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WEAK CONVERGENCE OF MULTIVARIATE PARTIAL
MAXIMA PROCESSES

DANLJEL KRIZMANIC

ABSTRACT. For a strictly stationary sequence of Rifvalucd random vectors
we derive functional convergence of partial maxima stochastic processes under
joint regular variation and weak dependence conditions. The limit process is
an extremal process and the convergence takes place in the space of ]Rifvalued
cadlag functions on [0, 1], with the Skorohod weak M; topology. We also show
that this topology in general can not be replaced by the stronger (standard)
M topology. The theory is illustrated on three examples, including the mul-
tivariate squared GARCH process with constant conditional correlations.

1. INTRODUCTION

A classical question in extreme value theory is under what assumptions the scaled

maximum
n

\/ Xi - bn
=1 On

of i.i.d. random variables (X;);en converges weakly, for some a,, > 0 and b,, € R.

Also what are the possible limit distributions? Answers to these questions were

given by Fisher and Tippet [12], Gnedenko [I3] and de Haan [14]. Introducing

a time variable, Lamperti [I8] studied the asymptotical distributional behavior of

partial maxima stochastic processes

[nt]
\/ M7 t>0.

a
i=1 n

Extension of the theory to dependent random variables, and then to multivariate
and spatial settings were particularly stimulating and useful in applications, we
refer here only to Adler [1], Leadbetter [19], [20], Beirlant et al. [7], de Haan and
Ferreira [15] and Resnick [22].

In this paper we focus on the multivariate case in the weakly dependent setting.
Let Ri = [0,00)%. We consider a stationary sequence of Rifvalued random vec-
tors (X,). In the ii.d. case it is well known that weak convergence of the scaled
maximum is equivalent to the regular variation of the distribution of X, i.e.
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if and only if
Xl v
nP(—E-) = u(-), (1.1)
an
where Y is a random vector with distribution function Fy(x) = e #0021l 2 ¢ R‘i,
u is a Radon measure and (a,,) a sequence of positive real numbers such that

nP(|| X1] > an) — 1 as n — oo,

see Proposition 7.1 in Resnick [22]. The arrow ” % ” above denotes vague conver-
gence of measures, and [[a, b]] the product segment, i.e.

[[a,b]] = [a',b'] x [a%,b%] x --- x [a?, DY)

for a = (a',...,a%),b = (b!,...,b%) ERi.
In the i.i.d. case relation () is also equivalent to the functional convergence of
stochastic processes of partial maxima of (X,,), i.e.

My(-) =\ = S Y(-) (1.2)

in D([0,1], R%), the space of R4 —valued cadlag functions on [0, 1], with the Skoro-
hod J; topology, with the limit Yj(-) being an extremal process, see Proposition
7.2 in Resnick [22].

In this paper we are interested in the investigation of the asymptotic distribu-
tional behavior of the processes M, (-) for a sequence of weakly dependent Rif
valued random vectors that are jointly regularly varying. Since we study extremes
of random processes, nonnegativity of the components of random vectors X, in
reality is not a restrictive assumption.

First, we introduce the essential ingredients about regular variation, weak de-
pendence and Skorohod topologies in Section 2} In Section [3] we prove the so called
timeless result on weak convergence of scaled extremes M,,, based on a point process
convergence obtained by Davis and Mikosch [10]. Using this result and a multivari-
ate version of the limit theorem derived by Basrak et al. [5] for a certain time-space
point processes, in Section ] we prove a functional limit theorem for processes of
partial maxima M, (-) in the space D([0, 1], R%) endowed with the Skorohod weak
M, topology. This topology is weaker than the standard M; topology (when d > 1).
The used methods are partly based on the work of Basrak and Krizmanié¢ [3] for
partial sums. Finally, in Section [0l the theory is applied to m—dependent processes,
stochastic recurrence equations and multivariate squared GARCH (p,q) with con-
stant conditional correlations. We also illustrate by an example that the weak M;
convergence in our main theorem, in general, can not be replaced by the standard
M convergence.

2. PRELIMINARIES

In this section we introduce some basic notions and results on regular variation
and point processes that will be used in the following sections.

2.1. Regular variation. Regular variation on Ri for random vectors is typically
formulated in terms of vague convergence on E? = [0, 00]%\ {0}. The topology on E¢
is chosen so that a set B C E¢ has compact closure if and only if it is bounded away
from zero, that is, if there exists u > 0 such that B C E¢ = {x € E¢ : ||z| > u}.
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Here || - || denotes the max-norm on R, ie. |lz|| = max{z’:i =1,...,d} where
z = (2',...,2%) € RY. Denote by C(E?) the class of all R} -valued continuous
functions on E? with compact support.

The vector & with values in Ri is (multivariate) regularly varying with index
a > 0 if there exists a random vector © on the unit sphere ST ' = {z € R? : [|z|| =
1} in R4, such that for every u € (0, o)

Pl > uz, /16l € ) w, ,
RS 2 uP(O € ) (2.1)

w .
as r — 00, where the arrow ”—” denotes weak convergence of finite measures.
Regular variation can be expressed in terms of vague convergence of measures on

B(E?):

”P(aglg € ) i> /L()v
where (a,) is a sequence of positive real numbers tending to infinity and p is a
non-null Radon measure on B(E?).

We say that a strictly stationary R‘fpvalued process (§n)nez is jointly reqularly
varying with index a > 0 if for any nonnegative integer k£ the kd-dimensional
random vector £ = (&1, ..., &) is multivariate regularly varying with index «.

Theorem 2.1 in Basrak and Segers [6] provides a convenient characterization of
joint regular variation: it is necessary and sufficient that there exists a process
(Yo )nez with P(||Yo|| > y) =y~ for y > 1 such that as z — oo,

_ fidi
((‘T ! gn)nEZ‘ HgOH > CL‘) - (Yn)neZa (2'2)
where 7 5957 denotes convergence of finite-dimensional distributions. The process
(Y)nez is called the tail process of (£,)nez-

2.2. Point processes and dependence conditions. Let (X,,) be a strictly sta-
tionary sequence of Rifvalued random vectors and assume it is jointly regularly
varying with index a > 0. Let (Y,,) be the tail process of (X,,). In order to ob-
tain weak convergence of the scaled extremes M,, and the partial maxima processes
M., (+) we will use limit results for the corresponding point processes of jumps and
then by the continuous mapping theorem transfer this convergence results to ex-
tremes and maxima processes. In order to establish these point process convergence
we introduce the following processes

Nn = Z(in/anv Ny, = Zé(i/n,xi/an) for all n € N,
i=1 i=1

where (a,,) is a sequence of positive real numbers such that
nP([| X1 > an) = 1, (2.3)

as n — oo. The point process convergence for the sequence (N,,) was obtained by
Davis and Mikosch [10], while the convergence for the sequence (N¥) in the univari-
ate case was established by Basrak et al. [5], but with straightforward adjustments
it carries over to the multivariate case, see Theorem below. The appropriate
weak dependence conditions for this convergence results are given below. With
them we will be able to control the dependence in the sequence (X,,).
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Condition 2.1. There exists a sequence of positive integers (r,) such that r, — oo
and r,/n — 0 as n — oo and such that for every f € Cf([0,1] x EY), denoting
kn = |n/rn], as n — oo,

ol AN frofel S 0 oo

It can be shown that Condition 2] is implied by the strong mixing property
(cf. Krizmanié [17]). Condition 2] is slightly stronger than the condition A(ay,)
introduced by Davis and Mikosch [10].

Condition 2.2. There exists a sequence of positive integers (r,,) such that r, — oo
and 7, /n — 0 as n — oo and such that for every u > 0,

lim 1imsupP( max || X;| > ua,

m—00 n—oo mSWSTn

I Xo|l > uan) = 0. (2.5)

By Proposition 4.2 in Basrak and Segers [6], under Condition the following
holds

0 = P(sup;>, [|Yil]| < 1) = P(sup,«_,[|Yil| <1) >0, (2.6)

and 6 is the extremal index of the univariate sequence (|| X, ||). Recall that a strictly
stationary sequence of nonnegative random variables (&,) has extremal index 0 if
for every 7 > 0 there exists a sequence of real numbers (u,) such that

lim nP(& > up) = 7 and lim P( max §; < un> —e 07 (2.7)

n— 00 n—00 1<i<n

It holds that @ € [0,1]. In particular, if the &, are i.i.d. then ([27) can hold only
for # = 1. For a detailed discussion on joint regular variation and dependence
Conditions 1] and 2] we refer to Basrak et al. [5], Section 3.4.

Under joint regular variation and Conditions 2.1 and 2:2] by Theorem 2.8 in
Davis and Mikosch [10] we obtain the convergence in distribution of point processes
N,, to some N, which by Theorem 2.2 and Corollary 2.4 in [I0] has the following

cluster representation
d
NEYD dran (2.8)
i g

where Y 7, dp, is a Poisson process on R with intensity measure x given by
K(dy) = 0oy~ 110 ) (y) dy, and Z;’;l 0Q.;»% > 1,areiid. point processes whose
points satisfy sup; |Qij]l = 1, and all point processes are mutually independent. For
a more precise description of the distribution of point process E;’;l dq,, see [10].

Then by the same arguments as in the proof of Theorem 2.3 in [5] one obtains
the following result (cf. also Basrak and Krizmani¢ [3]).

Theorem 2.3. Assume that Conditions 21 and hold for the same sequence
(rn). Then for every u € (0,00) and as n — oo,

Ny 4 N = ZZ(ST( W wzi) ; (2.9)
[0,1]xEd i 0, 1) xEd

in [0,1] x E¢ and

1) >, 6Ti(u) is a homogeneous Poisson process on [0, 1] with intensity Ou™,
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(2) (Z] dz,;)i is an i.i.d. sequence of point processes in E¢, independent of
> (5Ti(u>, and with distribution equal to (3 ;e 0y, | sup;<_1 [[Yill < 1).

2.3. The weak M; topology. The stochastic processes that we consider have
discontinuities, and therefore it is natural for the function space of sample paths
of these stochastic processes to take the space D([0,1],R%) of all right-continuous
R? —valued functions on [0, 1] with left limits.

In the one dimensional case (cf. Krizmanié¢ [16]) the partial maxima processes
M, (-) converge to an extremal process in the space D([0,1],R;) equipped with
the Skorohod M; topology. In this paper we extend this result to the multivariate
setting, but with the weak M; topology, since as we show later the direct gener-
alization of the one-dimensional result to random vectors fails in the standard M;
topology on D([0,1],R%) for d > 2. In the sequel we give the definition of the weak
M, topology.

For z € D([0,1],R%) the completed graph of x is the set

Go = {(t,2) € [0,1] x RY : 2 € [[z(t=), ()]},

where z(t—) is the left limit of 2 at ¢. We define an order on the graph G, by
saying that (t1,21) < (t2, 22) if either (i) t; < ¢y or (i) t1 = t2 and |27 (t1—) —
2| < |27 (ta—) — 23| for all j = 1,...,d. Note that the relation < induces only
a partial order on the graph G,. A weak parametric representation of the graph
G is a continuous nondecreasing function (r,u) mapping [0,1] into G,, with r €
C([0,1],[0,1]) being the time component and u = (u',...,u?) € C([0,1],R%) being
the spatial component, such that 7(0) = 0,7(1) = 1 and u(1) = x(1). Let I, (x)
denote the set of weak parametric representations of the graph G,. For x1,z9 €
D([0,1],R%) define

dw (21, 22) = inf{|lr1 — rallo,1y V Jur — ualljo,1) = (re,us) € Mow(2),1 = 1,2},

where ||z|jo,1) = sup{||z(t)|| : ¢t € [0,1]}. Now we say that z,, — « in D([0,1],R%)
for a sequence (z,,) in the weak Skorohod M; (or shortly W M) topology if dy, (@, )
0 as n — oo. The W M; topology is weaker than the standard (or strong) M; topol-
ogy on D([0,1],R%). For d = 1 the two topologies coincide. The WM topology
coincides with the topology induced by the metric

dy(x1, 29) = max{dar, (¢, 23) : 5 =1,...,d} (2.10)
for z; = (z},...,2¢) € D([0,1],R%) and i = 1,2 (here dys, denotes the standard

Skorohod M; metric on D([0,1],R4)). The metric d,, induces the product topology
on D([0,1],R%). For detailed discussion of the strong and weak M; topologies we
refer to Whitt [24], sections 12.3-12.5. Recall here the definition of the metric dy, .

For z € D([0,1],R%) we define the set
T, ={(t,2) €[0,1] xRL : z € [x(t—),z(t)]},

where [a,b] = {Aa+(1=A)b:0< A < 1} fora,b € RY. We say (r,u) is a parametric
representation of ', if it is a continuous nondecreasing function mapping [0, 1] onto
I';. Denote by II(z) the set of all parametric representations of the graph I';,. Then
for 1,22 € D([0,1],R%)

dur, (21, 22) = inf{{|r1 — 7rallo,1) V [lur — uz2lljo,) : (ri, ui) € I(z:),i = 1,2}
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3. WEAK CONVERGENCE OF PARTIAL MAXIMA M,

In this section we establish weak convergence of the multivariate partial max-
ima M, by generalizing the corresponding one dimensional result given in Kriz-
mani¢ [16]. Let (X,,) be a strictly stationary sequence of R4 -valued random vec-
tors, jointly regularly varying with index o € (0,00) and assume Conditions [2.1]
and hold. Then by (Z8)) it holds that, as n — oo,

Ny = 0x,/a, 4N = > ks
i=1 i g

where (a,,) is chosen as in ([Z3). Denote by M, (E?) the space of Radon point
measures on E? equipped with the vague topology. Recall M,, = a;,* Vi, Xi =

(agl \/?:1 Xik)k:l ..... d’

Theorem 3.1. Let (X,,) be a strictly stationary sequence of Rifvalued random
vectors, jointly reqularly varying with index o € (0, 00). Suppose that Conditions[21]
and[2.2 hold. Then, as n — oo,

M, 5 M =\/\/ PQi.
i J
Proof. Let € > 0 be arbitrary. The mapping T%: M,(E?) — R% defined by

k
i=1 i=1 k
is continuous on the set

Ac={ne Mp(Ed) :n({(y1,-..,y4) : yi = € for some i}) =0}.

One can see this by showing the continuity of the components

TEk ( i 5m§) = <7 xfl{fo[e,oo)}
=1 =1

(cf. the one dimensional case in Krizmanié¢ [16]).
N has no fixed atoms (see Lemma 2.1 in Davis and Mikosch [I0]), i.e. P(N €
A.) =1, and therefore by the continuous mapping theorem we get

=1,....d

Mle,00) = To(N,) % T.(N) = Mle,00)  as n — oo, (3.1)

with the notation

MpB = (M}B)=1,..4= (aﬁl \/ Xz'kl{anleeB}) ’
i=1 k=1,..., d

and
MB = (M*B)t=1,....a = (\/ V Bijl{PiijeB})
i=1j=1 k=1,....d
for any Borel set B in R;. Obviously
Mle,00) = M(0,00) = M (3.2)

almost surely as € — 0.
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In order to obtain M, % M, i.e. M., (0, 0) 4 M (0, 00) as n — 0o, by Theorem
3.5 in Resnick [22] it suffices to prove that

lim lim sup P(|| My, [, 00) — M, (0, 00)]| > &) =0 (3.3)
e=0 pooo
for any § > 0. Since for arbitrary real numbers x1,...,Z,,y1, ..., Yn the following
inequality
‘\/lvi_\/yi S\/|$i—yi| (34)
i=1 i=1 i=1

holds, note that
|M7]§[6, OO) - MS(O, OO)| < MS(O, 6)
forall k =1,...,d, and this yields

d
1My, [e, 00) = My (0,00) || = \/ [Mi[e, 00) = M} (0,00)| < [ My (0,€)]|.  (3.5)
k=1
Take now an arbitrary s > «. Then using stationarity and Markov’s inequality
we get the bound

Xk
P01 9 < op( Zhi > )
k=1,...d "

d d
XF 1 s
< nZP( al 1{Xf<€an} > 5) < "Z 55as E((X{C) 1{Xf<€an})
k=1 n k=1 n

d

n S S

= g > [E((Xf) Lt <ean X1 | >ean}) T BIXT) 1{Xf<ean,||X1H§ean}):|
" k=1

d s
% Z [GSP(”Xln > Gan) + E(H)ii” 1{”X1||S€an}>i|
k=1 n

IN

esd E(IX1)* 1 x, 1 <eany)
= -nP (| X1]| > €an)|1 ! S E
5o P> ca >[ T P > ean)
Since the distribution of || X3|| is regularly varying with index «, using (23)) it
follows immediately that

(3.6)

nP(|| X1 > ea,) — ¢
as n — oo. By Karamata’s theorem

i PUX Lgixiceany) _
im = .
n—00 GSGZP(HXIH > ean) Ss—«

Thus from B.6]) we get

lim sup P([[ Mo (0, )| > 6) < &9

n—oo 68

1+ =]

s—a
Letting € — 0 we finally obtain

lim lim sup P(||M,,(0,€)|| > ) =0,

e—0 0o

n

and taking into account (8], relation (B3)) follows. Hence M, 4 Masn—oo. O
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Remark 3.2. From the representation in (28) and the fact that sup; [|Q;;|| = 1 it
follows that ||M|| is a Fréchet random variable, since

parl <o) = p(max \/\/ P <o) =p(\V/R<a)
3 J i

= P(chpi (z,00) = ()) _ pr(@o0) _ b2
for z > 0.

4. FUNCTIONAL CONVERGENCE OF PARTIAL MAXIMA PROCESSES M,, ()

In this section we show the convergence of the partial maxima process

|nt] k
X; X;
- = ( \/ - > , te [07 1]7
an an /) p=1,...d

=1

to an extremal process in the space D(][0, 1], Rff_) equipped with Skorohod weak M;
topology. Similar to the one dimensional case treated in Krizmani¢ [16] we first
represent M, () as the image of the time-space point process N under a certain
maximum functional. Then, using certain continuity properties of this functional,
the continuous mapping theorem and the standard ”finite dimensional convergence
plus tightness” procedure we transfer the weak convergence of N in ([29) to weak
convergence of M, (-).

Extremal processes can be derived from Poisson processes in the following way.
Let £ = Y, 8(1,.,) be a Poisson process on [0, 00) x E¢ with mean measure A x v,
where )\ is the Lebesgue measure and v is a measure on E? satisfying

v({z e B ||z|| > §}) < o0
for any § > 0. The extremal process M (-) generated by ¢ is defined by

M) =\/ jx. t>0.

th<t

Then for z € E% and ¢ > 0 it holds that

P(M(t) < z) = e~ {0l
with the notation that for two vectors y = (y*,...,y%) and z = (2%,...,29), y < 2
means y* < 2¥ for all k = 1,...,d (cf. Resnick [22], section 5.6). The measure v is

called the exponent measure.
Now fix 0 < v < u < 00 and define the maximum functional

o™ M,([0,1] x EY) — D([0,1],R%)
by

¢(u)(Zé(ti,(w},...,mf)))(t) = ( \/ xy 1{u<m§<oo})k_1 r t € [0,1],
i t;<t oy

where the supremum of an empty set may be taken, for convenience, to be 0. ¢(*)
is well defined because [0, 1] x EZ is a relatively compact subset of [0,1] x EZ. The
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space M, ([0,1] x E?) of Radon point measures on [0, 1] x E¢ is equipped with the
vague topology and D([0,1],R%) is equipped with the weak M; topology. Let

A = {n e M,([0,1] x EZ) : ({0,1} x E¢) = 0 and
n([0,1] x {z = (z',...,2%) : 2 € {u, 00} for some i}) = 0}.

Then the point process N () defined in [239) almost surely belongs to the set A, see
Lemma 3.1 in Basrak and Krizmanié¢ [3]. Now we will show that ¢(*) is continuous
on the set A.

Lemma 4.1. The mazimum functional ¢(): My ([0,1] x E) — D([0,1],R%) is
continuous on the set A, when D([0,1],R%) is endowed with the weak My topology.

Proof. Take an arbitrary € A and suppose that 7, — 7 in M,([0,1] x EZ).

We need to show that ¢(*)(n,) — ¢ (n) in D([0,1],R%) according to the WM,

topology. By Theorem 12.5.2 in Whitt [24], it suffices to prove that, as n — oo,
(&) (1), () = maxdar, (94 (), 6 () =0,

EEREE)

where ¢() (&) = (W F(€))g=1....a for &€ € M,(]0,1] x EZ).

Now one can follow, with small modifications, the lines in the proof of Lemma 4.1
in Krizmani¢ [I6] to obtain das, (¢ *(n,), 8 *(n)) — 0 as n — oo. Therefore
dp(™ (n,), 9™ (1)) — 0 as n — oo, and we conclude that ¢(*) is continuous at
7. ([

Lemma 4.2. Assume&, =), 5(t(_n> jmy» = 0, are Poisson processes on [0, 00) x
E¢ with mean measures \ X 3, and let H, be the corresponding extremal processes
generated by the &, s. If

Bn - Bo as n — 0o, (4.1)
then the finite dimensional distributions of H,(-) converge to the finite dimensional
distributions of Ho(-) as n — oo.
Proof. By Lemma 6.1 in Resnick [22], from (@) we obtain that, as n — oo,

Bn([[0, 2]]%) — Bo([[0,2]]%) (4.2)
for all continuity points z of By([[0, -]]¢)-
Similar to the univariate case, the finite dimensional distributions of H,(-) =

\/t(_n)<_ji(n) are of the form

B e_tlﬁn([[ov/\?l:l z;]]°) | 6_(t2_t1)18n([[0>/\;12 z3]]°) | . 6_(tm_tmfl)ﬂn([[oﬂm]]c),
for 0 <t; <to <...<tm<1landzi,...,z,m € EL. Letting n — oo and using
(#2) we immediately obtain that the right hand side in the last equation above
converges (in the continuity points 1, ...,z of By([[0, -]]¢)) to

e~ t1Bo(OAZ il]°) | o= (t2=t)Bo((OAZ, il]?) . L o= Em—tm—1)Bo([[0,m]]%)

But since this limit is in fact P(Ho(t1) < x1,..., Ho(tm) < @), we conclude that
the finite dimensional distributions of H,(-) converge to the finite dimensional
distributions of Hy(-) as n — co. O
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Theorem 4.3. Let (X,,) be a strictly stationary sequence of Rifvalued random
vectors, jointly reqularly varying with index o > 0. Suppose that Conditions [2.1]
and[2.2 hold. Then the partial maxima stochastic process

) o
M, (t) = \:/1 o tela,
satisfies
Mn()iﬂ\’Z() as n — 0o,
in D([0,1],RY) endowed with the weak M topology, where M(-) is an extremal
process.

Remark 4.4. The exponent measure v of the limiting process M (+) in the theorem

is the vague limit of the sequence of measures (1) (u > 0) as u | 0, with ()
being defined by

v (e y)) = u“P(u V (% 1) on,a € (@]l sup Vi) < 1),
i>0 =

forx = (z!,...,2%), y = (v}, ..., y?) € E¢ such that ((x,y]] = (z!,y ] x---x (2%, y9|
is bounded away from zero. Here (Y},) is the tail process of the sequence (X,,).

Proof. (Theorem[.3) Using the techniques from the proof of Theorem 3.4 in Basrak
and Krizmanié [3] we obtain that the point process

N —
N - Z5(Ti(u)xuvj(Zijl{Zk‘>l})k:1 ,,,,, d)

is a Poisson process with mean measure \ x v(%).
Consider now 0 < v < u and

Xk
SN o) () = 6 N o)) = V(T ),

i/n< -

which by Theorem 2.3] Lemma [£.T] and the continuous mapping theorem converges
in distribution in D([0, 1], RY) under the WM, topology to

u v d U v d
PN () = N g yyma) () =\ \/U(szjl{zfj>1})k:1,...,d-
This can be rewritten as
[n-]

Xk
M () 1:\/1 G 1{ xk >u} k=1....d = MW" () T!.KZ as n — 0o,

an

(4.3)

4 g (F),

in D([0, 1], R%) under the W M metric, since ¢(*) (N(*)) = () (N ()

where _
N(u) = Za(Ti»K§”)>

is a Poisson process with mean measure A x v(%).
Note that the limiting process M (“)( -) is an extremal process with exponent
measure (%) and therefore

P(M)(t) < ) = P(N™((0,4] x [[0,2])°) = 0) = e (0= (4.4
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for t € [0,1] and z € E%. Since the function m: D([0,1],RY) — R% defined by
7m(y) = y(1) is continuous (see Theorem 12.5.2 (iii) in Whitt [24]), an application
of the continuous mapping theorem to relation (@3] yields

MM (1) S M@ (1) asn— 0. (4.5)

Apply now the notation from the proof of Theorem [B.1] to see that M,(zu)(l) =

M, (u,00). Hence comparing (31) and (X) we conclude that M) (1) 4 M (u, 00).
Further, from (B2) it follows that

M@ LM asu—0, (4.6)
which means that
Fu(z) :=P(M™Q1)<z)— F(z):=P(M <z) asu— D0, (4.7)
for all x € E? that are continuity points of F. From (&4]) we obtain
Fy(x) =P(M™(t) < x)

for t € [0,1] and = € E¢, which implies that the multivariate distribution function
F, is max-infinitely divisible (cf. Resnick [22], Section 5.6). Since the class of max-
infinitely divisible distributions is closed in R? with respect to weak convergence
(cf. Proposition 5.1 in Resnick [21]), relation (A7) implies that F' is max-infinitely
divisible, and hence by Proposition 5.8 in Resnick [21] there exists an exponent
measure p on E? such that

F(z) = e~ {020, z € B
Therefore, from ({1 we obtain, as u — 0,
v ([0, 2])) = v([[0, 2]]%)

for all continuity points x of v([[0, -]]°). Now an application of Lemma 6.1 in
Resnick [22] yields that v(*) % v as u — 0. Therefore, by Lemma@2]it follows that
the finite dimensional distributions of M (-) converge to the finite dimensional
distributions of M (-) as u — 0, where M () is the extremal process generated by
the Poisson process T' = ), §(1,, k,) With mean measure Axv, i.e. M(t) = V1< Ki,
t e 0,1].

This implies that the finite dimensional distributions of each coordinate M (Wk( )
(k=1,...,d) converge to the finite dimensional distributions of M’“( -)asu— 0.
According to the arguments used in the univariate case (see the proof of Theorem 4.3
in Krizmani¢ [16]) this suffices to conclude that M®*(.) % A7k (-) in D([0, 1], R)
with the M; topology. Hence {M ¥ : 4 > 0} is tight, and thus by Lemma 3.2 in
Whitt [25] it follows that {M () : u > 0} is also tight (in the space D([0,1],R%)
with the product topology generated by the metric dp,).

From the convergence of finite dimensional distributions and tightness for pro-
cesses M (W () we obtain the convergence in distribution, i.e. as u — 0,

M@y L M) (4.8)

in D(]0,1], Ri) with the W M; topology.
If we show that

lim lim sup P(d, (M, (- ), M{*)(-)) > €) =0

u—=0 noo
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for any € > 0, from [@3]) and [@8)) by a variant of Slutsky’s theorem (see Theorem

3.5 in Resnick [22]) it will follow that M, () 4 M(-) as n — oo, in D(]0, 1],R4)
with the W M3 topology.

Since the metric d,, on D([0,1], R%) is bounded above by the uniform metric on
D([0,1],R%) (see Theorem 12.10.3 in Whitt [24]), it suffices to show that

limlimsupP< sup ||M{W(t) — M, (t)|| > 6) =0.
ul0 n—oo 0<t<1
Recalling the definitions and using the inequality ([34) , we have

P( sup [|M() — Ma(8)]| > )
0<t<1

[nt] X [nt] Xk
V <an1{xf>u}‘ V a>' >f>

an i=1

3
sup max \/ —1xr > €
o<t<1 k=1,..., d . 1 an —L gu}

<t< i n

(1Y (), 1>

.....

d n Xlk
< ZP(\/ Z1 . >e).
k=1 -

7
i—1 an

Since the last term above is equal to zero for u € (0, ¢), it holds that

lim lim sup P (d, (M (- ), MM () >e) =0,
u—

n—oo

and this concludes the proof. (Il

Remark 4.5. The W M; convergence in Theorem [£3]in general can not be replaced
by the standard M; convergence. This is shown in Example 5.1

The problem in our proof if we consider the standard M, topology is Lemma [4.1]
which in this case does not hold. To see this, fix u > 0 and define

T =0G-% uo) F OG- 02wy frnz3.
Then 71, — 71, where

1= 0(1,(2u,0)) T9(1,0,20)) € A
It is easy to compute

¢ () (8) = 2uly 1 (1) and G 3(n,)(t) = 2ul
Then
Yn(t) 1= ¢ () (8) = "2 () (8) = 2ulpy_x a1 (1), teE[0,1],
and similarly
y(t) = ¢ ()(1) = ¢ 2 (m)(1) =0, t€0,1].
For all parametric representations (ry, uy) € (yy,) and (r,u) € II(y) we have

l[tn —ulljo,1) = 2u.
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Hence dpr, (Yn,y) > 2u for all n > 3, which means that dps, (yn, y) does not converge
to zero as n — 0o. Since

dar, (Ynsy) < dar, (0 (0a), 6 ()

(see Theorem 12.7.1 in Whitt [24]), we conclude that dys, (6™ (1), ¢ (n)) does
not converge to zero. Therefore the maximum functional ¢(*) is not continuous at
n with respect to the standard M; topology. Since 1 € A we conclude that ¢(*) is
not continuous on the set A.

5. EXAMPLES

Example 5.1. (A m-dependent process). Let (Z,)ncz be a sequence of i.i.d. unit
Fréchet random variables, i.e. P(Z, < z) = e~ /% for x > 0. Hence Z, is regularly
varying with index o = 1. Take a sequence of positive real numbers (a,,) such that
nP(Z1 > an) — 1 as n — oco. Now let

Xp = (Zn,Zn-r.- . Zn-m), ne€L.

Then every X,, is also regularly varying with index v = 1. By an application of
Proposition 5.1 in Basrak et al. [4] it can be seen that the random process (Xp,)
is jointly regularly varying. Since the sequence (X,) is m—dependent, it follows
immediately that Conditions 2] and 22 hold (cf. Basrak and Krizmanié [3]).

Therefore (X,,) satisfies all the conditions of Theorem 3], and the corresponding
partial maxima process M,(-) converge in distribution in D([0, 1],RT+1) to an
extremal process M (+) under the weak M; topology.

Next we show that M, (-) does not converge in distribution under the standard
M, topology on D([0, 1], RTH). This shows that the weak M; topology in Theo-
rem in general can not be replaced by the standard M; topology. In showing
this we use, with appropriate modifications, a combination of arguments used by
Basrak and Krizmanié¢ [3] in their Example 4.1 and Avram and Taqqu [2] in their
Theorem 1 (cf. also Example 5.1 in Krizmanié¢ [16]).

For simplicity take m = 1. We have M, (t) = (ML(t), M2(t)), where

0=\ 2 2=\
M,(t) = — and M;(t) = e
j=1 %" j=1 n
Let
Vi(t) := ML(t) — M2(t), te][0,1].

The first step is to show that V,,( - ) does not converge in distribution in D([0, 1], R)
endowed with the (standard) M; topology. For this, according to Skorohod [23]
(cf. also Proposition 2 in Avram and Taqqu [2]), it suffices to show that

lim lim sup P(ws (V5 (+)) > €) >0 (5.1)
=0 npooo
for some € > 0, where
ws(z) = sup M(z(ty), z(t), z(t2))
t1 <t <t

0<ts—t1 <6
(x € D(]0,1],R4),d > 0) and

0, if To € [1'171'3],

M (1,22, 23) = { min{|ze — 71/, |z3 — 22|},  otherwise,
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Note that M (xy,x2,x3) is the distance form z3 to [z1,x3], and ws(x) is the M,
oscillation of x.

Let i = /(n) be the index at which maxj<;<n—1 Z; is obtained. Fix € > 0 and
introduce the events

An.e ={Zy > ean} = { max Z; > ean}
1<i<n—1

and
B ={Zy > €a, and Il # 0, —i' <1 <1, such that Z; 1, > ea,/4}.

Using the facts that (Z;) is an i.i.d. sequence and nP(Z; > ca,) — 1/cas n — o0
for ¢ > 0 (which follows from the regular variation property of Z;) we get

: _ 1 _ ,—1/e
nhﬂngo P(Ap)=1—c¢ (5.2)
and
4
limsup P(By,) < — (5.3)
n—o00 €

(see Example 5.1 in Krizmani¢ [16]).
On the event A, . \ Bp one has Z; > eay, and Z; 4 < ea, /4 for every [ # 0,
—i’ <1 <1, so that

V-
Voa, a,
j=1
and
i —1 7 i 7 i —1 7 ¢
J Jj—1 Jj—1
=7 < =
max{\/an,_ an’\/ an}_él
j=1 Jj=1 j=1
Therefore
7! v Z v Zi_q € 3¢
W)=V 2oy he gt
n n an 4 4
Jj=1 Jj=1
V(z’—l)_z,\/l Z, Z,\?l Zj_4 c { € e}
" n N . (7% . (79 ’ ’
Jj=1 Jj=1
v (z/+1) :i/+lé _l/+1 Ziy _ T B A —0
" n . n (27 an an ’
=1 Jj=1
and these imply
7! =1 3¢ € €
n\— ) — Vn oV T =3 4
V(n) V( )’>4 172 (5:4)
and
i +1 i’ 3e
Vn( )—Vn(—>‘>—. 5.5
n n 4 ( )

Note that on the set A, . \ By, it also holds that

/ /

w5 # () v (5]
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which implies that

(5 () (D) (1)
(D) (55

Taking into account (B.4) and (B3] we obtain

!/

() -l

)

wa/n(Va(+)) = sup M(Vi(t1), Va(t), Va(t2))
0 gt;g—ttf ;22/n
> u(n(50) w () v () > 5

on the event A, . \ By, .. Therefore, since ws( - ) is nondecreasing in ¢, it holds that

linrr_l)i£fP(An,E \ Bne) < linIr_1)i£fP(w2/n(Vn( ) > ¢€/2)

< lim limsup P(ws (Vi (+)) > €/2). (5.6)
0—=0 pn—oo
Note that z2(1 — e~'/%) tends to infinity as x — oo, and therefore we can find
¢ > 0 such that €2(1 — e~ /) > 4, i.e.
4
—1/e
1—e / > 6_2
For this €, by relations (5.2)) and (5.3)), it holds that
lim P(A,, ) > limsupP(B,..),

n—0o0 n—o0
i.e.
liminf P(A, e \ Bpe) > ILm P(A,,) —limsupP(By,) > 0.

n—00 n n—o0

Thus by (B.6]) we obtain
lim lim sup P(ws(Vo.(+)) > €/2) >0

=0 n—oo
and (&) holds, i.e. V,(-) does not converge in distribution in D([0, 1], R ) endowed
with the (standard) M; topology.

If M, (-) would converge in distribution to some M (-) in the standard M,
topology on D([0,1],R%), then using the fact that linear combinations of the co-
ordinates are continuous in the same topology (cf. Theorem 12.7.1 and Theorem
12.7.2 in Whitt [24]) and the continuous mapping theorem, we would obtain that
V() = M}(-) = M2(-) converges to M'(-) — M2(-) in D([0,1],R,) endowed
with the standard M; topology, which is impossible, as is shown above.

Example 5.2. (Stochastic recurrence equation). Suppose the d-dimensional ran-
dom process (X,,) satisfies a stochastic recurrence equation

X, =A,Xn_1+B,, nel,

for some i.i.d. sequence ((A4y, By)) of random d x d matrices A,, and d-dimensional
vectors B,,, all with nonnegative components. Then it can be shown that under
relatively general conditions the process (X,,) satisfies all conditions of Theorem [4.3]
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(see Example 4.2 in Basrak and Krizmani¢ [3]), and hence the corresponding partial
maxima process M, () converges in D([0,1],R%) with the weak M; topology.

Example 5.3. (Multivariate squared GARCH process). We consider the multivari-
ate GARCH (p, q) model with constant conditional correlations, which is defined as
follows; see Ferndndez and Muriel [I1]. Let (9,)nez be a sequence of i.i.d. random
vectors with mean vector 0 and covariance matrix R such that R(i,7) = 1 for all
i =1,...,d. The stochastic process (X, )nez is a CCC-GARCH (p,q) process if it
satisfies the following equations

6(H,) = C—f—zp:Aié(Xn_in_i)+zq:Bj6(Hn_j)7
i=1 j=1
D, = diag(H,(1,1)Y? H,(2,2)"2,..., Hy(d,d)"/?),
H, = D,RD,,
Xn = Dypnn,

where for a square d x d matrix M, 6(M) denotes the vector whose entries are
S(M)(i) = M(i,%) for ¢ = 1,...,d (i.e. the main diagonal of M), and diag(M)
denotes the diagonal matrix with the same diagonal as M. The vector C is assumed
to be positive and the matrices A;, B; are assumed to be nonnegativefori =1,...,p
and j=1,...,q.

Assume now the matrices A;, B; have no zero rows, n; has a strictly positive
density on R? and for any v > 1 there exists h > 1 such that 4" < E[(n{)%] < oo
forall j=1,...,d. Put

Y = (6(Hns1)" oo 6 (Hu—qr2) ", 6(Xn X)), 6(Xnmpra X o))

Then by Theorem 5 in [T1] there exists & > 0 such that for every x € R4P+a—1\ {0},
Z?ip;rq*l) 2'Y} is regularly varying with index a. If a is not an even integer and
71 has symmetric marginal distributions, from Corollary 6 in [I1] we know that the
process (X,,) is jointly regularly varying with index 2«. Further (X,,) is S—mixing
(see Remark 4 in [I1], cf. also Boussama [8]), and since S—mixing implies strong
mixing (cf. Bradley [9]), Condition 21] holds. As in the one-dimensional case in
Basrak et al. [4] it can be proved that (X,,) satisfies Condition

The joint regular variation property and Conditions 2.1] and transfer imme-
diately to the squared CCC-GARCH (p,q) process

X12z = ((X711)27 s (Xg)2)

(with the remark that this process is jointly regularly varying with index «), and
from Theorem [£3] we conclude that the corresponding partial maxima process of
(X?2) converges in distribution in D([0,1],R%) to an extremal process under the
weak M topology.
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