throughout these

simulations.

We also present another simulation to show that GCCA does not necessarily improve CCA at

m = 9 with n = 1500, by replacing the auxiliary feature Z2 by Z2′
law
=
[
0.6U111+0.4U212+e2

V1+e4

]
. We

re-generate all observations and carry out the same simulation steps. Although the auxiliary fea-

ture Z2′ looks reasonably “similar” to X (differing from Z1 only by noise), the joint distribution

of (X,Z1, Z2′) does not satisfy condition (3) and GCCA does not improve CCA by checking the

covariance structure explicitly. Interpreted by words, Z1 and Z2′ are too correlated in the “noisy”

dimensions, hindering GCCA from recognizing the correct “signal” dimensions. The average sim-

ulated classification errors are shown in Table 5. In this case GCCA performs worse than CCA,

which demonstrates that simply adding more datasets does not automatically yield a better result.
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projections CCA on (X,Z1) CCA on (X,Z2) GCCA (r = 1) GCCA (r = 2)

average error (LA) 51.98% 51.60% 45.76% 49.98%

‖A−A∗‖ 2.256 2.236 2.179 2.203

Table 4: GCCA Improves CCA in simulation at m = 50, n = 75

projections CCA on (X,Z1) CCA on (X,Z2′) GCCA (r = 1) GCCA (r = 2)

average error (LA) 41.34% 41.33% 46.86% 46.90%

‖A−A∗‖ 1.545 1.537 2.009 2.018

Table 5: GCCA Fails to Improve CCA in simulation

topic category people locations date math
class label 1 2 3 4 5

article number 119 372 270 191 430

Table 6: Wikipedia Dataset Topics

5.2. Wikipedia Documents

The real data experiment applies GCCA/CCA to text document classification. The dataset

is obtained from Wikipedia, an open-source multilingual web-based encyclopedia with millions of

articles in more than 280 languages. In Wikipedia each article can be related to others in the same

language, or articles in other languages with the same subject. Articles of the same subject in

different languages are not necessarily exact translations of one another; it is very likely they are

written by different people and their contents might differ significantly.

English articles within a 2-neighborhood of the English article “Algebraic Geometry” are col-

lected, and the corresponding French articles of those English documents are also collected, which

totals n = 1382 pairs of articles in English and French. Let ae1, . . . , a
e
1382 denote the English articles

and af1 , . . . , a
f
1382 denote the French articles. All articles are manually labeled into 5 disjoint classes

(1− 5) based on their topics, as shown in Table 6.

For the purposes of GCCA/CCA, first we need to embed each article onto the Euclidean space

Rm by Multi-dimensional Scaling (MDS) [29], [30], [31]. MDS strives to give a Euclidean repre-

sentation while approximately preserving the dissimilarities of the original data: given an n × n

dissimilarity matrix ∆ = [δij ] for n observations with δij being the dissimilarity measure between

the ith and jth observation, MDS generates embeddings xi ∈ Rm for the ith data point to preserve

14



Graph Topology Dissimilarity Text Content Dissimilarity
English articles {aei} {x̄ei}(GE) {x̂ei}(TE)

French articles {afi } {x̄fi }(GF ) {x̂fi }(TF )

Table 7: Euclidean Embeddings (Rm) for Wikipedia Articles

the dissimilarity among the objects pairs, i.e. ||xi − xj || ≈ δij .

For our work two different types of dissimilarity measures are considered for English and French

articles, giving four dissimilarity matrices of dimension 1382×1382: the graph topology dissimilarity

matrix ∆̄e, ∆̄f and the text content dissimilarity matrix ∆̂e, ∆̂f .

For the graph dissimilarities, ∆̄e and ∆̄f are constructed based on an undirected graph G(V,E),

where V represents the set of vertices of the 1382 Wikipedia documents, and E is the set of edges

connecting those articles. There is an edge between two vertices if they are linked in Wikipedia.

Then the entry ∆̄e(i, j) is calculated from the number of steps on the shortest path from document

i to document j in G. For the English articles, ∆̄e(i, j) ∈ {0, . . . , 4, 6}, where 4 is the upper bound

of the step number with any higher number setting to 6. For the French articles ∆̄f (i, j) depends

on the French graph connections, so it is possible that ∆̄f (i, j) 6= ∆̄e(i, j). At the extreme end,

∆̄f (i, j) =∞ when afi and afj are not connected, and we set ∆̄f (i, j) = 6 for ∆̄f (i, j) > 4.

For the text dissimilarities, ∆̂e and ∆̂f are based on the text processing features for documents

{aei} and {afi }. Suppose zi, zj are the feature vectors for the ith and jth English articles. Then

∆̂e(i, j) is calculated by the cosine dissimilarity ∆̂e(i, j) = 1 − zi·zj

‖zi‖2‖zj‖2 . For the experiment we

consider the latent semantic indexing (LSI) features [32].

Once different dissimilarity matrices are constructed, the Euclidean space embeddings with

m = 50 are obtained via MDS. The articles’ embeddings are shown in Table 7. At first, English

graph dissimilarity (GE) is the classification target, and others (GF, TE, TF) are treated as auxiliary

features: all data points are used to learn the GCCA/CCA projections from Rm to Rd based on GE

and a certain choice of auxiliary features, and the data points of GE are projected by the learned

projections. Then 600 observations are randomly picked to train the classifier, with the remaining

782 documents used for classification error testing. We repeat 500 times to calculate the average

classification error, for every possible GCCA/CCA projection and various choice of d. The same

procedure is repeated with the French graph dissimilarity (GF) being the classification target and

the remaining being the auxiliary features. The full results for every possible projection are shown
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in Figure 1 for the classification of GE. For illustration purposes, two simplified plots are shown

in Figure 2 for the classification of GE/GF, for which we omit most projections in order to better

quantify the effects of increasing s (the number of chosen auxiliary features), i.e., only the best A2

and A3 are shown. Note that for comparison purposes the PCA projections are also included, and

all the classification errors have standard deviations within 0.2%.

Figure 1: Classification Error for GE

Based on Figure 2, we observe that for most choices of d the best GCCA projection A3 admits a

lower error than the best CCA projection A2, and both of them are better than the PCA projection.

The figure also illustrates the last paragraph of our discussion section, i.e., GCCA is expected to

be better than CCA no matter the choice of projection dimension. However, it turns out that the

GCCA projection A4 does not yield the lowest error for classifying the Wikipedia data. This is

not a surprise and tells that not all datasets should be included in this example, as one can judge

from Figure 1 and our previous simulations that the choice of auxiliary features is crucial for the

classification errors. For benchmark purposes, the average classification errors using p-LDA on

the MDS-embedded data are 48.40% for GE and 56.65% for GF, which are slightly better than
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(a)

(b)

Figure 2: Classification Error for GE/GF (simplified)
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the average LDA errors using PCA projected data but worse than the average LDA errors using

multiple datasets and the best GCCA/CCA projections at d = 20 in this experiment.

Unfortunately, one cannot easily check the joint distribution by Definition 2 like in the simulation

part, because the optimal projection A∗ is unknown for the Wikipedia datasets. Therefore in a

real-world application, one must be cautious in adding a new dataset and/or choosing the best

dimension. Both of these are difficult model selection problems in practice, which can be addressed

by cross-validation as in this experiment. Still, the interpretation after Definition 2 is useful from a

qualitative perspective. On one hand, the graph dissimilarities GE and GF are of questionable value

because they depend on the Internet links, which may be erroneous. On the other hand, the text

dissimilarities TE and TF are much more faithful because they are extracted from the document

contents, thus more likely to have commonality in certain “signal” dimensions. Therefore it is

reasonable to believe that choosing a text dissimilarity is better than choosing a graph dissimilarity,

which explains why the best A2 and A3 do not choose any graph dissimilarity as the auxiliary

variable and why A4 performs worse.

6. Proofs

6.1. Proof of Theorem 1 when K = 2 and r = 1

Proof. We consider K = 2 and r = 1 here (and generalize in the next proof), so the number of

classes is two and the GCCA criterion is the sum of correlations.

If a projection A represents the same subspace as the optimal projection A∗ (i.e., AA
′

= A∗A∗
′
),

then A is optimal for classification such that LA = LA∗ . For most parts it suffices to assume that

A∗ is unique (in the sense of representing the same subspace), which is justified towards the end of

the proof.

In addition to the uniqueness of A∗, we also assume that HX , HZs
,ΣZs

are all identity matrices

for s = 1, 2. This is also justified later, as we will show the theorem is invariant under proper

transformations. Further, the expectations E(X) and E(Zs) are treated as zeros throughout all

proofs because the GCCA/CCA projections and the classification task are not affected.

Under the above assumptions, we have the following: the optimal projection A∗ is spanned by

the first d coordinate axes; any potential projection A ∈ A must be orthonormal and equivalent

to an orthogonal projection onto a dimension d linear subspace; and the GCCA/CCA projections

As+1 are optimal if and only if As+1A
′

s+1 = A∗A∗
′
.
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Because all the pre-multiplication matrices are assumed to be identity matrices, together with

conditions (1) and (2) in Definition 2 we have the covariance matrices

ΣXZ1
=


pq11E(U1U

′

1) + (1− p)q12E(U2U
′

2) pE(U1W
′

1) + (1− p)E(U2W
′

1)

pq11E(WU
′

1) + (1− p)q12E(WU
′

2) E(WW
′

1)



=


(pq11 + (1− p)q12)Id×d 0

0 E(WW
′

1)

 ,

ΣXZ2
=


pq21E(U1U

′

1) + (1− p)q22E(U2U
′

2) pE(U1W
′

2) + (1− p)E(U2W
′

2)

pq21E(WU
′

1) + (1− p)q22E(WU
′

2) E(WW
′

2)



=


(pq21 + (1− p)q22)Id×d 0

0 E(WW
′

2)

 ,

where we denote p1 = p and p2 = 1− p in case of two classes.

To derive the CCA projection A2 = A2(X,Z1), the two m × d orthonormal matrices A2 and

B2 shall maximize the singular values of A
′

2ΣXZ1B2 (we take B2 = [b1, . . . , bd] as in Equation (1),

similarly to how we define A2) [33]. Because A∗ represents the dimension d subspace spanned by

the first d coordinate axes, A2(X,Z1) is optimal if and only if A2 consists of the first d left singular

vectors of ΣXZ1
. Due to the form of ΣXZ1

, in this case B2 must consist of the first d right singular

vectors and the respective correlations are maximized to the decreasingly ordered singular values

of the d × d leading principal sub-matrix of ΣXZ1 . Therefore A2A
′

2 = A∗A∗
′

if and only if A2 is

spanned by the first d coordinate axes, or equivalently the largest d singular values of ΣXZ1
all

come from the d× d leading principal sub-matrix.

Putting into inequalities, the CCA projections A2(X,Zs) are optimal if and only if

hs = pqs1 + (1− p)qs2 − σ1(E(WW
′

s)) > 0. (6)
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When either CCA projections is not optimal, at least one hs is non-positive and represents the

“singular value loss” of using CCA.

To derive the GCCA projection A3 based on (X,Z1, Z2), the covariance matrix between Z1 and

Z2 also comes into play:

ΣZ1Z2
=


pq11q21E(U1U

′

1) + (1− p)q12q22E(U2U
′

2) pq11E(U1W
′

2) + (1− p)q12E(U2W
′

2)

pq21E(W1U
′

1) + (1− p)q22E(W1U
′

2) E(W1W
′

2)



=


(pq11q21 + (1− p)q12q22)Id×d 0

0 E(W1W
′

2)

 .

Argued in a similar manner, the GCCA projection is optimal if and only if A3 is spanned by the

first d coordinate axes. The necessary and sufficient condition for that is

h+ h1 + h2 > 0, (7)

where we define h = pq11q21 +(1−p)q12q22−σ1(E(W1W
′

2)). In words, if both the CCA projections

are already optimal, it is sufficient that the largest d singular values of ΣZ1Z2
all come from the

d×d leading principal sub-matrix; else if either CCA projections is not optimal, the “singular value

gain” from ΣZ1Z2
has to compensate the possible “singular value loss” from ΣXZ1

and ΣXZ2
in

order for the GCCA projection to be optimal.

An important step is to prove that if hs ≥ 0 for s = 1, 2, then h > 0. This is true because

h = pq11q21 + (1− p)q12q22 − σ1(E(W1W
′

2))

≥ pq11q21 + (1− p)q12q22 − σ1(E(WW
′

1))σ1(E(WW
′

2))

≥ pq11q21 + (1− p)q12q22 − (pq11 + (1− p)q12)(pq21 + (1− p)q22)

= p(1− p)(q11 − q12)(q21 − q22)

> 0,

where the first inequality uses condition (3) in Definition 2, the second inequality is by the fact that
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hs ≥ 0, and the last inequality uses condition (4).

By the above derivation, if both CCA projections are optimal such that hs > 0 for s = 1, 2, then

Inequality (7) automatically holds and the GCCA projection A3 is also optimal. This shows that

any F3 ∈ Ω∗3 satisfying Inequality (6) for s = 1, 2 is an element of the subset {F3 ∈ Ω∗3|max {LA2} =

LA3 = LA∗}.

Next we show there exists F3 ∈ Ω∗3 such that Inequality (7) holds while Inequality (6) fails

for at least one s. The trivial example is that: if h1 = h2 = 0, then the GCCA projection is

optimal. Furthermore, fixing h, p and all the qsk, the left-hand side of Inequality (7) is clearly

continuous with respect to σ1(E(WW
′

s)) for each s. This means σ1(E(WW
′

s)) can be increased

such that hs < 0 (and condition (3) in Definition 2 will not be violated) while Inequality (7) still

holds. So there also exists F3 such that the GCCA projection is optimal when hs < 0. Thus

∃F3 ∈ {F3 ∈ Ω∗3|max {LA2
} > LA3

= LA∗}.

Therefore, when A∗ is unique and HX , HZs ,ΣZs are all identity matrices, we proved that: for

any given F3 ∈ Ω∗3, if the CCA projections are optimal, so are the GCCA projections; if the

CCA projections are not optimal (Inequality (6) is not satisfied for at least one s), the GCCA

projection may be optimal (depending on whether the covariance structure satisfies Inequality (7)).

Equivalently, we demonstrate that the similarity definition is sufficient for GCCA to improve CCA.

Note that the step that ensures h > 0 when hs ≥ 0 will be used again.

Next we show that the result so far is invariant under any HX , HZs
,ΣZs

that satisfy Def-

inition 2. Take CCA on (X,Z1) for an example: by Equation (3) and Equation (4) we have

ΣX̃ = HXΣXH
′

X = I and ΣZ̃1
= HZ1ΣZ1H

′

Z1
; also by eigendecomposition there exists m1 ×m1

matrix V s.t. ΣZ̃1
= V

′
V . Then ΣX = H−1X H−1

′

X and ΣZ1 = H−1Z1
V
′
(H−1Z1

V
′
)
′
, and the CCA

formulation (1) is equivalent to

ρ{a′iX,b
′
iZ1} =

(H−1
′

X ai)
′
H
′

XΣXZ1
H
′

Z1
V −1(V H−1

′

Z1
)bi√

(H−1
′

X ai)
′H−1

′

X ai

√
(V H−1

′

Z1
bi)
′V H−1

′

Z1
bi

,

subject to ρ{a′iX,a
′
jX}

=
(H−1

′

X ai)
′
H−1

′

X aj√
(H−1

′

X ai)
′H−1

′

X ai

√
(H−1

′

X aj)
′H−1

′

X aj

= 0

and ρ{b′iZ1,b
′
jZ1} =

(V H−1
′

Z1
bi)
′
V H−1

′

Z1
bj√

(V H−1
′

Z1
bi)
′V H−1

′

Z1
bi

√
(V H−1

′

Z1
bj)
′V H−1

′

Z1
bj

= 0,
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where V −1 is defined as the unique Moore-Penrose pseudo inverse if ΣZ̃1
is singular. Hence it is

equivalent to consider the projections H−1
′

X A2 and V H−1
′

Z1
B2 on (X̃, V −1

′
Z̃1) (both X̃ and V −1

′
Z̃1

are of identity variance) with covariance H
′

XΣXZ1
H
′

Z1
V −1, instead of the projections A2 and B2

on (X,Z1). The same holds for the GCCA formulation (2). Furthermore, the classification task

remains the same because the projected feature A
′
X = (H−1

′

X A)
′
HXX is invariant under the full-

rank transformation HX . Therefore the optimal projection A∗ and the GCCA/CCA projections

As+1 are all equivalent to the identity variance case up to HX , and the result is clearly invariant.

At last we justify the case when A∗ is not unique, which means there exists A∗ that is spanned

by the first d coordinate axes under different transformation matrices. Because the conditions in

Definition 2 are required to be satisfied for all A∗, in most cases the CCA optimality is still equiv-

alent to Inequality (6), i.e., CCA is optimal if and only if Inequality (6) is satisfied for at least one

A∗ after proper transformations for each A∗. The same holds for the GCCA optimality (Inequal-

ity (7)), and we can still conclude that GCCA improves CCA following the same steps. However, a

special case should be taken into consideration, and we take the CCA projection A2(X,Z1) for an

illustration: Suppose the singular vector σ1(E(WW
′

s)) corresponds to is the (d + 1)th coordinate

axes and σ1(E(WW
′

s)) > σ2(E(WW
′

s)). Then A2(X,Z1) can be chosen to represent any dimension

d subspace of the space spanned by the first (d + 1) coordinate axes, and the degrees of freedom

is (d + 1)d − d2+d
2 (the degrees of freedom may increase if there are repeating singular values).

Now, if A∗ happens to have the same degrees of freedom in the space spanned by the first (d+ 1)

coordinate axes, then A2(X,Z1) is optimal if and only if h1 ≥ 0 (rather than h1 > 0) because any

arbitrary choice of A2 is optimal. Similar phenomenon applies for As+1, in which case Inequal-

ity (6) and Inequality (7) should be adjusted to include equalities. However, in this case we still

have h+ h1 + h2 > 0 when the CCA projections are optimal, which is still sufficient (but may not

be necessary) for GCCA to be optimal. Therefore, GCCA still improves CCA in case of non-unique

A∗, and the justification is done. �

6.2. Proof of Theorem 1 for any K ≥ 2 and r ≥ 1

Proof. Now we generalize the result to arbitrary K ≥ 2 (multi-class) and any r ≥ 1 (the GCCA

criterion). Without loss of generality, we assume that A∗ is unique and HX , HZs
,ΣZs

are all identity

matrices.

Let us treat the case that r = 1 first. Using the setting in Equation (4) and argue similarly as
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before, GCCA improves CCA if and only if

h =

K∑
k=1

pkq1kq2k − σ1(E(W1W
′

2)) > 0 (8)

is true when hs =
∑K

k=1 pkqsk − σ1(E(WW
′

s)) ≥ 0 for s = 1, 2.

This is true because

h =

K∑
k=1

pkq1kq2k − σ1(E(W1W
′

2))

≥
K∑

k=1

pkq1kq2k − σ1(E(WW
′

1))σ1(E(WW
′

2))

≥
K∑

k=1

pkq1kq2k − (

K∑
k=1

pkq1k)(

K∑
k=1

pkq2k)

=
∑

1≤k1<k2≤K

pk1pk2(q1k1 − q1k2)(q2k1 − q2k2) (9)

> 0,

where the first inequality follows from conditions (3), the second inequality follows from hs ≥ 0,

the next equality follows from simple algebra, and the last inequality follows from condition (4).

As to the GCCA criterion with r ≥ 1, GCCA improves CCA if and only if

(

K∑
k=1

pkq1kq2k)r − σr
1(E(W1W

′

2)) > 0

is true when hs ≥ 0. Clearly this inequality holds if and only if it holds for r = 1, which is

Inequality (8). Hence it is true and GCCA improves CCA in the similar family for any r ≥ 1.

Thus Theorem 1 is proved for any number of classes and any GCCA criterion with r ≥ 1. �

6.3. Proof of Corollary 1 and Corollary 2

Proof. Without loss of generality, we carry out the proof assuming A∗ is unique, HX , HZs ,ΣZs

are all identity matrices, and K = 2 and r = 1.

There are S auxiliary features in total, and thus

(
S

S′

)
choices of auxiliary features for AS′+1.

We define hs = pqs1 + (1− p)qs2 − σ1(E(WW
′

s)) and hst = pqs1qt1 + (1− p)qs2qt2 − σ1(E(WsW
′

t ))
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for any s and t satisfying S ≥ s, t ≥ 1, where hst is a generalization of h in the proof of Theorem 1.

Then the GCCA projection AS′+1 using the first S
′

auxiliary features is optimal if and only if

∑
1≤s<t≤S′

hst +

S
′∑

s=1

hs > 0. (10)

This is a generalization of Inequality (7), because there are S
′

possible “singular value loss” caused

by ΣXZs
and S

′
(S
′
−1)

2 additional cross-covariance terms ΣZsZt
between the auxiliary features. Note

that for any other AS′+1 ∈ AS′+1 with a different choice of auxiliary features, we can still use

Inequality (10) for the optimality by switching the first S
′

auxiliary features with the chosen S
′

auxiliary features.

All the CCA projections are optimal if and only if hs > 0 for all s = 1, . . . , S. This implies that

hst > 0 is always true for any 1 ≤ s < t ≤ S, and Inequality (10) holds for any AS′+1 ∈ AS′+1

with S ≥ S
′ ≥ 2. Therefore the set of GCCA projections AS′+1 always improves the set of CCA

projections A2, and Corollary 1 is proved.

To prove Corollary 2, we use the simplifying condition (4’). Then Inequality (10) simplifies to

S
′
−1
2 h12 + h1 > 0, because hst are the same for all 1 ≤ s, t ≤ S

′
and so are hs. We need to show

that if AS′ are optimal for certain FS+1, so is AS′+1. (note that the choice of auxiliary features no

longer matters because they follow the same distribution, which means all the elements in AS′+1

represent the same subspace.)

When S
′

= 2, it is a special case of Theorem 1 because any FS+1 satisfying condition (4’) also

satisfies condition (4). Clearly A2 is optimal if and only if h1 = h2 > 0, which implies h12 > 0. So

Inequality (10) holds and A3 is also optimal.

When S
′

= 3, A3 is optimal if and only if h12 + h1 > 0. In this case if h1 > 0, then we

have h12 > 0; if h1 < 0, then h12 > 0 must be true in order for A3 to be optimal. In any case,

3
2h12 + h1 > 0 is true and A4 is optimal.

Therefore, the optimality of A3 implies the optimality of A4. By induction, for any S ≥ S′ ≥ 2,

the optimality of AS′ implies the optimality of AS′+1 under the simplifying condition (4’), and

Corollary 2 is proved. Note that the corollary is not true under the original condition (4), and one

can easily make up a counter-example by checking Inequality (10). �
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6.4. Comments

We conclude the proof section by considering the term h =
∑K

k=1 pkq1kq2k − σ1(E(W1W
′

2)) in

Equation 8 for the case of two auxiliary features, which offers additional insights for Definition 2 of

the similar family and is potentially useful for model selection.

Firstly, the equation offers a relaxation of condition (4) in the similar family: instead of (qsk1
−

qsk2
)(qtk1

− qtk2
) > 0 for all 1 ≤ s < t ≤ S and k1, k2 = 1, . . . ,K, we can replace it by either

h > 0 or
∑

1≤k1<k2≤K pk1
pk2

(q1k1
− q1k2

)(q2k1
− q2k2

) > 0 (by Equation 9), which is more difficult

to interpret than the original condition but less restrictive.

Secondly, the improvement of GCCA over CCA depends almost solely on the magnitude of

h. The larger the h, the more likely that GCCA may be optimal even if CCA is not. Towards

this direction, the magnitude of qsk plays an important role: for fixed E(W1W
′

2), assuming all

coefficients non-negative, h increases with qsk and GCCA projection is potentially more superior.

Finally, the above observation may be useful for the choice of auxiliary variables and the pro-

jecting dimension without using cross-validation. Other things being equal, an auxiliary variable

with larger h or qsk is more favorable, as is a projection dimension with larger h or qsk; thus it is

reasonable to choose an auxiliary variable and/or a projection dimension with a more significant

“signal” part (where Uk lives) for later inference, which agrees with intuition. Numerically, within

the similar family this observation is useful for model selection purposes (choose the auxiliary fea-

ture and/or the projection dimension with the largest h using greedy algorithms, among all available

auxiliary features and all possible dimensions); but out of the similar family definition, whether a

modified version of h can serve the model selection purpose or not requires further investigation.
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