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Simultaneous confidence bands for contrasts between

several nonlinear regression curves

Xiaolei Lu∗, Satoshi Kuriki†

Abstract

We propose simultaneous confidence bands of the hyperbolic-type for the con-
trasts between several nonlinear (curvilinear) regression curves. The critical value
of a confidence band is determined from the distribution of the maximum of a chi-
square random process defined on the domain of explanatory variables. We use the
volume-of-tube method to derive an upper tail probability formula of the maximum
of a chi-square random process, which is asymptotically exact and sufficiently accu-
rate in commonly used tail regions. Moreover, we prove that the formula obtained
is equivalent to the expectation of the Euler-Poincaré characteristic of the excursion
set of the chi-square random process, and hence conservative. This result is there-
fore a generalization of Naiman’s inequality for Gaussian random processes. As an
illustrative example, growth curves of consomic mice are analyzed.

Keywords and phrases: Chi-square random process, expected Euler-characteristic
heuristic, Gaussian random field, growth curve, Naiman’s inequality, volume-of-tube
method.

1 Introduction

This paper concerns multiple comparisons of k (≥ 3) nonlinear (curvilinear) regression
curves estimated from independent k groups. Suppose that for each group i = 1, . . . , k,
and for each explanatory variable xj ∈ X , j = 1, . . . , n, we have observations yij1, . . . , yijri
as objective variables with ri replications, which are assumed to follow the model

yijh = gi(xj) + εijh, i = 1, . . . , k, j = 1, . . . , n, h = 1, . . . , ri. (1.1)

Here, X ⊆ R is the domain of explanatory variables, and random errors εijh are assumed
to be independently distributed as the normal distribution N (0, σ(xj)

2). The variance
function σ(x)2 is supposed to be known, or at least known up to a constant σ(x)2 =
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σ2σ0(x)
2. In the case of the latter, we suppose that an independent estimator σ̂2 of σ2 is

available. In addition, we assume that the true regression curve has the form

gi(x) = β⊤
i f(x), x ∈ X , (1.2)

where f(x) = (f1(x), . . . , fp(x))
⊤ is a known regression basis vector function, βi =

(βi1, . . . , βip)
⊤ is an unknown parameter vector. Then, the least squares estimator β̂i

of βi has the multivariate normal distribution Np(βi, r
−1
i Σ), where

Σ =

(
n∑

j=1

1

σ(xj)2
f(xj)f(xj)

⊤

)−1

is the inverse of the p×p information matrix. When σ(x)2 = σ2σ0(x)
2, we have Σ = σ2Σ0,

where Σ0 is Σ with σ(xj) replaced by σ0(xj).

Let C denote the set of vectors c = (c1, . . . , ck)
⊤ such that

∑k
i=1 ci = 0. The focus of

this paper is the construction of 1−α simultaneous confidence bands for all the contrasts∑k
i=1 cigi(x) =

∑k
i=1 ciβ

⊤
i f(x) between the k regression curves for all x ∈ X and c ∈

C, where X ⊂ R is a finite or half-infinite interval, a finite union of such intervals,
or an infinite interval (−∞,∞). Specifically, according to the traditional form of the
point estimate plus or minus a probability point times the estimated standard error, we
construct a 1− α simultaneous confidence band of the form

k∑

i=1

ciβ
⊤
i f(x) ∈

k∑

i=1

ciβ̂
⊤
i f(x)± b1−α

√√√√
(

k∑

i=1

c2i
ri

)
f(x)⊤Σf(x), (1.3)

where β̂⊤
i f(x) is the estimator of β⊤

i f(x) in (1.2). This form is referred to as a hyperbolic-
type ([14]). The critical value b1−α is determined such that the event in (1.3) for all x ∈ X
and c ∈ C holds with a probability of at least 1 − α. Our problem typically arises from
growth curve analysis and longitudinal data analysis.

Throughout this paper, we assume that the regression curve gi(x) is a linear combi-
nation of a finite number of known basis functions in (1.2). Although it is a conventional
regression model, we must always be careful regarding the approximation bias caused by
model misspecification. This issue is examined in Section 5.

The problem concerning the construction of simultaneous confidence bands in a re-
gression model originates with Working and Hotelling [32]. They formalized this problem
as the construction of confidence intervals for an estimated regression line, and provided
a critical value by making use of the Cauchy-Schwarz inequality. Specifically, Working
and Hotelling [32] treated the case of

(i) one regression model (equivalent to the case k = 2 in our problem),

(ii) the simple regression f(x) = (1, x)⊤, and

(iii) the unrestricted domain of the explanatory variables X = (−∞,∞).
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Subsequently, many reports concerning the relaxation of these conditions have appeared
in literature.

In the case of one regression model, Wynn and Bloomfield [34] pointed out that the use
of the Cauchy-Schwarz inequality leads to conservative bands unless both (ii) and (iii)
hold. They illustrated improved confidence bands for the quadratic regression f(x) =
(1, x, x2)⊤. Uusipaikka [29] constructed exact confidence bands for linear regression when
X is a finite interval. See Liu et al. [16] and Liu [14] for historical reviews. The problem
of k (≥ 3) regression curve comparisons was considered by Spurrier [21, 22] and Lu and
Chen [18], who proposed procedures based on simple linear regression. However, it is
difficult to extend these methods to nonlinear regression.

One exception is Naiman’s [20] integral-geometric approach. In the unit sphere S
p−1

of the p-dimensional Euclidean space, he defined a trajectory

Γ = {ψ(x) | x ∈ X} ⊂ S
p−1 (1.4)

of a normalized basis vector function

ψ(x) =
Σ1/2f(x)

‖Σ1/2f(x)‖ , (1.5)

and evaluated the volume of the tubular neighborhood of Γ. In the case of one regression
model, he constructed a simultaneous confidence band with the critical value obtained
from this volume. The volume formula for such tubes originated from Hotelling [6] and
Weyl [30]. Currently, this idea is understood in the volume-of-tube method framework
([1], [11], [12], [23], [28]). As shown in Section 2, we require the tail probability of the
maximum of a Gaussian random field or chi-square random process as a pivotal quantity.
The volume-of-tube method is a methodology to evaluate such tail probabilities.

In this paper, we adopt this integral-geometric approach. In the case of k ≥ 3, we
define a subset M in (3.1) of a unit sphere, and by evaluating the volume of its tubular
neighborhood, we obtain the critical value b1−α in (1.3) by means of the volume-of-tube
method. Moreover, we prove that the proposed confidence band is conservative. It is
known that Naiman’s [20] confidence band is conservative (Naiman’s inequality, see also
[9]), and our result is regarded as its generalization.

Note that, in the setting of this paper, the covariance matrices of the estimators β̂i
are identical up to a multiplicative constant. This property arises from the condition
that the explanatory variables xj are common between k groups in the model (1.1).
This represents the so-called the balanced case. For the unbalanced case, the problem
of constructing simultaneous confidence bands is quite tedious and only simulation-based
approaches are available ([7], [14], [15], [17]). In this paper, we address only the balanced
case.

Moreover, note that in the one-group case (k = 1), various simultaneous confidence
bands by means of the volume-of-tube method have been proposed. Johansen and John-
stone [8] demonstrated the usefulness of Hotelling’s volume formula for the construction
of simultaneous bands. The application to the B-spline regression is found in Zhou et al.
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[35]. Sun and Loader [24] proposed a modification to the volume-of-tube formula when
a small approximation bias caused by model misspecification exists. In succeeding pa-
pers, Sun and her coauthors developed this idea further in various model settings ([4],
[25], [26]). See also Krivobokova et al. [10]. The crucial difference between this paper
and existing work is that in this paper, we need to treat a Gaussian random field with a
general dimensional (k− 1 dimensional) index set, and need the volume formula up to an
arbitrary order.

The layout of this paper is as follows. In Section 2, we define a Gaussian random
field and a chi-square random process as pivotal quantities. We show that the critical
value b1−α is determined from the upper tail probability of the maximum of a Gaussian
random field or chi-square random process. In Section 3, the volume-of-tube method
and its related method known as the expected Euler-characteristic heuristics are briefly
summarized. The primary results are provided in Section 4. Some simulation study under
model misspecification is conducted in Section 5. Section 6 is devoted to the growth curve
data analysis. Proof details are located in the Appendix.

2 Random fields as pivotal quantities

Our problem is to determine the critical value b1−α in (1.3). First, assume that Σ is fully
known. Define a pivotal quantity

T (x, c) =

∑k
i=1 ci(β̂i − βi)

⊤f(x)√(∑k
i=1

c2i
ri

)
f(x)⊤Σf(x)

. (2.1)

Then, the critical value b1−α is the solution b of the equation

Pr
(
T (x, c) ≤ b, ∀x ∈ X , ∀c ∈ C

)
= Pr

(
max

x∈X ,c∈C
T (x, c) ≤ b

)
= 1− α.

In this expression, we use T (x, c) instead of |T (x, c)|, because c ∈ C implies −c ∈ C
and |T (x, c)| is equal to T (x, c) or T (x,−c). Inverting |T (c, x)| ≤ b1−α yields the 1 − α
simultaneous confidence band in (1.3).

In the following, we show that b21−α is the upper α point of the maximum of a chi-

square random process. We can assume that
∑k

i=1 c
2
i /ri = 1 without loss of generality,

because T (x, c) is a homogeneous function in c. Let ρ = (
√
r1, . . . ,

√
rk)

⊤, and define a
k × (k − 1) matrix H such that ρ⊤H = 0, H⊤H = Ik−1, and HH⊤ = Ik − ρρ⊤/(ρ⊤ρ).
(An example of H is given in Remark 2.1 below.) Then the c = (c1, . . . , ck)

⊤ such that∑k
i=1 c

2
i /ri = 1 and

∑k
i=1 ci = 0 are represented as

c = diag(
√
r1, . . . ,

√
rk)Hh, h ∈ S

k−2,

where S
k−2 is the set of (k − 1)-dimensional unit column vectors.
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Let Σ1/2 be a matrix such that (Σ1/2)⊤Σ1/2 = Σ, and let Σ−1/2 be its inverse. Then,

ηi =
√
ri(Σ

−1/2)⊤(β̂i − βi) is distributed normally as Np(0, I), independently for i =
1, . . . , k. Let ψ : X → S

p−1 as defined in (1.5). Then, T (x, c) is rewritten as

T (x, c) =

k∑

i=1

ci√
ri

√
ri{(Σ−1/2)⊤(β̂i − βi)}⊤

Σ1/2f(x)

‖Σ1/2f(x)‖

=c⊤diag(
√
r1, . . . ,

√
rk)

−1



η⊤1
...
η⊤k



k×p

ψ(x)

=h⊤



ξ⊤1
...

ξ⊤k−1




(k−1)×p

ψ(x)

=ξ⊤{h⊗ ψ(x)}, (2.2)

where ξi are p×1 vectors defined by (ξ1, . . . , ξk−1)p×(k−1) = (η1, . . . , ηk)p×kH , ξ = (ξ⊤1 , . . . , ξ
⊤
k−1)

⊤

is a p(k − 1) × 1 vector, and ‘⊗’ is the Kronecker product. Vectors ηi consist of inde-
pendent standard Gaussian random variables N (0, 1), therefore, so does vector ξ. When
x and h are fixed, because ‖ψ(x)‖ = ‖h ⊗ ψ(x)‖ = 1, ξ⊤i ψ(x) is distributed as N (0, 1)
independently for i = 1, . . . , k, and ξ⊤{h⊗ ψ(x)} is distributed as N (0, 1).

From (2.2), we can see that

max
c∈C

T (x, c) =

√√√√
k−1∑

i=1

{
ξ⊤i ψ(x)

}2
. (2.3)

For each fixed x, this is distributed as the square root of the chi-square distribution χ2
k−1

with k − 1 degrees of freedom.
When Σ = σ2Σ0 with Σ0 known, and an independent estimator σ̂2 ∼ σ2χ2

ν/ν of
unknown σ2 is available, we redefine T (x, c) in (2.1) by replacing Σ in the denominator
with σ̂2Σ0. Thus, instead of (2.2) and (2.3), we have

T (x, c) =
1

τ
ξ⊤{h⊗ ψ(x)}, max

c∈C
T (x, c) =

√√√√ 1

τ 2

k−1∑

i=1

{
ξ⊤i ψ(x)

}2
, τ 2 =

σ̂2

σ2
.

Now, we consider the object in (2.2) as a random function of (x, h):

Z(x, h) = ξ⊤{h⊗ ψ(x)}, (x, h) ∈ X × S
k−2, (2.4)

where ξ ∼ Np(k−1)(0, I). Then, Z(x, h) is the Gaussian random field with mean 0, variance
1, and covariance function

Cov
(
Z(x, h), Z(x̃, h̃)

)
= ψ(x)⊤ψ(x̃) · h⊤h̃.
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Similarly, we define the chi-square random process with k − 1 degrees of freedom:

Y (x) =

k−1∑

i=1

{
ξ⊤i ψ(x)

}2
, x ∈ X . (2.5)

We summarize the results of this section below.

Theorem 2.1. When Σ is known, the critical value b1−α is determined as the solution
b = b1−α of

Pr

(
max

x∈X ,h∈Sk−2
Z(x, h) ≥ b

)
= Pr

(
max
x∈X

Y (x) ≥ b2
)

= α,

where Z(x, h) is the Gaussian random field defined in (2.4), and Y (x) is the chi-square
random process defined in (2.5).

When Σ = σ2Σ0 with Σ0 known, the critical value b1−α is determined as the solution
b = b1−α of

E

[
Pr

(
max

x∈X ,h∈Sk−2
Z(x, h) ≥ bτ

∣∣ τ 2
)]

= E

[
Pr

(
max
x∈X

Y (x) ≥ b2τ 2
∣∣ τ 2
)]

= α,

where the expectation is taken over τ 2 ∼ χ2
ν/ν, with ν being the degrees of freedom of the

estimator of σ2.

Remark 2.1. An example of k × (k − 1) matrix H such that ρ⊤H = 0, H⊤H = Ik−1,
HH⊤ = Ik − ρρ⊤/(ρ⊤ρ) with ρ = (

√
r1, . . . ,

√
rk)

⊤ is given as

H =




√
r1r2√
R1R2

√
r1r3√
R2R3

. . .
√
r1rk√

Rk−1Rk

− R1√
R1R2

√
r2r3√
R2R3

. . .
√
r2rk√

Rk−1Rk

− R2√
R2R3

. . .
√
r3rk√

Rk−1Rk

. . .
...

0 − Rk−1√
Rk−1Rk



k×(k−1)

,

where Ri =
∑i

j=1 rj.

3 Preliminaries on the volume-of-tube method

In this section, we summarize the volume-of-tube method for evaluating the upper tail
probability of the maximum of a Gaussian random field.

Let ξ be a Gaussian random vector distributed as Nn(0, I). Let M be a closed subset
of S

n−1, which is the unit sphere (the set of unit column vectors) of R
n. Then, the

random map u 7→ ξ⊤u, u ∈ M , is a Gaussian random field with mean 0, variance 1, and
covariance function Cov(ξ⊤u, ξ⊤v) = u⊤v. The volume-of-tube method approximates the
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distribution of the maximum maxu∈M ξ⊤u. The maximum of Z(x, h) in (2.4) can be
treated in this framework by setting

M = {h⊗ ψ(x) | (x, h) ∈ X × Sk−2} and n = p(k − 1). (3.1)

The dimension of M is d = dimM = k − 1. To apply the volume-of-tube method, we
require the following assumption on M . Let the symbol ‘⊔’ denote disjoint union.

Assumption 3.1. M is a d-dimensional closed piecewise C2-manifold, or M is a d-
dimensional C2-manifold with piecewise C2-boundary. We write M = IntM ⊔ ∂M , where
IntM and ∂M denote the interior and boundary of M , respectively. In the former case,
∂M = ∅.

When M is defined by (3.1), we can provide a sufficient condition for Assumption 3.1.

Assumption 3.2. ψ : X → S
p−1 is a one-to-one map of class piecewise C2. There does

not exist x, x̃ ∈ X such that ψ(x) = −ψ(x̃).

Under Assumption 3.2, the map (x, h) 7→ h⊗ ψ(x) is a piecewise C2 one-to-one map.

Example 3.1. Consider the polynomial regression with a basis function vector f(x) =
(1, x, . . . , xp−1)⊤. When the domain of x is a finite interval X = [a, b], we have

IntM ={h⊗ ψ(x) | x ∈ (a, b), h ∈ S
k−2},

∂M ={h⊗ ψ(a) | h ∈ S
k−2} ⊔ {h⊗ ψ(b) | h ∈ S

k−2}.

When X = (−∞,∞), ψ(±∞) = (±1)p−1Σ1/2ep/
√
e⊤p Σep with ep = (0, . . . , 0, 1)⊤, and

hence h⊗ψ(∞) = (−1)p−1h⊗ψ(−∞). This denotes that M is a closed manifold without
boundary.

Example 3.2. Consider the trigonometric regression with a basis function vector

f(x) =
(
1,
√
2 cosx,

√
2 sin x, . . . ,

√
2 cosmx,

√
2 sinmx

)⊤
.

When X = [0, 2π), M is a closed manifold without boundary.

We now define “tube”, the key concept of the volume-of-tube method. The set of Sn−1

points whose great circle distance from M is less than or equal to θ is the tube about M
with radius θ, and has the expression

Mθ =
{
v ∈ S

n−1
∣∣ min
u∈M

cos−1
(
u⊤v

)
≤ θ
}
.

If the radius θ is sufficiently small, the tube Mθ does not have self-overlap. Whereas,
when the radius θ is large, the tube does have self-overlap. The threshold radius between
the two cases is known as the critical radius θc. We let θc = π/2 when the threshold
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radius is more than π/2. Under Assumption 3.1, we can prove that θc > 0. Figure 1 in
Kuriki and Takemura [12] depicts an example of a tube and its critical radius.

The support cone (or tangent cone) of M at u ∈M is denoted by SuM . (See Section
1.2 of Takemura and Kuriki [28] for the definition.) The cone with base set M is denoted
by co(M) =

⊔
λ≥0 λM . Then, the support cone of co(M) at u ∈ M is decomposed as

Su(co(M)) = SuM ⊕ span{u}, where span{u} is the linear space spanned by u. The
normal cone of co(M) at u ∈M is defined by the dual of the support cone: Nu(co(M)) =
Su(co(M))∗.

Note that the (m−1)-dimensional volume of Sm−1 is Ωm = 2πm/2/Γ(m/2). For m×m
matrix A = (aij), let tr0A = 1 and

treA =
∑

1≤k1<...<ke≤m
det(akikj)1≤i,j≤e, 1 ≤ e ≤ m

([19], Appendix A.7). Note that tr1A = trA, trmA = detA. The upper probability
of the chi-square distribution with m degrees of freedom is denoted by Gm(·). Now we
can provide the upper tail probability formula for the Gaussian field ξ⊤u, u ∈ M . The
theorem below is a special case of Proposition 2.2 of Takemura and Kuriki [28].

Proposition 3.1. As b→ ∞,

Pr

(
max
u∈M

ξ⊤u ≥ b

)
= P tube(b) +O(Gn(b

2(1 + tan2 θc))), (3.2)

where
P tube(b) =

∑

0≤e≤d, e:even
wd+1−eGd+1−e(b

2) +
∑

0≤e≤d−1

w′
d−eGd−e(b

2), (3.3)

with

wd+1−e =
1

Ωd+1−eΩn−d−1+e

∫

IntM

{∫

Nu(co(M))∩Sn−1

treH(u, v) dv

}
du, (3.4)

w′
d−e =

1

Ωd−eΩn−d+e

∫

∂M

{∫

Nu(co(M))∩Sn−1

treH
′(u, v) dv

}
du. (3.5)

Here, H(u, v) is the second fundamental form of IntM at u in the direction of v, and
H ′(u, v) is the second fundamental form of ∂M at u in the direction of v. du is the
volume element of IntM or ∂M , and dv is the volume element of Nu(co(M)) ∩ S

n−1.

In (3.2), because θc > 0, the error term O
(
Gn(b

2(1+tan2 θc))
)
= O(bn−2e−b

2(1+tan2 θc)/2)

is exponentially smaller than each term Gj(b
2) = O(bj−2e−b

2/2). Hence, (3.3) can be used
as an approximation formula when b is large. The method in which P tube(b) is used as
an approximate value is referred to as the volume-of-tube method, or simply the tube
method. This name comes from the volume formula for Mθ below.
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Remark 3.1. For the radius θ ∈ [0, θc], the (n− 1)-dimensional spherical volume of the
tube Mθ is given by

Voln−1(Mθ) = Ωn

{ ∑

0≤e≤d, e:even
wd+1−eB 1

2
(d+1−e), 1

2
(n−d−1+e)(cos

2 θ)

+
∑

0≤e≤d−1

w′
d−eB 1

2
(d−e), 1

2
(n−d+e)(cos

2 θ)

}
,

where wd+1−e and w
′
d−e are given in (3.4) and (3.5), Ba,b(·) is the upper probability of the

beta distribution with parameter (a, b).

The critical radius θc can be evaluated using the following characterization (Theorem
4.18 of Federer [5], Proposition 4.3 of Johansen and Johnstone [8], Lemma 2.2 of Takemura
and Kuriki [28]). For a proof, see Theorem 2.9 of Kuriki and Takemura [12].

Proposition 3.2. The critical radius θc of M is given by

tan2 θc = inf
u,v∈M,u 6=v

(1− u⊤v)2

‖P⊥
v (u− v)‖2 , (3.6)

where P⊥
v is the orthogonal projection onto the normal cone Nv(co(M)) of co(M) at v.

The local critical radius θc,loc is defined as

tan2 θc,loc = lim inf
u,v∈M,u 6=v, ‖u−v‖→0

(1− u⊤v)2

‖P⊥
v (u− v)‖2 . (3.7)

From the definition, it holds that θc ≤ θc,loc. In general, θc,loc is easier to evaluate than θc.
We have summarized the volume-of-tube method to evaluate the upper tail proba-

bilities of the maximum of random fields thus far. There is another method utilized for
the same purpose, known as the expected Euler-characteristic heuristic ([1], [33]). When
applied to the Gaussian random field ξ⊤u, u ∈ M , this method is stated as follows. For
each b, define the excursion set by

Ab = {u ∈M | ξ⊤u ≥ b}.
Let χ(·) be the Euler-Poincaré characteristic of a set, and 1(·) be the indicator function
for an event. The expected Euler-characteristic heuristic assumes that 1(Ab 6= ∅) ≈ χ(Ab)
for large b, and

Pr

(
max
u∈M

ξ⊤u ≥ b

)
= E[1(Ab 6= ∅)] ≈ E[χ(Ab)].

Note that χ(Ab) can be evaluated by Morse’s theorem, and is more tractable than 1(Ab 6=
∅). Takemura and Kuriki [28] proved the equivalence of the volume-of-tube method and
the expected Euler-characteristic heuristic as follows.

Proposition 3.3 (Proposition 3.3 of Takemura and Kuriki [28]).

E[χ(Ab)] = P tube(b) for all b ≥ 0.

Using this, Takemura and Kuriki [28] provided an alternative proof that the confidence
band of Naiman [20] is conservative.
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4 Main results

Recall that our aim is to derive the upper tail probability of the maximum of the Gaussian
random field Z(x, h) defined in (2.4), or equivalently, the chi-square random process Y (x)
defined in (2.5). The theorem below provides an answer, and proof is provided in the
Appendix.

Theorem 4.1. Let ξ ∼ Nn(0, I), n = p(k−1). Let Γ ⊂ S
p−1 and M ⊂ S

n−1 be defined by
(1.4) and (3.1), and let |Γ| denote the length of Γ. Assume Assumption 3.2 on ψ. Then,
as b→ ∞,

Pr

(
max

(x,h)∈X×Sk−2
Z(x, h) ≥ b

)
=Pr

(
max
x∈X

Y (x) ≥ b2
)

=Pr

(
max
u∈M

ξ⊤u ≥ b

)

=P tube(b) +O
(
bn−2e−(1+tan2 θc)b2/2

)
,

where

P tube(b) =
Γ(k

2
)√

π Γ(k−1
2
)
|Γ|
{
Gk(b

2)−Gk−2(b
2)
}
+ χ(Γ)Gk−1(b

2). (4.1)

Note that if Γ (and hence M) has no boundary, then Γ is homeomorphic to S
1, and

therefore χ(Γ) = 0. Otherwise, χ(Γ) is the number of connected components of Γ.

Theorem 4.2. Assume Assumption 3.2. Suppose that Γ has boundaries. The approxi-
mation formula given in Theorem 4.1 is a conservative bound, specifically,

Pr

(
max
u∈M

ξ⊤u ≥ b

)
≤ P tube(b) for all b ≥ 0.

Proof. Arrange the p(k−1)×1 vector ξ = (ξ⊤1 , . . . , ξ
⊤
k−1)

⊤, and define a (k−1)×p matrix
Ξ = (ξ1, . . . , ξk−1)

⊤. Let

Ab ={u ∈M | ξ⊤u ≥ b} = {h⊗ q | (q, h) ∈ Γ× S
k−2, h⊤Ξq ≥ b} ⊂ S

p(k−1)−1,

Ãb ={(q, h) ∈ Γ× S
k−2 | h⊤Ξq ≥ b} ⊂ S

p−1 × S
k−2,

Bb ={q ∈ Γ | q⊤Ξ⊤Ξq ≥ b2} ⊂ S
p−1.

Note that Ab is the excursion set of the Gaussian random field ξ⊤u, u ∈ M , Ãb is the
excursion set of the Gaussian random field

∑k−1
i=1 hi(ξ

⊤
i q) = h⊤Ξq, (q, h) ∈ Γ × S

k−2,

and Bb is the excursion set of the chi-square random process
∑k−1

i=1 (ξ
⊤
i q)

2 = q⊤Ξ⊤Ξq,

q ∈ Γ. We will prove that for each fixed ξ, 1(Ab 6= ∅) = 1(Ãb 6= ∅) = 1(Bb 6= ∅) and

χ(Ab) = χ(Ãb) = χ(Bb).
First, note that owing to Assumption 3.2, the map (q, h) 7→ h⊗q is one-to-one. Hence,

Ab and Ãb are homeomorphic and therefore 1(Ab 6= ∅) = 1(Ãb 6= ∅) and χ(Ab) = χ(Ãb).

10



Moreover, noting that Ãb 6= ∅ ⇔ maxh h
⊤Ξq ≥ b for some q ⇔ q⊤ΞΞ⊤q ≥ b2 for some

q ⇔ Bb 6= ∅, that is, 1(Ãb 6= ∅) = 1(Bb 6= ∅), we can write

Ãb =
⊔

q∈Bb

{(q, h) | h ∈ S
k−2, h⊤Ξq ≥ b}.

Given b ≥ 0, the set {h ∈ S
k−2 | h⊤Ξq ≥ b} is contractible and star-shaped about the

point h∗(q) = Ξq/‖Ξq‖. That is, the map

ϕ : Ãb × [0, 1] → Ãb, (q, h, t) 7→
(
q,

(1− t)h + th∗(q)

‖(1− t)h + th∗(q)‖

)

is continuous, and ϕ
(
Ãb × {0}

)
= Ãb is homotopy equivalent to the set ϕ

(
Ãb × {1}

)
=⊔

q∈Bb
{(q, h∗(q))}. This is homotopy equivalent to

⊔
q∈Bb

{q} = Bb. Hence, χ(Ãb) = χ(Bb).
Recall that Bb is the excursion set of the chi-square random process on the one-

dimensional index set Γ. This means that Bb is also one-dimensional, and χ(Bb) is only
the number of connected components of Bb. Therefore 1(Bb 6= ∅) ≤ χ(Bb). By taking
expectations,

Pr

(
max
u∈M

ξ⊤u ≥ b

)
= E[1(Ab 6= ∅)] = E[1(Bb 6= ∅)]

≤ E[χ(Bb)] = E[χ(Ab)] = P tube(b).

The last equality is owing to Proposition 3.3.

Remark 4.1. Naiman [20] proved that application of the volume-of-tube method to a
Gaussian random process with a one-dimensional index set always provides a conservative
band. Theorem 4.2 is a generalization of Naiman’s [20] inequality to a chi-square random
process.

Theorem 4.3. The interior and boundary of Γ are denoted by IntΓ and ∂Γ, respectively.
The critical radius θc of M is given by

tan2 θc = min

{
inf

x 6=x̃, ψ(x)∈IntΓ

(1− αs)2

1− s2 − α2t2
, inf
x 6=x̃, ψ(x)∈∂Γ

(1− αs)2

1− s2 −max{0, ε(x)αt}2
}
,

where the infima are taken over x, x̃ ∈ X , and α ∈ [−1, 1] as well as additional conditions
(arguments of inf), and

s = s(x, x̃) = ψ(x)⊤ψ(x̃), t = t(x, x̃) =
ψx(x)

⊤ψ(x̃)

‖ψx(x)‖
,

ψx(x) = ∂ψ(x)/∂x,

ε(x) =

{
1 (ψx(x) is inward to Γ),

−1 (ψx(x) is outward to Γ).

ψx(x) is said to be inward or outward to Γ if the support cone of Γ at ψ(x) is Sψ(x)Γ =
{λψx(s) | λ ≥ 0} or {λψx(s) | λ ≤ 0}, respectively.
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Theorem 4.4. Assume Assumption 3.2. Moreover, assume that ψ : X → S
p−1 is of

C4-class. Then, the local critical radius θc,loc is given by

tan2 θc,loc = min

{
inf

x∈X :κ(x)≤2

{
1− κ(x)

4

}
, inf
x∈X :κ(x)≥2

1

κ(x)

}

with

κ(x) =
ψxx(x)

⊤ψxx(x)

{ψx(x)⊤ψx(x)}2
− {ψxx(x)⊤ψx(x)}2

{ψx(x)⊤ψx(x)}3
− 1, (4.2)

where ψx(x) = ∂ψ(x)/∂x and ψxx(x) = ∂2ψ(x)/∂x2.

The proofs of Theorems 4.3 and 4.4 are included in the Appendix.

A numerical example

At the end of this section, we provide a numerical example to determine the accuracy of
the approximation formula given in Theorem 4.1, and degree of conservativeness proved
by Theorem 4.2.

Suppose that f(x) = (1, x, x2)⊤, X = [−1, 1], and

Σ =



1 0 2

3

0 2
3

0
2
3

0 1


 , Σ1/2 =



1 0 2

3

0
√

2
3

0

0 0
√
5
3


 .

Then,

ψ(x) =
1

3(1 + x2)

(
3 + 2x2,

√
6x,

√
5x2
)⊤
, |Γ| =

∫

X
‖ψ̇(x)‖ dx =

∫ 1

−1

√
2

3

1

1 + x2
dx =

π√
6
.

κ(x) in (4.2) is always 5. Hence, the local critical radius is θc,loc = tan−1(1/
√
5) = 0.134π.

Further, we can also confirm that the critical radius is the same as θc = θc,loc using
Mathematica [31].

Under this setting, we suppose the case of k = 3. The probability we need is

Pr

(
max
x∈[−1,1]

Y (x) ≥ b2
)

= 1− Pr
(
T (x, c) ≤ b, ∀x ∈ [−1, 1], ∀c ∈ C

)
, (4.3)

where

Y (x) =
2∑

i=1

{ξ⊤i ψ(x)}2, ξ1, ξ2 ∼ N3(0, I) i.i.d.

is a chi-square random process Y (x) with two degrees of freedom. The tube formula for
the upper tail probability (4.3) is

P tube(b) =
π

2
√
6

{
G3(b

2)−G1(b
2)
}
+G2(b

2) =

( √
π

2
√
3
b+ 1

)
e−b

2/2. (4.4)
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Figure 4.1 depicts the upper tail probability of the maximum (4.3) and its approximate
value (4.4). We can see that the tube formula approximates the true upper tail probability
with sufficient accuracy in the moderate tail regions (for example, the upper probability
is less than 0.2), and it provides a conservative bound as per Theorem 4.2.

Figure 4.1: Upper tail probability of the maximum of chi-square process Y (x).

(solid line: tube formula, dashed line: Monte Carlo with 10,000 replications)

We have proposed that the threshold for the confidence band should be determined
as the solution b = btube,1−α for P tube(b) = α. Figure 4.2 depicts the actual confidence
coefficient (coverage probability)

Pr

(
max
x∈[−1,1]

Y (x) ≥ b2tube,1−α

)
, α ∈ [0, 1].

This further demonstrates that the confidence bands obtained by the tube method are
always conservative and very accurate.

5 Simulation study under model misspecification

Throughout this paper, it is assumed that the nonlinear model has a finite number of basis
functions gi(x) = β⊤

i f(x) in (1.2). However, we can only approximate the true model in
practice. Under a slight misspecification of the model, Sun and Loader [24] estimated
the bias of the coverage probability, and proposed an adjustment to the volume-of-tube
formula. Although their approach may be applied to our model, the result would be
more complicated. Instead, to investigate what happens under model misspecification,
we conducted a Monte Carlo simulation study in the following setting.

13



Figure 4.2: Nominal confidence coefficient vs. Actual confidence coefficient.
(solid line: actual confidence coefficient, dashed line: 45-degree line)

The domain of explanatory variable is set to be X = [0, 1]. The data are generated
from the model

yij = gi(xj) + εij, εij ∼ N (0, 1), i = 1, . . . , k, j = 1, . . . , n,

where k = 3, n = 11, and xj = (j − 1)/n, j = 1, . . . , n. As the true regression curve is
gi(x), we assume three models.

Model 1:

gi(x) = β⊤
i f2,5,0,1(x), β1 = (0, . . . , 0)⊤, β2 = K(0, 0, 1/2, 1, 1)⊤, β3 = K(0, 0, 4/3, 0, 0)⊤,

where K = 1, 3, or 9,

fd,m,a,b =

(
Bd

(
x− a

b− a
(m− d)− (i− d− 1)

))

i=1,...,m

,

and Bd(·) is the B-spline function

Bd(x) =
d+1∑

r=0

(−1)d+1−r
(
d+ 1

r

)
(r − x)d+

d!
(5.1)

([2], p. 89).
Model 2:

g1(x) = 0, g2(x) = K sin(xπ/2), g3(x) = K sin(xπ), K = 1, 3, 9.
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Model 3:

g1(x) = 0, g2(x) = K
e−x/2 − e−x

e−1/2 − e−1
, g3(x) = K

cosh(x− 1/2)− 1

cosh(1/2)− 1
, K = 1, 3, 9.

For all models, g2(x) is unimodal, and g3(x) is increasing. g2(x) and g3(x) are designed
to have the range [0, K].

We fit the curve β⊤
i f2,m,0,1(x) to the generated data yij, where m = 3, . . . , 10. Using

these models, we constructed a 1 − α = 0.95 confidence band. Coverage probabilities
were estimated based on Monte Carlo simulations with 1,000,000 replications, and are
summarized in Table 5.1. In this table,

δ = max
x∈X , c∈C

∣∣∣∣∣

∑k
i=1 ci{(β∗

i )
⊤f2,m,0,1(x)− gi(x)}√

f2,m,0,1(x)⊤Σf2,m,0,1(x)

∣∣∣∣∣ , Σ =

(
n∑

i=1

f2,m,0,1(xi)
⊤f2,m,0,1(xi)

)−1

(5.2)
is the bias of regression function, where β∗

i is the best parameter in the assumed model
β⊤
i f2,m,0,1(x).

∆ = max
{
α− P tube(btube,1−α + δ), P tube(btube,1−α − δ)− α

}
(5.3)

is an approximate upper bound of the bias of coverage probability, where btube,1−α is the
approximate value of b1−α obtained by the tube method. (See A.4 for the detail.)

From this table, we first see that, for the true models (m = 5, 8 when model 1 is true),
the coverage probabilities are more than, but approximately equal to, the nominal value
0.95, meaning that the proposed method is valid. The most remarkable point is that,
throughout the study, the coverage probabilities are kept at approximately 0.95, unless
the assumed model is too small, and the bias δ is large.

Table 5.2 shows the average width of the confidence band defined by

W =

∫
X btube,1−α

√
f(x)⊤Σf(x) dx∫

X dx
= btube,0.95

∫ 1

0

√
f2,m,0,1(x)⊤Σf2,m,0,1(x) dx.

When the model is increasing in size, W is increasing in size. This suggests that a smaller
model is preferable, unless it is too small to cause serious bias.

In summary, too small of a model should surely be avoided, whereas, a larger model has
the disadvantage of having a wider confidence band. This trade-off is crucially important
in practice, and a promising future research topic, although it is out of scope for this
paper. For related topics, refer to Casella and Hwang [3], for shrinkage confidence bands,
and Leeb et al. [13], for confidence band post-model selection.

6 Growth curve analysis

As mentioned in Section 1, the growth curve analysis is one of our research objectives
to which we apply our method. In this section, we demonstrate the analysis of mouse
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Table 5.1: Coverage probability under model misspecification (1− α = 0.95)
(prob: coverage probability, δ: bias (5.2), ∆: bound for coverage probability bias (5.3))

m
Model 1 (K = 1) Model 1 (K = 3) Model 1 (K = 9)

prob δ ∆ prob δ ∆ prob δ ∆

3 0.9365 0.4692 0.1155 0.7872 1.4076 0.8240 0.0000 4.2227 1.3542

4 0.9422 0.3996 0.0965 0.8509 1.1987 0.6909 0.0076 3.5961 1.6907

5 0.9512 0.0000 0.0000 0.9512 0.0000 0.0000 0.9512 0.0000 0.0000

6 0.9511 0.1006 0.0176 0.9477 0.3018 0.0694 0.9111 0.9053 0.4550

7 0.9514 0.0448 0.0074 0.9509 0.1343 0.0251 0.9465 0.4030 0.1100

8 0.9515 0.0000 0.0000 0.9515 0.0000 0.0000 0.9515 0.0000 0.0000

9 0.9515 0.0175 0.0029 0.9514 0.0526 0.0090 0.9504 0.1578 0.0316

10 0.9516 0.0218 0.0036 0.9515 0.0653 0.0116 0.9508 0.1959 0.0421

m
Model 2 (K = 1) Model 2 (K = 3) Model 2 (K = 9)

prob δ ∆ prob δ ∆ prob δ ∆

3 0.9509 0.06491 0.0099 0.9486 0.1947 0.0346 0.9277 0.5842 0.1640

4 0.9511 0.04999 0.0077 0.9498 0.1500 0.0264 0.9374 0.4499 0.1157

5 0.9512 0.01271 0.0019 0.9511 0.0381 0.0060 0.9504 0.1143 0.0199

6 0.9516 0.00494 0.0008 0.9516 0.0148 0.0023 0.9515 0.0445 0.0072

7 0.9514 0.00234 0.0004 0.9514 0.0070 0.0011 0.9514 0.0211 0.0034

8 0.9515 0.00137 0.0002 0.9515 0.0041 0.0007 0.9515 0.0123 0.0020

9 0.9515 0.00119 0.0002 0.9515 0.0036 0.0006 0.9515 0.0107 0.0017

10 0.9516 0.00076 0.0001 0.9516 0.0023 0.0004 0.9516 0.0068 0.0011

m
Model 3 (K = 1) Model 3 (K = 3) Model 3 (K = 9)

prob δ ∆ prob δ ∆ prob δ ∆

3 0.9512 0.02384 0.0034 0.9508 0.07152 0.0109 0.9483 0.2146 0.0390

4 0.9513 0.00766 0.0011 0.9512 0.02299 0.0034 0.9511 0.0690 0.0109

5 0.9512 0.00218 0.0003 0.9512 0.00653 0.0010 0.9512 0.0196 0.0030

6 0.9516 0.00095 0.0002 0.9516 0.00285 0.0004 0.9516 0.0086 0.0013

7 0.9514 0.00046 0.0001 0.9514 0.00138 0.0002 0.9514 0.0042 0.0006

8 0.9515 0.00028 0.0000 0.9514 0.00083 0.0001 0.9515 0.0025 0.0004

9 0.9515 0.00024 0.0000 0.9515 0.00071 0.0001 0.9515 0.0021 0.0003

10 0.9516 0.00014 0.0000 0.9516 0.00042 0.0001 0.9516 0.0013 0.0002
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Table 5.2: Average band-width W (1− α = 0.95)

m 3 4 5 6 7 8 9 10

W 1.463 1.752 2.017 2.275 2.546 2.764 2.990 3.211

growth as an illustration. Sun et al. [26] proposed simultaneous confidence bands for a
growth curve by virtue of the volume-of-tube method. Differently from their analysis, we
focus on the contrast of several growth curves.

Mice are one of the most popular model organisms, and are often used in genomic
research. Figure 6.1 depicts the average body weights of male mice from four different
strains measured from 2 to 20 weeks after birth. The four strains are C57BL/6 (referred
to as B6), MSM/Ms (MSM), B6-Chr17MSM(B6-17), and B6-ChrXTMSM(B6-XT). Among
these, B6 is the most common laboratory strain and serves as the standard. MSM is a wild-
derived strain having contrasting properties to B6 such as non-black color, small size, and
aggressive behavior. B6-17 and B6-XT are artificial strains known as consomic mice made
from B6 and MSM. B6-17 has all the chromosomes from B6, and only chromosome 17
from MSM; B6-XT has all the chromosomes from B6, and only half of the X chromosome
from MSM. By comparing the consomic strains with B6, we expect to reveal the role of
each chromosome.

The dataset we utilized is publicly available as Supplemental Table S1 of Takada et al.
[27]. In their experiments, the weight (unit: gram) yijh of the hth individual from strain
i was measured at time point xj . The measurement time points were {x1, . . . , x10} =
{2, 4, . . . , 20} (n = 10). This dataset includes the average body weight yij of strain i at
time xj , and its standard error

yij =
1

ri

ri∑

h=1

yijh, ŝ.e.(yij) =

√√√√ 1

r2i

ri∑

h=1

(yijh − yij)2,

as well as the number ri of individuals of strain i.
In the following analysis, we use k = 3 groups (strains) B6 (i = 1), B6-17 (i = 2), and

B6-XT (i = 3). The number of individuals are r1 = 12, r2 = 24, and r3 = 12.
We fit the model (1.1) to these data. We estimate the variance as

σ̂(xj)
2 =

1
∑k

i=1(ri − 1)

k∑

i=1

ri∑

h=1

(yijh − yij)
2 =

1
∑k

i=1(ri − 1)

k∑

i=1

r2i ŝ.e.(yij)
2,

which is used as the true value σ(xj)
2 hereafter. Figure 6.2 plots the estimated standard

error σ̂(xj). One particular feature of this dataset is that the experiment is well controlled
and measurement errors are quite small.

As the basis function f(x), we consider a family of basis functions

f(x) = fd,m,2,20(x) =

(
Bd

(
x− 2

20− 2
(m− d)− (i− d− 1)

))

1≤i≤m
,
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Figure 6.1: Average body weights of mice from four strains.

(sample mean: ◦ (B6), + (B6-17), ⋄ (B6-XT), △ (MSM);

fitted curve: — (B6), · · · (B6-17), – – (B6-XT), – · – (MSM))

with Bd(x) given in (5.1). fd,m,2,20(x) consists of m B-spline bases with equally-spaced
knots at intervals of (20− 2)/(m− d). Note that fd,m,2,20(x) is piecewise of class Cd.

In the range d = 2, 3, 4 and m = d + 1, d + 2, . . . , n (= 10), we searched for the best
model that minimizes AIC and BIC defined below:

AICd,m = Ld,m + 2km, BICd,m = Ld,m +
k∑

i=1

ln(rin)m, Ld,m =
k∑

i=1

ri

n∑

j=1

(yij − ŷij)
2

σ(xj)2

with k = 3, n = 10, where ŷij = β̂⊤
i fd,m,2,20(xj). In both criteria, the minimizer was

(d,m) = (2, 5), which we use as the true value hereafter.
Suppose that we are interested in the period X = [a, b] = [2, 20]. An approximate

value of the length of Γ in (1.4) is given by

|Γ| ≈
N∑

t=1

∥∥ψ(xt)− ψ(xt−1)
∥∥,
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Figure 6.2: Estimated standard error σ̂(xj).

where xt = a+ t(b− a)/N , t = 0, 1, . . . , N . When N = 10, 000, the approximate value of
|Γ| is 6.989 = 2.225π. Using this, the critical value is b1−α = 3.258 (α = 0.05).

To compare k groups, various types of contrasts are used. For a pairwise compari-
son between group i and group j, we choose c = (. . . , 0, 1

ith
, 0, . . . , 0,−1

jth
, 0, . . .). For the

comparison of groups {i, j} and group k, we use

c =

(
. . . , 0,

ri
ri + rj
ith

, 0, . . . , 0,
rj

ri + rj
jth

, 0, . . . , 0,−1
kth
, 0, . . .

)
.

Figure 6.3 depicts the difference curves of strains B6-17 vs. B6 (left) and B6-XT vs. B6
(right), and their 95% simultaneous confidence bands. In the left panel, the horizontal
line representing zero difference is almost between the confidence bands. This indicates
that there is no significant difference between B6-17 and B6. In contrast, in the right
panel, after around week 14, the horizontal line is outside the confidence bands, thereby
indicating that B6-XT and B6 are different during this period.

For a fixed x, the test statistic for the null hypothesis H0,x : β⊤
1 f(x) = . . . = β⊤

k f(x)
is

χ2(x) =
1

f(x)⊤Σf(x)

k∑

i=1

ri

{
β̂⊤
i f(x)−

∑k
i=1 riβ̂

⊤
i f(x)∑k

i=1 ri

}2

.

For a fixed x, the null distribution is the chi-square distribution with k − 1 degrees of
freedom. However, for the overall null hypothesis H0 : β⊤

1 f(x) = . . . = β⊤
k f(x) for all

x ∈ X , the distribution of the maximum of the chi-square random process should be used.
Figure 6.4 shows χ2(x) and its upper 5% critical value b20.95. As already shown in Figure
6.3, after around week 14, the hypothesis of equality is rejected.
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Figure 6.3: Differences of body weights and 95% confidence bands.

A Appendix: Proofs

A.1 Proof of Theorem 4.1

Contribution of the inner points IntM

Here, we obtain the coefficients wd+1−e in (3.4) when M is given in (3.1).
Let h = h(θ), θ = (θi)1≤k−2, be a local coordinate system of Sk−2. For example,

h = h(θ) =




cos θ1
sin θ1 cos θ2
sin θ1 sin θ2 cos θ3
...

sin θ1 · · · sin θk−3 cos θk−2

sin θ1 · · · sin θk−3 sin θk−2




(k−1)×1

,

where

θ ∈ Θ = {(θ1, . . . , θk−2) | 0 ≤ θi ≤ π (i = 1, . . . , k − 3), 0 ≤ θk−2 < 2π}.

Let (x, θ) ∈ X ×Θ be fixed, and let φ(x, θ) = h(θ)⊗ ψ(x) ∈ M . We write ψ = ψ(x),
h = h(θ) and φ = φ(x, θ) for simplicity. We first assume that x ∈ IntX , hence, φ(x, θ) ∈
IntM .

By applying the Gram-Schmidt orthonormalization to the sequence ψ, ∂ψ/∂x, ∂2ψ/∂x2, . . .,
we construct the orthonormal basis (ONB) ψ(i), i = 0, . . . , p − 1, of Rp. The first three
bases are

ψ(0) = ψ, ψ(1) =
1√
g

∂ψ

∂x
, ψ(2) =

1√
η − γ2

g
− g2

(
∂2ψ

∂x2
+ gψ − γ

g

∂ψ

∂x

)
,
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Figure 6.4: Chi-square process χ2(x) and its upper 5% critical value.

where

g = g(x) =

(
∂ψ

∂x

)⊤(
∂ψ

∂x

)
, γ = γ(x) =

(
∂2ψ

∂x2

)⊤(
∂ψ

∂x

)
, η = η(x) =

(
∂2ψ

∂x2

)⊤(
∂2ψ

∂x2

)
.

Similarly, from the sequence h, ∂h/∂θi, i = 1, . . . , k−2, we obtain ONB h(i), i = 0, . . . , k−
2, of Rk−1. We prepare a (k − 2)× (k − 2) upper triangle matrix D such that
(
h,
∂h

∂θ1
, . . . ,

∂h

∂θk−2

)
=
(
h(0), h(1), . . . , h(k−2)

)(1 0
0 D

)
, or D =

(
h⊤(i)

∂h

∂θj

)

1≤i,j≤k−2

.

Now we have the ONB h(i) ⊗ ψ(j), i = 0, . . . , k − 2, j = 0, . . . , p− 1, of the ambient space
R
n with n = p(k − 1). Note that φ = h(0) ⊗ ψ(0).
The tangent space TφM is spanned by

∂φ

∂x
= h⊗ ∂ψ

∂x
,

∂φ

∂θi
=
∂h

∂θi
⊗ ψ, i = 1, . . . , k − 2.

The metric matrix of TφM with respect to the parameter x, θ1, . . . , θk−2 is

(
g 0
0 G

)
, where G =

((
∂h

∂θi

)⊤(
∂h

∂θj

))

1≤i,j≤k−2

= D⊤D. (A.1)

TφM has the ONB h(0) ⊗ ψ(1), h(i) ⊗ ψ(0), i = 1, . . . , k − 2.
The normal space perpendicular to Tφ(co(M)) = TφM ⊕ span{φ} is

Nφ(co(M)) = span
{
h(0) ⊗ ψ(j), j = 2, . . . , p− 1;

h(i) ⊗ ψ(j), i = 1, . . . , k − 2, j = 1, . . . , p− 1
}
. (A.2)
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The second order derivatives of φ = φ(x, θ) are

∂2φ

∂x2
= h⊗ ∂2ψ

∂x2
,

∂2φ

∂x∂θi
=
∂h

∂θi
⊗ ∂ψ

∂x
,

∂2φ

∂θi∂θj
=

∂2h

∂θi∂θj
⊗ ψ.

Taking the inner product of the second derivatives and the ONB of Nφ(co(M)) listed in
(A.2), we see that the nonzero elements of the second fundamental form are

−
(
h⊗ ∂2ψ

∂x2

)⊤
(h(0) ⊗ ψ(2)) = −

(
∂2ψ

∂x2

)⊤
ψ(2) = −ζ,

where

ζ = ζ(x) =

√
η − γ2

g
− g2

and

−
(
∂h

∂θi
⊗ ∂ψ

∂x

)⊤
(h(j) ⊗ ψ(1)) = −

(
∂h

∂θi

)⊤
h(j)

√
g = −Dji

√
g.

We renumber the ONB of Nφ(co(M)) as

N1 = h(0) ⊗ ψ(2), Ni = h(i−1) ⊗ ψ(1), i = 2, . . . , k − 1,

and Nk, . . . , Npk−p−k are the other vectors. Write N(t) =
∑pk−p−k

i=1 Niti, where t =
(t1, . . . , tpk−p−k). Then,

−
(
∂2φ

∂x2

)⊤
N(t) =− ζt1,

−
(

∂2φ

∂x∂θi

)⊤
N(t) =−

k−2∑

j=1

Djitj+1
√
g,

−
(

∂2φ

∂θi∂θj

)⊤
N(t) =0.

Therefore, the second fundamental form (unnormalized version) in the direction N(t) is




−ζt1 −(t2, . . . , tk−1)D
√
g

−D⊤




t2
...

tk−1


√

g 0


 . (A.3)

Multiplication of the inverse of the metric (A.1) enables us to obtain the normalized
version of the second fundamental form. Noting that

(
g 0
0 G

)−1

=

(
g 0
0 D⊤D

)−1

=

(
1/
√
g 0

0 D−1

)(
1/
√
g 0

0 (D⊤)−1

)
,
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we multiply (
1/
√
g 0

0 (D⊤)−1

)
and

(
1/
√
g 0

0 D−1

)

from the left and right to (A.3), respectively, to obtain

(
1/
√
g 0

0 (D⊤)−1

)



−ζt1 −(t2, . . . , tk−1)D
√
g

−D⊤




t2
...

tk−1


√

g 0




(
1/
√
g 0

0 D−1

)

=




−(ζ/g)t1 −(t2, . . . , tk−1)

−




t2
...

tk−1


 0


 = H(x, θ;N(t)).

This is the second fundamental form with respect to the orthonormal coordinates. Now
we have

treH(x, θ;N(t)) =





1 (e = 0),

−(ζ/g)t1 (e = 1),

−∑k−1
j=2 t

2
j (e = 2),

0 (otherwise).

(A.4)

Next, we evaluate the integral
∫

v∈Nφ(co(M))∩Sn−1

treH(x, θ; v) dv, (A.5)

where n = p(k − 1), dv is the volume element of Nφ(co(M)) ∩ S
n−1, by following Section

4.2.2 of Kuriki and Takemura [11]. Recall that d = dimM = k − 1.
Because Nφ(co(M)) is a linear space of dimension n−d−1 = p(k−1)− (k−1)−1 =

pk − p− k, Nφ(co(M)) ∩ S
n−1 is nothing but a (pk − p− k − 1)-dimensional unit sphere.

Hence, ∫

v∈Nφ(co(M))∩Sn−1

dv = Vol(Spk−p−k−1) = Ωpk−p−k.

Therefore, if V is distributed as the uniform distribution on NφM ∩ S
n−1, denoted by

U(NφM ∩ S
n−1), then (A.5) = Ωpk−p−k × E[treH(x, θ;V )].

Suppose that T = (T1, . . . , Tpk−p−k) ∼ Npk−p−k(0, I), and let N(T ) =
∑pk−p−k

i=1 NiTi.
Then,

‖N(T )‖2 =
pk−p−k∑

i=1

T 2
i ∼ χ2

pk−p−k and V =
N(T )

‖N(T )‖ ∼ U(NφM ∩ S
n−1)

are independently distributed. Hence,

E[treH(x, θ;N(T ))] = E[‖N(T )‖etreH(x, θ, V )] = E[‖N(T )‖e}E{treH(x, θ, V )],
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and

E[treH(x, θ, V )] =
E[treH(x, θ;N(T ))]

E
[
(χ2

pk−p−k)
e/2
] .

From (A.4),

E[treH(x, θ;N(T ))] =





1 (e = 0),

0 (e = 1),

−∑k−1
i=2 E[T 2

i ] = −(k − 2) (e = 2),

0 (otherwise),

hence,

E[treH(x, θ;V )] =





1 (e = 0),

− k − 2

pk − p− k
(e = 2),

0 (otherwise).

Therefore,

∫

v∈Nφ(co(M))∩Sn−1

treH(x, θ, v) dv =





Ωpk−p−k (e = 0),

− k − 2

pk − p− k
Ωpk−p−k (e = 2),

0 (otherwise).

Note that the results are independent of x and θ. This implies that the integral in
(3.4) with respect to the volume element

du =
√
g dx× |G(θ)|1/2 dθ1 · · ·dθk−2

is simply multiplying the constant

Vol(M) = |Γ| × Vol(Sk−2) = |Γ|Ωk−1.

Finally, from (3.4) of Proposition 3.1,

wd+1 = wk =
1

ΩkΩpk−p−k
× |Γ|Ωk−1Ωpk−p−k,

wd−1 = wk−2 =
1

Ωk−2Ωpk−p−k+2
× |Γ|Ωk−1 ×

(
− k − 2

pk − p− k

)
Ωpk−p−k,

and the other w’s are zero. Simple calculations give

wk = −wk−2 =
Γ(k

2
)√

πΓ(k−1
2
)
|Γ|. (A.6)
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Contribution of the boundary ∂M

Here, we obtain the coefficients w′
d−e in (3.5) when M is given in (3.1).

Suppose that X = [a, b]. Then,

∂M = {φ(a, θ) | θ ∈ Θ} ⊔ {φ(b, θ) | θ ∈ Θ}.

Let x = a and θ ∈ Θ be fixed. Then, φ(a, θ) ∈ ∂M . The metric of the boundary ∂M at
φ(a, θ) is (

∂φ

∂θi

)⊤(
∂φ

∂θj

)∣∣∣∣
(a,θ)

= (G(θ))ij.

Note that ∂(co(M)) = co(∂M). The support cone of co(M) at φ(a, θ) ∈ ∂(co(M)) is

Sφ(a,θ)(co(M)) = L⊕K1,

where

L = span

{
h⊗ ψ,

∂h

∂θi
⊗ ψ, i = 1, . . . , k − 2

}
, K1 =

{
λ

(
h⊗ ∂ψ

∂x

)
| λ ≥ 0

}
.

This is a direct sum (the Minkowski sum) of a linear subspace and a cone. To obtain its
dual cone, the following lemma is useful.

Lemma. Let K1 be a cone, and L be a linear subspace. Let K = K1 ⊕L. Then, the dual
cone of K is K∗ = K∗

1 ∩ L⊥.

Because
K∗

1 =
{
λ(h(0) ⊗ ψ(1)) | λ ≤ 0

}
⊕ span

{
h(0) ⊗ ψ(1)

}⊥

and
L⊥ = span

{
h(i) ⊗ ψ(j), i = 0, . . . , k − 2, j = 1, . . . , p− 1

}
,

we have

Nφ(a,θ)(co(M)) = K∗ = K∗
1 ∩ L⊥ =

{
λ(h(0) ⊗ ψ(1)) | λ ≤ 0

}
⊕ span

{

h(0) ⊗ ψ(j), j = 2, . . . , p− 1;

h(i) ⊗ ψ(j), i = 1, . . . , k − 2, j = 1, . . . , p− 1
}
,

with dimNφ(a,θ)(co(M)) = pk − p− k + 1.
The second fundamental form of co(∂M) at φ(a, θ) is

−
(
∂2φ(a, θ)

∂θi∂θj

)⊤
v = −

(
∂2h

∂θi∂θj
⊗ ψ

)⊤
v, v ∈ Nφ(a,θ)(co(M)). (A.7)
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We can easily see that the second fundamental form (A.7) is always zero. Therefore, the
contribution of the boundary to w′

d−e in (3.5) is only to case of e = 0. That is, all w′
i

except w′
k−1 are zero. The contribution of the boundary {φ(a, θ) | θ ∈ Θ} to w′

k−1 is

1

Ωk−1−0Ωp(k−1)−(k−1)+0

∫

∂M

|G|1/2 dθ
∫

Nφ(a,θ)(co(M))∩Sn−1

dv =
Vol(Sk−2)Vol(half of Spk−p−k)

Ωk−1Ωpk−p−k+1

=
1

2
.

The contribution of the other boundary {φ(b, θ) | θ ∈ Θ} to wk−1 has the same value
of 1/2. Moreover, if the number of connected components of Γ exceeds one, we need to
select all boundaries. Since the number of boundaries is 2χ(Γ), we have

w′
k−1 =

1

2
× 2χ(Γ) = χ(Γ). (A.8)

Substituting (A.6) and (A.8) into (3.3) yields (4.1).

A.2 Proof of Theorem 4.3

We apply the formula (3.6) for θc to the case where M is given in (3.1).
Let

u = φ(x̃, θ̃) = h(θ̃)⊗ ψ(x̃), v = φ(x, θ) = h(θ)⊗ ψ(x),

and write h = h(θ), h̃ = h(θ̃), ψ = ψ(x), ψ̃ = ψ(x̃). We discuss the two cases (i) ψ ∈ IntΓ
and (ii) ψ ∈ ∂Γ separately.

Case (i). Suppose that ψ(x) ∈ IntΓ. Write φθi = {∂h(θ)/∂θi} ⊗ ψ(x), φx = h(θ) ⊗
ψx(x), ψx = ∂ψ(x)/∂x.

The orthogonal projection matrix onto the space Tφ(co(M)) = span{φ, φθi, φx} is

Pv =
(
φ φθi φx

)
p(k−1)×k





φ⊤

φ⊤
θi

φ⊤
x


(φ φθi φx

)



−1

k×k



φ⊤

φ⊤
θi

φ⊤
x



k×p(k−1)

=
(
φ φθi φx

)


1 0 0
0 G(θ) 0
0 0 g(x)




−1

φ⊤

φ⊤
θi

φ⊤
x




= φφ⊤ + (φθi)G(θ)
−1(φθi)

⊤ +
1

g(x)
φxφ

⊤
x

= hh⊤ ⊗ ψψ⊤ + (Ik−1 − hh⊤)⊗ ψψ⊤ +
1

g
hh⊤ ⊗ ψxψ

⊤
x

= Ik−1 ⊗ ψψ⊤ +
1

g
hh⊤ ⊗ ψxψ

⊤
x .
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As P⊥
v (w) = I(w)− Pv(w),

(1− u⊤v)2

‖(In − Pv)u‖2
=

{1− (h̃⊗ ψ̃)⊤(h⊗ ψ)}2
‖(Ik−1 ⊗ Ip − Ik−1 ⊗ ψψ⊤ − 1

g
hh⊤ ⊗ ψxψ⊤

x )(h̃⊗ ψ̃)‖2
. (A.9)

Let s = ψ⊤(x)ψ(x̃) = ψ⊤ψ̃, r = ψ⊤
x (x)ψ(x̃) = ψ⊤

x ψ̃, and α = h(θ)⊤h(θ̃) = h⊤h̃. In (A.9),
the numerator is (1− αs)2, and the denominator is

∥∥∥∥h̃⊗ ψ̃ − sh̃⊗ ψ − αr

g
h⊗ ψx

∥∥∥∥
2

=1 + s2 +
α2r2

g
− 2s2 − 2

αr

g
αr

=1− s2 − α2r2

g
= 1− s2 − α2t2,

where t = r/
√
g = ψx(x)

⊤ψ(x̃)/‖ψx(x)‖. Hence,

(A.9) =
(1− αs)2

1− s2 − α2t2
.

The infimum is taken over “x 6= x̃ or θ 6= θ̃”, or equivalently, “x 6= x̃ or α 6= 1”.
However, when x = x̃ and α 6= 1, the argument of the infimum is (1 − α)2/0 = ∞.
Therefore, we can exclude case x = x̃ from the infimum argument.

Case (ii). Suppose that ψ(x) ∈ ∂Γ. Fix a point on the boundary

v = φ(x, θ) = h(θ)⊗ ψ(x) ∈ ∂M.

The support cone of co(M) at v is

Sv(co(M)) = span{φ, φθi} ⊕ {λεφx | λ ≥ 0}

where ε = ε(x) = 1 if ψx is inward to Γ, ε = −1 if ψx is outward to Γ.
The orthogonal projection operator onto the cone Sv(co(M)) is w 7→ Pv(w), where

Pv(w) =φφ
⊤w + φθG

−1(θ)φ−1
θ w +

φx
‖φx‖2

max{0, εφ⊤
xw}

=(Ik−1 ⊗ ψψ⊤)w +
φx

‖φx‖2
max{0, εφ⊤

xw}.

Hence,

P⊥
v (w) = w − Pv(w) = w − (Ik ⊗ ψψ⊤)w − h⊗ ψx

g
max{0, ε(h⊗ ψx)

⊤w}.

Substituting u = φ(x̃, θ̃) = h̃⊗ ψ̃,

P⊥
v (u− v) = h̃⊗ ψ̃ − sh̃⊗ ψ − max{0, εαr}

g
h⊗ ψx,
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‖P⊥
v (u− v)‖2 =1 + s2 +

max{0, εαr}2
g

− 2s2 − 2αr
max{0, εαr}

g

=1− s2 − max{0, εαr}2
g

= 1− s2 −max{0, εαt}2,

and we have

(1− u⊤v)2

‖P⊥
v (u− v)‖2 =

(1− αs)2

1− s2 −max{0, εαt}2 .

For the same reason as in case (i), the infimum is taken over the set x 6= x̃ and α ∈ [−1, 1].

A.3 Proof of Theorem 4.4

We use the same notations as in the proof of Theorems 4.1 and 4.3. The local critical
radius θc,loc defined by (3.7) is rewritten as

tan2 θc,loc = lim inf
|x−x̃|→0, α→1

(1− αs)2

1− s2 − α2t2
.

Let x̃ = x + ∆ and α = 1 − δ, and consider ∆ → 0 and δ → 0. Write ψx = ∂ψ/∂x,
ψxx = ∂2ψ/∂x2, etc., and g = ψ⊤

x ψx, γ = ψ⊤
xxψx, and η = ψ⊤

xxψxx as before. Noting that

0 = d(ψ⊤ψ)/dx = 2ψ⊤
x ψ,

0 = d2(ψ⊤ψ)/dx2 = 2ψ⊤
xxψ + 2ψ⊤

x ψx,

0 = d3(ψ⊤ψ)/dx3 = 2ψ⊤
xxxψ + 6ψ⊤

xxψx,

0 = d4(ψ⊤ψ)/dx4 = 2ψ⊤
xxxxψ + 8ψ⊤

xxxψx + 6ψ⊤
xxψxx,

we have
ψ⊤
xxψ = −g, ψ⊤

xxxψ = −3γ, ψ⊤
xxxxψ + 4ψ⊤

xxxψx = −3η.

Substituting these, we have

s = ψ(x)⊤ψ(x̃) =ψ⊤
(
ψ + ψx∆+

1

2
ψxx∆

2 +
1

6
ψxxx∆

3 +
1

24
ψxxxx∆

4

)
+ o(∆4)

=1− 1

2
g∆2 − 1

2
γ∆3 +

1

24
ψ⊤
xxxxψ∆

4 + o(∆4),

r = ψx(x)
⊤ψ(x̃) =ψ⊤

x

(
ψ + ψx∆+

1

2
ψxx∆

2 +
1

6
ψxxx∆

3

)
+ o(∆3)

=g∆+
1

2
γ∆2 +

1

6
ψ⊤
xxxψx∆

3 + o(∆3),

t2 =
r2

g
=g∆2 + γ∆3 +

1

4g
γ2∆4 +

1

3
ψ⊤
xxxψx∆

4 + o(∆4),
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and

1− s2 − t2 =(1− s){2− (1− s)} − t2 = 2(1− s)− (1− s)2 − t2

=2

(
1

2
g∆2 +

1

2
γ∆3 − 1

24
ψ⊤
xxxxψ∆

4

)
−
(
1

2
g∆2

)2

−
(
g∆2 + γ∆3 +

1

4g
γ2∆4 +

1

3
ψ⊤
xxxψx∆

4

)
+ o(∆4)

=
1

4

(
η − g2 − γ2

g

)
∆4 + o(∆4) =

1

4
κg2∆4 + o(∆4),

where

κ = κ(x) =
η

g2
− γ2

g3
− 1.

Note that κ is nonnegative because

0 ≤ det



ψ⊤

ψ⊤
x

ψ⊤
xx


(ψ ψx ψxx

)
= det




1 0 −g
0 g γ
−g γ η


 = κg3.

For the order of δ, we consider two cases: (i) δ/∆2 ∼ gc (0 ≤ c < ∞) and (ii)
∆2/δ ∼ 0.

For case (i), noting that α = 1− δ, 1− s ∼ g∆2/2, t2 ∼ g∆2,

(1− αs)2 = {1− s+ δ − δ(1− s)}2 ∼ (1− s+ δ)2 ∼
(
1

2
g∆2 + gc∆2

)2

=
1

4
g2(1 + 2c)2∆4,

1− s2 − α2t2 = 1− s2 − t2 + 2δt2 − δ2t2 ∼ 1

4
g2(κ+ 8c)∆4,

hence

(1− αs)2

1− s2 − α2t2
∼ (1 + 2c)2

κ + 8c
. (A.10)

We consider the minimum value of (A.10) for c ≥ 0. For c > −κ/8, (A.10) has a unique
minimum value 1− κ/4 at c = (2− κ)/4. Therefore,

min
c≥0

(1 + 2c)2

κ+ 8c
=




1− κ

4
(κ ≤ 2),

1

κ
(κ ≥ 2).

For case (ii),
(1− αs)2 = {1− s+ δ − δ(1− s)}2 ∼ δ2,

1− s2 − α2t2 = 1− s2 − t2 + 2δt2 − δ2t2 ∼ 2g∆2δ,
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and
(1− αs)2

1− s2 − α2t2
∼ δ

2g∆2
→ ∞.

In summary, we have

tan2 θc,loc = min

{
inf

x:κ(x)≤2

{
1− κ(x)

4

}
, inf
x:κ(x)≥2

1

κ(x)

}
.

A.4 Coverage probability under model misspecification

First, note that the best parameter under the model β⊤
i f(x) is given by β∗

i = ΣX⊤gi,
where

X =



f(x1)

⊤

...
f(xn)

⊤


 , Σ = (X⊤X)−1 =

(
n∑

i=1

f(xi)f(xi)
⊤

)−1

, gi =



gi(x1)

...
gi(xn)


 .

Let

yi =



yi1
...
yin


 , εi =



εi1
...
εi1


 .

The least square estimator for β∗
i is β̂∗

i = ΣX⊤yi, which is distributed as Np(β
∗
i ,Σ). Let

b1−α be the threshold for 1 − α bands when the assumed model is the true model. The
approximate value of b1−α can be obtained by the tube method.

On the other hand, when the true model is gi(x), the coverage probability becomes

Pr

(∣∣∣∣
k∑

i=1

ci(β̂
∗
i )

⊤f(x)−
k∑

i=1

cigi(x)

∣∣∣∣ ≤ b1−α
√
f(x)⊤Σf(x) for all x ∈ X , c ∈ C

)

= Pr

(
max

x∈X , c∈C

∑k
i=1 ci(β̂

∗
i )

⊤f(x)−∑k
i=1 cigi(x)√

f(x)⊤Σf(x)
≤ b1−α

)

= Pr

(
max

x∈X , c∈C

[∑k
i=1 ci(β̂

∗
i − β∗

i )
⊤f(x)√

f(x)⊤Σf(x)
+

∑k
i=1 ci{(β∗

i )
⊤f(x)− gi(x)}√

f(x)⊤Σf(x)

]
≤ b1−α

)
.

(A.11)

Noting that, for the two functions h1(y) and h2(y) on Y , if maxy∈Y(−hi(y)) = maxy∈Y hi(y),
then

max
y
h1(y) ≤ max

y
(h1(y) + h2(y)) + max

y
(−h2(y)) = max

y
(h1(y) + h2(y)) + max

y
h2(y),

hence,

max
y
h1(y)−max

y
h2(y) ≤ max

y
(h1(y) + h2(y)) ≤ max

y
h1(y) + max

y
h2(y).
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Therefore, (A.11) is bounded below and above by 1 − P (b1−α − δ) and 1 − P (b1−α + δ),
respectively, where

δ = max
x∈X , c∈C

∑k
i=1 ci{(β∗

i )
⊤f(x)− gi(x)}√

f(x)⊤Σf(x)

= max
x∈X

√∑k
i=1[(β

∗
i )

⊤f(x)− gi(x)− 1
k

∑k
i=1{(β∗

i )
⊤f(x)− gi(x)}]2

f(x)⊤Σf(x)

as given in (5.2), and

P (b) = Pr

(
max

x∈X , c∈C

∑k
i=1 ci(β̂

∗
i − β∗

i )
⊤f(x)√

f(x)⊤Σf(x)
≥ b

)
.

An upper bound for the bias of coverage probability for a 1− α confidence band is

max
{
α− P (b1−α + δ), P (b1−α − δ)− α

}
,

which is approximated by

∆ = max
{
α− P tube

(
btube,1−α + δ

)
, P tube

(
btube,1−α − δ

)
− α

}

in (5.3), where P tube(b) is the tube approximation formula for P (b) given in (4.1), and
btube,1−α is the solution of P tube(b) = α.

Note that (A.11) is

Pr

(
max
x∈X

∑k
i=1[(β̂

∗
i )

⊤f(x)− gi(x)− 1
k

∑k
i=1{(β̂∗

i )
⊤f(x)− gi(x)}]2

f(x)⊤Σf(x)
≤ b21−α

)
,

which is used for the simulation study.
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