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a b s t r a c t

Most commonly used distributions on the unit hypersphere Sk−1
= {v ∈ Rk

: v⊤v = 1},
k ≥ 2, assume that the data are rotationally symmetric about some direction θ ∈ Sk−1.
However, there is empirical evidence that this assumption often fails to describe reality.
We study in this paper a new class of skew-rotationally-symmetric distributions on Sk−1

that enjoy numerous good properties. We discuss the Fisher information structure of
the model and derive efficient inferential procedures. In particular, we obtain the first
semi-parametric test for rotational symmetry about a known direction. We also propose
a second test for rotational symmetry, obtained through the definition of a newmeasure of
skewness on the hypersphere. We investigate the finite-sample behavior of the new tests
through a Monte Carlo simulation study. We conclude the paper with a discussion about
some intriguing open questions related to our new models.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Directional data X1, . . . ,Xn on unit spheres, or simply spherical data, are observations taking values on the non-linear
manifold Sk−1

= {v ∈ Rk
: v⊤v = 1} for some integer k ≥ 2. Over the past decade, there has been a strong surge of interest

in directional statistics, thanks in part to the publication of cornerstone reference books [8,20] and the emergence of new
applications in structural bioinformatics, genetics, cosmology and machine learning. Meanwhile, the use of spherical data
continues to spread in more traditional fields such as paleomagnetism, meteorology or studies of animal behavior.

In the literature on spherical data, the distribution of the Xi’s is commonly assumed to be rotationally symmetric about
some location parameter θ ∈ Sk−1. The probability density function (pdf) with respect to the usual surface area measure on
spheres is then taken to be of the form

x → fθ;k(x) = cf ,kf (x⊤θ), x ∈ Sk−1 (1)
where the angular function f : [−1, 1] → R+ is absolutely continuous and cf ,k is a normalizing constant. The terminology
‘‘angular function’’ is closely related to rotational symmetry as it reflects the fact that the distribution of Xi only depends on
the angle (colatitude angle in case k = 3) between θ and Xi for each i ∈ {1, . . . , n}. A classical example of such a distribution
is the Fisher–von Mises–Langevin (FvML) distribution with density

x →

κ

2

k/2−1 1
2π k/2Ik/2−1(κ)

exp(κx⊤θ), x ∈ Sk−1

where κ > 0 is a concentration parameter and Ik/2−1 the modified Bessel function of the first kind and of order k/2 − 1.
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In practice, however, not all real-life phenomena can be represented by symmetric models. For instance, Leong and
Carlile [13] provide evidence that rotational symmetry is a too strong assumption in neurosciences while Mardia [19] ex-
plains that in bioinformatics, especially in protein structure prediction, data can be skewed. Motivated by these examples,
we study in the present paper a spherical adaptation of the celebrated skew-symmetric distributions on Rk. The vast re-
search stream related to these distributions was initiated in the seminal paper [3] by Azzalini, who investigated the scalar
skew-normal density 2φ(x − µ)Φ{δ(x − µ)}, x, µ, δ ∈ R, with φ and Φ respectively the standard Gaussian density and
distribution function. Here µ is a location parameter and δ is a skewness parameter. As an upshot of several generalization
efforts, [4,27] proposed the aforementioned multivariate skew-symmetric distributions with pdf

2fk(x − µ)Πk(x − µ, δ), x, µ, δ ∈ Rk (2)

where fk is a centrally symmetric pdf (i.e., fk(−x) = fk(x) for all x ∈ Rk) and Πk : Rk
× Rk

→ [0, 1] satisfies
Πk(−x, δ) + Πk(x, δ) = 1 and Πk(x, 0) = 1/2 for all x, δ ∈ Rk. This multiplicative perturbation of symmetry enjoys
numerous attractive features, including elegant random number generation procedures and a very simple normalizing con-
stant. Our spherical adaptation will enjoy the same advantages. The usefulness of the perturbation approach on the sphere
was already put forward by Jupp et al. [10], who recently provided a general analysis of this approach.

We also derive in this paper various results that are important when asymptotic inference within the new model is
considered. More precisely, we show that (i) the Fisher information for this model is singular if and only if the kernel
rotationally symmetric density is FvML and (ii) how to construct a new semi-parametric test for rotational symmetry about
a fixed center θ that will be optimal within the entire class of rotationally symmetric distributions. More precisely we show
that the classicalWatson score test (see [28]) for spherical location is locally and asymptotically optimal, in the Le Cam sense,
for testing the null hypothesis of rotational symmetry against the proposed skew alternatives. To the best of our knowledge
this result is the first to consider the problem of rotational symmetry from a semi-parametric angle. Moreover, the test we
obtain is uniformly optimal against the new class of skew distributions on the sphere. We accompany this test by a natural
competitor, obtained through the definition of a novel measure of skewness on the sphere. The derivation of its asymptotic
distribution is of independent interest.

The paper is organized as follows. In Section 2we formally define the skewdistributions anddiscuss howour construction
is linked to skew densities on the circle; we further establish a stochastic representation allowing us to generate data from
our model. In Section 3 we provide the score functions for location and skewness and the corresponding Fisher information
matrix; we also investigate the underlying Fisher singularity issue. Turning our attention towards inferential issues, we
build in Section 4 the announced uniformly optimal semi-parametric test for rotational symmetry about a fixed location
θ ∈ Sk−1. In Section 5 we propose a measure of skewness on the sphere and derive from this measure another test for
rotational symmetry. The finite-sample behavior of the new tests is investigated through a Monte Carlo simulation study
in Section 6. We discuss interesting open questions related to our skew-rotationally-symmetric distributions in Section 7.
Finally, Appendix A contains a crucial theoretical development required for the tests of Section 4, and Appendix B collects
the technical proofs.

2. Skew-rotationally-symmetric distributions

As mentioned in the Introduction, we adapt to the spherical setting the skew-symmetric construction from Rk, yielding
the skew-rotationally-symmetric (SRS) distributions. Starting with a rotationally symmetric density (kernel) fθ;k with central
direction θ ∈ Sk−1 as defined in (1), the idea of the construction consists in nesting fθ;k into a larger family of distributions
whose only rotationally symmetric member is the kernel fθ;k. Let ϒθ stand for a k × (k − 1) semi-orthogonal matrix such
that

ϒθϒ
⊤

θ = Ik − θθ⊤ and ϒ⊤

θ ϒθ = Ik−1,

where Iℓ is the ℓ × ℓ identity matrix. Consider a skewing function Π : R → [0, 1], i.e., a monotone increasing continuous
function satisfyingΠ(−y)+Π(y) = 1 for all y ∈ R. Skewness is introduced bymultiplication of the rotationally symmetric
kernel with such a skewing function, turning fθ;k into

x → fθ,δ;k(x) = 2cf ,kf (x⊤θ)Π(δ⊤ϒ⊤

θ x), x ∈ Sk−1 (3)

with δ ∈ Rk−1. The following lemma shows that (3) is a density on Sk−1.

Lemma 1. Let dσk−1(x) stand for the usual surface measure on Sk−1. Then for all θ ∈ Sk−1 and all δ ∈ Rk−1,
Sk−1

fθ,δ;k(x) dσk−1(x) = 1.

A short proof of this result is given in Appendix B. This now allows us to formally define our family of skew distributions on
Sk−1.
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Definition 1. Let cf ,kf (x⊤θ), x ∈ Sk−1, be a rotationally symmetric density with location θ ∈ Sk−1, absolutely continuous
angular function f : [−1, 1] → R+ and normalizing constant cf ,k. LetΠ : R → [0, 1] be a skewing function, i.e., amonotone
increasing continuous function satisfying Π(−y)+Π(y) = 1 for all y ∈ R. Then the spherical distribution with pdf fθ,δ;k(x)
is skew-rotationally-symmetric (SRS) with skewness parameter δ ∈ Rk−1.

Typical examples of skewing functions Π are cumulative distribution functions (cdfs) G of univariate symmetric (about
0) random variables, the most classical being G = Φ . See Section 6.2 of [7] for further examples. Obviously, at δ = 0, we
retrieve cf ,kf (x⊤θ) since Π(0) = 1/2.

Let us now comment on the construction underpinning our pdf (3). In view of (2) it is tempting to define SRS densities
as 2cf ,kf (x⊤θ)Π(x⊤δ). While this construction is appropriate for breaking elliptical symmetry or central symmetry about
µ in Rk, it makes no sense here because x⊤δ does not take into account rotational symmetry around θ, entailing that this
function does not even integrate to 1 over Sk−1. This is why we rather use Π(δ⊤ϒ⊤

θ x), as ϒθϒ
⊤

θ = Ik − θθ⊤ is a projection
matrix onto the tangent space to Sk−1 at θ. Now, every rotationally symmetric random vector X admits the tangent–normal
decomposition

X = (X⊤θ)θ + (1 − (X⊤θ)2)1/2Sθ(X)

= (X⊤θ)θ + (1 − (X⊤θ)2)1/2ϒθUθ(X),

where the sign vectorUθ(X) is uniformly distributed on Sk−2. Thus our construction breaks rotational symmetry at the level
of Uθ(X), as it should. Therefore δ is a (k − 1)-dimensional vector. Moreover, note that ϒ⊤

θ x = (1 − (x⊤θ)2)1/2Uθ(x); thus,
SRS pdfs could as well be spelled out as

2cf ,kf (x⊤θ)Π[{1 − (x⊤θ)2}1/2δ⊤Uθ(x)], (4)

which shows perhaps in a clearer way the reasoning behind the skewing process.
Besides their intuitive construction, the densities (3) enjoy further nice properties. Calculating normalizing constants

is often a very delicate and tedious task on spheres; see, e.g., [11]. This problematic issue is completely avoided here.
Furthermore, the following stochastic representation makes it easy to generate random vectors from (3).

Lemma 2 (Stochastic Representation). Generate Y ∼ fθ;k rotationally symmetric. Then the uniformly distributed sign vector
Uθ(Y) is transformed into

Uθ;Π (Y) =


Uθ(Y) if U ≤ Π[{1 − (Y⊤θ)2}1/2δ⊤Uθ(Y)],

−Uθ(Y) if U > Π[{1 − (Y⊤θ)2}1/2δ⊤Uθ(Y)],

where the random variable U is uniformly distributed on (0, 1) and independent of Y. The SRS vector X with density fθ,δ;k is
obtained as

X = (Y⊤θ)θ + {1 − (Y⊤θ)2}1/2ϒθUθ;Π (Y). (5)

This lemma is proved in Appendix B. Finally, as an illustration of our skew distributions we provide in Fig. 1 contour plots
of various skew-FvML densities.

We conclude this section with a comparison to the circular setting. Umbach and Jammalamadaka [25] suggest skew-
circular densities of the type 2f0(x − θ)G{ω(x − θ)}, x ∈ [−π, π), with location θ ∈ [−π, π), where G(x) =

 x
−π

g(y)dy is
the cdf of some circular symmetric density g and ω is a weighting function satisfying the following three conditions for all
x ∈ [−π, π):

(i) ω(−x) = −ω(x);
(ii) ω(x + 2πp) = ω(x) for all p ∈ Z;
(iii) |ω(x)| ≤ π .

Abe and Pewsey [1] have thoroughly studied a particular instance of this construction, namely G(x) = (π + x)/(2π) and
ω(x) = δπ sin(x) with skewness parameter δ ∈ (−1, 1). The resulting densities

x → f0(x − θ){1 + δ sin(x − θ)}, x ∈ [−π, π)

are said to be sine-skewed. Now, expressing sine-skewed densities in terms of our SRS density (4), we find that Π(x) =

(1 + x)/2 for x ∈ [−1, 1], ϒ⊤

θ x = 1(x ≥ θ) − 1(x ≤ θ) (meaning here that x lies on the right, respectively left, hemisphere
when θ is considered as north pole), the scalar product x⊤θ is cos(x−θ), whence


1 − (x⊤θ)2 here equals | sin(x−θ)|. Thus,

sine-skewed densities are special cases of our SRS distributions on the unit circle S1, and our general construction sheds new
light on these skew-circular densities. Moreover, our Fisher information singularity analysis from the subsequent Section 3
is in agreement with that in [16] on sine-skewed densities.
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Fig. 1. Contour plots of the skew-FvML density with concentration κ = 5 and varying skewness parameter δ = (2(d− 1), 2(d− 1))⊤ for d ∈ {1, 2, 3, 4};
top left: d = 1, top right: d = 2, bottom left: d = 3, bottom right: d = 4. The skewing function Π is the standard Gaussian cdf.

3. Score functions and Fisher information matrix in the vicinity of symmetry

In this section we provide the expression for the location and skewness scores and the associated Fisher information
matrixwhen δ = 0. By absolute continuity (seeDefinition 1),we know that the pdf f is almost everywhere (a.e.) continuously
differentiable. In order to proceed, we need the following essentially technical assumption.

Assumption A. The skewing function Π is a.e. continuously differentiable. Moreover, if ḟ denotes the a.e.-derivative of f
and ϕf = ḟ /f , the quantities Jk(f ) =

 1
−1 ϕ2

f (t)(1 − t2)f̃ (t)dt and Ak(f ) =
 1
−1(1 − t2)f̃ (t)dt are finite, with

t → f̃ (t) =
ωk cf ,k

B
 1
2 ,

1
2 (k − 1)

 f (t)(1 − t2)(k−3)/2, −1 ≤ t ≤ 1 (6)

where ωk = 2π k/2/Γ (k/2) is the surface area measure of Sk−1 and B(·, ·) is the beta function.

Assumption A implies that the score vector exists and that the Fisher information matrix is finite. The function f̃
corresponds to the density of X⊤θ if X ∼ cf ,kf (x⊤θ). For the sake of convenience, we write ϑ = (θ⊤, δ⊤)⊤ ∈ Sk−1

× Rk−1

and fϑ;k for fθ,δ;k. The score vector ℓf ,Π;ϑ(x) at (θ⊤, 0⊤)⊤ = ϑ0 takes the form

ℓf ,Π;ϑ0(x) = gradϑ log fϑ;k(x)|ϑ0 =


(ℓ1

f ;ϑ0
(x))⊤, (ℓ2

Π;ϑ0
(x))⊤

⊤

=


ϕf (x⊤θ){1 − (x⊤θ)2}1/2Sθ(x)
2Π ′(0){1 − (x⊤θ)2}1/2Uθ(x)


,

where the factor 2 in ℓ2
Π;ϑ0

(x) follows from the fact that Π(0) = 1/2. The corresponding (2k − 1) × (2k − 1) Fisher
information matrix 0f ,Π;ϑ0 is then given by

0f ,Π;ϑ0 =


γ11
f ;ϑ0

γ12
f ,Π;ϑ0

(γ12
f ,Π;ϑ0

)⊤ γ22
f ,Π;ϑ0


= (k − 1)−1


Jk(f )(Ik − θθ⊤) 2Π ′(0)Ik(f )ϒθ

2Π ′(0)Ik(f )ϒ⊤

θ 4(Π ′(0))2Ak(f )Ik−1
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where Ik(f ) =
 1
−1 ϕf (t)(1 − t2)f̃ (t)dt . The expression of 0f ,Π;ϑ0 follows from the independence between X⊤θ and Sθ(X)

and the fact that the density of X⊤θ over [−1, 1] is given by f̃ in (6). We have left out f and Π as indices whenever they do
not appear in the related expressions.

A large amount of literature on skew-symmetricmodels onRk has beendedicated to Fisher information singularity issues,
in the vicinity of symmetry, which arise from an unfortunate combination of symmetric kernel f and skewing function
Π(·, ·) in densities (2); see, e.g., [6]. We expose ourselves to the same risk here with the Fisher information for location and
skewness. Therefore, an investigation of its singularity is necessary in order to avoid usingmismatches between the angular
function f on the one hand and Π on the other hand.

The Fisher information matrix 0f ,Π;ϑ0 is never full rank due to the curved nature of the parameter space (θ ∈ Sk−1). Its
rank can at most be 2k − 2; any lower rank implies a non-trivial singularity. Let ker(A) denote the kernel of some matrix A.
Considering

01.2
f ,Π;ϑ0

= γ11
f ;ϑ0

− γ12
f ,Π;ϑ0


γ22
f ,Π;ϑ0

−1 
γ12
f ,Π;ϑ0

⊤
,

we note that ker(0f ,Π;ϑ0) and ker(01.2
f ,Π;ϑ0

) have the same dimension. This follows from similar arguments as in Lemma 2.1
of [14]. Easy computations yield that the rank of 01.2

f ,Π;ϑ0
is the highest possible (i.e., k − 1) if and only if Jk(f )Ak(f ) −

(Ik(f ))2 ≠ 0. By a simple Cauchy–Schwarz argument, it can be seen that 1

−1
ϕf (t)(1 − t2)f̃ (t)dt

2

≤

 1

−1
ϕ2
f (t)(1 − t2)f̃ (t)dt

 1

−1
(1 − t2)f̃ (t)dt


with equality if and only if ϕf (t) = c for some constant c ∈ R. In other words, Fisher information singularity occurs if and
only if f (t) ∝ exp(ct), an FvML angular function with concentration parameter c ∈ R (negative values of c simply mean
that data aggregate around −θ). Thus the famous FvML distribution is the only rotationally symmetric distribution to give
rise to Fisher information singularity in our SRS models, mimicking the multivariate normal that also plays a central role in
terms of singularity in certain skew-symmetric models; see [14,6].

4. Efficient tests for rotational symmetry about a fixed location

In this section we focus on the problem of testing rotational symmetry around a fixed center θ within the class of SRS
distributions defined in Section 2. More precisely, we build optimal testing procedures for the null hypothesis of rotational
symmetry that can be written as H0 : δ = 0 within the class of distributions of Section 2 assuming that the location
parameter θ is known. This problem has been considered in the circular (k = 2) case in [16,23]. The construction of locally
and asymptotically optimal testing procedures relies on the Uniform Local Asymptotic Normality (ULAN) property of a
sequence of SRS models in the vicinity of symmetry. We establish this property in detail in Appendix A. For the sake of
presentation, we restrict ourselves here to the description of inferential procedures that we can derive from ULAN.

Let X1, . . . ,Xn form a random sample on Sk−1 with common density (3), and define

F = {f : [−1, 1] → R+, f absolutely continuous}

the class of angular functions defining rotationally symmetric densities fθ;k. For any kernel fθ;k with angular function f and
any skewing function Π , denote by P(n)

ϑ;f ,Π , with ϑ still representing (θ⊤, δ⊤)⊤ ∈ Sk−1
× Rk−1, the joint distribution of

the n-tuple (X1, . . . ,Xn). Since the density fθ,δ;k reduces to cf ,kf (x⊤θ) when δ = 0 and hence does not depend on Π in
this case, we drop the index Π and simply write P(n)

ϑ0;f
at ϑ0 = (θ⊤, 0⊤)⊤. Any couple (f , Π) then induces the parametric

location-skewness model

P
(n)
f ,Π =


P(n)

ϑ;f ,Π : ϑ ∈ Sk−1
× Rk−1


.

In Appendix A, we prove that this model is ULAN in the vicinity of symmetry (i.e., at δ = 0) for the score function and Fisher
information matrix calculated in Section 3. The locally and asymptotically optimal testing procedures we shall provide are
therefore based on the score-function type quantities 1

(n)
f ,Π (θ) = n−1/2n

i=1 ℓf ,Π;ϑ0(Xi), termed central sequences.

The construction is based on the δ-part of the central sequence 1
(n)
f ,Π (θ), namely

1
(n)
Π;2(θ) = n−1/2

n
i=1

ℓ2
Π;ϑ0

(Xi) = 2Π ′(0)n−1/2
n

i=1

{1 − (X⊤

i θ)2}1/2Uθ(Xi)

= 2Π ′(0)n−1/2
n

i=1

ϒ⊤

θ Xi = 2Π ′(0)n1/2ϒ⊤

θ X̄,
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where X̄ =
n

i=1 Xi/n. Note that 1
(n)
Π;2(θ) does not depend on the original angular function f . This is a crucial property, as

we shall see in a few lines. Following Section 11.9 of [12], and in view of the fact that 1
(n)
Π;2(θ) is asymptotically normal (see

Theorem 1) with mean zero and covariance matrix

γ22
f ,Π;ϑ0

=
4(Π ′(0))2Ak(f )

k − 1
Ik−1,

the locally and asymptotically maximin f -parametric procedure φ
(n)
f for testing H

f
0 : δ = 0 against H

f
1 : δ ≠ 0 consists in

rejecting H
f
0 in favor of H

f
1 at asymptotic level α whenever

T (n)
f (θ) = {1

(n)
Π;2(θ)}

⊤(γ22
f ,Π;ϑ0

)−11
(n)
Π;2(θ)

=
n(k − 1)
Ak(f )

X̄⊤(Ik − θθ⊤)X̄,

exceeds χ2
k−1;1−α , the α-upper quantile of the chi-square distribution with k − 1 degrees of freedom.

Now, in order to tackle the semi-parametric problem of interestH0 = ∪f∈F H
f
0 , we need to estimate the quantityAk(f ),

in otherwords, tomake the statistic T (n)
f (θ) semi-parametric. This can be achieved via the consistent (under any f ) estimator

Âk = 1 −
n

i=1(X
⊤

i θ)2/n, so that the resulting semi-parametric testing procedure φ
(n)
Wat rejects H0 : δ = 0 at asymptotic

level α whenever

T (n)
=

n(k − 1)

Âk
X̄⊤(Ik − θθ⊤)X̄ (7)

exceedsχ2
k−1;1−α . Quite interestingly, the test statistic (7) is exactly the statistic used in [28] to address the spherical location

problem under rotational symmetry, hence our notation φ
(n)
Wat. Paindaveine and Verdebout [21] have established that the

Watson test is the locally and asymptotically optimal pseudo-FvML test for the spherical locationproblem.Hence theWatson
test, well known to be efficient for the spherical location problem in the FvML case, also happens to be an efficient test for
rotational symmetry against SRS alternatives under specified θ. This result is further complemented by the fact that T (n)

is the most efficient procedure under any angular function f ; hence it is the uniformly optimal semi-parametric test for
rotational symmetry against SRS alternatives under fixed θ. All this is summarized in the following proposition, where we
also provide the asymptotic properties of T (n) under the null and under local alternatives.

Proposition 1. Let f ∈ F and ϑ0 = (θ⊤, 0⊤)⊤ with θ ∈ Sk−1 fixed, and assume that Assumption A is valid. Then the following
statements hold true.

(i) Under P(n)
ϑ0;f

, T (n) is asymptotically chi-square with k − 1 degrees of freedom.

(ii) Under P(n)

ϑ0+(0,n−1/2t(n)2 );f ,Π
, with bounded sequence t(n)2 ∈ Rk−1, T (n) is asymptotically non-central chi-square, still with k−1

degrees of freedom, and non-centrality parameter

4(Π ′(0))2Ak(f )
k − 1

∥t2∥2,

with t2 = limn→∞ t(n)2 .
(iii) The sequence of tests φ

(n)
Wat has asymptotic size α under the entire null hypothesis H0.

(iv) φ
(n)
Wat is locally asymptotically maximin, at asymptotic level α, when testing P(n)

ϑ0;f
against alternatives of the form

δ≠0 P
(n)
(θ,δ);f ,Π .

The proof is provided in Appendix B. The uniformly optimal test φ
(n)
Wat extends the optimal test developed by Ley and

Verdebout in [16] to any dimension and to the best of our knowledge, it is the first semi-parametric test for rotational
symmetry.

5. Measure of skewness and related test for rotational symmetry about a fixed location

Anaturalway tomeasure rotational symmetry/asymmetry around θ ∈ Sk−1 is to use a traditionalmultivariatemeasure of
spherical symmetry/asymmetry computed onϒ⊤

θ X. As a consequence, there exist many distinct ways to measure skewness
on the sphere; see [24] for examples. The following proposal is based on theMardia [18] measure of skewness that is related
to third-order moments. It leads to the measure

ρθ = E[{X⊤(Ik − θθ⊤)Y}
3
],
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where X and Y are i.i.d. random vectors taking values on Sk−1. Clearly if X and Y are rotationally symmetric around θ, then
ρθ = 0. An empirical version of ρθ is given by the U-statistic

ρ̂θ =
2

n(n − 1)


1≤i<j≤n

{X⊤

i (Ik − θθ⊤)Xj}
3.

The following result provides the asymptotic behavior of ρ̂θ under rotational symmetry.

Proposition 2. Let X1, . . . ,Xn form a random sample on Sk−1 with a common rotationally symmetric distribution with location
θ and angular function f ∈ F . Letting P(n)

θ;f stand for the joint distribution of the Xi’s and eℓ = E(n)
Pθ;f

[{1 − (X⊤

1 θ)2}ℓ/2], we have
that

Sn =
nρ̂θ
30e26

(k−1)(k+1)(k+3)

is asymptotically standard normal as n → ∞ under P(n)
θ;f .

The proof is provided in Appendix B. Proposition 2 naturally yields a test of rotational symmetry around a fixed center θ.
Since

ê6 =
1
n

n
i=1

{1 − (X⊤

i θ)2}3

is a consistent estimator of e6 under the null hypothesis of rotational symmetry around θ, Slutsky’s Lemma directly entails
that

Ŝn =
nρ̂θ
30ê26

(k−1)(k+1)(k+3)

is still asymptotically standard normal under the null hypothesis of rotational symmetry. As a consequence, the test φ
(n)
Skew

that rejects (at the asymptotic nominal level α) the null hypothesis when

|Ŝn| ≥ z1−α/2,

where zν stand for the quantile of order ν of a standard Gaussian random variable, is a valid test for rotational symmetry
about θ. It thus represents an interesting alternative to the uniformly optimal test constructed in the previous section, and
we shall compare their behaviors in the next section.

6. Simulation study

In this section, the objectives of our Monte Carlo simulation study are twofold: (i) show that both tests φ
(n)
Wat and φ

(n)
Skew

hold their nominal level at finite sample sizes, and (ii) exhibit their empirical powers under various alternatives to rotational
symmetry.

To do so, we generated, for n = 50 and n = 100,M = 2 500 independent random samples

X(j)
i,ℓ, i ∈ {1, . . . , n}, j ∈ {1, 2}, ℓ ∈ {0, . . . , 5},

from the following spherical (3-dimensional) distributions:

(i) the X(1)
i,ℓ ’s have a common skew-FvML distribution with location θ = (1, 0, 0)⊤, concentration κ = 5 and skewness

parameter δ = (ℓ/5, ℓ/5)⊤ (the skewing function is the standard Gaussian cdf);
(ii) the X(2)

i,ℓ ’s have a common mixture of FvML distributions of the form
1 −

ℓ

10


Y +

ℓ

10
Z,

where Y is a FvML random vector with location θ = (1, 0, 0)⊤ and concentration κ = 5 and Z is a FvML random vector
with location (

√
2/2,

√
2/2, 0)⊤ and concentration κ = 5.

In both cases (i) and (ii), the value ℓ = 0 corresponds to the null hypothesis of rotational symmetry around θ = (1, 0, 0)⊤
while the values ℓ = 1, . . . , 5 represent distributions that are increasingly skewed.

In Figs. 2–5, we provide the empirical rejection frequencies of the tests φ
(n)
Wat and φ

(n)
Skew performed at the asymptotic

nominal level α = .05 for sample sizes n = 50 and n = 100. Inspection of those Figures reveals that both φ
(n)
Wat and φ

(n)
Skew

reach the nominal level constraint. While as expected φ
(n)
Wat dominates φ

(n)
Skew under the SRS alternatives of Section 2, φ(n)

Skew

slightly dominates φ
(n)
Wat under mixtures of FvML distributions.
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Fig. 2. Empirical rejection frequencies of the uniformly optimal test φ
(n)
Wat (in orange) and of the skewness measure based test φ

(n)
Skew (in red) under

3-dimensional skew-FvML distributions with location θ = (1, 0, 0)⊤ , concentration κ = 5 and skewness parameter δ = (ℓ/5, ℓ/5)⊤, ℓ = 0, . . . , 5.
The sample size is n = 50 and the nominal level is α = .05. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 3. Empirical rejection frequencies of the uniformly optimal test φ
(n)
Wat (in orange) and of the skewness measure based test φ

(n)
Skew (in red) under

3-dimensional skew-FvML distributions with location θ = (1, 0, 0)⊤ , concentration κ = 5 and skewness parameter δ = (ℓ/5, ℓ/5)⊤, ℓ = 0, . . . , 5.
The sample size is n = 100 and the nominal level is α = .05. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

7. Discussion

We conclude the paper by discussing open questions and future research issues related to skew-rotationally-symmetric
models.

We have not investigated the number of modes of our skew models. Starting from a unimodal rotationally symmetric
density with angular function f , will the resulting skew-f density be unimodal for all values of the skewness parameter δ?
Or will multi-modality occur above a certain threshold value? In the circular setting, Abe and Pewsey [1] have shown that
the sine-skewed von Mises density is either unimodal or bimodal, depending on the amount of skewness, while the sine-
skewed wrapped Cauchy density is always unimodal. Obtaining the number of modes in the circular case is not an easy task
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Fig. 4. Empirical rejection frequencies of the uniformly optimal test φ
(n)
Wat (in orange) and of the skewness measure based test φ

(n)
Skew (in red) under the

3-dimensional FvML mixture (1 − ℓ/10) Y + ℓZ/10, where Y has location θ = (1, 0, 0)⊤ and concentration κ = 5 and Z has location (
√
2/2,

√
2/2, 0)⊤

and concentration κ = 5, for ℓ = 0, . . . , 5. The sample size is n = 50 and the nominal level is α = .05. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 5. Empirical rejection frequencies of the uniformly optimal test φ
(n)
Wat (in orange) and of the skewness measure based test φ

(n)
Skew (in red) under the

3-dimensional FvML mixture (1 − ℓ/10) Y + ℓZ/10, where Y has location θ = (1, 0, 0)⊤ and concentration κ = 5 and Z has location (
√
2/2,

√
2/2, 0)⊤

and concentration κ = 5, for ℓ = 0, . . . , 5. The sample size is n = 100 and the nominal level is α = .05. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

since it is determined by studying the discriminant of a quartic equation. The problem is even more complicated to solve in
the k ≥ 3 case and is left for future research.

A further issue of interest is the existence of mechanistic derivations of the SRS distributions. Skew-symmetric distri-
butions on Rk enjoy such properties. For example, the multivariate skew-normal can be built as follows. Consider a scalar
random variable Z0 and a random k-vector Z such that (Z0, Z)⊤ follows a (k + 1)-dimensional normal distribution. Then Z |

Z0 > 0 is k-dimensional skew-normal. Deriving a similar generating mechanism for SRS densities is a challenging problem.
The additional difficulty here lies in the fact that simple conditioning leads to a vector that does not necessarily lie on the unit
sphere. A potential solution might be to consider nested spheres as defined in [9] in the context of principal nested spheres.
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Finally, we return to the Fisher information singularity studied in Section 3. As for the normal distribution on Rk, the
FvML is the most used distribution on the sphere. It is therefore natural to search for ways to overcome this singularity, as
was done for the multivariate skew-normal; see, e.g., Arellano-Valle and Azzalini [2]. A reparameterization à la Hallin and
Ley [7] could solve the problem, but does not seem straightforward. The natural curved parameter space (θ ∈ Sk−1) used
here makes the problem more challenging and is therefore left as an open question. An alternative approach would consist
in using a distinct skewing function for FvML densities. Recall that the argument of the skewing function Π in (4) is given
by {1 − (X⊤θ)2}1/2δ⊤Uθ(X) = δ⊤ϒ⊤

θ X. Since, under rotational symmetry, ϒ⊤

θ X is spherically symmetric on the unit ball of
Rk−1, themechanismwe define in (4) actually breaks this spherical symmetry. Now, thewaywe skewϒ⊤

θ X does not depend
on the value of the projection X⊤θ of X along θ. Of course one could consider skewing mechanisms that depend on X⊤θ;
skewing the distribution more in the vicinity of θ than around the opposite pole −θ may be more appropriate in certain
situations. A possible way to achieve this is to consider a skewing function of the form (4) with

(X⊤θ)δ⊤ϒ⊤

θ X

for the argument of the function Π (of course any increasing function of (X⊤θ) can be considered). For such a mechanism,
the score function in the vicinity of δ = 0 takes the form

ℓf ,Π;ϑ0(x) = gradϑ log fϑ;k(x)|ϑ0 =


{ℓ1

f ;ϑ0
(x)}⊤, {ℓ2

Π;ϑ0
(x)}⊤

⊤

=


ϕf (x⊤θ){1 − (x⊤θ)2}1/2Sθ(x)

2Π ′(x⊤θ){1 − (x⊤θ)2}1/2Uθ(x)


and the corresponding Fisher information matrix is given by

(k − 1)−1


Jk(f )(Ik − θθ⊤) 2Π ′(0)Ik;mod(f )ϒθ

2Π ′(0)Ik;mod(f )ϒ⊤

θ 4(Π ′(0))2Ak;mod(f )Ik−1


,

where the modified quantities Ik;mod(f ) and Ak;mod(f ) are now respectively equal to 1

−1
ϕf (t)t(1 − t2)f̃ (t)dt and

 1

−1
t2(1 − t2)f̃ (t)dt.

This Fisher information matrix is no longer singular at the FvML distribution so that such a choice of mechanism cancels
the singularity issue uncovered in the previous section for the FvML. Given the popularity of the FvML distribution among
theoreticians and practitioners, it seems worthwhile to elaborate a meaningful skew-FvML distribution.
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Appendix A. The ULAN property of SRS distributions

The main technical tool in our construction of tests for rotational symmetry consists in establishing the uniform local
asymptotic normality (ULAN) property, in the vicinity of symmetry (i.e., at δ = 0), of the parametric model P

(n)
f ,Π . This

property will allow us to build optimal parametric testing procedures in line with the Le Cam methodology; see [12]. This
is not an easy task due to the ‘‘curved’’ nature of the parameter space for θ: the unit hypersphere Sk−1 being a non-linear
manifold, it typically generates non-traditional Gaussian shift experiments and, as a consequence, the usual arguments
behind Le Cam’s theory break down in this context. An extension of Le Cam’s theory to this spherical setting has been given
in [15], allowing us to establish the following ULAN property for SRS distributions.

Theorem 1. Let f ∈ F and assume that Assumption A holds. Then, for any θ ∈ Sk−1, the parametric family of densities P
(n)
f ,Π

is ULAN at ϑ0 = (θ⊤, 0⊤)⊤ with central sequence 1
(n)
f ,Π (θ) =

n
i=1 ℓf ,Π;ϑ0(Xi)/

√
n and corresponding Fisher information

matrix 0f ,Π;ϑ0 . More precisely, for any θ(n)
∈ Sk−1 such that θ(n)

− θ = O(n−1/2), any bounded sequence t(n)1 ∈ Rk such that
θ(n)

+ t(n)1 /
√
n remains in Sk−1 and any bounded sequence t(n)2 ∈ Rk−1, we have, letting

λ(n)
= ln


dP(n)

(θ(n)
+n−1/2t(n)1 ,n−1/2t(n)2 );f ,Π

/dP(n)
(θ(n),0);f


,

λ(n)
= ((t(n)1 )⊤, (t(n)2 )⊤)1

(n)
f ,Π (θ(n)) −

1
2
((t(n)1 )⊤, (t(n)2 )⊤)0f ,Π;ϑ0((t

(n)
1 )⊤, (t(n)2 )⊤)⊤ + oP(1)

and 1
(n)
f ,Π (θ(n))  N2k−1(0, 0f ,Π;ϑ0), both under P(n)

(θ(n),0);f
as n → ∞.
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Proof of Theorem 1. We start by establishing ULAN for a re-parameterization of the problem in terms of spherical
coordinates. Any vector θ on the unit sphere of Rk can be represented via the chart

h̄ : η = (η1, . . . , ηk−1)
⊤

∈ Rk−1
→ h̄(η) = θ = (cos η1, sin η1 cos η2,

. . . , sin η1 · · · sin ηk−2 cos ηk−1, sin η1 · · · sin ηk−2 sin ηk−1)
⊤

with associated Jacobian matrix Dh̄(η); see [15] for its expression. In a first step, we need to prove ULAN for the (η, δ)-
parameterization. By Theorem 7.2 of [26], it suffices to show that

(η, δ) → f 1/2η,δ;k(x) = (2cf ,k)1/2f 1/2{x⊤h(η)}Π1/2(δ⊤ϒ⊤

h(η)x)

is quadratic mean differentiable at (η⊤, 0⊤)⊤ for any η ∈ Rk−1. This is achieved in the subsequent lemma.

Lemma 3. Let f ∈ F and assume that Assumption A holds. Define

gradηf
1/2
η,0;k(x) =

1
2
f 1/2η;k (x)ϕf (x⊤h̄(η))Dh̄(η)⊤x,

and

gradδf
1/2
η,δ;k(x)|δ=0 = f 1/2η;k (x)Π ′(0)ϒ⊤

h(η)x.

Then, for any η ∈ Rk−1, we have that, as (e, d) → (0, 0),

(i)


Sk−1


f 1/2η+e,0;k(x) − f 1/2η,0;k(x) − e⊤ gradηf

1/2
η,0;k(x)

2
dσk−1(x) = o(∥e∥2);

(ii)


Sk−1


f 1/2η+e,d;k(x) − f 1/2η+e,0;k(x) − d⊤ gradδf

1/2
η+e,δ;k(x)|δ=0

2
dσk−1(x) = o(∥d∥

2);

(iii)


Sk−1


d⊤


gradδf

1/2
η+e,δ;k(x)|δ=0 − gradδf

1/2
η,δ;k(x)|δ=0

2
dσk−1(x) = o(∥d∥

2);

(iv)


Sk−1


f 1/2η+e,d;k(x) − f 1/2η,0;k(x) −


e
d

⊤


gradηf
1/2
η,0;k(x)

gradδf
1/2
η,δ;k(x)|δ=0

2

dσk−1(x) = o(∥(e⊤, d⊤)⊤∥
2).

Proof of Lemma 3. (i) This result has been established in [15].
(ii) By definition of fη+e,d;k, we can rewrite the left-hand side integral in (ii) as

cf ,k


Sk−1

f {x⊤h(η + e)}

21/2Π1/2(d⊤ϒ⊤

h(η+e)x) − 1 − d⊤Π ′(0)ϒ⊤

h(η+e)x
2

dσk−1(x).

The absolute continuity (and hence a.e.-differentiability) of the skewing function Π yields that

sup
x∈Sk−1

21/2Π1/2(d⊤ϒ⊤

h(η+e)x) − 1 − d⊤Π ′(0)ϒ⊤

h(η+e)x


is o(∥d∥) uniformly in x. Consequently, the second factor of the integrand is o(∥d∥
2) uniformly in x. The result then follows

since


Sk−1 f {x⊤h(η + e)}dσk−1(x) is finite.
(iii) The left-hand side in (iii) equals

(Π ′(0))2


Sk−1


d⊤


f 1/2η+e;k(x)ϒ

⊤

h(η+e)x − f 1/2η;k (x)ϒ⊤

h(η)x
2

dσk−1(x).

Since f 1/2η;k (x)d⊤ϒ⊤

h(η)x is square-integrable byAssumptionA, the quadraticmean continuity entails that the above expression
is an o(∥d∥

2) quantity.
(iv) The left-hand side in (iv) is bounded by a constant times each of the three integrals treated before. The result then

follows from (i), (ii) and (iii). �

Proof of Theorem 1 (Continued).Thequadraticmeandifferentiability for the (η, δ)-parameterization yields theULAN result
in that parameterization. The transposition from here to ULAN of the targeted (θ, δ)-parameterization is obtained exactly
along the same lines as in [15], which concludes the proof of the ULAN property. �

Appendix B. Proofs

Proof of Lemma 1. Writing, for the sake of simplicity, gθ,δ(x) for δ⊤ϒ⊤

θ x, straightforward calculations give
Sk−1

fθ,δ;k(x) dσk−1(x) =


gθ,δ(x)≥0

fθ,δ;k(x) dσk−1(x) +


gθ,δ(x)<0

fθ,δ;k(x) dσk−1(x)
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= 2

gθ,δ(x)≥0

cf ,kf (x⊤θ)Π{gθ,δ(x)} dσk−1(x)

+ 2

gθ,δ(x)>0

cf ,kf (x⊤θ)[1 − Π{gθ,δ(x)}] dσk−1(x)

= 2

gθ,δ(x)=0

1
2
cf ,kf (x⊤θ) dσk−1(x) + 2


gθ,δ(x)>0

cf ,kf (x⊤θ) dσk−1(x)

=


gθ,δ(x)=0

cf ,kf (x⊤θ) dσk−1(x) +


gθ,δ(x)≠0

cf ,kf (x⊤θ) dσk−1(x)

= 1,

where we have strongly used the fact that f (x⊤θ) takes the same values on both hemispheres {x ∈ Sk−1
: gθ,δ(x) > 0} and

{x ∈ Sk−1
: gθ,δ(x) < 0}. �

Proof of Lemma 2. We prove that the pdf of X defined via (5) is fθ,δ;k. First, conditionally on Y⊤θ = y⊤θ = t ∈ [−1, 1], the
density of the sign vector Uθ;Π (Y) on Sk−2 corresponds to 2(ωk−1)

−1Π{(1 − t2)1/2δ⊤s} with s = Uθ(y); this follows from
skew-symmetric theory on Rk; see, e.g., [27]. In what follows we will write out the probability that X belongs to a certain
set B ⊆ Sk−1. To this end, we write ℓB as the subset of [−1, 1] that the projection X⊤θ

d
= Y⊤θ has to cover, and we denote

by B⊥
t the subset of Sk−2 that the sign vector Uθ;Π (Y) has to cover when X⊤θ = t ∈ ℓB . With these notations and with the

definition of f̃ from (6), we have

Pr[X ∈ B] = Pr[(Y⊤θ)θ + {1 − (Y⊤θ)2}1/2ϒθUθ;Π (Y) ∈ B]

=


ℓB

Pr{tθ + (1 − t2)1/2ϒθUθ;Π (Y) ∈ B | Y⊤θ = t}f̃ (t)dt

=


ℓB

Pr{Uθ;Π (Y) ∈ B⊥

t | Y⊤θ = t}f̃ (t)dt

=


ℓB


B⊥

t

2(ωk−1)
−1Π{(1 − t2)1/2δ⊤s}f̃ (t)dσk−2(s)dt

=


ℓB


B⊥

t

1
ωk−1

2ck,f f (t)Π{(1 − t2)1/2δ⊤s}
ωk(1 − t2)(k−3)/2

B( 1
2 ,

k−1
2 )

dσk−2(s)dt

=


ℓB


B⊥

t

2ck,f f (t)Π{(1 − t2)1/2δ⊤s}(1 − t2)(k−3)/2dσk−2(s)dt,

where we have used the fact that ωk/ωk−1 = B( 1
2 ,

k−1
2 ) in the last equality. The final integral expression corresponds

exactly to what one would obtain by starting from the pdf fθ,δ;k and performing the change of variables dσk−1(y) =

(1 − t2)(k−3)/2dtdσk−2(s) (see [28, p. 44, Eq. (2.2.2)]), hence proving the stochastic representation to be correct. �

Proof of Proposition 1. Point (i) follows directly from Slutsky’s Lemma combined with

Âk − Ak(f ) = oP(1) (B.1)

as n → ∞ and the fact that 1
(n)
Π;2(θ) is asymptotically normal with mean zero and covariance matrix 4{Π ′(0)}2Ak(f )

Ik−1/(k − 1), both under P(n)
(θ,0);f . Now the multivariate central limit theorem entails that

(1
(n)
Π;2(θ))

⊤, (t(n)2 )⊤1
(n)
Π;2(θ)

⊤

is asymptotically normal with mean zero and covariance matrix
γ22
f ,Π;ϑ0

γ22
f ,Π;ϑ0

t2
t⊤2 γ22

f ,Π;ϑ0
t⊤2 γ22

f ,Π;ϑ0
t2


under P(n)

(θ,0);f . Le Cam’s Third Lemma then implies that the central sequence 1
(n)
Π;2(θ) is asymptotically Nk−1


γ22
f ,Π;ϑ0

t2,
γ22
f ,Π;ϑ0


under P(n)

(θ,n−1/2t(n)2 );f
.

Since (B.1) holds as well asymptotically under P(n)

(θ,n−1/2t(n)2 );f
by contiguity, Point (ii) follows. Finally, the fact that φ

(n)
Wat

has asymptotic level α is a direct consequence of the asymptotic null distribution given in Part (i), while local asymptotic
maximinity is a consequence of the weak convergence of the local experiments to the Gaussian shift experiment, see the
explanations in [17] for more details. �
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Proof of Proposition 2. In this proof, we put ui =


1 − (X⊤

i θ)2. First note that we have

ρ̂θ =
2

n(n − 1)


1≤i<j≤n

{X⊤

i (Ik − θθ⊤)Xj}
3

=
2

n(n − 1)


1≤i<j≤n

u3
i u

3
j {(Ui(θ))

⊤Uj(θ)}
3.

In the rest of the proof we put ρij = {Ui(θ)}
⊤Uj(θ). The independence between the ui’s and the Ui(θ)’s together with the

fact that E(ρ3
ij ) = 0 (Lemma A.1(ii) in [22]) entail that E(u3

i u
3
j ρ

3
ij ) = 0.

Now, from Lemma A.1(iv) of [22] the ρij’s are pairwise independent and from Lemma A.1(iii) of [22] we know that

E(ρ6
ij ) =

15
(k − 1)(k + 1)(k + 3)

.

These results combined yield

E(ρ̂2
θ ) =

4
n2(n − 1)2


1≤i<j<n


1≤i′<j′<n

E(u3
i u

3
j u

3
i′u

3
j′ρ

3
ijρ

3
i′j′)

=
2

n(n − 1)
E2(u6

1)E(ρ
6
12)

=
2

n(n − 1)


15E2(u6

1)

(k − 1)(k + 1)(k + 3)


under P(n)

θ;f . In view of what precedes, our goal is to show that ρ̂θ/σn is asymptotically standard normal where

σn =


30E2(u6

1)

n(n − 1)(k − 1)(k + 1)(k + 3)
.

First note that

ρ̂θ

σn
=

2
n(n − 1)σn

n
ℓ=2

ℓ−1
i=1

(Y⊤

i Yℓ)
3,

where the Y1 = ϒ⊤

θ X1, . . . , Yn = ϒ⊤

θ Xn are i.i.d. spherically symmetric bounded random vectors under P(n)
θ;f . Write

ρ̂θ

σn
=

n
ℓ=2

Dℓ,

where

Dℓ =
2

n(n − 1)σn

ℓ−1
i=1

(Y⊤

i Yℓ)
3

is a martingale difference with respect to the natural filtration defined by the sequence of σ -algebras Fℓ = σ(Y1, . . . , Yℓ).
Our proof then relies on the central limit theorem for martingale differences; see, e.g., [5]. More precisely, the asymptotic
normality of ρ̂θ/σn follows if

n
ℓ=1

D2
ℓ → 1 (B.2)

in probability as n → ∞ and, for all ϵ > 0,

n
ℓ=1

E{D2
ℓ1(|Dℓ| > ϵ)} → 0. (B.3)

For (B.2) first note that, from the pairwise independence, E(ρ3
iℓρ

3
jℓ) = 0 if i ≠ j. From this we can deduce that

E(D2
ℓ) =

4
n2(n − 1)2σ 2

n
E


ℓ−1
i,j=1

u6
ℓu

3
i u

3
j ρ

3
iℓρ

3
jℓ
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=
4

n2(n − 1)2σ 2
n
(ℓ − 1)E2(u6

ℓ)E(ρ
6
1ℓ)

=
4

n2(n − 1)2σ 2
n
(ℓ − 1)

15E2(u6
1)

(k − 1)(k + 1)(k + 3)

=
2

n(n − 1)
(ℓ − 1) (B.4)

and

E(D4
ℓ) =

16
n4(n − 1)4σ 4

n
E


ℓ−1

i,j,r,s=1

u12
ℓ u3

i u
3
j u

3
r u

3
sρ

3
iℓρ

3
jℓρ

3
rℓρ

3
sℓ



=
16

n4(n − 1)4σ 4
n

ℓ−1
i,j,r,s=1

E(u12
ℓ u3

i u
3
j u

3
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(B.5)

since all expectations are bounded. Note that

n
ℓ=1

E(D4
ℓ) = o(1) (B.6)

as n → ∞ and from (B.4) that
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2
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n
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(ℓ − 1) = 1. (B.7)

As a consequence it remains to show that var(
n

ℓ=1 D
2
ℓ) is o(1) as n → ∞ to obtain (B.2). First note that, for ℓ < ℓ′ and

using the same arguments as above, we get

E(D2
ℓD

2
ℓ′) =

16
n4(n − 1)4σ 4

n
E


ℓ−1
i,j=1

ℓ′
−1

r,s=1

u6
ℓu

3
i u

3
j ρ

3
iℓρ

3
jℓu

6
ℓ′u3

r u
3
sρ

3
rℓ′ρ

3
sℓ′



=
16

n4(n − 1)4σ 4
n
E


ℓ−1
i=1

ℓ′
−1

j=1

u6
ℓu

6
ℓ′u6

i u
6
j ρ

6
iℓρ

6
jℓ′



=
16

n4(n − 1)4σ 4
n


(ℓ − 1)E2(u6

1)E(u
12
1 )E2(ρ6

12) + (ℓ′
− 2)(ℓ − 1)E4(u6

1)E
2(ρ6

12)


=
16

n4(n − 1)4σ 4
n

(ℓ − 1)


15
(k − 1)(k + 1)(k + 3)

2 
E2(u6

1)E(u
12
1 ) + (ℓ′

− 2)E4(u6
1)


=
4

n2(n − 1)2
(ℓ − 1)


E(u12

1 )

E2(u6
1)

+ (ℓ′
− 2)


(B.8)

and therefore from (B.6) and (B.8) that
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=
4

n2(n − 1)2

n
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− 1) + o(1)

= 1 + o(1) (B.9)

as n → ∞. Therefore it follows from (B.7) and (B.9) that var[
n

ℓ=1 D
2
ℓ] = o(1) as n → ∞ so that (B.2) holds. For (B.3) the

Cauchy–Schwarz and the Markov inequalities together with (B.4) and (B.5) imply that, for some constant C ,
n
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which is o(1) as n → ∞; (B.3) follows. �
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