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Abstract

Relational models for contingency tables are generalizations of log-linear models, al-
lowing effects associated with arbitrary subsets of cells in a possibly incomplete table,
and not necessarily containing the overall effect. In this generality, the MLEs under
Poisson and multinomial sampling are not always identical. This paper deals with the
theory of maximum likelihood estimation in the case when there are observed zeros in
the data. A unique MLE to such data is shown to always exist in the set of pointwise
limits of sequences of distributions in the original model. This set is equal to the closure
of the original model with respect to the Bregman information divergence. The same
variant of iterative scaling may be used to compute the MLE in the original model and
in its closure.

Keywords: algebraic variety, Bregman divergence, contingency table, extended
MLE, iterative scaling, relational model

1 Introduction

The existence of maximum likelihood estimates under log-linear models for contingency
tables has been thoroughly studied, see Haberman [1974], Andersen [1974], Barndorff-Nielsen
[1978], Lauritzen [1996], among others. It was established that the maximum likelihood
estimates of the cell parameters always exist if the observed table has only positive cell
counts, and may exist if some of the observed counts are zero. The patterns of zero cells
that lead to the non-existence of the MLE were described in several forms [cf. Haberman,
1974, Fienberg and Rinaldo, 2012].

Within the extended log-linear model class all data sets have an MLE, irrespective of
the pattern of zeros. An extended log-linear model may be obtained as the closure of the
original model in the topology of pointwise convergence [cf. Lauritzen, 1996], or the closure
with respect to the Kullback-Leibler divergence [cf. Csiszár and Matúš, 2003], or as the
aggregate exponential family [Brown, 1988].
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The contribution of this paper is motivated by statistical problems in which models more
general than log-linear need to be considered. To illustrate, suppose that the management
of a large supermarket classifies all goods on stock into one of three mutually exclusive and
exhaustive categories, say, food (F ), non-food household (N) and other (O), and wishes
to study how the daily sales of each group are related. This is a standard task in market
basket analysis [cf. Brin et al., 1997]. The first model of interest, routinely, is independence,
but the usual model of independence of the three indicator variables is not applicable in
this case: if pF , pN and pO denote the probabilities that a purchase (a basket) contains an
item from the F , N and O groups, then the probability of an empty purchase would be
(1 − pF )(1 − pN)(1 − pO), which has to be positive, in spite of the fact that there are no
purchases which do not contain any items.

One alternative independence concept to apply is the AS-independence of the three vari-
ables [Aitchison and Silvey, 1960]. The indicator variables F , N , and O are said to be
AS-independent if

pFN = pFpN , pFO = pFpO, pNO = pNpO, pFNO = pFpNpO. (1)

Relational models introduced by Klimova, Rudas, and Dobra [2012] contain model (1) and
many other models of association.

A relational model on a contingency table is generated by a class of non-empty subsets
of cells and can be specified in the form:

log δ = A′β. (2)

Here, δ denotes the vector of cell parameters, probabilities or intensities, and A is the 0-1
matrix whose rows are the indicators of generating subsets. A hierarchical log-linear model
[cf. Bishop, Fienberg, and Holland, 1975] applies to a table which is a Cartesian product,
and the model is generated by a collection of cylinder sets corresponding to marginals of
the table and thus is a special case of a relational model. If the row space of A contains
the vector 1′ = (1, . . . , 1), as in the case of hierarchical log-linear models, then the model is
said to include the overall effect. A model with the overall effect can be parameterized to
include a common parameter in every cell, often called the normalizing constant. The models
without the overall effect cannot be parameterized in such a way. The peculiar property of
relational models without the overall effect is that models for probabilities (appropriate
under multinomial sampling) and models for intensities (appropriate for Poisson sampling)
are different and lead to different MLEs. Let y denote the observed frequency distribution.
Then, when the overall effect is not present, the MLE for probabilities does not preserve the
sufficient statistics Ay, and, for intensities, it does not preserve the observed total 1′y, see
Example 2.1.

An iterative scaling procedure based on Bregman divergence can be used to compute the
MLE under relational models [Klimova and Rudas, 2015]. The Bregman divergence between
two distributions is a generalization of the Kullback-Leibler divergence, but, unlike the latter,
stays non-negative whether or not the two distributions have the same total. This property
is essential for relational models for intensities without the overall effect as these models may
include distributions with different totals.

If the observed frequencies are positive and the model matrix is of full row rank, the
MLE under relational models can be computed using algorithms for convex optimization
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[cf. Bertsekas, 1999, Aitchison and Silvey, 1960, Evans and Forcina, 2013] or the Newton-
Raphson algorithm. A detailed discussion of the relative advantages and disadvantages
of variants of iterative proportional fitting was given in Klimova and Rudas [2015]. The
contribution of the present paper is the investigation of cases when there are observed zero
frequencies in the data, and of the closure of relational models under which such data will
always admit an MLE. Of course, if only three groups of goods, as in the example above,
are investigated, one cannot expect to see an observed zero, but if 1000 groups of goods are
investigated, out of the resulting 21000 − 1 groups, many will be empty. As it turns out, the
pattern of observed zeros has far reaching implications on the existence and kind of MLE
obtained.

A necessary and sufficient condition for the existence of the maximum likelihood estimates
of the cell parameters under relational models is obtained in Section 2. The MLE for y exists
if and only if there is a positive vector z such that Az = Ay. This is literally the same
condition as the one that applies to log-linear models.

In Section 3, extended relational models are studied. The extended relational model
is defined as the set of distributions parameterized by the elements of an algebraic variety
associated with the model matrix of the original relational model. It is shown that this set
is equal to the closure of the original model with respect to both the pointwise convergence
and the Bregman divergence.

In Section 4, a polyhedral condition for the existence of the MLE in the original or
the extended relational model is formulated. If the vector of the sufficient statistics, Ay,
of the observed distribution is not contained in any of the faces of the polyhedral cone
associated with the model matrix, the MLE exists in the original model, and otherwise,
it does in the extended model. This condition is the same as for the log-linear case, but
the proof is very different. The multiplicative representation of the distributions in the
extended model and the existence of the MLEs of the model parameters are also discussed
in this section. Finally, the generalized iterative proportional fitting procedure suggested in
Klimova and Rudas [2015] is extended to the case of observed zeros.

While the conditions of the existence of the MLE in the generality considered in this paper
may be formulated to coincide with the known conditions for the case of log-linear models,
the proofs turn out to be more involved. Also, the algorithm to obtain that the MLEs is
more complex. The additional complications come from properties of the MLE when the
overall effect is not present. In fact, Lauritzen [1996, p.75] mentioned the existence of models
without the overall effect, which he called the “constant function”, but to avoid difficulties
did not consider them. On the other hand, such models have been used in practice, see
references in Klimova et al. [2012], Klimova and Rudas [2015].

2 MLE under relational models

Let Y1, . . . , YK be discrete random variables with finite ranges, and the vector I of length |I|
be their joint sample space. Here, I may also be a proper subset of the Cartesian product
of the ranges of the variables. A distribution on I is parameterized by the cell parameters
δ = {δi, for i ∈ I}, and, to simplify notation, is identified with δ. The components of δ are
either probabilities: δi ≡ pi ∈ (0, 1), with

∑
i∈I pi = 1, or intensities: δi ≡ λi > 0, for all
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i ∈ I. Let P denote the set of positive distributions, δ > 0, on I.
Let A be a 0-1 matrix of size J × |I|, which is interpreted as the indicator matrix of

J subsets generating the model. Assume that A has no zero column. A relational model
RMδ(A) is the following set of distributions:

RMδ(A) = {δ ∈ P : δi =
J∏

j=1

θ
aji
j , i ∈ I, for some θ ∈ RJ

>0}, (3)

where θ = (θ1, . . . , θJ) ∈ RJ
>0 denotes the vector of parameters associated with the generating

subsets. Under the model, the cell parameters are equal to the products of the parameters
θ corresponding to the subsets to which the cell belongs. In the sequel, the components of
θ are referred to as the multiplicative parameters, and A is assumed to be of full row rank.
In fact, the model RMδ(A) is uniquely determined by the row space of its model matrix,
R(A). Relational models for which 1′ ∈ R(A) are said to include the overall effect.

A dual representation of a relational model RMδ(A) can be obtained using the kernel
basis matrix D, whose rows, d1, . . . ,dK , are a basis of Ker(A). In this representation, any
distribution in the model satisfies

Dlog δ = 0, (4)

which can be re-written using the generalized odds ratios:

δd+

1 /δd−
1 = 1, δd+

2 /δd−
2 = 1, · · · δd+

K/δd−
K = 1, (5)

or using the cross-product differences:

δd+

1 − δd−
1 = 0, δd+

2 − δd−
2 = 0, · · · δd+

K − δd−
K = 0, (6)

where, d+ and d− denote, respectively, the positive and negative parts of a vector d

[Klimova et al., 2012].
The properties of the maximum likelihood estimates under relational models are reviewed

next. LetY = (Y1, . . . , YK) be a random variable that has a multivariate Poisson distribution
parameterized by δ ≡ λ or a multinomial distribution parameterized by N and δ ≡ p. Let
y be a realization of Y, and

q =

{
y, if δ ≡ λ,
y/(1′y), if δ ≡ p.

(7)

If the MLE δ̂y of the cell parameters under the model RMδ(A) exists, it is the unique
solution to the system of equations:

Aδ = γAq,

Dlog δ = 0, (8)

1′δ = 1 (only for δ ≡ p).

The value of γ is called the adjustment factor. If RMδ(A) is a model for probabilities with
the overall effect or a model for intensities, then γ = 1 for every y. If RMδ(A) is a model
for probabilities without the overall effect, then the value of γ depends on y [Klimova et al.,
2012].
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Table 1: Maximum likelihood estimates under the model of AS-independence of variables F ,
N , O, under the multinomial and Poisson sampling.

O = No O = Yes

N = No N = Yes N = No N = Yes

F = No empty 14 25 16 - observed

empty 27.33 32.60 8.91 - multinomial
empty 3.31 7.29 24.13 - Poisson

F = Yes 10 5 3 27 - observed

18.46 5.04 6.02 1.64 - multinomial
1.26 4.17 9.18 30.39 - Poisson

Example 2.1. The model of AS-independence (1) is a relational model generated by the
model matrix

A =




1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1


 , (9)

where the order of cells is lexicographic. As 1′ is not in the row space of A, the model
does not have the overall effect. Thus, the models RMλ(A) and RMp(A) are not equiv-
alent. Given hypothetical data, the MLE for cell frequencies, computed under the model
for probabilities and under the model for intensities, are shown in Table 1. In the case of
probabilities, the estimates for sufficient statistics are about 0.7 times less than the observed
sufficient statistics. In the case of intensities, the estimated total is approximately 79.73,
while the observed total is 100. The estimates were obtained using the R-package gIPFrm

[Klimova and Rudas, 2014].

A necessary and sufficient condition for the existence of the MLE is given in the next
theorem. Its proof uses the following lemma:

Lemma 2.1. If y > 0, the MLE δ̂y exists.

Proof. A relational model for intensities is a regular exponential family [Klimova et al., 2012],
and the standard proof applies [cf. Andersen, 1974].

In the case of probabilities, δ ≡ p, the MLE, if exists, is the unique solution to (8).
Klimova and Rudas [2015, Lemma 3.5] showed that there exist γ1, γ2 > 0 such that the
adjustment factor γ ∈ [γ1, γ2]. Since γy > 0, the MLE λ̂γy under the model for intensities
RMλ(A) exists for every γ ∈ [γ1, γ2], and, by Lemma 3.6 in Klimova and Rudas [2015], one
can find a unique γ∗ such that 1′λ̂γ∗y = 1. Because λ̂γ∗y satisfies (8), p̂y = λ̂γ∗y.

As shown next, the MLE may exists when some of the observed frequencies are zero.

Example 2.1 (revisited):
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Let q = (0, 0, 0, 0, 0, 0, 1)′ be the observed distribution. Under the model of AS-independence,
the MLEs for cell probabilities exist and are equal to

p̂ =
(

3
√
2− 1,

3
√
2− 1,

3
√
2− 1, (

3
√
2− 1)2, (

3
√
2− 1)2, (

3
√
2− 1)2, (

3
√
2− 1)3

)′
.

Theorem 2.2. Let y be the vector of observed frequencies under Poisson or multinomial
sampling, and let RMδ(A) be a relational model. The MLE δ̂y under the model exists if and
only if there is a positive vector z, such that Az = Aq, with q defined in (7).

Proof. In the case of intensities, δ ≡ λ, the standard proof for regular exponential families
[cf. Andersen, 1974] applies.

The case of probabilities, δ ≡ p, is considered next. Suppose p̂y > 0 exists. By Corollary
4.2 in Klimova et al. [2012], Ap̂y = γAq for some γ > 0. Therefore, p̂y = γq+d, for some
d ∈ Ker(A). Take

z =
1

γ
p̂y = q +

1

γ
d > 0.

Then, as 1
γ
d ∈ Ker(A), Az = Aq, as required.

To prove the converse, assume that there exists a z > 0, such that Az = Aq. Thus,
z = q + d for some d ∈ Ker(A). Let

d1 =
1

1 + 1′d
d,

and note that 1 + 1′d = 1′q + 1′d = 1′z > 0. Next, consider v = (1 − 1′d1)q + d1. Then
1′v = (1− 1′d1) + 1′d1 = 1, and

v = (1− 1′d1)q + d1 =
1

1 + 1′d
q +

1

1 + 1′d
d =

1

1 + 1′d
(q + d) > 0.

Therefore, v is a positive probability distribution, and, by Lemma 2.1, the MLE p̂v exists,
and satisfies:

Ap̂v = γvAv,

Dlog p̂v = 0,

1′p̂v = 1,

for some γv > 0. Then, from the definition of v, Ap̂v = γvAv = γv(1 − 1′d1)Aq, that is,
pv is also the MLE for q with the adjustment factor γ = γv(1− 1′d1).

The statement of the theorem is illustrated in the next example.

Example 2.2. Let RMp(A) be the model for probabilities generated by

A =




1 1 1 0 1
1 1 0 0 1
1 0 0 1 1


 ,
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and let q = (3/7, 3/7, 0, 1/7, 0)′ be the observed probability distribution. Consider any vector
z, whose subset sums, Az, are equal to the observed subset sums:

z1 + z2 + z3 + z5 = 6/7, z1 + z2 + z5 = 6/7, z1 + z4 + z5 = 4/7.

The first two equations imply that z3 = 0. Therefore, there is no (strictly) positive distri-
bution with the same subset sums as those observed, and thus, q does not have an MLE in
the model.

In the next section, an extended relational model is defined as the polynomial variety
corresponding to the model matrix. It is further shown that the extended model coincides
with the set of pointwise limits of sequences of distributions in the original model and is also
the closure with respect to Bregman information divergence.

3 Extended relational models

Let A be the model matrix of a relational model, and let XA denote the polynomial variety
associated with A [Sturmfels, 1996]:

XA =
{
δ ∈ R|I|

≥0 : δd+

= δd−

, ∀d ∈ Ker(A)
}
. (10)

Definition 3.1. The extended relational model for intensities,RMλ(A), is the set of distri-
butions

λ ∈ XA. (11)

The extended relational model for probabilities, RMp(A), is the set of distributions

p ∈ XA ∩∆|I|−1, (12)

where ∆|I|−1 is the (|I| − 1)-dimensional simplex.

For positive distributions being in XA is equivalent to the representations (4), (5), and
(6). Therefore, the relational model generated byA is a subset of the corresponding extended
model. For a positive δ, whether or not (4), (5), and (6) hold does not depend on the choice
of D. However, as illustrated next, there exist δ ≥ 0, which, due to the pattern of zeros,
satisfy (6) for some choice of D and do not satisfy for another.

Example 2.1 (revisited): The model has dual representations using matrices D1 and D2:

D1 =




1 1 0 −1 0 0 0
1 0 1 0 −1 0 0
0 1 1 0 0 −1 0
1 1 1 0 0 0 −1


 D2 =




0 0 1 1 0 0 −1
0 1 0 0 1 0 −1
1 0 0 0 0 1 −1
1 1 1 0 0 0 −1


 .

The distribution δ = (0, 0, 0, 1, 1, 1, 0)′ satisfies (6) if obtained from D2, but does not satisfy
(6) if obtained using D1, and therefore, δ /∈ XA.
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The support supp(δ) = {i ∈ I : δi > 0} of distributions with zero components which
are in XA can be characterized using the concept of a facial set which is defined next.

Let a1, . . . ,a|I| denote the columns of A, and let CA be the set of all non-negative linear
combinations of these columns:

CA = {t ∈ RJ
≥0 : ∃δ ∈ R|I|

≥0 t = Aδ}. (13)

The relative interior of CA, relint(CA), comprises such t ∈ RJ
>0, for which there exists a

(strictly) positive δ that satisfies t = Aδ.
The set CA is a polyhedral cone in RJ . If an affinely independent set ai1 ,ai2 , . . . ,aif of

columns of A spans a proper face of CA, the set of indices F = {i1, i2, . . . , if} is called facial
[cf. Grünbaum, 2003, Geiger et al., 2006]. The facial sets of A are determined by its row
space [cf. Fienberg and Rinaldo, 2012]. If t ∈ CA \ relint(CA), then t is said to lie on a face
of CA. In that case, there is a facial set F = F (t), such that

t = s1ai1 + · · ·+ sfaif . (14)

Equivalently, a set F is facial if and only if there exists a c ∈ RJ , such that c′ai = 0 for
every i ∈ F and c′ai > 0 for every i /∈ F . The properties of facial sets are formulated in
Lemma A.1 given in the Appendix. In particular, only distributions whose support is I or
a facial set of A may belong to XA. As an example, the facial sets of the model matrix (9)
of AS-independence are {1}, {2}, {3}, {1, 2, 4}, {2, 3, 6}, {1, 3, 5}. The support {4, 5, 6} of
δ = (0, 0, 0, 1, 1, 1, 0)′ from Example 2.1 is not a facial set, and thus δ cannot be an element
of XA.

The following theorem describes the structure of the parameter set of the extended rela-
tional model.

Theorem 3.1. The extended relational model RMδ(A) is the closure of the relational model
RMδ(A) in the topology of pointwise convergence: RMδ(A) = cl(RMδ(A)).

The proof is provided in the Appendix. The theorem says that every distribution in the
extended model can be obtained as a pointwise limit of a sequence of distributions in the non-
extended model. In the following example, such a sequence is found using the construction
described in the proof.

Example 2.1 (revisited):

The set F = {2, 3, 6} is facial set of A, and thus, by Lemma A.1, the extended model
contains a distribution p = (0, p2, p3, 0, 0, p6, 0)

′, where p2, p3, p6 > 0 and p2+p3+p6 = 1. To
construct a sequence of distributions in the original model which converges to p, find θ2, θ3
such that

θ2 = p2, θ3 = p3, θ2θ3 = p6.

From the normalization condition,

θ2 =
1− θ3
1 + θ3

.

Take an arbitrary θ1 ∈ (0, 1), then set

θ
(n)
2 =

1− θ1n
−1 − θ3 − θ1n

−1θ3
1 + θ1n−1 + θ3 + θ1n−1θ3

,

8



and consider

p(n) = (θ1n
−1, θ

(n)
2 , θ3, θ1n

−1θ
(n)
2 , θ1n

−1θ3, θ
(n)
2 θ3, θ1n

−1θ
(n)
2 θ3)

′.

For every n, p(n) ∈ RMp(A). As n → ∞, θ
(n)
2 → θ2, and therefore, p(n) → p. The

construction is complete.

An extended relational model can also be defined as a closure of the exponential family
corresponding to the original model. The closure of exponential families using the Kullback-
Leibler divergence was described for regular families by Brown [1988], among others, and
for full families by Csiszár and Matúš [2003]. However, both of these approaches rely on the
presence of the overall effect, which implies, through the possibility of normalization, that
the Kullback-Leibler divergence is non-negative and Pinsker’s inequality [cf. Csiszár, 1975]
holds. In the generality considered in the present paper, the approach does not apply, and
the Bregman divergence is used to define the closure.

Let D(·||·) denote the Bregman divergence between two vectors t,u ∈ R|I|
>0, associated

with the function f(x) =
∑

i∈I x(i)log x(i):

D(t||u) =
∑

i∈I

t(i)log (t(i)/u(i)) + (
∑

i∈I

u(i)−
∑

i∈I

t(i)). (15)

Under the convention 0 · log 0 = 0, D(t||u) is also defined for non-negative t and u if
supp(t) ⊆ supp(u). The function D(t||u) is non-negative, and D(t||u) = 0 if and only if

t = u. For any u∗ ∈ R|I|
≥0 and for any convex set S ⊂ R|I|

≥0 there exists a unique u∗ ∈ R|I|
≥0,

such that
D(u∗||u) = min

z∈S
D(z||u), (16)

see Bregman [1967]. This u∗ is called the D-projection, or the Bregman projection, of u
on S. If p1 and p2 are probability distributions, then D(p1||p2) is the Kullback-Leibler
divergence.

Let R̃M δ(A) be the closure of RMδ(A) with respect to the Bregman divergence:

R̃M δ(A) =
{
δ ∈ P̄ : ∃δ(n) ∈ RM δ(A), n ∈ N, such that D(δ||δ(n)) → 0 as n → ∞

}
.

Theorem 3.2. The closures of the relational model RMδ(A) according to the pointwise
convergence and to the Bregman divergence coincide.

Proof. Let δ∗ ∈RMδ(A). Then, there exists a sequence δ(n) ∈ RMδ(A) such that δ(n) → δ∗

pointwise, as n → ∞. The function D(δ∗||δ(n)) is defined and continuous for δ(n) > 0, even
if some of the components of δ∗ are zero. Therefore, D(δ∗||δ(n)) → 0, as n → ∞.

Suppose δ∗ ∈ R̃Mδ(A), and, thus, there exists a sequence δ(n) ∈ RMδ(A), such that:

D(δ∗||δ(n)) → 0 as n → ∞.

Therefore, D(δ∗||δ(n)) ≤ 1 for all large enough n. Because the set {δ ≥ 0 : D(δ∗||δ) ≤ 1} is
compact in R|I| [Bregman, 1967], there exists a subsequence δ(nk) that converges pointwise
to δ∗, as k → ∞.
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A relational model RMδ(A) is a multiplicative family of distributions; the conditions
under which the extended model RMδ(A) is also a multiplicative family are studied next.

A distribution δ ∈ P̄ is said to factor according to a matrix A if it has a representation
given in (3), with θ = (θ1, . . . , θJ)

′ ≥ 0. Every distribution in a relational model factors
according to the model matrix. However, as the next example demonstrates, an extended
model may contain distributions which do not factor according to one choice of the model
matrix but do factor according to a different choice.

Example 2.2 (revisited): Any distribution in RMp(A) factors according to A, that is,

p = (θ1θ2θ3, θ1θ2, θ1, θ3, θ1θ2θ3)
′, (17)

for some θ1, θ2, θ3 > 0. The non-negative distribution p0 = (1/8, 1/2, 0, 1/4, 1/8)′ does not
have the multiplicative structure (17), but is in the extended model. To show the latter,
take

θ
(n)
1 =

3

3n+ 4
, θ

(n)
2 =

n

2
, θ

(n)
3 =

1

4
, n ≥ 1.

Then, the sequence

p(n) =

(
3n

8(3n+ 4)
,

3n

2(3n+ 4)
,

3

3n+ 4
,
1

4
,

3n

8(3n+ 4)

)′

is in the model, and limn→∞ p(n) = p0. On the other hand, p0 factors according to the
matrix

A1 =




0 0 1 0 0
1 1 0 0 1
1 0 0 1 1


 ,

which generates the same extended model as A does, because Ker(A) = Ker(A1).

A necessary and sufficient condition of the existence of such a factorization for a distri-
bution in an extended relational model is given next.

Theorem 3.3. A distribution δ ∈RMδ(A) factors according to A if and only if for any i0 /∈
supp(δ) there exists an index j = j(i0) ∈ {1, . . . , J} such that aji = 0 for all i ∈ supp(δ).

The condition of the theorem, called theA-feasibility of supp(δ), means that a generating
subset which contains a zero cell of the distribution does not include any positive cell. For
extended log-linear models, this condition was proved in Geiger et al. [2006] and Rauh et al.
[2011]. The proofs given did not actually rely on the presence of the overall effect and thus
apply here.

Maximum likelihood estimation in the extended relational model is studied next.

4 MLE in the extended model

Let F be a facial set, and let AF denote the sub-matrix of A comprising the columns with
indices in F , and δF denote the sub-vector of δ with indices in F . The following result
extends Theorem 9 in Fienberg and Rinaldo [2012].
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Theorem 4.1. Let y be the vector of observed frequencies under Poisson or multinomial
sampling, and let RMδ(A) be a relational model. Consider q defined in (7), and assume
that supp(q) ( I.
(i) If for all facial sets F , supp(q) 6⊆ F , then the MLE δ̃y under the modelRMδ(A) exists,

and is also the MLE under RMδ(A): δ̃y = δ̂y. Otherwise,

(ii) Let F be the smallest facial set such that supp(q) ⊆ F . Then the MLE δ̂y,F of δF

under the model RMδF (AF ) exists, and δ̃y = (δ̂y,F , 0I\F ) is the MLE under the model

RMδ(A).

(iii) The MLE δ̃y underRMδ(A) always exists and is the unique point of XA which satisfies:

Aδ = γAq, for some γ > 0; (18)

1′δ = 1 (only for δ ≡ p).

The vector δ̃y is called the extended MLE of δ under the relational model. The proof is
given in the Appendix. The following example illustrates the theorem.

Example 2.2 (revisited):
Notice first that F = {1, 2, 4, 5} is a facial set of A. The support of the observed

distribution supp(q) = {1, 2, 4} is a subset of F . Therefore, the MLE of q exists in the closure
of the relational model. As it was shown earlier, the distribution p0 = (1/8, 1/2, 0, 1/4, 1/8)′

is inRMp(A). As Ap0 = 7/8Aq, the extended MLE of q is p0.

The next theorem establishes a condition under which the maximum likelihood estimates
of the model parameters under an extended relational model exist:

Theorem 4.2. Assume that the MLE δ̂ under the extended relational modelRMδ(A) exists.
The maximum likelihood estimates of the model parameters θ exist if and only if supp(δ̂) is
A-feasible.

Proof. By Theorem 3.3, the distribution δ̂ factors according to A if and only if supp(δ̂) is
A-feasible. In this case δ̂(i) =

∏J
j=1 θ̂

aij
j for all i ∈ I, and, by uniqueness, θ̂ = (θ̂1, . . . , θ̂J)

′

are the maximum likelihood estimates of the model parameters.

If supp(δ̂) is not A-feasible, then δ̂ is the limit of a sequence of the positive distributions
in the model which factor according toA. Although the cell parameters of these distributions
can be factored using some model parameters θ(n) > 0, the limits of individual components
of θ(n), as n → 0, may not exist. In the case of the log-linear models this fact was illustrated
by Rinaldo [2006]. The same situation occurs in the construction of Example 2.2, where

θ
(n)
2 → ∞ as n → ∞.

As Theorem 4.1 implies, the MLE in the extended relational model can be obtained
using the MLE in a non-extended model. Klimova and Rudas [2015] proposed a generalized
iterative scaling procedure, called G-IPF, for computing the MLE under (non-extended)
relational models. The algorithm relies on the condition that Aq > 0. Every iteration of
this procedure implements the following algorithm, IPF(γ), for a specific value of γ.
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IPF(γ) Algorithm:

Set n = 0; δ
(0)
γ (i) = 1 for all i ∈ I, and proceed as follows.

Step 1: Find j ∈ {1, 2, . . . , J}, such that n+ 1 ≡ j mod J ;

Step 2: Compute

δ(n+1)
γ (i) = δ(n)γ (i)

(
γ

Ajq

Ajδ
(n)
γ

)aji

for all i ∈ I. (19)

Step 3: While γAjq 6= Ajδ
(n+1)
γ for at least one j, set n = n+ 1, go to Step 1.

Step 4: Set δ∗
γ = δ(n)

γ , and finish.

The G-IPF algorithm commences with executing IPF(γ) for γ = 1, which is sufficient
to compute the MLE in the case of probabilities with the overall effect and in the case of
intensities. If in the case of probabilities the overall effect is not present, G-IPF updates
γ and calls IPF(γ) again. The procedure is repeated until, for some γ, the limit vector δ∗

γ

sums to 1, and thus is a parameter of a non-negative probability distribution. The variant
of G-IPF, which employs the bisection method to update γ, is described in the following.

G-IPF Algorithm:

If δ ≡ λ, compute λ̃ using IPF(1), and finish.

If δ ≡ p, compute p∗ using IPF(1).
If 1p∗ = 1, set p̃ = p∗, and finish. Otherwise,
compute γL = (1′Aq)−1, γR = min {1/A1q, . . . , 1/AJq}, and proceed as follows:

Step 1: Find δ∗
(γL+γR)/2 using IPF(γ).

Step 2: While 1δ∗
(γL+γR)/2 6= 1,

if 1δ∗
(γL+γR)/2 < 1, set γL = γL+γR

2
,

else set γR = γL+γR
2

;

go to Step 1.

Step 3: Set p̃ = δ∗
(γL+γR)/2, and finish.

If Aq > 0, the G-IPF algorithm applies to the extended case directly.

Theorem 4.3. Let y be the vector of observed frequencies under Poisson or multinomial
sampling, with q defined in (7), and let RMδ(A) be a relational model. Assume that Aq > 0.
The G-IPF algorithm converges to the MLE δ̃y under RMδ(A).
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Proof. As Aq > 0, the IPF-sequence δ(n)
γ defined in (19) is positive, and the proof of its

convergence in Klimova and Rudas [2015, Theorem 3.2] applies. In particular, the limit
of the sequence, δ∗

γ, satisfies Aδ∗
γ = γAq, and, for an arbitrary kernel basis matrix D,

Dlog δ(n)
γ = 0 for all n ∈ Z≥0. The latter implies that δ(n)

γ ∈ XA for all n, and, as XA is a

closed set in R|I|
≥0, δ

∗
γ ∈ XA.

Let δ∗
1 be the limit vector obtained from IPF(1), and thus δ∗

1 ∈ XA and Aδ∗
1 = Aq.

Suppose δ ≡ λ. Then, as (18) holds for δ∗
1 with γ = 1, Theorem 4.1(iii) implies that δ∗

1

is equal to the extended MLE: δ̃y = δ∗
1.

Suppose δ ≡ p. First, assume that the overall effect is present, and thus there exists
a k ∈ RJ

≥0, such that 1′ = k′A. The latter yields that 1′δ∗
1 = k′Aδ∗

1 = k′Aq = 1′q = 1.

Therefore, (18) holds for δ∗
1 with γ = 1. By Theorem 4.1(iii), δ̃y = δ∗

1.
Now, assume that the overall effect is not present. In this situation, G-IPF updates γ

and calls IPF(γ); and this procedure is repeated until a γ∗ for which the IPF-limit δ∗
γ∗ sums

to 1 is found. Then, δ∗
γ∗ satisfies (18) with γ = γ∗. By Theorem 4.1(iii), δ̃y = δ∗

1.

Next, it is shown how G-IPF can be used if the condition Aq > 0 does not hold. Let
J0 = {j ∈ {1, . . . , J} : Ajq = 0}, and assume that J0 6= ∅. Further, let I0 = {i ∈ I : ∃j ∈
J0 aji = 1}, and let I∗ = I \ I0. Denote by A∗ the matrix obtained from A by removing
the columns with indices in I0 and by removing the zero rows, if such occur afterwards, and
by δ∗, y∗, and q∗ the corresponding sub-vectors of δ, y, and q. By Theorem 4.1(iii), the
MLE δ̃y∗

of y∗ underRMδ∗(A∗) exists and is unique. Since A∗q∗ > 0, δ̃y∗
can be computed

using G-IPF, see Theorem 4.3, and the following holds:

Theorem 4.4. The MLE of y under RMδ(A) is equal to δ̃y = (δ̃y∗
, 0I0).

Proof. In order to show that δ̃y ∈ XA, it will first be verified that I∗ is a facial set of A. Let
ai be the i-th column of A, then, with c = (0J\J0

, 1J0
)′, c′ai = 0 for any i ∈ I∗. If i /∈ I∗,

then aji = 1 for some j ∈ J0, and thus c′ai > 0. Therefore, I∗ is a facial set of A. Then, by
Lemma A.3, δ̃y ∈ XA.

Next, in the case of probabilities, the normalization condition 1′
I∗ δ̃y∗

= 1 implies that

1′δ̃y = 1. Further, A∗δ̃y∗
= γA∗q∗ implies that Aδ̃y = γAq.

Finally, by Theorem 4.1(iii), δ̃y is the MLE of y under RMδ(A).

5 Conclusion

Some research areas deal with populations of a complex structure to which inference based
on the standard log-linear approach does not apply, but the relational model framework
can be used. The relational models are more flexible as they allow effects associated with
arbitrary subsets of cells, can be used for incomplete tables, and do not require the presence
of an overall effect. Similarly to the log-linear case, data with zero counts may not possess
an MLE under a relational model. A necessary and sufficient condition for the existence of
the MLE was obtained in Section 2. When this condition does not hold, an MLE may exist
in the extended sense, that is, in the closure of the relational model. Different but equivalent
ways of defining such a closure, and a necessary and sufficient condition for the existence of
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the extended MLE in it were presented in Section 3. A condition under which a distribution
in the closure factorizes according to the model matrix was also given. These results were
obtained using concepts and methods of algebraic statistics. Just like in the case of relational
models, the cases of multinomial and Poisson sampling are not equivalent. It was shown in
Section 4, that the generalized relative proportional fitting procedure originally suggested
for relational models also works when the data contain zeros and the MLE is sought for in
the closure of a relational model.

A Appendix

A.1 Properties of facial sets

Lemma A.1. Let A be the model matrix of a relational model, and let F be a facial set of
A. Then:

(i) There exists a c ∈ RJ , such that c′ai = 0 for any i ∈ F and c′ai > 0 for any i /∈ F .

(ii) For any d ∈ Ker(A), either both supp(d+) ⊆ F and supp(d−) ⊆ F or both supp(d+) *
F and supp(d−) * F .

(iii) For any δ ∈ XA, either supp(δ) = I or supp(δ) is a facial set of A.

(iv) If F is a facial set of A, there exists a δ ∈ XA, such that supp(δ) = F .

The statements of the lemma were proved by Geiger et al. [2006] and Rauh, Kahle, and Ay
[2011] for models of type (2) when the overall effect is present. Their proofs do not rely on
the latter characteristic and thus apply here.

The next lemma shows that the condition of existence of the MLE given in Theorem 2.2
can also be formulated in terms of facial sets.

Lemma A.2. There exists a z > 0, such that Az = Aq, if and only if supp(q) is not
contained in any facial set of A.

Proof. Suppose there exists a z > 0, such that Az = Aq, and thus d = z − q ∈ Ker(A)
and q + d > 0.

Let F be a facial set of A. If both d+ ⊆ F and d− ⊆ F , then di = 0 for all i /∈ F .
Because q + d > 0, qi + di = qi > 0 for all i /∈ F . Therefore, supp(q) is not contained in
F . Otherwise, see Lemma A.1, both d+ * F and d− * F , and there exists an i /∈ F such
that di < 0. If qi was zero, then qi + di would be negative, which contradicts the initial
assumption q + d > 0. Therefore, qi has to be positive, which implies that supp(q) is not
contained in F .

To prove the converse, assume that supp(q) is not contained in any facial set F . Sup-
pose the equation Aq = Az has no (strictly) positive solution in z, and, therefore, Aq /∈
relint(CA). A non-negative solution always exists, and thus Aq belongs to a face of CA.
Then (14) holds for t = Aq for some facial set F ; without loss of generality, F = {1, . . . , f}:

Aq = s1a1 + · · ·+ sfaf .
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Hence,
(q1 − s1)a1 + · · ·+ (qf − sf)af + qf+1af+1 + · · ·+ q|I|a|I| = 0. (20)

Multiplying both sides of (20) by a vector c, such that c′ai = 0 for i ∈ F and c′ai > 0 for
i /∈ F , leads to:

qf+1 = 0, . . . , q|I| = 0,

which means that supp(q) ⊂ F . This contradicts the initial assumption that supp(q) is not
contained in any facial set.

The following lemma is used in the proofs of Theorems 4.1 and 4.4.

Lemma A.3. If F is a facial set of A, then, for any δF ∈ XAF
, δ = (δF , 0I\F ) ∈ XA.

Proof. Take an arbitrary d ∈ Ker(A). As F is a facial set of A, by Lemma A.1(ii), exactly
one of the following holds:

supp(d+) ⊆ F and supp(d−) ⊆ F, or supp(d+) * F and supp(d−) * F.

In the first case, there exists a dF ∈ Ker(AF ), such that d = (dF , 0I\F ). Since δF ∈ XAF
,

(δF )
d+

F = (δF )
d−
F , and, therefore,

(δ)d
+

= (δF )
d+

F · (0I\F )
0I\F = (δF )

d−
F · (0I\F )

0I\F = (δ)d
−

.

In the second case, there exist such i1, i2 /∈ F that di1 > 0 and di2 < 0, and thus,

(δ)d
+

= (δF )
d+

F · 0 = (δF )
d−
F · 0 = (δ)d

−

.

As (δ)d
+

= (δ)d
−
for any d ∈ Ker(A), δ ∈ XA.

A.2 Proof of Theorem 3.1

The proof extends the arguments given by Geiger et al. [2006] and Rauh et al. [2011]. It will
be shown first that for any distribution in RMδ(A) there exists a sequence of distributions
in RMδ(A) that converges to it pointwise.

Let δ∗ ∈ RMδ(A). By Lemma A.1, as δ∗ ∈ XA, F = supp(δ∗) is either I or a facial set
of A. If F = I, then δ∗ > 0, and the statement holds with δ(n) ≡ δ∗. Assume that F ( I.
For simplicity of exposition, let F = {1, . . . , f}, and then δ∗ = (δ∗1, . . . , δ

∗
f , 0, . . . , 0).

First, find η1, . . . , ηJ > 0 that satisfy:

J∏

j=1

η
aji
j = δ∗i for i ∈ F.

The existence of such θ’s can be proved using the same argument as Geiger et al. [2006,
p.28] gave for the case of extended log-linear models. By Lemma A.1, there exists a c =
(c1, . . . , cJ)

′ ∈ RJ , such that c′ai = 0 for all i ∈ F and c′ai > 0 for any i /∈ F . Order the
columns of A so that c1 > 0, and then order the rows of A so that a11 = 1.
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If δ ≡ λ, set, for n ∈ Z>0,

λ
(n)
i =

J∏

j=1

(n−cjηj)
aji , i ∈ I.

The distribution λ(n) = (λ
(n)
1 , . . . , λ

(n)
|I| )

′ is positive and satisfies (3) with θj = n−cjηj. There-

fore, λ(n) ∈ RMλ(A). Further,

lim
n→∞

λ
(n)
i = lim

n→∞
n−c′ai

J∏

j=1

η
aji
j =





δ∗i , if i ∈ F,

0, if i /∈ F,

thus λ(n) → δ∗ pointwise, as n → ∞.
If δ ≡ p, take

η
(n)
1 =

1−∑i: a1i=0

∏J
j=2(n

−cjηj)
aji

∑
i: a1i=1

∏J
j=2(n

−cjηj)aji
,

and set

p
(n)
i = (η

(n)
1 )a1i

J∏

j=2

(n−cjηj)
aji , i ∈ I.

The choice of η
(n)
1 implies that 1′p(n) = 1. As p(n) = (p

(n)
1 , . . . , p

(n)
|I| )

′ is positive and satisfies

(3) with θ1 = η
(n)
1 , θj = n−cjηj , for j = 2, . . . , J , p(n) ∈ RMp(A). Next, because c′ai = 0 if

i ∈ F ,

lim
n→∞

nc1η
(n)
1 = lim

n→∞

nc1(1−∑a1i=0,i∈F

∏J
j=2 η

aji
j −∑a1i=0,i/∈F n−c′ai

∏J
j=2 η

aji
j )

nc1(
∑

a1i=1,i∈F

∏J
j=2 η

aji
j +

∑
a1i=1,i/∈F n−c′ai

∏J
j=2 η

aji
j )

=
1−∑i∈F : a1i=0

∏J
j=2 η

aji
j∑

i∈F :a1i=1

∏J
j=2 η

aji
j

= η1. (21)

Further, for i ∈ I, using (21),

lim
n→∞

p
(n)
i = lim

n→∞
na1ic1−c′ai(η

(n)
1 )a1i

J∏

j=2

η
aji
j = lim

n→∞
n−c′ai(nc1η

(n)
1 )a1i

J∏

j=2

η
aji
j

= lim
n→∞

n−c′ai(η1)
a1i

J∏

j=2

η
aji
j = lim

n→∞
n−c′ai

J∏

j=1

η
aji
j =





δ∗i i ∈ F,

0 i /∈ F.

Hence, p(n) → δ∗ pointwise, as n → ∞.
Therefore, RMδ(A) ⊂ cl(RMδ(A)).
To prove the converse, choose a δ∗ ∈ cl(RMδ(A)). Then, δ∗ is a pointwise limit of a

sequence of distributions in RMδ(A), and δ∗ is the pointwise limit of a sequence in XA. As
XA is closed in the topology of pointwise convergence [cf. Geiger et al., 2006], δ∗ ∈ XA. If
δ ≡ p, both δ∗ and the sequence converging to it belong to the simplex ∆|I|−1. Therefore,

δ∗ ∈RMδ(A), and the proof is complete.
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A.3 Proof of Theorem 4.1:

The statement (i) follows from Theorem 2.2 and Lemma A.2.

In order to prove (ii), notice first that, the smallest facial set F ofA which contains supp(q) is
uniquely defined. In this case, AFqF ∈ relint(CAF

), and, therefore, supp(q) is not contained

in any facial set of AF . By part (i) of this theorem, the MLE δ̂yF
under RMδF

(AF ) exists.

Let δ̃y = (δ̂yF
, 0I\F ). By Lemma A.3, δ̃y ∈ XA. If δ ≡ p, 1′p̂yF

= 1 , and thus p̃y

satisfies the normalization condition 1′p̃y = 1. It will be shown next that δ̃y maximizes the
full log-likelihood of y.

Let δ ≡ λ. The log-likelihood under the model RMλF
(AF ) is equal to

lF (qF ,λF ) =
∑

i∈F

qF ilog λF i −
∑

i∈F

λF i,

and for any λF > 0, lF (qF ,λF ) ≤ lF (qF , λ̂yF
).

Let λ = (λ′
F , 0)

′, and let λ(n) be the sequence that was described in the proof of Theorem
3.1. The full log-likelihood of the elements of this sequence is

l(q,λ(n)) =
∑

i∈I

qilog λ
(n)
i −

∑

i∈I

λ
(n)
i =

∑

i∈F

qilog λ
(n)
i −

∑

i∈I

λ
(n)
i

=
∑

i∈F

qilog {n−cai

J∏

j=1

θ
aji
j } −

∑

i∈I

n−cai

J∏

j=1

θ
aji
j

=
∑

i∈F

qilog {
J∏

j=1

θ
aji
j } −

∑

i∈F

J∏

j=1

θ
aji
j −

∑

i/∈F

n−cai

J∏

j=1

θ
aji
j

= lF (qF ,λF )−
∑

i/∈F

n−cai

J∏

j=1

θ
aji
j .

Therefore,
l(q,λ(n)) ≤ lF (qF ,λF ) ≤ lF (qF , λ̂yF

). (22)

Let δ ≡ p. The log-likelihood under the model RMpF
(AF ) is equal to

lF (qF ,pF ) =

f∑

i=1

qF ilog pF i,

and for any pF > 0, such that 1′pF = 1, lF (qF ,pF ) ≤ lF (qF , p̂yF
).

Let p = (p′
F , 0)

′, and let p(n) be the sequence that was described in the proof of Theorem
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3.1. The full log-likelihood of the elements of this sequence is

l(q,p(n)) =
∑

i∈I

qilog p
(n)
i =

∑

i∈F

qilog p
(n)
i

=
∑

i∈F

qilog {(θ(n)1 )a1i
J∏

j=2

(n−cjθj)
aji} =

∑

i∈F

qilog {(θ(n)1 )a1ina1ic1−c′ai

J∏

j=2

θ
aji
j }

=
∑

i∈F : ai1=1

qilog θ
(n)
1 nc1

J∏

j=2

θ
aji
j +

∑

i∈F : ai1=0

qilog

J∏

j=2

θ
aji
j

=
∑

i∈F : ai1=1

qilog
J∏

j=1

θ
aji
j +

∑

i∈F : ai1=0

qilog
J∏

j=1

θ
aji
j −

∑

i∈F : ai1=1

qilog {θ1/(θ(n)1 nc1)}

= lF (qF ,pF )− log {θ1/(θ(n)1 nc1)} ·
∑

i∈F :ai1=1

qi.

It will be shown next that θ1/(θ
(n)
1 nc1) > 1.

θ1

θ
(n)
1 nc1

=
1−∑i∈F : ai1=0

∏J
j=2 θ

aji
j∑

i∈F : ai1=1

∏J
j=2 θ

aji
j

·
nc1(

∑
ai1=1,i∈F

∏J
j=2 θ

aji
j +

∑
ai1=1,i/∈F n−c′ai

∏J
j=2 θ

aji
j )

nc1(1−∑ai1=0,i∈F

∏J
j=2 θ

aji
j −∑ai1=0,i/∈F n−c′ai

∏J
j=2 θ

aji
j )

=

(
1 +

∑
ai1=1,i/∈F n−c′ai

∏J
j=2 θ

aji
j∑

i∈F :ai1=1

∏J
j=2 θ

aji
j

)
/

(
1−

∑
ai1=0,i/∈F n−c′ai

∏J
j=2 θ

aji
j∑

i∈F : ai1=0

∏J
j=2 θ

aji
j

)
> 1.

Therefore,
l(q,p(n)) ≤ lF (qF ,pF ) ≤ lF (qF , p̂yF

). (23)

Combining (22) and (23),

l(q, δ(n)) ≤ lF (qF , δF ) ≤ lF (qF , δ̂yF
), (24)

and
sup
n

l(q, δ(n)) ≤ lF (qF , δ̂yF
).

Hence, whenever δ̃
(n) → δ̃ as n → ∞, l(q, δ̃

(n)
) → lF (qF , δ̂yF

).

Therefore, l(q, δ̃y) = sup l(q, δ) = lF (qF , δ̂yF
), which concludes the proof of (ii).

The uniqueness claim in (iii) follows from the convexity of the log-likelihood function. The
proof is similar to the one given by Lauritzen [1996, Proposition 4.7] for the case of extended
log-affine models, and is thus omitted. In order to prove the second claim, suppose first that
there exists a facial set F such that supp(q) ⊆ F . Let F be the minimal of such sets. As
shown in the proof of (ii), the MLE δ̂yF

under RMδF (AF ) exists, and, from (8),

AF δ̂yF
= γAFqF , for some γ > 0, and, if δ ≡ p, 1′δ̂yF

= 1.
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The MLE under RMδ(A) is equal to δ̃y = (δ̂yF
, 0I\F ). As δ̃y,F,i = 0 for i /∈ F , Aδ̂y = γAq,

and, in the case of probabilities, 1′δ̂yF
= 1.

If, for all facial sets F , supp(q) 6⊆ F , then the MLE δ̃y under the extended model exists
and is also the MLE under RMδ(A). In this case, (8) holds and is the same as (18), which
completes the proof.
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