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Abstract

Statistical inference based on moment conditions and estimating equations is of sub-

stantial interest when it is difficult to specify a full probabilistic model. We propose a

Bayesian flavored model selection framework based on (quasi-)posterior probabilities from

the Bayesian Generalized Method of Moments (BGMM), which allows us to incorporate

two important advantages of a Bayesian approach: the expressiveness of posterior distribu-

tions and the convenient computational method of Markov Chain Monte Carlo (MCMC).

Theoretically we show that BGMM can achieve the posterior consistency for selecting the

unknown true model, and that it possesses a Bayesian version of the oracle property, i.e.

the posterior distribution for the parameter of interest is asymptotically normal and is as

informative as if the true model were known. In addition, we show that the proposed quasi-

posterior is valid to be interpreted as an approximate posterior distribution given a data

summary. Our applications include modeling of correlated data, quantile regression, and

graphical models based on partial correlations. We demonstrate the implementation of the

BGMM model selection through numerical examples.

Key words and phrases: Bayesian, GEE (generalized estimating equations), GMM (generalized

method of moments), MCMC, model selection, moment condition, oracle property, posterior

validity.

1 Introduction

We consider the estimation problem based on the following unconditional moment restric-

tions

E {g(D, θ)} = 0 (1)
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where D is a set of random variables with domain D, θ is a p-dimensional vector of parameters

to be estimated, and g is a m-dimensional mapping from D × R
p to R

m. Typically it is neces-

sary to have m ≥ p for the point identification of θ. Given an i.i.d. or stationary realization

D = {D1, . . . ,Dn} of D, one can estimate θ directly from such a set of m moment functions,

without needing to fully specify the underlying data generating process of D. In this paper, we

consider the case where in (1), the true parameter θ0 could possibly lie in a lower dimensional

subspace. Our goal is to consistently select the relevant variables and estimate their effects,

namely the nonzero components of θ0, when the specification of full probabilistic model is un-

available but a sufficient number of moment conditions are present.

We consider a Bayesian-flavored approach, where a quasi-posterior can be derived from a

prior distribution and a quadratic form of moment restrictions. This enables us to accommodate

two important advantages of the Bayesian approach: the expressiveness of the posterior distri-

butions and the convenient computational method of MCMC. These are particularly useful for

the model selection problem that we study. We are able to report the most probable model,

the second most probable model and so on, together with their quasi-posterior probabilities,

which are shown to be asymptotically valid in large samples. We can also use the reversible

jump MCMC algorithm (Green 1995, Dellaportas et al. 2002) to traverse the space of different

models and simulate the quasi-posterior probabilities.

For this framework of moment-based Bayesian method of model selection and model aver-

aging, our paper will prove several appealing fundamental theorems. They will address model

selection consistency, oracle property, and valid interpretation of the quasi-posterior distribu-

tion. In the following, we will first review the related works and then describe in detail the

contributions of our current paper.

1.1 GMM and BGMM

The moment based estimation problem (1) is important and has been extensively studied

in econometrics and statistics. Well known methods include the generalized method of mo-

ments (GMM, Hansen 1982, Hansen et al. 1996, Newey 2004), the empirical likelihood (EL,

Owen 1988, Qin and Lawless 1994), the exponential tilting (ET, Kitamura and Stutzer 1997),

the exponential tilted empirical likelihood (ETEL, Schennach 2005, 2007) and the generalized

empirical likelihood (GEL, Newey and Smith 2004). Essentially they all share the same first

order efficiency of optimally weighted GMM estimator, and have been applied to independent

data, time series data and panel data in econometrics. On the other hand, researchers in

statistics also use the moment based methods for constructing efficient estimators, especially

for clustered and correlated longitudinal data. For example, Qu et al. (2000) proposed a GMM

type estimator to avoid the inefficiency from misspecified working correlation matrices in gen-

eralized estimating equations (GEE) for longitudinal data. Wang et al. (2010) considered the

EL approach to address the within-subject correlation structure. Recently frequentist penal-

ization methods have been proposed to accommodate increasing dimension p. See for example
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Wang et al. (2012), Leng and Tang (2012), Cho and Qu (2013), Caner and Zhang (2013), etc.

In general, the moment based estimation methods only require information on the low order

moments of D and are therefore more flexible, efficient and robust to model misspecification,

as long as the moment conditions are correctly specified.

Our work focuses on the Bayesian inference of θ under the moment constraint (1). Com-

pared to the abundance of frequentist literature, the development of Bayesian methods on this

problem still remains limited. One difficulty that hinders the fully probabilistic Bayesian mod-

eling is that some prior distribution on both the distribution of D (denoted as PD) and the

parameter θ needs to be specified, such that the pair (PD, θ) satisfies the set of restrictions (1).

Recent progress in this direction includes Kitamura and Otsu (2011) and Florens and Simoni

(2012). Kitamura and Otsu (2011) tried to minimize the Kullback-Leibler divergence of PD

to a Dirichlet process, which leads to an ET type likelihood function that computationally re-

quires optimizations within each MCMC iteration step. Florens and Simoni (2012) exploited

the Gaussian process prior and required a functional transformation of the data that is only

asymptotically Gaussian, which still leads to a misspecified likelihood function in finite samples.

Besides, both methods have only been tested on simple examples that involve a few parame-

ters and moments. Instead, another analytically simpler Bayesian way of modeling (1) is the

Bayesian generalized method of moments (BGMM), first proposed and studied by Kim (2002)

and Chernozhukov and Hong (2003), which constructs the simple quasi-likelihood function

q(D|θ) = 1

det (2πV n/n)
1
2

exp
{

−n
2
ḡ(D, θ)⊤V −1

n ḡ(D, θ)
}

, (2)

where ḡ(D, θ) is the sample average of g(Di, θ), i = 1, . . . , n, V n is a m ×m positive definite

matrix that could possibly depend on the data D, and det(A) denotes the determinant of a

matrix A. Hereafter we use the symbol “q” to denote the quasi-likelihood function and the

quasi-posterior. This quasi-likelihood function has been studied under a Bayesian framework

in Kim (2002) and is named the limited information likelihood (LIL), which minimizes the

Kullback-Leibler divergence of the true data generating process PD to the set of all distributions

satisfying the less restrictive asymptotic constraint limn→∞E
{

nḡ(D, θ0)
⊤V −1

n ḡ(D, θ0)
}

/m =

1. This relation holds when we choose V n to be a consistent estimator of the covariance matrix

Var(g(D, θ0)). Given a prior distribution π(θ), the quasi-posterior takes the form

q(θ|D) ∝ 1

det (2πV n/n)
1
2

exp
{

−n
2
ḡ(D, θ)⊤V −1

n ḡ(D, θ)
}

π(θ). (3)

By using q(D|θ) in the Bayesian model, we only need to specify a prior on θ and thus cir-

cumvent the difficulty of directly assigning a prior on the pair (PD, θ) with constraints (1). In

the computational aspect, q(D|θ) takes an explicit analytical form that allows straightforward

MCMC updating for the corresponding Bayesian posterior without any iterative optimization

steps (Chernozhukov and Hong 2003). Furthermore, when V n is chosen as a consistent esti-

mator of Var(g(D, θ0)), the exponential part of q(D|θ) resembles the optimally weighted GMM

criterion function (Hansen 1982), which in large samples can be viewed as a second order ap-

proximation to the true negative log-likelihood function that follows a chi-square distribution
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with p degrees of freedom if m = p and both are fixed (Yin 2009).

The theoretical properties of BGMM have been investigated extensively in Chernozhukov and Hong

(2003) and Belloni and Chernozhukov (2009), who show that a Bernstein-von Mises theorem

holds, i.e. the posterior distribution converges asymptotically to normal. The computational

aspects of BGMM with no model selection have been investigated in Yin (2009) and Yin et al.

(2011). Kim (2014) has established the pairwise consistency theoretically when each candidate

model is compared to the true model separately, and has used MCMC in simulations for such

model comparison. Hong and Preston (2012) has discussed a more general Bayesian model se-

lection framework including BGMM as well as Bayesian GEL, and has studied the consistency

of Bayes factors and Bayesian information criterion (BIC) under both nested and nonnested

scenarios (see a more detailed comparison later in Remark 3 in Section 2). Other applications

of BGMM include the moment inequality models (Liao and Jiang 2010) and the nonparamet-

ric instrumental regression (Liao and Jiang 2011, Kato 2013). However, theoretical properties

of BGMM, such as the limiting distribution and the posterior interpretation, have not been

systematically studied in the context of model selection with increasing dimensionality.

1.2 Contributions of current paper

We study theoretical properties of BGMM in the context of model selection. The detailed

contributions of the current paper include the following:

1. We prove that BGMM automatically achieves the “global model selection consistency”

(see, e.g., Johnson and Rossell 2012) under some regularity conditions on the moment function

g(D, θ) and the prior. This is to say that the BGMM posterior probability of the true model

converges to 1 with high probability.

2. We derive an oracle property for the BGMM procedure, which states that the BGMM

posterior distribution converges in total variation norm to a normal distribution concentrated

on the true model space with an efficient variance, as if the true model were known. This

oracle property is the Bayesian analog of the frequentist post-model-selection oracle prop-

erty of Fan and Li (2001), and is comparable to the Bayesian oracle property proposed by

Ishwaran and Rao (2011). While Ishwaran and Rao (2011) showed this oracle property only for

the posterior mean estimator in the normal linear model, our version of Bayesian oracle property

studies the global asymptotic concentration behavior of the whole posterior for the general form

of moment conditions. We apply BGMM to our motivating examples in Section 1.3 and show

that the model selection consistency and oracle property hold under mild regularity conditions

on the data and the moments.

3. Our theory for BGMM allows the number of parameters p to increase with the sample size

n. This is technically challenging because the number of candidate models 2p will increase

exponentially fast with n. Although Hong and Preston (2012) and Kim (2014) have established
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model selection consistency for BGMM with a fixed number of models, their techniques based on

pairwise model comparison are not sufficient for showing the global model selection consistency

under our increasing dimensional setup. Our theoretical results accommodate an increasing

dimension p that satisfies p4/n → 0 up to some logarithm factors, which is the same as the

growth rate in Belloni and Chernozhukov (2009), who studied BGMM without model selection.

4. We present a novel interpretation of the BGMM quasi-posterior, as an approximate posterior

conditional on a data summary that is equivalent to the GMM estimator. Particularly for model

selection, we derive the convergence rates of Bayes factors for the BGMM method and the fully

Bayesian method given the GMM estimator, and show that they have similar asymptotic be-

havior. Therefore, the model posterior probabilities from BGMM are asymptotically valid and

can be used directly for comparing different models.

5. Our numerical experiments provide practical guidance on the MCMC computation in a com-

plicated setup with 2p candidate models. The previous works on BGMM computation either

have not considered the model selection problem (Yin et al. 2011), or have only considered

pairwise model comparison using MCMC (e.g. Kim 2014). We implement the reversible jump

MCMC algorithm and demonstrate BGMM as a practically feasible and efficient alternative to

the frequentist regularization methods.

Below we provide some motivating examples that involve the moment condition (1) and can

be easily incorporated into the BGMM framwork.

1.3 Three motivating examples

The moment condition model (1) is much more general than probabilistic models such as

the normal linear model and generalized linear models, since one could set the moment function

to be g(D, θ) = ∂θ ln p(D|θ), where p(D|θ) is the probability density of D. For example, in the

Poisson regression model D = (Y,X⊤)⊤ and Y |X ∼ P(eX
⊤θ) for some covariates X, we can

use the moment function g(D, θ) = X
(

Y − eX
⊤θ
)

for quasi-posterior based inference from (3),

although the likelihood based inference would be more straightforward in this case. In fact,

the proposed moment based method has more flexibility when only the lower order moments

or quantiles are specified rather than the complete probabilistic model, as described in the

following examples.

Example 1. Correlated longitudinal data. In longitudinal studies, suppose the jth observation

for the ith subject is a scalar response variable Yij and a p-dimensional covariate vector Xij . For

simplicity, we assume that each subject has the same number of observations, i.e. j = 1, . . . , s

and i = 1, . . . , n. Let Yi = (Yi1, . . . , Yis)
⊤, X i = (Xi1, . . . ,Xis)

⊤, and E(Yi|X i) = µi(θ),

where µi(θ) = (µ(X⊤
i1θ), . . . , µ(X

⊤
isθ))

⊤ and µ(·) is a monotone link function. To account for

the heteroscedasticity, we assume the conditional variance of Yij given Xij is a function of the

single index X⊤
ij θ, i.e. Var(Yij|Xij) = φ(X⊤

ij θ). Then the frequentist GEE method estimates θ
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by solving equations

n−1
n
∑

i=1

∂µi(θ)
⊤

∂θ
S

−1
i (Yi − µi(θ)) = 0 (4)

where Si = A
1/2
i RA

1/2
i , Ai = Ai(θ) = diag

{

φ(X⊤
i1θ), . . . , φ(X

⊤
isθ)

}

is the diagonal matrix with

the conditional variance of Y given X and R is a working correlation matrix. If we denote the

data as Di = (Yi,Xi)
⊤, then the moment function is defined by

g(Di, θ) =
∂µi(θ)

⊤

∂θ
S

−1
i (Yi − µi(θ)). (5)

And the moment condition (1) is satisfied.

Example 2. Quantile regression. Suppose that Y is a continuously distributed response vari-

able, and X is a p-dimensional predictor vector for the τ -th quantile (τ ∈ (0, 1)) of Y . The

conditional quantile function of Y given X is specified by F−1
Y |X(τ) = X⊤θ, where F−1

Y |X is the

generalized inverse of conditional distribution function of Y given X. Then let D = (Y,X⊤)⊤

and we can construct p moment functions as

g(D, θ) = X
{

1(Y −X⊤θ ≤ 0)− τ
}

, (6)

where 1(·) is the indicator function.

Example 3. Partial correlation selection. The partial correlation structure of a s-dimensional

random vector Y is specified by its precision matrixΩ = Σ−1, whereΣ = E
{

(Y − EY )(Y − EY )⊤
}

is the covariance matrix of Y . Hereafter without loss of generality, we assume that Y is centered

such that EY = 0. The partial correlation between the ith and the jth components of Y is

defined by ρij = −ωij/
√
ωiiωjj, where ωij denotes the (i, j)th entry of Ω. ωij = 0 implies zero

partial correlation between the ith and the jth components of Y given all the other components.

For multivariate Gaussian random vector, there is an equivalence between the conditional in-

dependence and the zero partial correlation. In the general case where multivariate Gaussian

assumption is not satisfied, we can still use the second moment of Y to identify the zero entries

in Ω. Let θ be the vectorized upper triangle part of Ω. Then we can define the moment function

gij(Y, θ) = YiYj − (Ω−1)ij , (7)

for 1 ≤ i ≤ j ≤ s, and the stacked moment vector g(Y, θ) satisfies (1). We have dim(θ) =

dim(g) = s(s + 1)/2 =: p where θ is just identifiable. The model selection problem for partial

correlation has been studied in, for example, Drton and Perlman (2004), Jiang and Turnbull

(2004), etc.

1.4 Organization of the paper

The rest of the paper is organized as follows. In Section 2.2, we derive the oracle properties

for BGMM model selection based on a set of high level assumptions. In Section 2.3, we discuss

the validity of the proposed BGMM quasi-posterior. Section 3 provides the algorithm we use

for BGMM and numerical experiments to illustrate the empirical performance of BGMM model
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selection. Section 4 includes further discussions. We check these assumptions for the three

motivating examples in Section 1.3 and include the technical proofs of all theorems in the

supplementary material. A real data application can be found in the online technical report

Li and Jiang (2014).

1.5 Some useful notation

We define some useful notation. Let | · |k denote the Lk norm for k ∈ [0,∞] and ‖ · ‖ be

the Euclidean norm (L2 norm). For any generic square matrix C, let λ(C), λ̄(C) denote the

smallest and the largest eigenvalues of a square matrix C. Let ‖C‖ =
√

λ̄(C⊤
C) be the matrix

operator norm. For two stochastic sequence {an} and {bn}, let an ≺ bn, an ≻ bn and an ≍ bn

denote an = o(bn), bn = o(an) and an, bn having the same order as n → ∞. a ∨ b = max(a, b)

and a ∧ b = min(a, b). The notations op and Op always refer to the probability measure PD of

the sample D. We use “C” to denote any generic constant whose value can change in different

places. We use the statement “the event A happens w.p.a.1 as n → ∞” as an abbreviation

for the statement “the event A happens with PD probability approaching 1 as n → ∞ ”, i.e.

limn→∞ PD(A) = 1.

2 Theoretical Properties of Bayesian GMM Model Selection

The Bayesian model selection problem has been extensively studied, but mostly for nor-

mal linear regression models and generalized linear models. See for example, Chipman et al.

(2001), Smith and Kohn (1996), Ishwaran and Rao (2005), Jiang (2007), Liang et al. (2008),

Johnson and Rossell (2012), Liang et al. (2013), etc. Our Bayesian model selection is substan-

tially different from all these papers. Instead of having a probabilistic model such as the simple

normal linear model, we work with the moment conditions (1) and do model selection using

BGMM. Our true parameter θ0 is the unique solution of (1) and possibly lies in a lower di-

mensional subspace of the whole parameter space Θ ⊆ R
p. We restrict Θ to be a compact and

connected set in R
p, with finite L2 radius R = supθ∈Θ ‖θ‖ for some large constant R > 0.

Without loss of generality, in the following we will consider models generated by all the

possible coordinate subspaces of Rp, which leads to a total of 2p different models M and the

parameter space partition Θ =
⋃

|M|≤pΘ(M). Let k = |M| (0 ≤ k ≤ p) be the size of a generic

model M, which is the number of nonzero components in any θ ∈ M. Suppose M0 is the true

model space that contains θ0, and k0 = |M0| is the dimension of θ0. For a given model M and

a generic θ, let θ = (θ⊤1 , θ
⊤
2 )

⊤ where θ1 ∈ R
k and θ2 ∈ R

p−k correspond to the components that

lie in and outside Θ(M), respectively. So θ2 = 0 if θ ∈ Θ(M). We emphasize that the meaning

of subscripts “1” and “2” can change with the model index M.

For such a model selection setup, the prior distribution can be written in the hierarchical

structure π(θ) =
∑

M π(θ|M)π(M) =
∑

M,k π(θ|M)π(M||M| = k)π(k) for k = 0, 1, . . . , p. If
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a model M does not contain all the nonzero components for a given θ, then π(θ|M) = 0. We

assume that each π(θ|M) has a density function. For two different models M1 and M2, the

(quasi-) Bayes factor of M1 with respect to M2 is defined as

BFq[M1 : M2] =
q(D|M1)

q(D|M2)
=

∫

Θ(M1)
q(D|θ,M1)π(θ|M1)dθ

∫

Θ(M2)
q(D|θ,M2)π(θ|M2)dθ

(8)

and accordingly the (quasi-) posterior odds is the product of the Bayes factor and the prior

odds

POq[M1 : M2] =
q(D|M1)

q(D|M2)
· π(M1)

π(M2)
=

∫

Θ(M1)
q(D|θ,M1)π(θ|M1)dθ

∫

Θ(M2)
q(D|θ,M2)π(θ|M2)dθ

· π(M1)

π(M2)
(9)

The model selection consistency we are going to establish is the global model selection

consistency (Johnson and Rossell 2012), in the sense that asymptotically the true model M0

will not only be the MAP model (maximum a posteriori) but also have posterior probability

tending to 1. Equivalently, we will show that the sum of all posterior odds POq[M : M0]

with M 6= M0 converges to zero in probability. This strongest mode of consistency implies

that the posterior mass will be concentrated around the true model and most of the 2p models

receive negligible probabilities. This is a desirable property in practice for interpretation, since

commonly used Bayesian estimation procedures such as model averaging will then involve only

a few models instead of many candidate models.

2.1 Assumptions

The set of assumptions below follows closely the set of conditions for Z-estimation in

Belloni and Chernozhukov (2009). They are high level assumptions imposed on the data gen-

eration process, the model parameters, the moment conditions and the priors. For a specific

model, these assumptions are not necessarily in the most general form, but they do cover a wide

class of moment condition models in practice and are sufficient for illustrating the theoretical

properties of BGMM.

For the data generation process and the true parameter θ0, we make the following assump-

tions.

Assumption 1 (Data Generation Process) {Di, i = 1, . . . , n} is an i.i.d. sequence. E g(D, θ0) = 0

for some θ0 ∈ Θ. Θ is a compact and connected set with L2 radius R for some large constant

R > 0, and it contains an open neighborhood of θ0.

Assumption 2 (Dimension) Let dim(θ) = p and dim(g) = m. Assume that p ≤ m, p ≍ m,

p4 ln2 n/n→ 0 and p2+α lnn/nα → 0, where α is defined in Assumption 4.

Assumption 3 (Beta-min) Let ǫn =
√

p/n. Assume 1 � minj∈M0 |θ0,(j)| ≻
√
lnnǫn, where

θ0,(j)’s for j ∈ M0 denote the nonzero components of the true parameter θ0.

8



The i.i.d. assumption in Assumption 1 can be possibly relaxed to a weakly dependent

stationary process using more involved techniques. The compactness assumption for the pa-

rameter space Θ is standard and mainly for technical convenience, and it can be relaxed to

the full space of Rp if we can control the tail behavior of the prior (see the discussion after

Assumptions 7 and 8). Assumption 2 allows increasing dimension p, and the growth rate of

p is comparable with those in Belloni and Chernozhukov (2009), Cho and Qu (2013), Wang

(2011), Leng and Tang (2012), etc. The beta-min condition in Assumption 3 is commonly used

in the frequentist GEE literature (see e.g. Wang et al. 2012, Leng and Tang 2012, Cho and Qu

2013). It gives the minimal magnitude of nonzero coefficients that could be detected by BGMM.

Let B0(ǫ) = {θ ∈ Θ : ‖θ − θ0‖ < ǫ} for any ǫ > 0. We make the following assumptions on

the moment conditions.

Assumption 4 (Moment) (i) The moment function g(D, θ) satisfies the continuity property

sup
η∈Rm,‖η‖=1

[

E
{

(η⊤(g(D, θ)− g(D, θ0)))
2
}]1/2

≤ O ((
√
p‖θ − θ0‖)α) ,

uniformly in θ ∈ Θ for some constant α ∈ (0, 1].

(ii) The class of functions F =
{

η⊤(g(D, θ)− g(D, θ0)), θ ∈ Θ, η ∈ R
m, ‖η‖ = 1

}

has an envelope

function F almost surely bounded in L2 norm ‖·‖PD ,2 as order O(
√
p). The L2 uniform covering

number N (ǫ‖F‖PD ,2,F , L2(PD)) satisfies that for any small ǫ > 0,

lnN (ǫ‖F‖PD ,2,F , L2(PD)) = O
(

p ln
(n

ǫ

))

.

Assumption 5 (Linearization) (i) ‖E g(D, θ)‖ ≥ δ0 ∧ (δ1‖θ − θ0‖) uniformly on Θ for some pos-

itive constants δ0, δ1.

(ii) G := ∇θ E g(D, θ0) exists, and the eigenvalues of G⊤
G are bounded from below and above

as n→ ∞.

(iii) H(θ) := ∇2
θθ⊤

E g(D, θ) exists for θ ∈ B0(Cǫn), and uniformly over θ ∈ B0(Cǫn) for any

fixed C > 0, sup‖u‖=1,‖v‖=1,u,v∈Rp ‖H(θ)(u, v)‖ = O(
√
p).

Assumptions 4 and 5 on moment function g(D, θ) parallel the conditions ZE.1 and ZE.2

in Belloni and Chernozhukov (2009) respectively. The continuity index α in Assumption 4(i)

satisfies α = 1 for the mean regression, such as the examples of correlated longitudinal data

and partial correlation selection, and α = 1/2 for the quantile regression model. The entropy

condition in Assumption 4(ii) controls the complexity of the class of moment functions g(D, θ).

Assumption 5(i) guarantees the point identification of the true parameter θ0, and part (ii) and

(iii) impose mild assumptions on the first and second derivatives of E g(D, θ) around θ0. These

regularity conditions are mainly used to derive large deviation bounds via empirical process re-

sults, and they will be verified later for our motivating examples. Note that unlike Wang et al.

(2012), Leng and Tang (2012) and Cho and Qu (2013), we do not require the moment func-

tion g(D, θ) itself to be differentiable. This allows more general applications to discontinuous

g(D, θ), such as in the case of quantile regression.
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Assumption 6 (Variance) V n is a positive definite matrix for all n, and converges in the matrix

operator norm to V = Var {g(D, θ0)}. The eigenvalues of V n and V are bounded below and

above for some positive constants λ and λ̄ w.p.a.1 as n→ ∞.

Assumption 6 assumes that the positive definite weighting matrix V n is a consistent estima-

tor of the covariance matrix of g(D, θ) at θ0, similar to the preliminary estimator of the optimal

weighting matrix used in the two step GMM estimation. Although this consistency of V n to

V is not required for the model selection consistency, it is necessary for the valid posterior

inference such as posterior credible sets. Essentially V n needs to satisfy the generalized infor-

mation inequality (Chernozhukov and Hong 2003), such that the LIL asymptotically satisfies

the second Bartlett identity as a true likelihood function does. Such consistent estimator V n

usually exists for all our motivating examples.

Finally we impose the following assumptions on the prior.

Assumption 7 (Prior on θ) (i) π(θ|M) has a density function restricted to Θ, and is bounded

above by a constant cπ uniformly over all model spaces M.

(ii) Suppose θ = (θ⊤1 , θ
⊤
2 )

⊤ is decomposed according to the model M. Then uniformly over

all models M ⊇ M0, for any given C > 0, | lnπ(θ1|M) − lnπ(θ0,M,1|M)| = o(1) as n → ∞
if θ = (θ⊤1 , 0

⊤)⊤ ∈ Θ(M) ∩ B0(Cǫn), where θ0,M,1 is the subvector of the true parameter θ0

restricted to Θ(M).

(iii) Uniformly for all models M ⊇ M0, there exist constants c0, c1 > 0, such that π(θ0|M) ≥
e−c0|M| and | lnπ(θ0,M,1|M)− lnπ(θ0|M0)| ≤ c1(|M| − |M0|).
Assumption 8 (Prior on models) The model prior π(M) satisfies:

(i) limn→∞ sup{M:M⊃M0} (π(M)/π(M0)) (p/
√
n)

|M|−|M0| = 0.

(ii) sup{M: M0\M6=∅} π(M)/π(M0) � er1p lnn for some constant r1 > 0 as n→ ∞.

Our Assumption 7(i) that the prior is restricted on a compact set Θ is mainly for technical

simplification, which can be relaxed as long as the tail probability of π(θ|M) decays sufficiently

fast on each model M. The idea is that the one can divide the possibly noncompact support

into a compact set Θn with radius increasing sufficiently slowly with n, and let the prior mass

outside Θn be negligible as in the large n asymptotics (Jiang and Tanner 2008). Other than

this, Assumption 7(i) is mild and encompasses most of the commonly used priors truncated on

Θ. Assumption 7 (ii) and (iii) for the priors on parameters π(θ|M) are satisfied by, for example,

a uniform prior on the model space Θ(M), or a truncated multivariate normal prior on Θ(M).

Assumption 8 requires that the models larger than the true model M0 do not receive overly

large prior mass, and the prior on the true model cannot be exponentially small compared to any

other models. This is automatically true when p does not increase with n, provided that π(M0)

is a positive constant. With increasing dimensions, these requirements can be satisfied by, for

example, a prior where each coordinate enters the model independently with a fixed probability

ν ∈ (0, 1), which includes the uniform prior as a special case if ν = 0.5. Other examples include

priors that propose a model size |M| according to Poisson or geometric distributions upper
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truncated at p, while all models of the same size are equally likely. A detailed verification of

Assumption 8 for these priors can be found in Section 4 of the supplementary material.

2.2 Oracle Properties of BGMM

With all these assumptions, we now state the main results as follows. The proof of Theorem

1 is given in the supplementary material.

Theorem 1. Suppose Assumptions 1-8 hold. Then

(i) (Model Selection Consistency)

q(M0|D) → 1, w.p.a.1 as n→ ∞

that is, the quasi-posterior probability of the true model converges to 1, w.p.a.1 as n→ ∞.

(ii) (Posterior Asymptotic Normality) Given a model M, let GM be the submatrix of the

derivative matrix G with respect to the subvector θ1 in θ = (θ⊤1 , θ
⊤
2 )

⊤. Let θ̄M0,1 = θ0,M0,1 −
(G⊤

M0
V

−1
n GM0)

−1G
⊤
M0

V
−1
n ḡ(D, θ0), where θ0,M0,1 is the subvector of θ0 restricted to Θ(M0).

Then w.p.a.1 as n→ ∞,

sup
A⊆Θ

∣

∣

∣

∣

∣

∫

A
q(θ|D)dθ −

∫

A∩Θ(M0)
φ
(

θ1; θ̄M0,1, (G
⊤
M0

V
−1
n GM0)

−1/n
)

dθ1

∣

∣

∣

∣

∣

→ 0,

where φ(·;µ,Σ) is the normal density with mean µ and covariance matrix Σ, and θ = (θ⊤1 , θ
⊤
2 )

⊤

is decomposed according to the true model M0.

Part (i) of Theorem 1 establishes the global model selection consistency of BGMM, similar

to previous Bayesian results from Johnson and Rossell (2012) and Liang et al. (2013) for the

normal linear model and the generalized linear models. Based on the BGMM posterior, the zero

components of the true parameter θ0 are estimated to be zero with PD probability approach-

ing 1. It also implies that asymptotically the MAP model M̂ converges to the true model

M0 in PD-probability. This parallels the frequentist model selection results via penalization

for moment based models and estimating equations (Wang et al. 2012, Leng and Tang 2012,

Cho and Qu 2013, etc.)

Part (ii) of Theorem 1 establishes an asymptotic normality result, in the sense that the

total variation difference between the BGMM posterior measure and a k0-dimensional normal

distribution concentrated on the true model converges to zero in probability as the sample size in-

creases. This is a direct extension of the Bayesian CLT result in Chernozhukov and Hong (2003)

and Belloni and Chernozhukov (2009) from a single full model space to the joint of all submodel

spaces. Because the BGMM posterior is a mixture distribution on 2p model spaces Θ(M) with

different dimensions, we do not present result using the L1 distance between two densities q(θ|D)

and φ(θ1; θ̄M0,1, (G
⊤
M0

V
−1
n GM0)

−1/n). The asymptotic mean of the normal distribution θ̄M0,1

is the first order approximation to θ̂M0,1 = argminθ∈Θ(M0) ḡ(D, θ)⊤V −1
n ḡ(D, θ), i.e. the GMM

estimator restricted to the subspace Θ(M0). Furthermore, given Assumption 6, the generalized

information equality is satisfied (Chernozhukov and Hong 2003), and the asymptotic variance
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of the limiting normal distribution is the same as the corresponding frequentist variance of the

GMM estimator θ̂M0,1.

Remark 1. Bayesian oracle property. The conclusion of Theorem 1 can be written heuristically

as follows: Let θ = (θ⊤1 , θ
⊤
2 )

⊤ be decomposed according to the true model M0, then

(i) θ2|D ≈ 0 w.p.a.1 as n→ ∞ ;

(ii) q(θ1|D) ≈ N
(

θ̄M0,1, (G
⊤
M0

V
−1

GM0)
−1/n

)

w.p.a.1 as n→ ∞ .

The zero components in θ0 are estimated to be zero given the data D with large probability,

and the nonzero components in θ0 almost follow a normal distribution centered at the first or-

der approximation to the GMM estimator under the model M0, with the same optimal GMM

asymptotic variance matrix, as if the true model M0 were known. We call this the Bayesian

oracle property for model selection, which resembles the frequentist oracle property for penal-

ized likelihood in Fan and Li (2001). Theorem 1 guarantees that the BGMM posterior will

automatically identify the unknown true model, and automatically converges to an asymptotic

normal distribution centered around the unknown true parameter with the optimal GMM vari-

ance, as if the true model were known. Compared to the oracle property in Ishwaran and Rao

(2011), our version is much stronger in two aspects: 1. Our model assumptions are based on

the general form of moment conditions (1) and are therefore more general than the normal

linear regression model in Ishwaran and Rao (2011); 2. Our oracle property characterizes the

overall shrinkage of posterior distribution to an asymptotic normal distribution on the true

model, while Ishwaran and Rao (2011) only considered the asymptotics of the posterior mean

estimator.

Remark 2. We explain why the oracle center θ̄M0,1 (of the asymptotic normal approximation

to the quasi posterior) is a desirable result. Roughly speaking, this oracle center will be often

close to the unknown nonzero components of the true parameter θ0 in large samples, since

their difference has the order Op

(

√

p/n
)

. This oracle center is also similar to the center of

Bayesian CLT in Belloni and Chernozhukov (2009) and it applies to all our motivating examples

in Section 1.3. Furthermore, in many cases we have the higher order approximation from θ̄M0,1

to the GMM estimator θ̂M0,1, with the difference ‖θ̄M0,1 − θ̂M0,1‖ = Op(n
−1), following the

stochastic expansion of GMM estimator in Newey and Smith (2004). When this high order

approximation holds, the oracle center θ̄M0,1 in Theorem 1 (ii) is equivalent to and can be

replaced by the oracle GMM estimator θ̂M0,1.

Remark 3. Our work in model selection of BGMM may be regarded as a more detailed study

of a special case of Hong and Preston (2012). They have considered model selection in a more

general framework, which allows general objective functions, including the GMM and GEL

criterion functions. In addition, they allow multiplicity in the set of “best models” which could

be mutually nonnested (see their Section 4.2.2). Their results indicate that model selection

consistency can hold in the nested case but fail in the nonnested case. Regarding such opposite

conclusions in these two cases, we have benefited from an anonymous referee on clarifying

this point, who noted that consistent model selection has two meanings in Hong and Preston
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(2012). The first meaning is that a consistent model selection procedure selects the set of “best”

models w.p.a.1. The second meaning is that if there is multiplicity in the set of best models, a

consistent model selection procedure should pick the most parsimonious model among the best

models w.p.a.1. Our result in model selection consistency of BGMM is obtained in the nested

case, since we have considered all 2p coordinate subspaces of Rp. Therefore, the oracle property

of BGMM in Theorem 1 fulfills both two meanings of consistent model selection described in

Hong and Preston (2012).

Although the nested case we have considered is not as general as Hong and Preston (2012),

we have allowed the dimension p to increase with n, which is new for BGMM model selection

and also technically challenging. Because the number of candidate models is 2p, which increases

exponentially fast in p and hence in n, the previously studied pairwise model comparison us-

ing posterior odds or Bayes factors between one candidate model and the true model (such as

Hong and Preston 2012, Kim 2014) is insufficient to show the global model selection consis-

tency. In addition to the increasing dimensionality and the more detailed study on the limiting

distribution, we will also discuss below the asymptotic validity and interpretation of the BGMM

quasi-posterior, which is new in the literature.

2.3 Asymptotic Validity of the BGMM Posterior

As shown in Kim (2002), the limited information likelihood we have used for BGMM provides

a large sample approximation to the true likelihood function of θ given the moment restrictions

E g(D, θ) = 0. One may ask about how well this approximation could be. For the validity of

usual Bayesian inference, such as constructing the Bayesian credible sets, it is necessary and

sufficient to impose Assumption 6 that V n consistently estimates V , i.e. V n satisfies the gen-

eralized information equality as in Kim (2002) and Chernozhukov and Hong (2003). However,

due to the limited information contained in E g(D, θ) = 0, in general one cannot expect the

LIL q(D|θ) to coincide with the true likelihood function p(D|θ). Instead the quasi-posterior

q(θ|D) can be used to approximate the posterior of θ given some summary statistic from the

sample. Let θ̂ be the minimizer of the GMM criterion function ḡ(D, θ)⊤V −1ḡ(D, θ) over the

full p-dimensional model space. So θ̂ is implicitly a statistic of the sample D, and it does not

depend on θ0 and the unknown true model M0. Since the asymptotic center of the BGMM

posterior is the first order approximation to the GMM estimator, one can expect that the LIL

q(D|θ) approximates the density p(θ̂|θ) of θ̂. Accordingly, the BGMM posterior q(θ|D) approx-

imates the posterior p(θ|θ̂) of θ given θ̂, at least asymptotically. In the following, we formalize

this idea and show more general results under the model selection setup.

For two generic models M1 and M2, we define the Bayes factor based on p(θ̂|θ) as

BFθ̂[M1 : M2] =
p(θ̂|M1)

p(θ̂|M2)
=

∫

Θ(M1)
p(θ̂|θ)π(θ|M1)dθ

∫

Θ(M2)
p(θ̂|θ)π(θ|M2)dθ

For theory development, in this section we focus on the situation with a nonincreasing di-

mension p. We make the following extra assumption.
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Assumption 9 (i) dim(θ) = p and 1 ≤ p ≤ p̄, for some large fixed integer p̄.

(ii) minj∈M0 |θ0,(j)| ≥ θ for some small constant θ > 0.

(iii) Let V (θ) = Var {g(D, θ)} and G(θ) = ∇θ E g(D, θ). Then the elements of V (θ) and

G(θ) are continuous functions of θ, and the eigenvalues of G(θ)⊤G(θ) and V (θ) are uniformly

bounded below and above for all θ ∈ Θ.

(iv) For any two modelsM1 andM2, there exists a constant r > 0 such that π(M2)/π(M1) ≤ r.

(v)
∥

∥θ̂ − θ̄
∥

∥ = Op(1/n), where θ̂ is the GMM estimator on the full model space, and θ̄ =

θ0 − (G⊤
V

−1
G)−1G

⊤
V

−1ḡ(D, θ0).

The strengthened beta-min condition in (ii) is to emphasize the difference between the mod-

els that make the type I error and the type II error. According to theorems we are going to

present below, the models in the former group have an exponentially small BFq[M : M0],

while the models in the latter group have a polynomially small BFq[M : M0]. This is also

the essential behavior from the Bayesian hypothesis test, which favors the true alternative hy-

pothesis more. We will show that similar behavior is also shared by BFθ̂[M : M0], and hereby

establish a correspondence between the BGMM method and the exact Bayasian method given θ̂.

Part (iii) assumes the continuity of the matrices in θ and also the uniform bound for eigen-

values. This is a mild assumption given the compactness of Θ. Part (iv) has strengthened

Assumption 8 and required that no model should be assigned extremely large or small prior.

Part (v) is about the high order approximation of θ̄ to the GMM estimator θ̂ on the full model

space, similar to the discussion in Remark 2, which usually holds when the moment condition

g(D, θ) is continuously differentiable in θ (Newey and Smith 2004) and hence may not apply to

the example of quantile regression.

Let F (θ) be a p × p matrix such that F (θ)⊤F (θ) = G(θ)⊤V (θ)−1G(θ). Define Z =
√
nF (θ)(θ̂− θ). Then Z is asymptotically p-dimensional standard normal if the true parameter

is θ0 = θ. We impose the following high level assumption on the difference between the exact

density function pZ(z) of Z and the normal density.

Assumption 10 (Uniform Bound) As n→ ∞,

sup
θ∈Θ

sup
z

(

1 + ‖z‖p+1
)

|pZ(z|θ)− φ(z; 0, Ip)| = τn,

where τn = o(1) does not depend on z and θ, and Ip is the p× p identity matrix.

Assumption 10 claims that the difference between the density of the normalized GMM esti-

mator Z and its asymptotic limit of normal density can be uniformly bounded by an integrable

function c(‖z‖) = 1/(1+‖z‖p+1), and the uniformity is for both the value of z and the parameter

θ in the compact space Θ. This is a high level condition that originates from the Condition E in

Yuan and Clarke (2004). We do not intend to give a full proof of it under low level assumptions,

but we explain why it is a reasonable assumption below.
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Consider the case where the (p + 1)-th moment of g(D, θ) exists. To show Assumption 10,

we proceed in several steps. First, under similar regularity conditions that make Assumption

9(v) hold, one can see that for a fixed θ, the density of Z is asymptotically uniformly close to

the density of the normalized first order approximation Z̄ =
√
nF (θ)(θ̄ − θ), up to the order

O(1/
√
n), where θ̄ is defined in Theorem 1 (ii). See Kundhi and Rilstone (2012, 2013) for the

formal proofs of a general class of nonlinear estimators, which can also be applied to the GMM

estimator. Second, due to the sample average form of θ̄ and hence Z̄, one can use Proposition 1

in Yuan and Clarke (2004) and take c(x) = 1/(1+xp+1). This proposition provides a bound for

the difference between the density of Z̄ and its limiting normal density, which holds uniformly

for all θ ∈ Θ. Its proof involves the techniques in Chapter 19 of Bhattacharya and Ranga Rao

(1986) about the uniform convergence of continuous characteristic functions in the compact

set Θ. Third, one can show that in Proposition 1 of Yuan and Clarke (2004), the summation

of the Edgeworth series beyond the leading normal density term has the order op(1). This is

due to the finite moments of g(D, θ) up to the (p + 1)-th order, as well as the boundedness of

multivariate Hermite polynomials. Finally we combine all these pieces and conclude that the

uniform deviation in Assumption 10 holds with some τn = o(1).

The next theorem provides a comparison between the convergence rates for the Bayes Factors

BFθ̂[M : M0] from the likelihood given the statistic θ̂ with BFq[M : M0] from the BGMM

method.

Theorem 2. (Equivalence of Bayes Factors) Suppose Assumptions 1-10 hold, and the true

model size is |M0| = k0. Then under the same prior π(θ|M) and π(M), w.p.a.1 as n→ ∞,

(i) For any model M with M ⊇ M0,

BFq[M : M0]

BFθ̂[M : M0]
→ 1;

BFq[M : M0] ≍ BFθ̂[M : M0] ≍ n−
|M|−k0

2 � n−
p−k0

2 ;

(ii) For any model with M with M0\M 6= ∅, there exists a constant C > 0, such that

BFq[M : M0] ≤ exp
(

− Cnθ2
)

≺ n−
p−k0+1

2 ;

BFθ̂[M : M0] ≤ exp
(

− Cnθ2
)

∨ τnn−
p−k0+1

2 ≺ n−
p−k0+1

2 .

Theorem 2 compares the Bayes factors from BGMM and p(θ̂|θ), for the models that make

a type I error (Part ii) and a type II error (Part i). The theorem has at least two direct im-

plications. First, for the models that make a type II error (including more components of θ

than necessary), the Bayes factors are asymptotically equal, and both decrease polynomially in

the sample size n. The polynomial index reflects the difference in dimensions between M and

M0. Second, for the models that make a type I error (missing at least one nonzero component

in θ0), the Bayes factor from BGMM decreases exponentially fast in n. For the Bayes factor

from p(θ̂|θ), we have obtained an upper bound for its rate, which also depends on the rate τn in

Assumption 10 besides the usual exponential rate. Because τn = o(1) by Assumption 10, we can

see clearly that there exists at least a n−1/2 gap between the convergence rates of Bayes factors

15



for the models with type I and type II errors. The threshold rate is n−(p−k0)/2, which depends

on the unknown dimension k0 of the true model M0. In general, the posterior probabilities of

the models with type I errors converge faster to zero than the posterior of the models with type

II errors.

This extra part τnn
−(p−k0+1)/2 for the Bayes factor in (ii) arises mainly technically from our

Assumption 10. Usually, the order τn = o(1) in Assumption 10 is tight and cannot be improved.

However, we conjecture that it could be removed by making stronger assumptions on the density

function p(θ̂|θ), or the density pZ(z|θ) of the normalized statistic Z. For example, one can

assume that pZ

(√
nF (θ)(θ̂ − θ)

∣

∣θ
)

decreases exponentially fast in n as θ moves away from

the true parameter θ0. However, we note that usually it is difficult to verify such assumptions

because θ̂ does not have an explicit density, except for a few special cases where θ̂ comes from

the exponential family. We also note that such compromised rate also shows up in Lemma

1 of Marin et al. (2014), where they studied the convergence rates of Bayes factors given a

general statistic. Although typically one cannot obtain the exact form of the density p(θ̂|θ)
and its posterior p(θ|θ̂), Theorem 2 provides some evidence that in the asymptotic sense, the

Bayes factors from BGMM behave very similarly to the Bayes factors from p(θ̂|θ), indicating
the validity of using BFq[M : M0] for model selection purpose.

Remark 4. In principle, Theorem 2 provides a guideline to interpret the BGMM posterior

probabilities of different models. For simplicity, suppose that all models receive the uniform

prior π(M) ∝ 1. Then since q(M0|D) → 1, the posterior q(M|D) is roughly the same as

BFq[M : M0]. Because of the gap between the polynomial rate in (i) and the exponential rate

in (ii), we can choose any rate in between as a threshold, for example e−
√
n. If a model M has

q(M|D) ≥ e−
√
n, then we can approximately regard q(M|D) as the true posterior probability

p(M|θ̂) and considerM as a model with nonnegligible posterior. This fits well with the common

practice that we rank the models according to their posterior probabilities and only study the

models on top of the list.

Based on Theorem 2, we can further show that the BGMM posterior q(θ|D) and the exact

posterior p(θ|θ̂) are close in the total variation distance asymptotically.

Theorem 3. Suppose Assumptions 1-10 hold. Let the full model be Mfull. Then under the

same prior π(θ|M) and π(M), w.p.a.1 as n→ ∞,

(i) (Model Selection Convergence Rate) If M0 6= Mfull, then

q(M : M 6= M0|D)

p(M : M 6= M0|θ̂)
→ 1;

q(M : M 6= M0|D) ≍ p(M : M 6= M0|θ̂) ≍ n−
1
2 → 0;

If M0 = Mfull, then for some constant C > 0,

q(M : M 6= M0|D) ≤ exp
(

− Cnθ2
)

→ 0;

p(M : M 6= M0|θ̂) ≤ exp
(

− Cnθ2
)

∨ τnn−
p−k0+1

2 → 0.
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(ii) (Asymptotic Posterior Validity)

sup
A⊆Θ

∣

∣

∣

∣

∣

∫

A
q(θ|D)dθ −

∫

A
p(θ|θ̂)dθ

∣

∣

∣

∣

∣

→ 0.

Part (i) of the theorem is a direct corollary from Theorem 2. It implies that the posterior

probability of the true model M0 converges to 1 at exactly the same rate using either the

BGMM or p(θ̂|θ), when the true model is a strict submodel of the full model. When the true

model is exactly the same as the full model, we have only upper bounds for the model selection

convergence rates, as they usually decrease exponentially fast, but again the rate is compro-

mised by τn from Assumption 10 when we consider p(M : M 6= M0|θ̂). In either scenario, we

have the global model selection consistency for both the BGMM posterior and the posterior

given θ̂.

Part (ii) gives the asymptotic validity of the BGMM posterior, in the sense that it provides

the same asymptotic inference as the exact posterior of θ given the statistic θ̂. It has the

immediate implication that the posterior credible sets for the parameters constructed from the

BGMM posterior are asymptotically valid. It is worth noting that the conclusion of (ii) is

only related to the global model selection consistency for both the BGMM posterior and the

posterior of p(θ|θ̂), and does not depend on the exact convergence rates of model selection in

Part (i). In fact, Part (ii) also holds for general non-model selection prior π(θ) as long as it

has a bounded continuous density on Θ. This can be obtained from combining Theorem 1 in

Chernozhukov and Hong (2003) and Theorem 2 in Yuan and Clarke (2004) (where Tn = θ̂),

under Condition E in Yuan and Clarke (2004). Our proof of Theorem 3 follows a similar route

by using Assumption 10, but has accommodated the nature of model selection priors π(θ,M) =

π(θ|M)π(M).

Remark 5. We have discussed the asymptotic closeness of the BGMM posterior to the pos-

terior given the GMM estimator θ̂. One can further explore the higher order asymptotics of

q(θ|D) and p(θ|θ̂), for example expanding both posterior densities as Edgeworth series of the

asymptotic pivotal quantity
√
nF (θ)(θ − θ̂). In this sense, our result in Part (ii) of Theorem 3

only captures the leading order closeness from q(θ|D) to p(θ|θ̂). However, we conjecture that

in general the higher order terms of q(θ|D) and p(θ|θ̂) do not match with each other, since the

LIL takes a quadratic form of the moment conditions while the true density of θ̂ depends on

other features of PD, such as the high order moments. Similar work in this direction includes

Fang and Mukerjee (2006), where they have shown by a simple example of sample mean that

the Edgeworth expansions from the empirical likelihood and the density of the sample average

do not agree in high order terms.

3 Numerical Study

3.1 Algorithm

Because the LIL (2) allows any form of moment function g(D, θ), usually one cannot derive

an analytical close form for the BGMM model posterior q(M|D). Therefore, we adopt a
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reversible jump MCMC algorithm with Metropolis moves both between models and within a

model to explore the joint posterior of q(θ,M|D), similar in spirit to the MCMC algorithm

for the Gibbs posterior model selection (Chen et al. 2010, Jiang and Tanner 2008), and also

the PAC-Bayesian model selection (Alquier and Biau 2013, Guedj and Alquier 2013). In the

ith iteration, the between-model steps either add a new component to the nonzero part of

θ(i), or remove an existing component in the nonzero part of θ(i), each with probability 0.5.

When we add a new component, the parameter value for this new component is sampled from

N (0, σ2add), while the values of the existing components in θ(i) are retained. Both the “add” and

the “remove” operations will be accepted or rejected with a probability based on the ratio of the

posteriors evaluated at the new proposed parameter and the current parameter. This between-

model step is then followed by a within-model step, in which we draw a new parameter value in

the same model as θ(i) from a proposal distribution. In practice, to efficiently explore each model

space, we use a normal distribution as a proposal distribution, with mean zero and a properly

chosen variance c ·ΞM. Here ΞM is the submatrix of Ξ with rows and columns corresponding

to the model M, and Ξ is an estimated covariance matrix for the GMM estimator θ̂, which

can be obtained numerically by inverting the Hessian matrix at the preliminary one-step GMM

estimator θ̃ on the full model space. We set c = 2.42 as suggested in Gelman et al. (2013) to

achieve the ideal acceptance rate for within-model Metropolis moves. We also run pilot chains

to tune the value of σadd for better mixing of the Markov chain. As a result, the Markov chain

consists of θ(i) drawn from the full BGMM posterior across different model spaces.

3.2 Example: Correlated Binary Responses

The conditional mean µij(θ) = E(Yij|Xij) of the longitudinal binary response Yij is given

by

ln
µij(θ)

1− µij(θ)
= X⊤

ij θ, (10)

where i = 1, . . . , n and j = 1, . . . , s. In the following simulations, we first fix the sample size

n = 400 and the cluster size s = 10, in order to compare with the similar simulation setups in

Wang et al. (2012). For Xij = (Xij1, . . . ,Xijp)
⊤, we consider two situations with p = 50 and

p = 100. Xij1, . . . ,Xijp are generated independently from a uniform distribution on [−1, 1]. We

also consider two sets of true parameter values,

θ0 = (1.5,−1.5, 1,−1, 0.5,−0.5, 0, 0, . . . , 0)

θ0 = (1.5,−1.5, 1.5,−1.5, 1,−1, 1,−1, 0.5,−0.5, 0.5,−0.5, 0, 0, . . . , 0)

with the number of nonzero components k0 = 6 and k0 = 12 respectively. Note that θ0 contains

weak signals 0.5 and −0.5 and more nonzero components in the second setting. Similar to

Wang et al. (2012) and Cho and Qu (2013), we use the R package mvtBinaryEP to generate the

correlated binary responses (Yi1, . . . , Yis)
⊤ for each i = 1, . . . , n with an exchangeable correla-

tion structure with correlation coefficient ρ = 0.3.

Since this is a special case of the first motivating example in Section 1.3, we examine the

performance of BGMM using the moment function g(D, θ) defined in (5). We compare the
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BGMM method to the frequentist penalized GEE method (PGEE) proposed by Wang et al.

(2012) which is used to fit high dimensional longitudinal data. Let θ(k) be the kth component

of θ. The PGEE solves a similar estimating equation to (4)

n−1
n
∑

i=1

∂µi(θ)
⊤

∂θ
S

−1
i (Yi − µi(θ))− Pλn

(θ) = 0,

with an additional SCAD penalty Pλ(θ) = (Pλ(θ(1)), . . . , Pλ(θ(p)))
⊤ and for k = 1, . . . , p,

Pλ(θ(k)) = λn

{

1(θ(k) ≤ λn) + 1
(

λn < θ(k) ≤ aλn
) aλn − θ(k)

(a− 1)λn

}

.

The PGEE can be solved by an iterative Newton-Raphson algorithm as described in Wang et al.

(2012). In our simulations, we perform in the same way as Cho and Qu (2013), fix a = 3.7 and

truncate the estimated coefficients to zero if |θ̂(k)| ≤ 10−3 (k = 1, . . . , p). λn is selected from

the grid set {0.01, 0.02, . . . , 0.2} by 5-fold cross validation. We use an estimated correlation

matrix for R based on the sample, instead of varying the correlation structures in Wang et al.

(2012). In fact, the finite sample estimates ofR are quite precise for the trueR in our p < n case.

For the BGMM method, the prior on θ given a model M is the product of independent

normal densities

π(θ|M) =
∏

j∈M

1√
2πσθ

e
−

θ2
(j)

2σ2
θ , (11)

where we choose σθ = 10 for a large prior spread. Note that although theoretically this prior is

not truncated on a compact set Θ as in Assumption 7, in practice this has no influence on in

our experimental results.

The prior on the model M is specified as follows:

π(M) ∝ ν |M|(1− ν)p−|M|, (12)

which means that each component of θ independently enters the model M with probability

ν ∈ (0, 1). When ν = 0.5, this is the same as the uniform prior over all 2p models. When ν

moves towards zero, the prior gradually induces more sparsity on θ and favors more parsimo-

nious models, which imposes a further penalization on the model size besides the incorporated

BIC-type penalization in BGMM. It can be verified (see Section 4 of the supplementary mate-

rial) that the prior (12) satisfies Assumption 8 when ν ∈ (0, 1) is either fixed or ν = n−c for

some c > 0, and it satisfies Assumption 9(iv) if ν is fixed.

In our simulation, for each simulated datasets, we run one single Markov chain with the

length 3× 104, and drop the first 104 iterations as burnin. We consider two choices of the tun-

ing parameter ν in (12). In the first case (referred to as BGMM1), we fix ν = 0.5 throughout

the Markov chain for the next 2× 104 iterations. In the second case (referred to as BGMM2),

we adopt a two-step tuning strategy in an effort to make the value of ν more adaptive to the

sparsity level of the true model. We estimate the posterior average model size ÊM|D|M| using
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the first 104 MCMC runs after the burnin, and then reset ν = ÊM|D|M|/p for the next 104

MCMC runs. Finally for both chains of BGMM1 and BGMM2, we keep N = 103 MCMC

samples from the last 104 runs for every 10 iteration. The variance of proposal normal density

described in Section 3.1 is fixed at σadd = 0.2. Our experiments with other values of σadd (such

as 0.05, 0.1, 0.15, 0.25) show that σadd = 0.2 is sufficient for exploring the full posterior of θ, and

the MCMC results such as the MAP models and posterior distributions of parameters are not

sensitive to different values of σadd.

As a benchmark, the PGEE method and the BGMM method are compared together with

the naive method and the oracle method. The naive method estimates θ by usual GEE without

doing model selection, while for the oracle method, the true model is pretendedly known and

θ is estimated only on the nonzero components. We apply each method to the same dataset

and repeat this process for 100 Monte Carlo replications. We compare three aspects of these

methods: the model selection, the parameter estimation, and the prediction.

To evaluate the model selection performance, we consider the model selected by PGEE and

the MAP model from BGMM, and report the proportion of times the method exact selecting

(EX), underselecting (UN) and overselecting (OV) the nonzero components of θ0. We also re-

port the true positives (TP, the average number of correctly selected nonzero components in

θ0), and the false positives (FP, the average number of selected nonzero components that are

actually zero in θ0).

For the estimation accuracy, similar to Cho and Qu (2013), we report the estimated mean

square error (MSE)
∑100

m=1 ‖θ̂m−θ0‖2/(100k0), where θ̂m is themth estimated parameter vector.

This MSE is calculated for the naive method, the oracle method, the PGEE method, and the

posterior mean of θ from the BGMM method.

For the prediction accuracy, we calculate the average MSE for the conditional mean µij

(denoted by pMSE), defined as
∑n

i=1

∑s
j=1

(

µij(θ̂)− µij(θ0)
)2
/(ns) for the naive, the oracle,

and the PGEE method. For the BGMM method, we use the pMSE averaged over the poste-

rior sample
∑n

i=1

∑s
j=1

∑N
k=1

(

µij(θ
(k))− µij(θ0)

)2
/(Nns), where θ(1), . . . , θ(N) are the MCMC

draws of θ.

As Table 1 indicates, both the frequentist PGEE method and our BGMM method have

always successfully identified the nonzero components of θ0 with no underselection. However,

the PGEE performs much more conservative and has a serious overselection problem in all the

simulations settings, which is consistent with the findings in Cho and Qu (2013). It selects the

true model for 33% of all time when p = 50, and only 16% of all time when p = 100 and k0 = 12.

Meanwhile PGEE overselects about 4 ∼ 6 extra redundant variables on average. In contrast,

the BGMM MAP models have much higher probability of exactly selecting the true model, and

have much smaller false positives. We also note that the extra two-step tuning of ν in BGMM2
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has brought significant advantage over the uniform model prior with fixed ν = 0.5 in BGMM1.

When p = 100, the performance of BGMM1 deteriorates as the probability of exact selection

drops to about 50%, but BGMM2 still maintains a high accuracy with over 90% of exact model

selection. This is because that in BGMM2, the first step of 104 runs has consistently estimated

the true proportion of nonzero components in θ, and then the second step of 104 runs can

learn the sparsity of the model space better with ν roughly equal to the true average marginal

inclusion probability.

For the estimation and prediction, it is clear that the naive GEE estimator with no model

selection performs poorly in MSE and pMSE compared to the oracle estimator. Figure 1 and

Figure 2 show that the MSE and pMSE for the BGMM method are comparable to those from

the oracle and the PGEE method, as their boxplots largely overlap with each other. Also it

seems that BGMM tends to have smaller variation across difference simulations than PGEE.

The averaged levels of three MSEs from both BGMM methods are also slightly smaller than

those from the PGEE estimator in most of the cases (Table 1), and they are all close to the

MSE and pMSE from the oracle estimator. Overall, BGMM2 seems to be the best of all these

methods besides the oracle. This has partly supported our theoretical results about the oracle

properties of the BGMM method, in the sense that the posterior variance of BGMM is asymp-

totically the same as the variance of the oracle GMM estimator.

Finally, we vary the sample size n among 200, 400, 800, 1200, 2000 and compare the perfor-

mance of PGEE, BGMM1 and BGMM2 for the model (10) averaged over 20 simulated datasets.

Figure 3 and Figure 4 plot their exact model selection probabilities (the same as the EX in Table

1), MSEs and pMSEs. Overall, BGMM2 has the best performance of exact model selection, and

BGMM1 tends to perform better as n increases. All three methods have poor model selection

accuracy for p = 100, n = 200 due to the relative high dimension and the small sample size. As

the sample size n increases, the differences between their MSEs and pMSEs become negligible,

as they all perform similarly to the oracle estimator.

21



Table 1: Comparison of BGMM with PGEE for Correlated Binary Responses. k0 is the number

of nonzero components in the true parameter θ0. p is the dimension of θ0. n is the sample size.

Standard errors are shown in the parentheses. EX: exact selection; UN: under selection; OV:

over selection; TP: true positives; FP: False positives. MSE: mean square error of θ; pMSE:

prediction mean square error of µij(θ).

k0 = 6, p = 50, n = 400

EX UN OV TP FP MSE (×10−3) pMSE (×10−4)

Naive 0 0 1 6 44 24.81 (0.57) 21.77 (0.43)

Oracle 1 0 0 6 0 4.15 (0.35) 2.66 (0.16)

PGEE 0.33 0 0.67 6 5.18 7.02 (0.57) 5.05 (0.41)

BGMM1 0.80 0 0.20 6 0.21 5.58 (0.40) 3.85 (0.23)

BGMM2 0.98 0 0.02 6 0.02 5.06 (0.38) 3.33 (0.20)

k0 = 12, p = 50, n = 400

EX UN OV TP FP MSE (×10−3) pMSE (×10−4)

Naive 0 0 1 12 38 13.09 (0.35) 20.33 (0.40)

Oracle 1 0 0 12 0 5.53 (0.49) 4.82 (0.19)

PGEE 0.33 0 0.67 12 4.08 6.13 (0.58) 6.61 (0.38)

BGMM1 0.88 0 0.12 12 0.13 5.13 (0.29) 5.91 (0.23)

BGMM2 0.94 0 0.06 12 0.07 4.89 (0.27) 5.63 (0.22)

k0 = 6, p = 100, n = 400

EX UN OV TP FP MSE (×10−3) pMSE (×10−4)

Naive 0 0 1 6 94 49.28 (0.67) 42.53 (0.61)

Oracle 1 0 0 6 0 6.72 (0.68) 3.09 (0.17)

PGEE 0.28 0 0.72 6 5.27 9.16 (1.37) 5.21 (0.51)

BGMM1 0.55 0 0.45 6 0.61 8.39 (0.51) 5.32 (0.27)

BGMM2 0.93 0 0.07 6 0.07 7.32 (0.51) 4.05 (0.21)

k0 = 12, p = 100, n = 400

EX UN OV TP FP MSE (×10−3) pMSE (×10−4)

Naive 0 0 1 12 88 27.39 (0.55) 42.74 (0.63)

Oracle 1 0 0 12 0 8.09 (0.64) 5.85 (0.22)

PGEE 0.16 0 0.84 12 6.35 10.20 (1.40) 8.62 (0.63)

BGMM1 0.59 0 0.41 12 0.55 8.24 (0.52) 8.82 (0.36)

BGMM2 0.90 0 0.10 12 0.10 7.76 (0.52) 7.68 (0.29)
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Figure 1: Boxplots for the MSE of θ over 100 simulated datasets.
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Figure 2: Boxplots for the MSE of µij(θ) over 100 simulated datasets.
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Figure 3: Exact selection probability, MSE, and prediction MSE for p = 50 over 20 simulated

datasets.
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Figure 4: Exact selection probability, MSE, and prediction MSE for p = 100 over 20 simulated

datasets.
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4 Discussions

In this paper, we have studied some theoretical properties and applications of a Bayesian

moment based model selection method. As we have commented, this method combines ad-

vantages of a Bayesian approach, such as the expressiveness of the posterior distribution and

convenient MCMC algorithms for computation, with the model robustness of the moment based

methods. We have formulated and proved the Bayesian oracle property of the proposed model

selection method, which guarantees efficient posterior inference as if we knew which variables

are truly relevant. We have studied the meaning of the quasi-posterior probabilities used in

BGMM, which can be interpreted as the leading order large sample approximation to the true

posterior probabilities conditional on the observed GMM estimator. The empirical performance

of BGMM has been demonstrated by numerical experiments.

We have only considered quasi-posterior constructed from the GMM based quasi-likelihood

function. Many other alternatives, such as EL, GEL, and ETEL, can be formulated under a

similar Bayesian framework, with possible interpretations of the induced quasi-Bayesian pos-

terior. See for example, Chernozhukov and Hong (2003), Lazar (2003), Schennach (2005), etc.

We conjecture that similar Bayesian asymptotic properties for model selection can be derived

for these quasi-likelihoods.

Acknowledgment: We thank the Associate Editor and the two anonymous Referees from

Journal of Multivariate Analysis for their helpful suggestions on improving the paper.
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Supplementary Materials

This document consists of four parts. Part 1 includes the proof Theorem 1 in the main

paper. Part 2 includes the proofs of Theorem 2 and 3 in the main paper. In Part 3 we prove the

oracle property for the three motivating examples mentioned in Section 1.3 of the main paper.

In Part 4 we provide a proposition that verifies Assumption 8 for several examples of priors on

the models.

1. Proofs for the Bayesian Oracle Property of BGMM

We first prove some useful lemmas. For a generic square matrix C, let tr(C) be the trace of

C, and ‖C‖F =
√

tr(C⊤
C) be the Frobenius norm of C. In the following, we use the statement

“the event A happens w.p.1− η” to denote the relation PD(A) ≥ 1− η.

Lemma A.1. (Belloni and Chernozhukov 2009) Let

Wn(D, θ) = ḡ(D, θ)− E g(D, θ)− (ḡ(D, θ0)− E g(D, θ0)) .

Then under Assumptions 2 and 4, uniformly for all θ ∈ Θ,

‖Wn(D, θ)‖ = Op

(

√

p lnn

n
‖θ − θ0‖α + n−1p3/2 lnn

)

.

Proof: The proof can be found in (A.10) of Belloni and Chernozhukov (2009). The L2 norm of

the deviation Wn(D, θ) can be controlled using an empirical process result when the moment

g(D, θ) satisfies Assumption 4. The only adaptation here is that the condition on VC dimension

in ZE.1 of their paper is now replaced by the condition on the uniform covering number in

Assumption 4(ii). The conclusion still holds according to the proof of Lemma 16 in Belloni et al.

(2011). �

Lemma A.2. Given a model M, let θ = (θ⊤1 , θ
⊤
2 )

⊤ be decomposed according to M, and let GM
be the same as defined in Theorem 1. Define

SM(D) = exp
{

−n
2
ḡ(D, θ0)

⊤
(

V
−1
n − V

−1
n GM(G⊤

MV
−1
n GM)−1

G
⊤
MV

−1
n

)

ḡ(D, θ0)
}

,

θ̄M,1 = θ0,M,1 − (G⊤
MV

−1
n GM)−1

G
⊤
MV

−1
n ḡ(D, θ0),

where θ0,M,1 ∈ R
|M| be the subvector of θ0 restricted to Θ(M). Then under Assumptions

1-8, uniformly for all spaces M ⊇ M0, for any fixed constant C > 0,

∫

B0(Cǫn)∩Θ(M)
e−

n
2
ḡ(D,θ)⊤V

−1
n ḡ(D,θ)π(θ|M)dθ

= (1 + op(1))SM(D)

∫

B0(Cǫn)∩Θ(M)
e−

n
2
(θ1−θ̄M,1)

⊤G
⊤
MV

−1
n GM(θ1−θ̄M,1)π(θ|M)dθ1.
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Proof: First of all, the L2 norm of ḡ(D, θ0) satisfies for any C > 0,

Pr

(

‖ḡ(D, θ0)‖ ≥ C

√

p

n

)

≤ nE ‖ḡ(D, θ0)‖2
C2p

=
tr(Var(g(D, θ0)))

C2p
≤ λ̄(V )

C2
, (A.1)

which implies that ‖ḡ(D, θ)‖ = Op(
√

p/n) since the eigenvalues of V = Var (g(D, θ0)) are

bounded above according to Assumption 6.

Second, for θ ∈ B0(Cǫn) ∩ Θ(M), let rM(D, θ) = ḡ(D, θ) − ḡ(D, θ0) − GM(θ1 − θ0,M,1).

Then using second order Taylor expansion of E g(D, θ) at θ0 for θ ∈ B0(Cǫn)∩Θ(M) and with

all zero components of θ excluded, we have

rM(D, θ) =
1

2
HM(θ̃1)(θ1 − θ0,M,1, θ1 − θ0,M,1) +Wn(D, θ),

where θ̃1 is between θ1 and θ0,M,1 and θ̃ = (θ̃⊤1 , 0)
⊤, HM is the submatrix of the second order

derivative matrix H restricted to Θ(M). By Assumption 5(iii), we have that

∥

∥

∥
HM(θ̃1)(θ1 − θ0,M,1, θ1 − θ0,M,1)

∥

∥

∥
≤
∥

∥

∥

∥

∥

sup
‖u‖=1,‖v‖=1

H(θ̃)(u, v)

∥

∥

∥

∥

∥

‖θ1 − θ0,M,1‖2 ≤ O(
√
pǫ2n).

Therefore, using Lemma A.1, we obtain that the order of rM(D, θ) on θ ∈ B0(Cǫn) ∩ Θ(M)

uniformly for all M ⊇ M0 is,

‖rM(D, θ)‖ ≤ Op

(

n−1p3/2 + (p/n)
α+1
2

√
lnn+ n−1p3/2 lnn

)

= op
(

(pn)−1/2
)

,

where the last equality also holds if p increases as in the footnote of Assumption 2. Then using

decomposition ḡ(D, θ) = GM(θ1 − θ0,M,1) + ḡ(D, θ0) + rM(D, θ) we have

n

2
ḡ(D, θ)⊤V −1

n ḡ(D, θ)

=
n

2

{

(θ1 − θ̄M,1)
⊤(G⊤

MV
−1
n GM)(θ1 − θ̄M,1)

}

+
n

2

{

ḡ(D, θ0)
⊤
(

V
−1
n − V

−1
n GM(G⊤

MV
−1
n GM)−1

G
⊤
MV

−1
n

)

ḡ(D, θ0)

}

+
n

2

{

rM(D, θ)⊤V −1
n rM(D, θ) + 2rM(D, θ)⊤V −1

n GM(θ1 − θ0,M,1) + 2rM(D, θ)⊤V −1
n ḡ(D, θ0)

}

(A.2)

where θ̄ is defined in the lemma. By Assumptions 5(ii) and 6, the eigenvalues of V n and

G
⊤
G are bounded above and below w.p.a.1 as n → ∞, so are the eigenvalues of any G

⊤
MGM

since GM is a submatrix of G. Therefore on B0(Cǫn) ∩ Θ(M), ‖rM(D, θ)⊤V −1
n rM(D, θ)‖ ≤

λ(V n)
−1‖rM(D, θ)‖2 = op((pn)

−1), ‖2rM(D, θ)⊤V −1
n GM(θ1−θ0,M,1)‖ ≤ 2λ(V n)

−1λ̄(G⊤
MGM)·

‖rM(D, θ)‖ · ‖θ − θ0‖ ≤ op((pn)
−1/2ǫn) = op(n

−1), ‖2rM(D, θ)⊤V −1
n ḡ(D, θ0)‖ ≤ 2λ(V n)

−1 ·
‖rM(D, θ)‖ · ‖ḡ(D, θ0)‖ = op((pn)

−1/2(p/n)1/2) = op(n
−1). These together imply that the last

term in (A.2) is of order op(1), and this holds uniformly for all M ⊇ M0. The conclusion then

follows if we define SM(D) as in the lemma, which does not depend on θ and can be moved

outside the integral. �
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Lemma A.3. Under Assumptions 1-8, there exists a constant C1 > 0, such that uniformly for

all spaces M ⊇ M0, for any fixed constant C ≥ C1 and all sufficiently large n,

∫

B0(Cǫn)∩Θ(M)
e−

n
2
(θ1−θ̄M,1)

⊤G
⊤
MV

−1
n GM(θ1−θ̄M,1)π(θ|M)dθ1

= (2π/n)|M|/2{det(G⊤
MV

−1
n GM)

}−1/2
π(θ0|M)

(

1 + op(1)
)

, (A.3)

where θ̄M,1 is defined in Lemma A.2 and θ = (θ⊤1 , θ
⊤
2 )

⊤ is decomposed according to M.

Proof: First we let PM = V
−1/2
n GM(G⊤

MV
−1
n GM)−1G

⊤
MV

−1/2
n , where V

1/2
n is the symmetric

positive definite square root of V n. Then PM is idempotent and has eigenvalues 0 and 1. The

difference between θ̄M,1 and θ0,M,1 can be controlled by

‖θ̄M,1 − θ0,M,1‖2 = ‖(G⊤
MV

−1
n GM)−1

G
⊤
MV

−1
n ḡ(D, θ0)‖2

≤ λ
(

G
⊤
MV

−1
n GM

)−1 · ḡ(D, θ0)
⊤
V

−1/2
n PMV

−1/2
n ḡ(D, θ0)

≤ λ̄(V n)λ(G
⊤
G)−1 · λ(V n)

−1‖ḡ(D, θ0)‖2.

Since ‖ḡ(D, θ0)‖ = Op(
√

p/n), we know that ‖θ̄M,1− θ0,M,1‖ is also Op(
√

p/n) since all the

eigenvalues here are bounded. So for any small η > 0, we can pick C ′ sufficiently large, such

that ‖θ̄M,1 − θ0,M,1‖ ≤ C ′√p/n w.p.1− η and uniformly for all M ⊇ M0.

Next we evaluate the integral on the left hand side of (A.3) on BM(Cǫn) := {θ = (θ⊤1 , 0)
⊤ ∈

Θ(M) : ‖θ1 − θ̄M,1‖ ≤ Cǫn} for a fixed C > 0. We observe that the integral takes the same

form as a Gaussian random vector centered at θ̄M,1. Define U ∼ N (0,G⊤
MV

−1
n GM). Then we

have that there exists a large C ′′, such that when C ≥ C ′′, w.p.1 − 2η and uniformly for all

M ⊇ M0,

∫

BM(Cǫn)
e−

n
2
(θ1−θ̄M,1)

⊤
G

⊤
MV

−1
n GM(θ1−θ̄M,1)π(θ|M)dθ1

= (2π/n)|M|/2{det(G⊤
MV

−1
n GM)

}−1/2
Pr
(

‖U‖ ≤ C
√
p
)

· π(θ0|M)(1 + o(1))

= (2π/n)|M|/2{det(G⊤
MV

−1
n GM)

}−1/2
π(θ0|M)(1 + o(1)), (A.4)

where the o(1) depends on η (and hence on C and n). In the first equality above, we have

used Assumption 7(ii) to obtain that π(θ|M) = π(θ0|M)(1+o(1)) as n→ ∞ uniformly over all

M ⊇ M0 and all θ ∈ B0((C+C ′)ǫn), since w.p.1−η, BM(Cǫn) ⊆ B0((C+C ′)ǫn). In the second

equality, we used the fact that the eigenvalues of G⊤
MV

−1
n GM are bounded in probability using

Assumptions 5 and 6. Hence by Chebyshev’s inequality, ‖U‖ = Op(
√
p). Hence we can pick a

large C ′′ such that for C ≥ C ′′, w.p.1− η, Pr(‖U‖ ≤ C
√
p) = 1 + o(1).

Finally we set C1 = C ′ + C ′′. Then for C ≥ C1, BM((C − C ′)ǫn) ⊆ B0(Cǫn) ∩ Θ(M) ⊆
BM((C +C ′)ǫn), and C −C ′ ≥ C ′′ guarantees that (A.4) is satisfied w.p.1− 2η and uniformly

for all M ⊇ M0. Therefore (A.3) follows since the integral on the left hand side of (A.3) can

be bounded between the integrals on BM((C −C ′)ǫn) and BM((C +C ′)ǫn), and both integrals

satisfy (A.4). �
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Lemma A.4. Under Assumptions 1-8, there exists a constant C2 > 0, such that uniformly for

all spaces M ⊇ M0, for all large constant C ≥ C2, w.p.a.1 as n→ ∞,

∫

Θ(M)\B0(Cǫn)
e−

n
2
ḡ(D,θ)⊤V

−1
n ḡ(D,θ)π(θ|M)dθ

≤ cπ

(

4πλ̄

nδ21

)|M|/2
exp

(

−C
2δ21

16λ̄
p

)

+ exp
(

−n
4
λ̄−1δ20

)

,

where cπ is from Assumption 7(i), and δ0, δ1 are from Assumption 5(i).

Proof: The proof uses similar techniques to the proof of Lemma 8 in Belloni and Chernozhukov

(2009). Here we first directly cite part of the results from Belloni and Chernozhukov (2009),

since they remain valid under our Assumptions 2, 4, and 5.

1. For any small η > 0, there exists a large C ′ > 0, such that ‖E g(D, θ)‖ > 8‖ḡ(D, θ0)‖
uniformly on Θ\B0(C

′ǫn) w.p. 1 − η. C ′ depends on δ0, δ1 in Assumption 5(i) and λ̄ in

Assumption 6.

2. ‖Wn(D, θ)‖ = op(‖E g(D, θ)‖) uniformly on Θ\B0(C
′ǫn). So for n sufficiently large,

‖Wn(D, θ)‖ ≤ ‖E g(D, θ)‖/8 for all θ ∈ Θ\B0(C
′ǫn) w.p. 1− η.

Note that the two results above hold uniformly for all θ ∈ Θ(M)\B0(C
′ǫn) and for all

M ⊇ M0. Therefore, we have

‖ḡ(D, θ)‖ = ‖E g(D, θ) + ḡ(D, θ0) +Wn(D, θ)‖

≥
∣

∣

∣
‖E g(D, θ)‖ − ‖ḡ(D, θ0)‖ − ‖Wn(D, θ)‖

∣

∣

∣

≥ 3

4
‖E g(D, θ)‖

uniformly for all θ ∈ Θ(M)\B0(C
′ǫn), all M ⊇ M0, and all sufficiently large n w.p. 1− 2η.

Therefore, for C > C ′, by Assumptions 1-8, we have

∫

Θ(M)\B0(Cǫn)
e−

n
2
ḡ(D,θ)⊤V

−1
n ḡ(D,θ)π(θ|M)dθ

≤
∫

Θ(M)\B0(Cǫn)
exp

{

−n
2
λ̄(V n)

−1 · 9

16
‖E g(D, θ)‖2

}

π(θ|M)dθ

≤ cπ

∫

Θ(M)\B0(Cǫn)
exp

{

−n
4
λ̄−1δ21 ‖θ − θ0‖2

}

dθ

+

∫

Θ(M)\B0(Cǫn)
exp

{

− n

4
λ̄−1δ20

}

π(θ|M)dθ

≤ cπ

(

4πλ̄

nδ21

)|M|/2
Pr(‖U‖ ≥ C

√
p) + exp

(

−n
4
λ̄−1δ20

)

≤ cπ

(

4πλ̄

nδ21

)|M|/2
exp

(

−C
2δ21

16λ̄
p

)

+ exp
(

−n
4
λ̄−1δ20

)

(A.5)

where in the second inequality we used Assumption 5(i), 6 and 7(i) and required n to be

sufficiently large, in the third inequality we let U ∼ N
(

0, (2λ̄/δ21)I |M|
)

, applied the Gaussian
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concentration inequality and required C > C2 = max(2
√
2λ̄/δ1, C

′). The whole inequality holds

uniformly for all M ⊇ M0, and all sufficiently large n, w.p. 1− 2η. �

Lemma A.5. Suppose Assumptions 1-8 holds. Then w.p.a.1 as n → ∞, uniformly for all

M ⊇ M0,

BFq[M : M0] ≍
(

2π

n

)− |M|−|M0|
2 SM(D)

SM0(D)
·
{

det(G⊤
MV

−1
n GM)

}−1/2
π(θ0|M)

{

det(G⊤
M0

V
−1
n GM0)

}−1/2
π(θ0|M0)

, (A.6)

where SM(D) is defined in Lemma A.2. Moreover,

0 < ln
SM(D)

SM0(D)
≍ (|M| − |M0|). (A.7)

Proof: We first establish an approximation of the integral on the true model space Θ(M0).

From Lemma A.2, A.3 and A.4, we can pick a large constant C > max(C1, C2) such that for all

sufficiently large n,
∫

Θ(M0)
e−

n
2
ḡ(D,θ)⊤V

−1
n ḡ(D,θ)π(θ|M0)dθ

=
(

1 + op(1)
)

SM0(D)(2π/n)|M0|/2{ det(G⊤
M0

V
−1
n GM0)

}−1/2
π(θ0|M0) (A.8)

This is because the density at θ0 on M0 is lower bounded by e−c0k0 by Assumption 7(iii), and

hence the upper bound in Lemma A.4 is of smaller order compared to the right hand side of

(A.3), which implies that the integral on the space Θ(M0) is mostly concentrated on the neigh-

borhood B(Cǫn) and the outside part is negligible.

For any M ⊇ M0 and M 6= M0, we can decompose the Bayes factor in two parts:

BFq[M : M0] =

∫

Θ(M)∩B0(Cǫn)
e−

n
2
ḡ(D,θ)⊤V

−1
n ḡ(D,θ)π(θ|M)dθ

∫

Θ(M0)
e−

n
2
ḡ(D,θ)⊤V

−1
n ḡ(D,θ)π(θ|M0)dθ

+

∫

Θ(M)\B0(Cǫn)
e−

n
2
ḡ(D,θ)⊤V

−1
n ḡ(D,θ)π(θ|M)dθ

∫

Θ(M0)
e−

n
2
ḡ(D,θ)⊤V

−1
n ḡ(D,θ)π(θ|M0)dθ

:= I1 + I2 (A.9)

Based on Lemma A.2, Lemma A.3 and (A.8), I1 can be bounded by

I1 =

(

1 + op(1)
)

SM(D)(2π/n)|M|/2{det(G⊤
MV

−1
n GM)

}−1/2
π(θ0|M)

(

1 + op(1)
)

SM0(D)(2π/n)|M0|/2
{

det(G⊤
M0

V
−1
n GM0)

}−1/2
π(θ0|M0)

, (A.10)

where the op(1) holds uniformly for all M ⊃ M0. Now we analyze the term SM(D)/SM0(D)

and prove (A.7). According to the definition of SM(D) in Lemma A.2,

SM(D)

SM0(D)
= exp

{

n

2
ḡ(D, θ0)

⊤(
V

−1
n GM(G⊤

MV
−1
n GM)−1

G
⊤
MV

−1
n

− V
−1
n GM0(G

⊤
M0

V
−1
n GM0)

−1
G

⊤
M0

V
−1
n

)

ḡ(D, θ0)

}
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= exp

{

n

2
ḡ(D, θ0)

⊤
V

−1/2
n (PM − PM0)V

−1/2
n ḡ(D, θ0)

}

, (A.11)

where PM is the projection matrix defined at the beginning of the proof of Lemma A.3.

Given M ⊃ M0, PM − PM0 is semi-positive definite and idempotent, with trace |M| −
|M0|. Since by CLT,

√
nV

−1/2
n ḡ(D, θ0) converges in distribution to N (0, Ip), it follows that

2 ln (SM(D)/SM0(D)) is asymptotically a χ2
|M|−|M0| random variable. Hence (A.7) is proved.

For I2, Lemma A.4, (A.8) and Assumption 7 together yield

I2 ≤
cπ

(

4πλ̄
nδ21

)|M|/2
exp

(

− C2δ21
16λ̄

p
)

+ exp
(

− n
4 λ̄

−1δ20

)

(

1 + op(1)
)

SM0(D)(2π/n)|M0|/2
[

det(G⊤
M0

V
−1
n GM0)

]−1/2
π(θ0|M0)

.

Hence we take the ratio of I2 to I1 in (A.10), and have

I2
I1

≤
cπ

(

4πλ̄
nδ21

)|M|/2
exp

(

− C2δ21
16λ̄

p
)

+ exp
(

− n
4 λ̄

−1δ20

)

(

1 + op(1)
)

SM(D)(2π/n)|M|/2{ det(G⊤
MV

−1
n GM)

}−1/2
π(θ0|M)

≤
(

1 + op(1)
)

cπ

(

2λ̄
δ21

)|M|/2
exp

(

− C2δ21
16λ̄

p
)

·
(

λ̄(G⊤
G)

λ(V n)

)|M|/2

exp
{

− n
2 ḡ(D, θ0)⊤V −1

n ḡ(D, θ0)
}

· e−c0|M|
, (A.12)

where in the second inequality, we applied Assumption 7(iii), and also a lower bound on SM(D)

using its definition in Lemma A.2. In fact, by (A.1)

n

2
ḡ(D, θ0)

⊤
V

−1
n ḡ(D, θ0) = Op(p).

So one can see that in (A.12), w.p.a.1 as n → ∞, we can pick C sufficiently large, such that

I2/I1 is arbitrarily small, since the exponential index |M| cannot exceed p. Therefore, in (A.9),

BFq[M : M0] = (1 + op(1))I1, and the conclusion of (A.6) follows from this and (A.10). �

Lemma A.6. Suppose Assumptions 1-8 holds. Then w.p.a.1 as n → ∞, there exists a large

constant C1 > 0, such that uniformly over all M with M0\M 6= ∅,

BFq[M : M0] ≤ exp

(

−C1n min
j∈M0

θ20,(j)

)

. (A.13)

Proof: First we observe that if M0\M 6= ∅, i.e. M misses at least one component of the

true model M0, then for any θ ∈ Θ(M), it must hold that ‖θ − θ0‖ ≥ minj:θ0,(j) 6=0 |θ0,(j)|. By

Assumption 3, there exists a sequence tn → ∞ such that minj∈M0 |θ0,(j)| =
√
lnntnǫn. Therefore

for n sufficiently large, the whole space Θ(M) is outside the neighborhood B0(
√
lnntnǫn).

Similar to the derivation of (A.5), we can bound the marginal probability q(D|M) by

∫

Θ(M)
e−

n
2
ḡ(D,θ)⊤V

−1
n ḡ(D,θ)π(θ|M)dθ

=

∫

Θ(M)\B0(
√
lnntnǫn)

e−
n
2
ḡ(D,θ)⊤V

−1
n ḡ(D,θ)π(θ|M)dθ

≤ cπ

(4πλ̄

nδ21

)|M|/2
exp

(

−C
2δ21

16λ̄
t2np lnn

)

+ exp
(

−n
4
λ̄−1δ20

)

(A.14)
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for sufficiently large C.

Therefore, by using the approximation (A.8), we have that w.p.a.1 as n→ ∞,

BFq[M : M0]

≤
cπ

(

4πλ̄
nδ21

)|M|/2
exp

(

− C2δ21
16λ̄

t2np lnn
)

+ exp
(

− n
4 λ̄

−1δ20

)

(

1 + op(1)
)

SM0(D)(2π/n)|M0|/2
{

det(G⊤
M0

V
−1
n GM0)

}−1/2
π(θ0|M0)

≤
(

1 + op(1)
)

cπ

(

2λ̄
δ21

)|M|/2
exp

(

− C2δ21
16λ̄

t2np lnn
)

exp
{

− n
2 ḡ(D, θ0)⊤V −1

n ḡ(D, θ0)
}(

λ(V n)

λ̄(G⊤
G)

)k0/2
e−c0k0

,

where in the last inequality, we did the same as in (A.12), and the second term on the numerator

is absorbed into the first term because t2np lnn = nminj∈M0 θ
2
0,j � n by Assumption 3. Now

because the term t2np lnn dominates all the other terms in the exponential, the conclusion follows

by choose appropriate C1 > 0. �

Proof of Theorem 1 (i):

We combine the results from Lemma A.5 and Lemma A.6, and show that
∑

M6=M0
POq[M :

M0] → 0 w.p.a.1 as n → ∞, since this is equivalent to q(M0|D) → 1 w.p.a.1 as n → ∞.

To prove this, it suffices to show
∑

M:M0\M6=∅ POq[M : M0] → 0 and
∑

M:M⊇M0
POq[M :

M0] → 0 respectively. For those models with M0\M 6= ∅, Assumption 8(ii) implies that

sup{M: M0\M6=∅} π(M)/π(M0) ≤ er1p lnn for sufficiently large n, and Assumption 3 implies

that 2r1p lnn ≤ C1nminj∈M0 θ
2
0,(j) for sufficiently large n. Therefore it follows from Lemma

A.6 that as n→ ∞,

∑

M:M0\M6=∅
POq[M : M0]

≤
∑

M:M0\M6=∅

π(M)

π(M0)
exp

(

−C1n min
j∈M0

θ20,(j)

)

≤ 2p · exp
(

r1p lnn− C1n min
j∈M0

θ20,(j)

)

≤ exp (p ln 2 + r1p lnn− 2r1p lnn) → 0.

For those models with M ⊇ M0, we use the conclusion of Lemma A.5. Note that on

the right-hand side of (A.6), π(θ0|M)/π(θ0|M0) ≤ exp(c1(|M| − |M0|)) by Assumption 7(iii).

Based on Assumptions 5, 6, (A.6) and (A.7), we can pick a large constant C2 > 0, such that

uniformly over all these models, w.p.a.1 as n→ ∞,

BFq[M : M0] ≤ (C2n)
− |M|−|M0|

2 .

By Assumption 8(i), we know that for any M ⊃ M0,
π(M)
π(M0)

= |o(1)|·(√n/p)|M|−|M0| as n→ ∞,

where o(1) is uniform for all such M. Therefore we have

∑

M:M⊃M0

POq[M : M0]
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≤
∑

M:M⊃M0

π(M)

π(M0)
(C2n)

− |M|−|M0|
2

≤ |o(1)| ·
p
∑

k=k0+1

(

p− k0
k − k0

)

(√
n/p

)k−k0 (C2n)
− k−k0

2

≤ |o(1)| ·
p
∑

k=k0+1

(

p− k0
k − k0

)(

1√
C2p

)k−k0

≤ |o(1)| ·
{

(

1 +
1√
C2p

)p−k0

− 1

}

≤ |o(1)| · (e
1√
C2 − 1) → 0.

So the proof is complete. �

Proof of Theorem 1 (ii):

In the conclusion of part (ii), the first integral can be rewritten as

∫

A
q(θ|D)dθ

=

∑

M π(M)
∫

A∩Θ(M) q(D|θ,M)π(θ|M)dθ
∑

M π(M)
∫

Θ(M) q(D|θ,M)π(θ|M)dθ

=

∑

M6=M0
π(M)

∫

A∩Θ(M) q(D|θ,M)π(θ|M)dθ + π(M0)
∫

A∩Θ(M0)
q(D|θ,M)π(θ|M0)dθ

∑

M6=M0
π(M)

∫

Θ(M) q(D|θ,M)π(θ|M)dθ + π(M0)
∫

Θ(M0)
q(D|θ,M)π(θ|M0)dθ

.

Therefore if we divide the numerator and denominator by π(M0)
∫

Θ(M0)
q(D|θ,M)π(θ|M0)dθ,

we have

∫

A∩Θ(M0)
q̃(θ1|D)dθ1

∑

M6=M0
POq[M : M0] + 1

≤
∫

A
q(θ|D)dθ ≤

∑

M6=M0
POq[M : M0] +

∫

A∩Θ(M0)
q̃(θ1|D)dθ1

∑

M6=M0
POq[M : M0] + 1

,

where q̃(θ1|D) = q(D|θ,M)π(θ|M0)∫
Θ(M0)

q(D|θ,M)π(θ|M0)dθ
is the conditional quasi-posterior on the true model

space M0 and θ1 represents the nonzero components of θ in the true model M0. According to

the model selection consistency of Theorem 1 part (i),
∑

M6=M0
POq[M : M0] → 0 w.p.a.1 as

n→ ∞. Hence
∫

A∩Θ(M0)
q̃(θ1|D)dθ1

1 + |op(1)|
≤
∫

A
q(θ|D)dθ ≤

∫

A∩Θ(M0)
q̃(θ1|D)dθ1 + |op(1)|
1 + |op(1)|

.

Since
∫

Θ(M0)
q̃(θ1|D)dθ1 = 1 and

∫

Θ q(θ|D)dθ = 1, and the op(1) does not depend on the set

A, the inequality above implies that for all set A ⊆ Θ, w.p.a.1 as n→ ∞.

∣

∣

∣

∫

A
q(θ|D)dθ −

∫

A∩Θ(M0)
q̃(θ1|D)dθ1

∣

∣

∣
→ 0.

Therefore, to show part (ii) of Theorem 1, it suffices to show that w.p.a.1. as n→ ∞,

sup
A⊆Θ

∣

∣

∣

∫

A∩Θ(M0)
q̃(θ1|D)dθ1 −

∫

A∩Θ(M0)
φ
(

θ1; θ̄M0,1, (G
⊤
M0

V
−1
n GM0)

−1/n
)

dθ1

∣

∣

∣
→ 0. (A.15)

33



Note that the densities q̃ and φ are defined on the same support Θ(M0), so the rest is a standard

proof of Bayesian CLT similar to Belloni and Chernozhukov (2009). Using the decomposition

(A.2) in Lemma A.2, Lemma A.3 and Lemma A.4, we have

∫

A∩Θ(M0)
q̃(θ1|D)dθ1

=
SM0(D)

∫

A∩Θ(M0)
e
−n

2
(θ1−θ̄M0,1

)⊤G
⊤
M0

V
−1
n GM0

(θ1−θ̄M0,1
)+op(1)π(θ1|M0)dθ1

(

1 + op(1)
)

SM0(D)(2π/n)|M0|/2
{

det(G⊤
M0

V
−1
n GM0)

}−1/2
π(θ0|M0)

=

(

1 + op(1)
) ∫

A∩B0(Cǫn)∩Θ(M0)
e
−n

2
(θ1−θ̄M0,1

)⊤G
⊤
M0

V
−1
n GM0

(θ1−θ̄M0,1
)
π(θ1|M0)dθ1

(2π/n)|M0|/2
{

det(G⊤
M0

V
−1
n GM0)

}−1/2
π(θ0|M0)

=
(

1 + op(1)
)

∫

A∩B0(Cǫn)∩Θ(M0)
φ
(

θ1; θ̄M0,1, (G
⊤
M0

V
−1
n GM0)

−1/n
)

dθ1

=

∫

A∩B0(Cǫn)∩Θ(M0)
φ
(

θ1; θ̄M0,1, (G
⊤
M0

V
−1
n GM0)

−1/n
)

dθ1 + op(1) (A.16)

The numerator of the second equality shrinks the range of integral to within the neighborhood

B0(Cǫn) because the integral outside B0(Cǫn) is of op(1) compared to the denominator, accord-

ing to the approximation in (A.8). In the third equality, we used Assumption 7(ii) and have

that on B0(Cǫn) ∩ Θ(M0), π(θ|M0)/π(θ0|M0) = 1 + o(1). The op(1) in the last expression

does not depend on the set A. Therefore (A.15) holds and this completes the proof. �

2. Proofs for the Asymptotic Validity of BGMM

In this section, we give the proofs of Theorem 2 and Theorem 3. For the ease of notation, let

Σ(θ) = G(θ)⊤V (θ)−1G(θ), whereG(θ) and V (θ) are defined in Assumption 9. In the following,

for any matrix A(θ) that depends on θ, we use the notation “A” to refer to the matrix evaluated

at θ0. For example, Σ = G
⊤
V

−1
G, where G and V are defined in Assumption 5 and 6, i.e.

G(θ) and V (θ) evaluated at θ = θ0, respectively. For any model M, one can partition any

matrix G(θ) into G(θ) = (GM(θ),GMc(θ)), according to the partial derivative with respect to

the components of θ in either M or Mc. Let

Σ11(θ) = GM(θ)⊤V (θ)−1
GM(θ)

Σ12(θ) = GM(θ)⊤V (θ)−1
GMc(θ)

Σ22(θ) = GMc(θ)⊤V (θ)−1
GMc(θ)

JM(θ) = Ip − V (θ)−1
GM(θ)(GM(θ)⊤V (θ)−1

GM(θ))−1
GM(θ)⊤

We have the following lemma about the quadratic term in the asymptotic normal density

of the GMM estimator θ̂. The proof is straightforward algebra.

Lemma A.7. Under Assumptions 1-10,

n

2
(θ − θ̂)⊤Σ(θ)(θ − θ̂) =

n

2
(θ1 − ξ1(θ))

⊤Σ11(θ)(θ1 − ξ1(θ)) + TM(θ)
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ξ1(θ) := θ̂1 +Σ11(θ)
−1Σ12(θ)θ̂2

TM(θ) :=
n

2
θ̂⊤2 GMc(θ)⊤JM(θ)V (θ)−1

GMc(θ)θ̂2

where θ̂ = (θ̂⊤1 , θ̂
⊤
2 )

⊤ is the GMM estimator on the full model space in R
p and is decomposed

according to the model M.

Lemma A.8. Suppose Assumptions 1-10 hold. Then uniformly for all θ ∈ B0(Cǫn) ∩ Θ(M)

and all M ⊇ M0, with any fixed constant C > 0, for ξ1(θ) in Lemma A.7,

ξ1(θ) = θ̄M,1 + op
(

1/
√
n
)

,

where θ̄M,1 = θ0,M,1− (G⊤
MV

−1
n GM)−1G

⊤
MV

−1
n ḡ(D, θ0) is the same as in Lemma A.2. There-

fore,
n

2
(θ − θ̂)⊤Σ(θ)(θ − θ̂) =

n

2
(θ1 − θ̄M,1)

⊤Σ11(θ)(θ1 − θ̄M,1) + TM(θ) + op(1).

Proof: First we use the continuity of G⊤(θ)G(θ) and V (θ) in θ from Assumption 9(iii), and

replace Σ11(θ) and Σ12(θ) in the expression of ξ1(θ) by Σ11 and Σ12, respectively. This is

because we are considering θ ∈ B0(Cǫn), and this leads to (note that θ̂2 = Op(1/
√
n))

ξ1(θ) = θ̂1 + (Σ−1
11 Σ12 + op(1))θ̂2 = θ̂1 +Σ−1

11 Σ12θ̂2 + op(1/
√
n).

Next we use Assumption 9(v), and replace θ̂1 and θ̂2 with their first order approximations. For

the θ̄ in Assumption 9(v), suppose we decompose it into θ̄ = (θ̄⊤1 , θ̄
⊤
2 )

⊤ according to a given

model M. Then by Assumption 9(v), we have ‖θ̂1 − θ̄1‖ = Op(1/n) and ‖θ̂2 − θ̄2‖ = Op(1/n).

Furthermore, through pure matrix algebra, we can derive that

ξ1(θ) = θ̂1 +Σ−1
11 Σ12θ̂2 + op(1/

√
n)

= θ̄1 +Σ−1
11 Σ12θ̄2 + op(1/

√
n) +Op(1/n)

= (I |M|,Σ
−1
11 Σ12)θ̄ + op(1/

√
n)

= θ̄M,1 + op(1/
√
n),

where in the last display, θ̄M,1 is defined in Lemma A.2. Therefore from Lemma A.7, for any

θ ∈ B0(Cǫn)

n

2
(θ − θ̂)⊤Σ(θ)(θ − θ̂)

=
n

2
(θ1 − ξ1(θ))

⊤Σ11(θ)(θ1 − ξ1(θ)) + TM(θ)

=
n

2
(θ1 − θ̄M,1 + op(1/

√
n))⊤Σ11(θ)(θ1 − θ̄M,1 + op(1/

√
n)) + TM(θ)

=
n

2
(θ1 − θ̄M,1)

⊤Σ11(θ)(θ1 − θ̄M,1) + TM(θ) + op(1),

which completes the proof. �
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Lemma A.9. Suppose Assumptions 1-10 hold. Let TM(θ) be given in Lemma A.7. For any

generic model M, w.p.a.1 as n→ ∞,

(i) Uniformly for all θ ∈ B0(Cǫn) ∩Θ(M) and all models M ⊇ M0, TM(θ)− TM(θ0) = op(1),

given any fixed constant C > 0;

(ii) For any M ⊇ M0, TM0(θ0) − TM(θ0) = ln (SM(D)/SM0(D)) + op(1), where SM(D) is

defined in Lemma A.2.

Proof: First, we can use Assumption 9 and the uniform boundedness of the eigenvalues of

G(θ)⊤G(θ) and V (θ) for θ ∈ Θ, and express TM(θ) as

TM(θ)

=
n

2
θ̄⊤2 GMc(θ)⊤JM(θ)V (θ)−1

GMc(θ)θ̄2 + nθ̄⊤2 G
⊤
Mc(θ)JM(θ)V (θ)−1

GMc(θ)(θ̂2 − θ̄2)

+
n

2
(θ̂2 − θ̄2)

⊤
GMc(θ)⊤JM(θ)V (θ)−1

GMc(θ)(θ̂2 − θ̄2)

=
n

2
θ̄⊤2 GMc(θ)⊤JM(θ)V (θ)−1

GMc(θ)θ̄2 +Op(1/
√
n) +Op(1/n)

=
n

2
θ̄⊤2 GMc(θ)⊤JM(θ)V (θ)−1

GMc(θ)θ̄2 + op(1), (A.17)

where θ̄ is the same as defined in Theorem 1 and θ̄2 is the subvector of θ̄ with all those compo-

nents not contained in model M.

Furthermore, if M ⊇ M0, then θ0,M,2 = 0. It can be shown by straightforward matrix algebra

that in this case,

θ̄2 = (G⊤
McJMV

−1
GMc)−1

G
⊤
McJMV

−1ḡ(D, θ0). (A.18)

Given the expression of TM(θ) in (A.17) and θ̄2 in (A.18), it is clear that the dependence of

TM(θ) on θ is only through the weighting matrix GMc(θ)⊤JM(θ)V (θ)−1GMc(θ) up to an error

of op(1) that is uniform for all M. Since Assumption 9(iii) has assumed the continuity of G(θ)

and V (θ) with respect to θ, it follows that for any fixed modelM, GMc(θ)⊤JM(θ)V (θ)−1GMc(θ)

is also continuous in θ. Moreover, due to the boundedness of p in Assumption 9(i), we have

at most 2p̄ models M, so the continuity is uniform in M. Therefore, in the shrinking neigh-

borhood θ ∈ B0(Cǫn) where ǫn → 0, we have that uniformly over all models M ⊇ M0,

TM(θ)− TM(θ0) = op(1), which has proved (i).

By (A.17) and (A.18), for any M ⊇ M0, we have TM(θ0) =
n
2 ḡ(D, θ0)

⊤K(M)ḡ(D, θ0) +

op(1), where

K(M) = V
−1

J
⊤
MGMc(G⊤

McJMV
−1

GMc)−1
G

⊤
McJMV

−1.

By pure matrix algebra, it can be shown that

K(M0)−K(M)

= V
−1

GM(G⊤
MV

−1
GM)−1

G
⊤
MV

−1 − V
−1

GM0(G
⊤
M0

V
−1

GM0)
−1

G
⊤
M0

V
−1

Because V n is a consistent estimator for V and their eigenvalues are bounded, we can replace

V in the display above by V n, which will incur an error of op(1). Then it follows that

TM0(θ0)− TM(θ0)
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=
n

2
ḡ(D, θ0)

⊤
{

V
−1
n GM(G⊤

MV
−1
n GM)−1

G
⊤
MV

−1
n

− V
−1
n GM0(G

⊤
M0

V
−1
n GM0)

−1
G

⊤
M0

V
−1
n

}

ḡ(D, θ0) + op(1).

We compare this with (A.11) and obtain that TM0(θ0)−TM(θ0) = ln (SM(D)/SM0(D))+op(1).

(ii) is proved. �

Lemma A.10. Under Assumptions 1-11, uniformly for all models M,
∫

Θ(M)

∣

∣

∣
p(θ̂|θ1)− φ(θ̂; θ1,Σ(θ)−1/n)

∣

∣

∣
π(θ1|M)dθ1 = Op

(

τnn
p−|M|

2

)

, (A.19)

where θ = (θ⊤1 , θ
⊤
2 ) is decomposed according to M, p(θ̂|θ1) denotes the conditional density of θ̂

given θ = (θ⊤1 , 0)
⊤, and

φ(θ̂; θ1,Σ(θ)−1/n)

=

(

2π

n

)− p

2

det(Σ(θ))1/2 exp

{

−n
2
(θ̂⊤1 − θ⊤1 , θ̂

⊤
2 )Σ(θ)

(

θ̂1 − θ1
θ̂2

)

}

, (A.20)

where θ̂ = (θ̂⊤1 , θ̂
⊤
2 )

⊤ is decomposed according to M.

Proof: Let c(x) = 1/(1 + xp+1). First one can do a variable transformation from θ̂ to

Z =
√
nF (θ)(θ̂ − θ), where θ = (θ⊤1 , 0)

⊤ and F (θ)⊤F (θ) = G(θ)⊤V (θ)−1G(θ) = Σ(θ).

The densities have the relation p(θ̂|θ1) = np/2 det(F (θ))pZ(z|θ1) and φ
(

θ̂; θ1,Σ(θ)−1/n
)

=

np/2 det(F (θ))φ(z; 0, Ip). Note that this transformation is in R
p and does not directly involve

the integration with respect to θ1. Then using Assumption 10, the left-hand side of (A.19) can

be bounded by
∫

Θ(M)

∣

∣

∣
p(θ̂|θ1)− φ(θ̂; θ1,Σ(θ)−1/n)

∣

∣

∣
π(θ1|M)dθ1

= np/2 sup
θ∈Θ

det(F (θ))

∫

Θ(M)

∣

∣

∣
pZ(z|θ1)− φ(z; 0, Ip)

∣

∣

∣
π(θ1|M)dθ1

≤ np/2 sup
θ∈Θ

(

λ̄(G(θ)⊤G(θ))

λ(V (θ))

)p/2

· τn
∫

Θ(M)
c(‖z‖)π(θ1|M)dθ1

≤ np/2 sup
θ∈Θ

(

λ̄(G(θ)⊤G(θ))

λ(V (θ))

)p/2

· τncπ
∫

Θ(M)
c(‖z‖)dθ1, (A.21)

where in the last inequality we have used Assumption 7(i) that π(θ1|M) ≤ cπ uniformly for all

M. We now transform θ1 into β =
√
n(θ̂1 − θ1) in the foregoing integration about the function

c(‖z‖). We have

‖z‖2 = n(θ̂ − θ)⊤Σ(θ)(θ̂ − θ) ≥ λ(Σ(θ))‖√n(θ̂ − θ)‖2,

and
∥

∥

∥

√
n(θ̂ − θ)

∥

∥

∥

2
=
∥

∥

∥

√
n(θ̂1 − θ1)

∥

∥

∥

2
+ n

∥

∥

∥
θ̂2

∥

∥

∥

2
= ‖β‖2 + n

∥

∥

∥
θ̂2

∥

∥

∥

2
≥ ‖β‖2.

Furthermore, the eigenvalue satisfies

inf
θ∈Θ

λ(Σ(θ)) ≥ inf
θ∈Θ

λ(G(θ)⊤G(θ))λ̄(V (θ))−1,
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which is lower bounded by constant according to Assumption 9(iii). Therefore, along with the

nonincreasing property of the function c(·), we have

∫

Θ(M)
c(‖z‖)dθ1 ≤ n−

|M|
2

∫

R|M|

c

(

inf
θ∈Θ

√

λ(G(θ)⊤G(θ))

λ̄(V (θ))
‖β‖

)

dβ

≤ n−
|M|
2

(

inf
θ∈Θ

λ(G(θ)⊤G(θ))

λ̄(V (θ))

)− |M|
2 ∫ ∞

0

x|M|−1

1 + xp+1
dx = O

(

n−
|M|
2

)

(A.22)

The conclusion follows from (A.21), (A.22), and the boundedness of the eigenvalues of Σ(θ). �

Proof of Theorem 2 (i):

We derive an order expression for BFθ̂[M : M0] =

∫
Θ(M)

p(θ̂|θ1)π(θ1|M)dθ1
∫
Θ(M0)

p(θ̂|θ1)π(θ1|M0)dθ1
where M ⊇ M0.

Here the two θ1’s in the numerator and the denominator lie in M and M0 respectively, possibly

with different dimensions if M ⊃ M0. Hereafter, all op and Op hold uniformly over all the

models with M ⊇ M0. First of all, based on Lemma A.10, we have
∫

Θ(M)
p(θ̂|θ1)π(θ1|M)dθ1

≤
∫

Θ(M)

∣

∣

∣
p(θ̂|θ1)− φ(θ̂; θ1,Σ(θ)−1/n)

∣

∣

∣
π(θ1|M)dθ1 +

∫

Θ(M)
φ(θ̂; θ1,Σ(θ)−1/n)π(θ1|M)dθ1

≤ Op

(

τnn
p−|M|

2

)

+

∫

Θ(M)
φ(θ̂; θ1,Σ(θ)−1/n)π(θ1|M)dθ1 (A.23)

We claim that the second term in (A.23) satisfies
∣

∣

∣

∣

∣

∫

Θ(M)
φ(θ̂; θ1,Σ(θ)−1/n)π(θ1|M)dθ1 −

∫

Θ(M)
φ(θ̂; θ1,Σ

−1/n)π(θ1|M)dθ1

∣

∣

∣

∣

∣

= op

(

n
p−|M|

2

)

,

(A.24)

where we have replaced Σ(θ) with Σ, i.e. the matrix Σ(θ) evaluated at θ = θ0.

To show (A.24), we first observe that both integrals in the display can be made to order

op
(

n
p−|M|

2

)

outside the neighborhood B0(Cǫn) for some constant C > 0. This is because by the

decomposition in Lemma A.7,
∫

Θ(M)\B0(Cǫn)
φ(θ̂; θ1,Σ(θ)−1/n)π(θ1|M)dθ1

=

∫

Θ(M)\B0(Cǫn)

(

2π

n

)−p/2

det(Σ(θ))1/2e−
n
2
(θ−θ̂)⊤Σ(θ)(θ−θ̂)π(θ1|M)dθ1

≤ cπ

(2π

n

)− p

2
sup
θ∈Θ

det(Σ(θ))1/2
∫

Θ(M)\B0(Cǫn)
exp

{

−n infθ∈Θ λ(Σ(θ))

2
(θ − θ̂)⊤(θ − θ̂)

}

dθ1

≤ cπ

(

2π

n

)− p

2

sup
θ∈Θ

det(Σ(θ))1/2
∫

Θ(M)\B0(Cǫn)
exp

{

−n infθ∈Θ λ(Σ(θ))

2
(θ1 − θ̂1)

⊤(θ1 − θ̂1)

}

dθ1

≤ cπ

(

2π

n

)− p−|M|
2 supθ∈Θ det(Σ(θ))1/2

infθ∈Θ λ(Σ(θ))|M|/2

∫

Θ(M)\B0(Cǫn)
φ

(

θ1; θ̂1,
1

n infθ∈Θ λ(Σ(θ))
I |M|

)

dθ1

where we have used Assumption 7(i) that the prior is bounded, and the fact that TM(θ) ≥ 0. All

the determinants and the eigenvalues here are bounded from below and above, by Assumption
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9. By choosing C sufficiently large, we can make the integral in the last display arbitrarily

small, due to the Gaussian concentration inequality. Hence as we choose C arbitrarily large,
∫

Θ(M)\B0(Cǫn)
φ(θ̂; θ1,Σ(θ)−1/n)π(θ1|M)dθ1 = op

(

n
p−|M|

2

)

. (A.25)

Similarly we have
∫

Θ(M)\B0(Cǫn)
φ(θ̂; θ1,Σ

−1/n)π(θ1|M)dθ1 = op

(

n
p−|M|

2

)

. (A.26)

Therefore it is sufficient to show (A.24) on Θ(M) ∩ B0(Cǫn). We will use the continuity

of Σ(θ) with respect to θ again, in the sense that det(Σ(θ))/det(Σ) = 1 + op(1) and also

‖Σ11(θ)−Σ11‖ = op(1) for θ ∈ B0(Cǫn). It follows from Lemma A.8, Lemma A.9 (i) and the

Gaussian concentration inequality that
∫

Θ(M)∩B0(Cǫn)
φ(θ̂; θ1,Σ

−1(θ)/n)π(θ1|M)dθ1

=

∫

Θ(M)∩B0(Cǫn)

(

2π

n

)−p/2

det(Σ(θ))1/2e−
n
2
(θ1−θ̄M,1)

⊤
Σ11(θ)(θ1−θ̄M,1)−TM(θ)+op(1)π(θ1|M)dθ1

=

∫

Θ(M)∩B0(Cǫn)

(

2π

n

)−p/2

det(Σ)1/2(1 + op(1))·

exp
{

− n

2
(θ1 − θ̄M,1)

⊤Σ11(θ1 − θ̄M,1) + op

(n

2

∥

∥θ1 − θ̄M,1

∥

∥

2
)

− TM(θ0) + op(1)
}

π(θ1|M)dθ1

= (1 + op(1))

∫

Θ(M)∩B0(Cǫn)

(

2π

n

)−p/2

det(Σ)1/2·

exp
{

− n

2
(θ1 − θ̄M,1)

⊤Σ11(θ1 − θ̄M,1)− TM(θ0)
}

π(θ1|M)dθ1

= (1 + op(1))

∫

Θ(M)∩B0(Cǫn)
φ
(

θ̂; θ1,Σ
−1/n

)

π(θ1|M)dθ1

= (1 + op(1))e
−TM(θ0)

(

2π

n

)− p−|M|
2
(

det(Σ)

det(Σ11)

)1/2

π(θ0,M,1|M). (A.27)

Therefore, (A.24) follows immediately from (A.25) - (A.27) and the fact that TM(θ0) = Op(1).

We can further combine (A.23) and (A.24) and conclude that
∫

Θ(M)
p(θ̂|θ1)π(θ1|M)dθ1 =

∫

Θ(M)
φ(θ̂; θ1,Σ

−1/n)π(θ1|M)dθ1 + op

(

n
p−|M|

2

)

.

Given this result, the Bayes factor based on p(θ̂|θ1) can be directly translated into the Bayes

factor based on φ
(

θ̂; θ1,Σ
−1/n

)

. It follows that

BFθ̂[M : M0]

=

∫

Θ(M) p(θ̂|θ1)π(θ1|M)dθ1
∫

Θ(M0)
p(θ̂|θ1)π(θ1|M0)dθ1

=

∫

Θ(M) φ(θ̂; θ1,Σ
−1/n)π(θ1|M)dθ1 + op

(

n
p−|M|

2

)

∫

Θ(M0)
φ(θ̂; θ1,Σ

−1/n)π(θ1|M0)dθ1 + op
(

n
p−|M0|

2

)
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(A.25)−(A.27)
=======

(1 + op(1))e
−TM(θ0)

(

2π
n

)− p−|M|
2 {

det(G⊤
MV

−1
n GM)

}−1/2
π(θ0,M,1|M) + op

(

n
p−|M|

2

)

(1 + op(1))e
−TM0

(θ0)
(

2π
n

)− p−|M0|
2 {

det(G⊤
M0

V
−1
n GM0)

}−1/2
π(θ0,M,1|M0) + op

(

n
p−|M0|

2

)

Lemma A.9 (ii)
======== (1 + op(1))

(2π

n

)− |M|−|M0|

2 SM(D)

SM0(D)
·
{

det(G⊤
MV

−1
n GM)

}−1/2
π(θ0|M)

{

det(G⊤
M0

V
−1
n GM0)

}−1/2
π(θ0|M0)

.

The last display is exactly the expression of BFq[M : M0] in Lemma A.5. Also note that

uniformly over all M ⊇ M0, by Assumptions 7 and 9(i), we have π(θ0|M)/π(θ0|M0) = 1+o(1)

and π(θ0|M) ≥ exp(−c0|M|) ≥ exp(−c0p̄) which is a constant lower bound. This is why the

terms op
(

n
p−|M|

2

)

and op
(

n
p−|M0|

2

)

can be absorbed in the last equality. Therefore,
BFq[M:M0]
BF

θ̂
[M:M0]

→
1 has been proved. Since now p is bounded above by p̄ in Assumption 9(i), one can see that the

order of BFθ̂[M : M0] is equal to n
− |M|−k0

2 , which completes the proof. �

Proof of Theorem 2 (ii):

The first inequality directly follows from Lemma A.6 and Assumption 9(ii). For the second one,

we have that for z =
√
nF (θ)(θ̂ − θ) with any θ ∈ Θ(M) and M0\M 6= ∅,

‖z‖2 = n(θ̂ − θ)⊤Σ(θ)(θ̂ − θ) ≥ inf
θ∈Θ

λ(Σ(θ))n‖θ̂ − θ‖2

≥ n inf
θ∈Θ

λ(Σ(θ))
(

‖θ − θ̂1‖2 + ‖θ̂2‖2
)

Since M0\M 6= ∅, w.p.a.1 as n→ ∞, θ̂2 → θ0,M,2 6= 0. Furthermore, by Assumption 9(ii),

‖θ̂2‖2 = ‖θ0,M,2‖2 + op(1) ≥
1

2
‖θ0,M,2‖2 ≥

1

2
θ2.

Therefore, if we let C1 = infθ∈Θ λ(Σ(θ)), then w.p.a.1 as n→ ∞,

‖z‖2 ≥ C1n
(

‖θ − θ̂1‖2 + ‖θ̂2‖2
)

≥ C1n‖θ − θ̂1‖2 +
C1θ

2n

2
.

Thus for some constant C > 0, we can bound the difference between p(θ̂|θ1) and the normal

limit, by
∫

Θ(M)

∣

∣

∣
p(θ̂|θ1)− φ

(

θ̂; θ1,Σ(θ)−1/n
)
∣

∣

∣
π(θ1|M)dθ1

≤ np/2 sup
θ∈Θ

(det(Σ(θ)))1/2 · τncπ
∫

Θ(M)

1

1 + (‖z‖2) p+1
2

dθ1

≤ Cτnn
p/2

∫

Θ(M)

1
{

C1n‖θ1 − θ̂1‖2 + C1θ
2n

2

}
p+1
2

dθ1

= Cτnn
p/2

∫

Θ(M)

(C1θ
2n/2)−

p+1
2

(

‖θ1−θ̂1‖2
θ2/2

+ 1
)

p+1
2

dθ1

≤ Cτnn
− 1

2

∫

Θ(M)

1

(1 + ‖u‖2) p+1
2

du

≤ Cτnn
− 1

2

∫ ∞

0

x|M|−1

(1 + x2)
p+1
2

dx
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≤ Cτnn
− 1

2 , (A.28)

where C has absorbed all the constant terms. Using (A.28), we can bound the marginal prob-

ability
∫

Θ(M) p(θ̂|θ1)π(θ1|M)dθ1 as

∫

Θ(M)
p(θ̂|θ1)π(θ1|M)dθ1

≤
∫

Θ(M)

∣

∣

∣
p(θ̂1|θ1)− φ

(

θ̂; θ1,Σ(θ)−1/n
)
∣

∣

∣
π(θ1|M)dθ1 +

∫

Θ(M)
φ(θ̂; θ1,Σ(θ)−1/n)π(θ1|M)dθ1

≤ Cτnn
− 1

2 + cπ

∫

Θ(M)

(

2π

n

)− p

2

{det(Σ(θ))}1/2 e−
C1n

2
(θ1−θ̂1)⊤(θ1−θ̂1)−C1nθ2

4 dθ1

≤ Cτnn
− 1

2 + cπ det(Σ(θ))1/2C
−|M|/2
1 e−C1nθ

2/4

(

2π

n

)− p−|M|
2

≤ C1τnn
− 1

2 + e−C2nθ
2

for some redefined constants C1, C2 > 0. Therefore, w.p.a.1 as n→ ∞, the Bayes factor can be

bounded by

BFθ̂[M : M0]

=

∫

Θ(M) p(θ̂|θ1)π(θ1|M)dθ1
∫

Θ(M0)
p(θ̂|θ1)π(θ1|M0)dθ1

=
C1τnn

− 1
2 + e−C2nθ

2

(1 + op(1))e
−TM0

(θ0)
(

2π
n

)− p−|M0|
2

{

det
(

G
⊤
M0

V
−1

GM0

)}−1/2
π(θ0,M,1|M0) + op

(

n
p−|M0|

2

)

≤ τnn
k0−p−1

2 + e−Cnθ2

for some redefined constant C > 0 and the first constant can be absorbed into τn. This completes

the proof of Theorem 2 (ii). �

Proof of Theorem 3 (i):

If M0 6= Mfull, then there exists at least one model M such that M ⊃ M0. Also the total

number of models is now bounded by 2p̄. Hence under the same prior π(θ,M), Theorem 2 (i) and

Assumption 9(iv) imply that
∑

M:M⊃M0
POθ̂[M : M0] = Op

(

n−1/2
)

,
∑

M:M⊃M0
POq[M :

M0] = Op

(

n−1/2
)

, and

∑

M:M⊃M0

POθ̂[M : M0] = (1 + op(1))
∑

M:M⊃M0

POq[M : M0].

On the other hand, Theorem 2 (ii) implies that
∑

M:M0\M6=∅ POq[M : M0] = exp(−Cnθ2) for
some constant C > 0, and also

∑

M:M0\M6=∅
POθ̂[M : M0]

≤ 2p exp
(

−Cnθ2
)

∨ τnn
k0−p−1

2

41



≤ exp
(

−Cnθ2
)

∨ τnn
k0−p−1

2

with adjusted C and τn = op(1). Therefore, it is clear that

∑

M:M0\M6=∅
POq[M : M0] = op

(

∑

M:M⊃M0

POq[M : M0]
)

∑

M:M0\M6=∅
POθ̂[M : M0] = op

(

∑

M:M⊃M0

POθ̂[M : M0]
)

Hence it is clear that the posterior consistency follows, with q(M0|D) = 1+op(1) and p(M0|θ̂) =
1 + op(1). Moreover,

q(M : M 6= M0|D) =
(

∑

M:M0\M6=∅
POq[M : M0] +

∑

M:M⊃M0

POq[M : M0]
)

q(M0|D)

= (1 + op(1))
∑

M:M⊃M0

POq[M : M0] ≍ n−1/2

p(M : M 6= M0|θ̂) =
(

∑

M:M0\M6=∅
POθ̂[M : M0] +

∑

M:M⊃M0

POθ̂[M : M0]
)

p(M0|θ̂)

= (1 + op(1))
∑

M:M⊃M0

POθ̂[M : M0] ≍ n−1/2

q(M : M 6= M0|D)

p(M : M 6= M0|θ̂)
=

(1 + op(1))
∑

M:M⊃M0
POq[M : M0]

(1 + op(1))
∑

M:M⊃M0
POθ̂[M : M0]

→ 1

w.p.a.1 as n→ ∞.

When M0 = Mfull, there is no model M with M ⊃ M0. Hence

q(M : M 6= M0|D) =
∑

M:M0\M6=∅
POq[M : M0] · q(M0|D) ≤ exp

(

− Cnθ2
)

;

p(M : M 6= M0|θ̂) =
∑

M:M0\M6=∅
POθ̂[M : M0] · p(M0|θ̂) ≤ exp

(

− Cnθ2
)

∨ τnn
k0−p−1

2 .

�

Proof of Theorem 3 (ii):

Because of the model selection consistency in Theorem 3 (i) for p(θ|θ̂) and the normal approx-

imation in the proof of Theorem 2 (i), one can show that

sup
A⊆Θ

∣

∣

∣

∣

∣

∫

A
p(θ|θ̂)dθ −

∫

A
φ
(

θ1; ξ1(θ0), (G
⊤
M0

V
−1
n GM0)

−1/n
)

dθ1

∣

∣

∣

∣

∣

→ 0, (A.29)

where θ = (θ⊤1 , θ
⊤
2 )

⊤ is decomposed according to the true model M0, and ξ1(θ0) is defined

in Lemma A.7 also according to M0. (A.29) can be proved using similar arguments to the

proof of Theorem 1 (ii), and hence we omit it here. By Lemma A.8, ξ1(θ0) = θ̄M0,1+op
(

1/
√
n
)

.

Therefore, using the relation between the total variation distance and the Kullback-Leibler (KL)

divergence (Pinsker’s inequality), we can obtain that

sup
A⊆Θ

∣

∣

∣

∣

∣

∫

A
φ
(

θ1; θ̄M0,1, (G
⊤
M0

V
−1
n GM0)

−1/n
)

dθ1 −
∫

A
φ
(

θ1; ξ1(θ0), (G
⊤
M0

V
−1
n GM0)

−1/n
)

dθ1

∣

∣

∣

∣

∣
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≤
{

1

2
KL
(

φ
(

θ1; θ̄M0,1, (G
⊤
M0

V
−1
n GM0)

−1/n
)

, φ
(

θ1; ξ1(θ0), (G
⊤
M0

V
−1
n GM0)

−1/n
))

}
1
2

=
1

2

√

n
(

θ̄M0,1 − ξ1(θ0)
)⊤

G
⊤
M0

V
−1
n GM0

(

θ̄M0,1 − ξ1(θ0)
)

≤ 1

2
λ
(

G
⊤
M0

V
−1
n GM0

)

· n
∥

∥θ̄M0,1 − ξ1(θ0)
∥

∥

2
= op(1), (A.30)

where KL(f1, f2) denote the KL divergence between two densities f1 and f2. Based on Assump-

tion 1-11, the result of Theorem 3 (ii) immediately follows by combining Theorem 1 (ii), (A.29)

and (A.30). �

3. Application to Motivating Examples

In this section, we prove the Bayesian oracle property for the three motivating examples in

Section 1.3 of the main paper.

Example 1: Correlated Longitudinal Data

We use the same notations as in the introduction. Without loss of generality, we assume Yi

and each Xijk has been centered such that EYi = 0 and EXijk = 0, for i = 1, . . . , n, j = 1, . . . , s

and k = 1, . . . , p. For the ease of presentation and the simplification of our proofs, we assume

that the working correlation matrix R is correctly specified and does not depend on θ. We

also plug in a preliminary consistent estimator θ̃ for θ to the nonlinear part ∂µi(θ)
⊤

∂θ S
−1
i of the

moment function g(Di, θ). Such consistent estimator θ̃ exists even with growing p. For example,

one can take θ̃ to be the solution of estimating equations
∑n

i=1 Xi(Yi − µi(θ)) = 0. Under the

assumptions given in the theorem below, one can show that ‖θ̃ − θ0‖ = Op(
√

p/n) similar to

Example 1 in Wang (2011).

The matrix V n in BGMM can be taken as V n = n−1
∑n

i=1(g(Di, θ̃) − ḡ(D, θ̃))(g(Di, θ̃) −
ḡ(D, θ̃))⊤, where θ̃ is any preliminary consistent estimator of θ0. One can show that V n con-

verges in probability under the operator norm to V = Var(g(D, θ0)).

Let µ̇(x) and µ̈(x) be the first and the second derivatives of µ(x). We then have the following

theorem for the BGMM based on the moment function (5) for the correlated longitudinal data.

Theorem S1 For the moment function (5) in the main paper, suppose that Assumptions 1, 2,

3, 7 and 8 hold. Suppose θ̃ is the preliminary estimator that solves
∑n

i=1Xi(Yi − µi(θ)) = 0

and V n = n−1
∑n

i=1(g(Di, θ̃)− ḡ(D, θ̃))(g(Di, θ̃)− ḡ(D, θ̃))⊤. In addition, if

(1) |Xijk| ≤ CX almost surely for some large constant CX > 0 and all i = 1, . . . , n, j = 1, . . . , s,

k = 1, . . . , p. sup1≤j≤s E(Y
4
j ) <∞;

(2) E(X⊤
i Xi) and R have eigenvalues bounded above and below by constants for all i = 1, . . . , n;

(3) µ̇(X⊤
ij θ) is bounded above and below uniformly for all possible values of Xij and θ ∈ Θ.

µ̈(X⊤
ij θ) is bounded above, and φ(X⊤

ij θ) is bounded above and below uniformly for all Xij and

43



θ ∈ B0(cǫn) for any fixed c > 0;

then Assumptions 4, 5 and 6 hold with α = 1. Therefore BGMM for the moment function (5)

in the main paper satisfies the Bayesian oracle property in Theorem 1.

Remark 6. In Condition (1) we impose an absolute bound on all the covariates for convenience,

though this can be replaced by relaxed conditions on the tail behavior or the high order moments

onXijk. Condition (2) for eigenvalues are standard. Here for simplicity, we use only one working

correlation matrix R such that m = p, though the result can be easily extended to more than

one working correlation matrices like in Qu et al. (2000). Condition (3) requires certain bounds

on the derivatives of µ and also φ. In particular, µ(t) = t for linear regression trivially satisfies

this condition. For logistic regression, µ(t) = et/(1 + et) and φ(t) = et/(1 + et)2. Since in

our Assumption 2 the dimension p is fixed, condition (3) is satisfied for the derivatives of µ

and φ evaluated at X⊤
ij θ. Similar arguments can be applied to Poisson regression, exponential

regression and probit regression, etc. In Liang and Zeger (1986) and Wang et al. (2012), the

marginal density of Yij is modeled as a canonical exponential family, with Var(Yij |Xij) =

ψµ̇(X⊤
ij θ), where ψ is the dispersion parameter. Here we have considered a general form of the

function φ and therefore our setup includes theirs as a special case.

Proof of Theorem S1:

In the following, for a generic random variable D = (Y,X)⊤ (independent of the sample D),

we omit the subscript i in Xij and write X·j to represent a generic p-dimensional covariate

vector measured at time j, for j = 1, . . . , s. Define µ·(θ) = (µ(X⊤
·1θ), . . . , µ(X

⊤
·s θ))

⊤, B(θ) =
∂µ·(θ)
∂θ = (µ̇(X⊤

·1θ)X·1, . . . , µ̇(X⊤
·s θ)X·s)⊤, and S(θ) = A(θ)1/2RA(θ)1/2 (if X has sample index

i, then we use the notation Si(θ)). So the generic moment function can be written as g(D, θ) =

B(θ̃)⊤S(θ̃)−1(Y −µ·(θ)), where θ̃ is a preliminary estimator that solves
∑n

i=1 Xi(Yi−µi(θ)) = 0.

Similar to the proof of (3.3) in Wang (2011), one can show that given the conditions (1)-(3),

‖θ̃ − θ0‖ = Op

(

√

p/n
)

. For simplicity we omit the proof of this relation here.

Suppose that the constant upper and lower bounds for φ(X⊤
ij θ0) in Condition (3) are φ̄ and

φ respectively. Since w.p.a.1 as n → ∞, ‖θ̃ − θ0‖ ≤ Cǫn, Si(θ̃) = Ai(θ̃)
1/2RAi(θ̃)

1/2 and

Ai(θ) = diag
{

φ(X⊤
i1θ), . . . , φ(X

⊤
isθ)

}

, we know that w.p.a.1 as n→ ∞, the eigenvalues of Si(θ̃)

can be bounded as

λ̄(Si(θ̃)) ≤ λ̄(R)λ̄(Ai(θ̃)) ≤ λ̄(R) tr(Ai(θ̃)) ≤ sφ̄λ̄(R)

λ(Si(θ̃)) ≥ λ(R)λ(Ai(θ̃)) ≥ φλ(R),

where the upper and the lower bounds are constants that do not change with n.

We now check Assumptions 4 and 5. Let ¯̇µ and µ̇ be the constant upper and lower bounds

for µ̇(X⊤
ij θ) in the condition (2). Then for Assumption 4(i), using the boundedness of Xijk in

the condition (1), we have that w.p.a.1 as n→ ∞,

sup
‖η‖=1

E
{

(η⊤(g(D, θ)− g(D, θ0)))
2
}

≤ sup
‖η‖=1

E
{

(η⊤ ¯̇µX⊤
S(θ̃)−1 ¯̇µX(θ − θ0))

2
}

≤ ¯̇µ2λ(S(θ̃))−2 sup
‖η‖=1

η⊤ E
{

X
⊤
X(θ − θ0)(θ − θ0)

⊤
X

⊤
X

}

η

≤ ¯̇µ2λ(S(θ̃))−2λ̄(E(X⊤
X)) tr(X⊤

X)‖θ − θ0‖2
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≤ ¯̇µ2λ(S(θ̃))−2λ̄(E(X⊤
X)) · spC2

X‖θ − θ0‖2 = O
(

(p1/2‖θ − θ0‖)2
)

Therefore this implies that in Assumption 4(i) we can take α = 1, and also in Assumption

4(ii), the L2 norm of the envelope function F for the class F is of order O(
√
p), since the L2

radius of Θ is assumed to be bounded by constant R in Assumption 1. Next we estimate the

L2 uniform covering number of F = {f(η, θ) = η⊤B(θ̃)⊤S(θ̃)−1(µ·(θ0) − µ·(θ)), θ ∈ Θ, η ∈
R
m, ‖η‖ = 1}. Suppose there exists a ǫ-net in L2(PD) norm for F :

{

(η1, θ1), . . . , (ηN , θN )
}

,

with N = N(ǫ‖F‖PD ,2,F , L2(PD)). Then by definition, for any (η, θ), one can pick out a pair

(ηk, θk), for some 1 ≤ k ≤ N , such that E |f(ηk, θk)− f(η, θ)|2 ≤ ǫ2. Then since

E |f(ηk, θk)− f(η, θ)|2

≤ 2E
{

(ηk − η)⊤B(θ̃)⊤S(θ̃)−1(µ·(θk)− µ·(θ0))
}2

+ 2E
{

η⊤B(θ̃)⊤S(θ̃)−1(µ·(θ)− µ·(θk))
}2

≤ 2¯̇µ2λ(S(θ̃))−2 · λ̄(E(X⊤
X)) · spC2

X
¯̇µ2 · 4R2‖ηk − η‖2

+ 2‖η‖2 ¯̇µ2λ(S(θ̃))−2 · λ̄(E(X⊤
X)) · spC2

X
¯̇µ2‖θk − θ‖2

≤
(

C1p
1/2‖ηk − η‖

)2
+
(

C2p
1/2‖θk − θ‖

)2

for some constants C1, C2 > 0 that depend on the eigenvalues, R, and ¯̇µ. Thus we only need

‖ηk−η‖ ≤ ǫ/(2C1p
1/2) and ‖θk−θ‖ ≤ ǫ/(2C2p

1/2). Since ‖η‖ = 1 and ‖ηk−η‖ ≤ p1/2|ηk−η|∞,

we estimate the covering number on η using L∞ grids and need no more than Nη =
(

2C1p
ǫ + 1

)p

points. Similarly since ‖θ‖ ≤ R, we need no more than Nθ =
(

2C2Rp
ǫ + 1

)p
points. Together

we have shown that for small ǫ > 0,

N (ǫ‖F‖PD ,2,F , L2(PD)) ≤ NηNθ ≤
(

9C1C2p
2R

ǫ2

)p

,

which give lnN (ǫ‖F‖PD ,2,F , L2(PD)) = O (p ln(n/ǫ)). So Assumption 4(ii) holds.

For Assumption 5(i), we have

‖E g(D, θ)‖ =
∥

∥

∥
E
(

B(θ̃)⊤S(θ̃)−1(µ·(θ)− µ·(θ0))
)∥

∥

∥
≥ µ̇2λ̄(S(θ̃))−1λ

(

E(X⊤
X)
)

‖θ − θ0‖.

Therefore Assumption 5(i) holds with δ1 = µ̇2λ̄(S(θ̃))−1λ(E(X⊤
X)) and δ0 = Rδ1.

For Assumption 5(ii), G = ∇θ E g(D, θ0) = −E
{

B(θ̃)⊤S(θ̃)−1B(θ0)
}

. By conditions (2)

and (3),

λ̄(G⊤
G) ≤ ¯̇µ4λ(S(θ̃))−2λ̄

(

E(X⊤
X)
)2

λ(G⊤
G) ≤ µ̇4λ̄(S(θ̃))−2λ

(

E(X⊤
X)
)2

so the eigenvalues of G⊤
G are bounded above and below as n→ ∞.

In Assumption 5(iii), let K(θ) =
(

µ̈(X⊤
·1θ)(X·1 ⊗X·1), . . . , µ̈(X⊤

·s θ)(X·s ⊗X·s)
)⊤

. Then for

any unit vectors u, v ∈ R
p,

‖H(θ)(u, v)‖ =
∥

∥

∥
E
{

B(θ̃)⊤S(θ̃)−1
K(θ)

}

· vec(u⊗ v)
∥

∥

∥

≤ ¯̇µ ¯̈µλ(S(θ̃))−1λ̄
(

E(X⊤
X)
)

· √pCX ,
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where we used the upper bound on µ̈(X⊤
ij θ) for any θ ∈ B0(cǫn) in condition (3). Therefore

Assumption 5(iii) holds.

To show Assumption 6, we note that since V n and V are symmetric positive definite ma-

trices, ‖V ‖ =
√

λ̄(V ⊤
V ) = λ̄(V ) and also ‖V n‖ = λ̄(V n). If we can show ‖V n − V ‖ → 0

w.p.a.1 as n→ ∞ and the eigenvalues of V are bounded from above and below, then we have

λ̄(V n) = ‖V n‖ ≤ ‖V n − V ‖+ ‖V ‖ = ‖V n − V ‖+ λ̄(V )

λ(V n) = min
η∈Rp

η⊤V nη ≥ min
η∈Rp

η⊤V η −max
η∈Rp

η⊤(V − V n)η

≥ λ(V )− ‖V n − V ‖.

Therefore w.p.a.1 as n → ∞, the eigenvalues of V n are also bounded from above and below,

as long as ‖V n − V ‖ → 0. Next we show the boundedness for the eigenvalues of V and the

convergence of ‖V n − V ‖, respectively.
Since E g(D, θ0) = 0, we have

V = Var(g(D, θ0)) = E
{

B(θ0)
⊤
S(θ0)

−1(Y − µ(θ0))(Y − µ(θ0))
⊤
S(θ0)

−1
B(θ0)

}

= E
(

B(θ0)
⊤
S(θ0)

−1
S(θ0)S(θ0)

−1
B(θ0)

)

= E
(

B(θ0)
⊤
S(θ0)

−1
B(θ0)

)

.

By a similar argument to the boundedness of eigenvalues of S(θ̃), one can show that the eigen-

values of S(θ0) are also bounded from above and below by constants. Therefore,

λ̄(V ) ≤ λ̄
(

E
(

B(θ0)
⊤
B(θ0)

))

λ (S(θ0))
−1 ≤ ¯̇µ2λ̄

(

E(X⊤
X)
)

λ(S(θ0))
−1

λ(V ) ≥ λ
(

E
(

B(θ0)
⊤
B(θ0)

))

λ̄ (S(θ0))
−1 ≥ µ̇2λ

(

E(X⊤
X)
)

λ̄ (S(θ0))
−1 .

The boundedness of λ̄(V ) and λ(V ) is proved.

To show ‖V n − V ‖ → 0, we first note that

V n =
1

n

n
∑

i=1

(

g(Di, θ̃)− ḡ(D, θ̃)
)(

g(Di, θ̃)− ḡ(D, θ̃)
)⊤

=
1

n

n
∑

i=1

g(Di, θ̃)g(Di, θ̃)
⊤ +

1

n

n
∑

i=1

ḡ(D, θ̃)ḡ(D, θ̃)⊤

=
1

n

n
∑

i=1

g(Di, θ0)g(Di, θ0)
⊤ +

2

n

n
∑

i=1

(

g(Di, θ̃)− g(Di, θ0)
)

g(Di, θ0)
⊤

+
1

n

n
∑

i=1

(

g(Di, θ̃)− g(Di, θ0)
)(

g(Di, θ̃)− g(Di, θ0)
)⊤

+ ḡ(D, θ̃)ḡ(D, θ̃)⊤

:= E1 +E2 +E3 +E4. (A.31)

We derive bounds for each term. For E1 we have

‖E1 − V ‖2 ≤ ‖E1 − V ‖2F
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=

p
∑

j=1

p
∑

k=1

[

n−1
n
∑

i=1

gj(Di, θ0)gk(Di, θ0)− E[gj(D, θ0)gk(D, θ0)]
]2

Hence by Chebyshev’s inequality, for any C > 0,

P
(

‖E1 − V ‖2 > C
)

≤ C−2
p
∑

j=1

p
∑

k=1

E
[

n−1
n
∑

i=1

gj(Di, θ0)gk(Di, θ0)− E[gj(D, θ0)gk(D, θ0)]
]2

=
1

nC2

p
∑

j=1

p
∑

k=1

Var(gj(D, θ0)gk(D, θ0))

≤ p2

nC2
sup

1≤j,k≤p
E[gj(D, θ0)

2gk(D, θ0)
2] ≤ p2

nC2
sup

1≤j≤p
E[gj(D, θ0)

4]

≤ p2

nC2
sup

1≤j≤p

¯̇µ4 E[X⊤
j·S(θ0)

−1(Y − µ(θ0))]
4

≤ p2

nC2
¯̇µ4s2C4

Xλ(S(θ0))
−4 E ‖Y − µ(θ0)‖4

=
p2

nC2
¯̇µ4s2C4

Xλ(S(θ0))
−4 E

[

s
∑

j=1

(Yj − µj(θ0))
2
]2

≤ p2

nC2
¯̇µ4s3C4

Xλ(S(θ0))
−4 E

[

s
∑

j=1

(Yj − µj(θ0))
4
]

≤ 8p2

nC2
¯̇µ4s3C4

Xλ(S(θ0))
−4 E

s
∑

j=1

[

Y 4
j + µj(θ0)

4
]

≤ 16p2

nC2
¯̇µ4s4C4

Xλ(S(θ0))
−4 sup

1≤j≤s
E(Y 4

j ).

Since sup1≤j≤sE(Y
4
j ) <∞ as in Condition (1), we conclude that ‖E1−V ‖ = Op(p/

√
n) = op(1).

Next we bound E3. Because ‖θ̃ − θ0‖ = Op(
√

p/n), we have that for any generic D,

‖g(D, θ̃)− g(D, θ0)‖ =
∥

∥

∥
B(θ̃)⊤S(θ̃)−1(µ(θ̃)− µ(θ0))

∥

∥

∥

=
∥

∥

∥
B(θ̃)⊤S(θ̃)−1

B(θ′)(θ̃ − θ0)
∥

∥

∥
≤
∥

∥

∥
B(θ̃)⊤S(θ̃)−1

B(θ′)
∥

∥

∥
·
∥

∥

∥
θ̃ − θ0

∥

∥

∥

≤ ¯̇µ2λ(S(θ̃)) · ‖X⊤
X‖ ·

∥

∥

∥
θ̃ − θ0

∥

∥

∥
≤ ¯̇µ2λ(S(θ̃)) · ‖X‖2 ·Op

(
√

p

n

)

≤ ¯̇µ2λ(S(θ̃)) · spC2
X ·Op

(
√

p

n

)

= Op

(
√

p3

n

)

= op(1), (A.32)

where θ′ is between θ̃ and θ0, and the derivation shows that if we replace D with Di, then the

upper bound is uniform over all i = 1, . . . , n. Therefore

‖E3‖ ≤ n−1
n
∑

i=1

∥

∥

∥

(

g(Di, θ̃)− g(Di, θ0)
)(

g(Di, θ̃)− g(Di, θ0)
)⊤
∥

∥

∥

≤ n−1
n
∑

i=1

∥

∥

∥
g(Di, θ̃)− g(Di, θ0)

∥

∥

∥

2
= Op

(

p3

n

)

.
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Given the bounds for E1 and E3, we can bound E2 as

‖E2‖ = 2n−1
∥

∥

∥

n
∑

i=1

(

g(Di, θ̃)− g(Di, θ0)
)

g(Di, θ0)
⊤
∥

∥

∥

≤ 2n−1
n
∑

i=1

∥

∥

∥
g(Di, θ̃)− g(Di, θ0)

∥

∥

∥
·
∥

∥

∥
g(Di, θ0)

∥

∥

∥

≤ Op

(
√

p3

n

)

· 2n−1
n
∑

i=1

∥

∥

∥
g(Di, θ0)

∥

∥

∥

≤ Op

(
√

p3

n

)

· Op

(
√

p

n

)

= Op

(

p2

n

)

= op(1).

For E4, we use ‖ḡ(D, θ0)‖ = Op

(

√

p/n
)

and (A.32)

‖E4‖ =
∥

∥

∥
ḡ(D, θ̃)

∥

∥

∥

2
≤
(

‖ḡ(D, θ̃)− ḡ(D, θ0)‖+ ‖ḡ(D, θ0)‖
)2

≤
(

Op(
√

p3/n) +Op(
√

p/n)
)2

= Op

(

p3/n
)

= op(1).

Finally, we combine the bounds for E1,E2,E3,E4 and conclude that ‖V n − V ‖ = op(1).

Therefore Assumption 6 holds. �
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Example 2: Quantile Regression

Without loss of generality, we assume that the random variables Y and X are centered

such that EY = 0 and EX = 0. The conditional distribution FY |X is assumed to be contin-

uous, and let fY |X be its conditional density. It can be calculated that V = Var(g(D, θ0)) =

τ(1−τ) E(XX⊤) for the unconditional moments (6), and we can estimate V by V n = n−1τ(1−
τ)
∑n

i=1XiX
⊤
i . Then we have the following theorem about quantile regression.

Theorem S2 For the moment function (6) in the main paper, suppose that Assumptions 1, 2,

3, 7 and 8 hold. Suppose that V n = n−1τ(1− τ)
∑n

i=1XiX
⊤
i . In addition, if

(1) For any generic random vector X = (X1, . . . ,Xp)
⊤, |Xj | ≤ CX almost surely for some large

constants CX > 0 and all j = 1, . . . , p;

(2) fY |X is continuously differentiable with the first derivative ḟY |X . fY |X and ḟY |X are almost

surely bounded above on the support of Y for any value of X. fY |X is further bounded below for

any value of X.

(3) E(XX⊤) has eigenvalues bounded above and below by constants.

then Assumptions 4, 5 and 6 hold with α = 1/2. The BGMM for the moment function (6) in

the main paper satisfies the Bayesian oracle property in Theorem 1.

Remark 7. The quantile regression example can be generalized to the instrumental variable

quantile regression model (IVQR), as discussed in Chernozhukov and Hansen (2005, 2006). In

the IVQR, the predictor X could contain endogenous components, and we can still consistently

estimate the parameter θ using other informative and exogenous instrumental variables. The

model formulation will be more complicated but can be incorporated into the BGMM framework

using the unconditional moments based on IV (e.g. Chernozhukov and Hong (2003)).

Proof of Theorem S2:

We check Assumptions 4 and 5. For a generic θ, let A = {Y is between X⊤θ and X⊤θ0}. Let

f̄ , ¯̇f and f be the upper bounds for the conditional density fY |X , its derivative ḟY |X and the

lower bound for fY |X in condition (2). Then

sup
‖η‖=1

E
{

η⊤(g(D, θ)− g(D, θ0))
}2

= sup
‖η‖=1

E
{

η⊤X(1(Y ≤ X⊤θ)− 1(Y ≤ X⊤θ0))
}2

= sup
‖η‖=1

η⊤EX

{

X

(
∫

A
fY |X(y)dy

)

X⊤
}

η

≤ λ̄
(

E(XX⊤)
)

f̄CXp
1/2‖θ − θ0‖.

Therefore Assumption 4(i) follows by taking α = 1/2, since the eigenvalues of E(XX⊤) are

bounded by condition (3). It also implies that the L2 norm for the envelope function F of the

class F in Assumption 4(ii) is bounded by O(R1/2p1/4) ≤ O(p1/2). Moreover, the VC index of

the class F is of order O(p) (see Lemma 18-20 of Belloni et al. 2011), and the bound on the

uniform covering number follows by Theorem 2.6.7 of van der Vaart and Wellner (1996).

For Assumption 5(i), we have

‖E g(D, θ)‖2 =
∥

∥

∥
E
{

X(1(Y ≤ X⊤θ)− τ)
}∥

∥

∥

2
=
∥

∥

∥
E
{

X(FY |X(X⊤θ)− FY |X(X⊤θ0))]
}∥

∥

∥

2
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=
∥

∥

∥
E
{

XX⊤fY |X(X⊤θ̃) · (θ − θ0)
}∥

∥

∥

2
≥ f2λ

(

E(XX⊤)
)

‖θ − θ0‖2,

where in the second equality we used the iterated expectation, in the third equality θ̃ is between

θ and θ0. This implies that ‖E g(D, θ)‖ ≥ δ1‖θ − θ0‖, with δ1 = f2λ(E(XX⊤)). Therefore we

can simply take δ0 = 2Rδ1, and Assumption 5(i) holds.

For Assumption 5(ii), one can calculate that G = E
{

XX⊤fY |X(X⊤θ0)
}

. Using the definition

of the matrix operator norm, one can see that the eigenvalues of G⊤
G can be bounded as

λ̄(G⊤
G) ≤ f̄2λ̄

(

E(XX⊤)
)

λ(G⊤
G) ≥ f2λ

(

E(XX⊤)
)

For Assumption 5(iii), for any unit vectors u, v ∈ R
p,

‖H(θ)(u, v)‖ =
∥

∥

∥
E
{

XX⊤ ⊗X⊤ḟY |X(X⊤θ)
}

· vec(u⊗ v)
∥

∥

∥

≤ λ̄
(

E(XX⊤)
)

· √pCX
¯̇f.

Hence Assumption 5(iii) holds.

For Assumption 6, by Chebyshev’s inequality, for any C > 0, we have

Pr
(

‖V n − V ‖ ≥ C
)

≤ Pr
(

‖V n − V ‖F ≥ C
)

≤ τ2(1− τ)2

C2
Var

{

p
∑

j=1

p
∑

k=1

( 1

n

n
∑

i=1

XijXik − E(XijXik)
)2
}

≤ τ2(1− τ)2p2

nC2
sup

1≤j,k≤p
E(X2

jX
2
k) ≤

p2C4
Xτ

2(1− τ)2

nC2
.

Therefore ‖V n−V ‖ = Op (p/
√
n) = op(1). The boundedness of eigenvalues of V follows directly

from the boundedness of eigenvalues of E(XX⊤) in Condition (3), and hence the eigenvalues of

V n are also bounded from above and below w.p.a.1 as n→ ∞. �
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Example 3: Partial Correlation Selection

We use the same notation as in the introduction. Suppose the true covariance matrix is

Σ0 and the true precision matrix is Ω0, whose dimensions are s × s. Each parameter θ we

consider here corresponds to a positive definite matrix Ω, since θ comes from the vectorization

of the upper triangle of such a Ω. The true parameter θ0 comes from Ω0. We can take

V n = n−1
∑n

i=1(g(Di, θ̃) − ḡ(D, θ̃))(g(Di, θ̃) − ḡ(D, θ̃))⊤, where θ̃ is the estimated parameter

by inverting the empirical covariance matrix. Then we have the following theorem for partial

correlation selection.

Theorem S3 For the moment function (7) in the main paper, suppose that Assumptions 1, 2,

3, 7 and 8 hold for p = s(s+ 1)/2. In addition, if

(1) Uniformly for all θ ∈ Θ, the corresponding Ω has eigenvalues bounded above and below by

constants;

(2) For any random vector Y = (Y1, . . . , Ys)
⊤, sup1≤j≤sE(Y

8
j ) <∞;

(3) The eigenvalues of V = Var(g(D, θ0)) are bounded from above and below by constant;

then Assumptions 4, 5 and 6 hold with α = 1/2. Therefore BGMM for the moment function

(7) in the main paper satisfies the Bayesian oracle property in Theorem 1.

Remark 8. Here we restrict the space of the precision matrix Ω to a (possibly large) convex

and compact set, with boundaries set by the smallest and the largest eigenvalues of Ω as in

the condition (1). The boundedness of supj E(Y
8
j ) in the condition (2) is to guarantee the

convergence of V n to V . Here we have directly assumed that the eigenvalues of V are bounded

from above and below, mainly because this condition is not trivial and can hardly be obtained

from any low level conditions.

Proof of Theorem S3:

Hereafter we denote the (i, j)th entry in a generic s × s positive definite matrix Σ or Ω as

σij or ωij, respectively. Denote the (i, j)th entry in the true covariance matrix Σ0 and the

true precision matrix Ω0 as σij,0 or ωij,0, respectively. For a generic parameter θ, we denote the

corresponding precision matrix as Ω and the corresponding covariance matrix as Σ = Ω−1. The

coordinates of θ and any other p-dimensional vector is subscripted by “ij” with 1 ≤ i ≤ j ≤ s.

Then we can first establish an equivalence between the L2 norm of θ and the Frobenius norm

of Ω. Since θ contains the entries in the upper triangle of Ω, it is obvious that

1

2
‖Ω−Ω0‖2F ≤ ‖θ − θ0‖2 ≤ ‖Ω−Ω0‖2F , (A.33)

so these two norms are equivalent.

Now we check Assumptions 4 and 5. For Assumption 4(i), since m = p = s(s+1)/2 for this

example, we have that for any η ∈ R
p and ‖η‖2 =

∑

1≤i≤j≤s η
2
ij = 1, by the Cauchy-Schwarz

inequality,

E
{

η⊤(g(D, θ)− g(D, θ0))
}2

=







∑

1≤i≤j≤s

ηij(σij − σij,0)







2
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≤
∑

1≤i≤j≤s

η2ij ·
∑

1≤i≤j≤s

(σij − σij,0)
2 ≤

∑

1≤i≤s,1≤j≤s

(σij − σij,0)
2

=
∥

∥Σ−Σ0

∥

∥

2

F
=
∥

∥Ω−1(Ω0 −Ω)Ω−1
0

∥

∥

2

F
≤
∥

∥Ω−1
∥

∥

2

F

∥

∥Ω−Ω0

∥

∥

2

F

∥

∥Ω−1
0

∥

∥

2

F

≤ λ(Ω)−2λ(Ω0)
−2s2

∥

∥Ω−Ω0

∥

∥

2

F
= O

(

(p1/2‖θ − θ0‖)2
)

, (A.34)

where we used the submultiplicativity of the Fronbenius norm, the boundedness of eigenvalues

in the condition (1), the relation ‖A‖2F ≤ sλ̄(A)2 for a s × s positive definite matrix A, the

relation p = s(s+ 1)/2 and (A.33). Take supremum over η and Assumption 4(i) is proved.

For Assumption 4(ii), we have derived above that the envelope function of F has L2 norm of

order O(p1/2) given ‖θ‖ ≤ R. Note that in fact for the partial correlation selection example, the

functions in F do not have any randomness. Suppose a L2 ǫ-net of F is {(η1, θ1), . . . , (ηN , θN )}
for N = N (ǫ‖F‖PD ,2,F , L2(PD)). Then for any f(η, θ) ∈ F , we apply a similar procedure of

(A.34) and have

E |f(ηk, θk)− f(η, θ)|2 ≤ 2|f(ηk, θk)− f(η, θk)|2 + 2|f(η, θk)− f(η, θ)|2

≤ 2‖ηk − η‖2λ(Ωk)
−2λ(Ω0)

−2s2 · 4R2 + 2λ(Ωk)
−2λ(Ω)−2s2 · 2‖θk − θ‖2

:= (C1p
1/2‖ηk − η‖)2 + (C2p

1/2‖θk − θ‖)2,

where Ωk is the matrix Ω with parameter θk. Therefore by a similar argument to the proof of

Theorem S1,N (ǫ‖F‖PD ,2,F , L2(PD)) ≤
(

9C1C2p
2R/ǫ2

)p
, which give lnN (ǫ‖F‖PD ,2,F , L2(PD)) =

O (p ln(n/ǫ)) and hence Assumption 4(ii) holds.

For Assumption 5(i), we have

‖E g(D, θ)‖2 =
∑

1≤i≤j≤s

(σij − σij,0)
2 ≥ 1

2

∑

1≤i≤s,1≤j≤s

(σij − σij,0)
2

=
1

2

∥

∥Σ−Σ0

∥

∥

2

F
=

1

2

∥

∥Ω−1(Ω0 −Ω)Ω−1
0

∥

∥

2

F
≥ 1

2
λ̄(Ω)−2λ̄(Ω0)

−2
∥

∥Ω−Ω0

∥

∥

2

F
, (A.35)

where we have used the fact that for two positive definite matrices A and B,

‖AB‖2F = tr(B⊤
A

⊤
AB) ≥ λ(B)2 tr(A⊤

A) ≥ λ(B)2‖A‖2F .

Now since we have assumed in the condition (1) that the eigenvalues of Ω are bounded above

by constants, (A.35) implies that ‖E g(D, θ)‖ ≥ δ1‖θ − θ0‖ with 0 < δ1 < λ̄(Ω)−1λ̄(Ω0)
−1/

√
2.

So Assumption 5(i) holds with this δ1 and δ0 = Rδ1.

To show Assumption 5(ii), we only need to show that for any unit vector u ∈ R
p, u⊤G⊤

Gu

is bounded above and below by constants, where G = ∇θ E g(D, θ0). Define a linear op-

erator ∂u :=
∑

1≤i≤j≤s uij
∂

∂θij
and define uji := uij for any j < i. Then u⊤G⊤

Gu =

∂u E g(D, θ0)
⊤∂u E g(D, θ0) = ‖∂u E g(D, θ0)‖2, and similar to (A.33), one can show that

1

2
‖∂uΩ−1

0 ‖2F ≤ ‖∂uEg(D, θ0)‖2 ≤ ‖∂uΩ−1
0 ‖2F ,

and also

1 = ‖u‖2 ≤ ‖∂uΩ0‖2F ≤ 2‖u‖2 = 2.
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Since ΩΩ−1 = I, we take first derivative and have ∂uΩ
−1 = −Ω−1(∂uΩ)Ω−1. Therefore, we

have

‖∂uΩ−1
0 ‖2F = ‖Ω−1

0 (∂uΩ0)Ω
−1
0 ‖2F ≤ λ(Ω0)

−4‖∂uΩ0‖2F ≤ 2λ(Ω0)
−4

‖∂uΩ−1
0 ‖2F = ‖Ω−1

0 (∂uΩ0)Ω
−1
0 ‖2F ≥ λ̄(Ω0)

−4‖∂uΩ0‖2F ≥ λ̄(Ω0)
−4,

which implies the boundedness of eigenvalues of G⊤
G, given the condition (1).

For Assumption 5(iii), we use the same technique and have that for unit vectors u, v ∈ R
p,

‖H(θ)(u, v)‖2 = ‖∂u∂vEg(D, θ)‖2 ≤ ‖∂u∂vΩ−1‖2F . While for any generic Ω, using ∂uΩ
−1 =

−Ω−1(∂uΩ)Ω−1, we get

∂u∂vΩ
−1 = −Ω−1(∂uΩ)Ω−1(∂vΩ)Ω−1 −Ω−1(∂vΩ)Ω−1(∂uΩ)Ω−1 −Ω−1(∂u∂vΩ)Ω−1.

Therefore since ∂u∂vΩ ≡ 0 for any Ω,

‖H(θ)(u, v)‖2 ≤ ‖Ω−1(∂uΩ)Ω−1(∂vΩ)Ω−1‖2F + ‖Ω−1(∂vΩ)Ω−1(∂uΩ)Ω−1‖2F
≤ 2λ(Ω)−6 + 2λ(Ω)−6 = 4λ(Ω)−6,

which is bounded above by constant for any Ω considered here by the condition (1). Hence

Assumption 5(iii) holds.

For Assumption 6, we have assumed the boundedness of eigenvalues of V , and we still need

to show the convergence ‖V n −V ‖ → 0 w.p.a.1 as n→ ∞. By Chebyshev’s inequality, for any

C > 0, we have

Pr
(

‖V n − V ‖ ≥ C
)

≤ Pr
(

‖V n − V ‖F ≥ C
)

≤ 1

C2

∑

1≤j1≤k1≤s

∑

1≤j2≤k2≤s

Var
{ 1

n

n
∑

i=1

(Yij1Yik1 − σj1k1,0)(Yij2Yik2 − σj2k2,0)

− E
{

(Yj1Yk1 − σj1k1,0)(Yj2Yk2 − σj2k2,0)
}}

≤ s2(s+ 1)2

4nC2
sup

j1,k1,j2,k2

E
{

(Yj1Yk1 − σj1k1,0)
2(Yj2Yk2 − σj2k2,0)

2
}

≤ 4s2(s+ 1)2

nC2
sup

j1,k1,j2,k2

E
{

Y 2
j1Y

2
k1Y

2
j2Y

2
k2

}

≤ 16p2

nC2
sup

1≤j≤s
E(Y 8

j ).

Hence we have ‖V n − V ‖ = Op (p/
√
n) = op(1). This together with Condition (3) implies the

boundedness of eigenvalues of V n w.p.a.1 as n→ ∞. Therefore Assumption 6 holds. �

4. Examples of the prior on models

In this section, we verify Assumption 8 for several examples of priors on models. They are

summarized in the following proposition.

Proposition Assumption 8 is satisfied by the following three priors on models:

(a) Every component of θ enters the model M independently with probability ν ∈ (0, 1), excluding
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the empty model: π(M) ∝ ν |M|(1 − ν)p−|M|. Here ν is either a fixed constant or ν = n−c for

some constant c > 0.

(b) The prior factorizes as π(M) = π(M||M| = k)π(|M| = k) for k = 1, . . . , p. π(M | |M| =
k) =

(p
k

)−1
, and π(|M| = k) ∝ ζke−ζ/k! for some constant ζ > 0.

(c) The prior factorizes as π(M) = π(M||M| = k)π(|M| = k) for k = 1, . . . , p. π(M | |M| =
k) =

(p
k

)−1
, and π(|M| = k) ∝ e−ζk for some constant ζ > 0.

Proof of the proposition:

We verify Assumption 8 (i) and (ii) for each of the three priors. We note that if p satisfies the

growth rate in Assumption 2, p ≺ √
n/p→ ∞ as n→ ∞.

For the prior in (a), let C1 = max
(

ν
1−ν ,

1−ν
ν

)

. Then 1 ≤ C1 ≤ nc. We have

π(M)

π(M0)
≤ ν |M|(1− ν)p−|M|

ν |M0|(1− ν)p−|M0| =

(

ν

1− ν

)|M|−|M0|
.

If M ⊃ M0, |M| − |M0| ≥ 1, then

π(M)

π(M0)
≤
(

ν

1− ν

)|M|−|M0|
≺
(√
n/p

)|M|−|M0| .

If M0\M 6= ∅, then since ||M| − |M0|| ≤ p,

π(M)

π(M0)
≤ C

||M|−|M0||
1 ≤ ncp � er1p lnn,

where we can choose r1 = c. So Assumption 8 holds for the prior in (a).

For the prior in (b), let |M| = k and |M0| = k0. We have

π(M)

π(M0)
=

π(M||M| = k)π(|M| = k)

π(M0||M0| = k0)π(|M| = k0)
=

(p
k

)−1 ζke−ζ

k!
( p
k0

)−1 ζk0e−ζ

k0!

=
(p− k)!

(p − k0)!
ζk−k0.

If M ⊃ M0, then k − k0 ≥ 1 and (p − k)! < (p− k0)!. It follows that

π(M)

π(M0)
≤ ζk−k0 ≺ (

√
n/p)k−k0 .

If M0\M 6= ∅, then since |k − k0| ≤ p, (p − k)! ≤ pp, and ln p � lnn by Assumption 2,

π(M)

π(M0)
≤ ppζp = ep ln p+p ln ζ � er1p lnn,

for some constant r1 > 0. So Assumption 8 holds for the prior in (b).

For the prior in (c), let |M| = k and |M0| = k0. We have

π(M)

π(M0)
=

π(M||M| = k)π(|M| = k)

π(M0||M0| = k0)π(|M| = k0)
=

(

p
k

)−1
e−ζk

(

p
k0

)−1
e−ζk0

=
k!(p − k)!

k0!(p − k0)!
e−ζ(k−k0).

If M ⊃ M0, then k − k0 ≥ 1, (p− k)! < (p− k0)!, k!/k0! ≤ kk−k0 ≤ pk−k0. It follows that

π(M)

π(M0)
≤ pk−k0e−ζ(k−k0) ≺

(√
n/p

)k−k0 .
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For M0\M 6= ∅, notice that we always have (k!(p − k)!)/(k0!(p − k0)!) ≤ p|k−k0|. Therefore

π(M)

π(M0)
≤ p|k−k0|e−ζ(k−k0) ≤ ppeζp ≤ ep ln p+pζ � er1p lnn,

for some constant r1 > 0. So Assumption 8 holds for the prior in (c). �
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