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Abstract

Linear mixed models provide a useful tool to fit continuous longitudinal data, with the random effects and error
term commonly assumed to have normal distributions. However, this restrictive assumption can result in a lack of
robustness and needs to be tested. In this paper, we propose tests for skewness, kurtosis, and normality based on
generalized least squares (GLS) residuals. To do it, estimating higher order moments is necessary and an alternative
estimation procedure is developed. Compared to other procedures in the literature, our approach provides a closed
form expression even for the third and fourth order moments. In addition, no further distributional assumptions on
either random effects or error terms are needed to show the consistency of the proposed estimators and tests statistics.
Their finite-sample performance is examined in a Monte Carlo study and the methodology is used to examine changes
in the life expectancy as well as maternal and infant mortality rate of a sample of OECD countries.

Keywords: Kurtosis, linear mixed model, longitudinal data, moment estimator, normality, skewness.

1. Introduction

Linear mixed models are often used to study intra-group correlation patterns. They have attracted considerable
attention, e.g., in biomedical, social and economic sciences. For mathematical tractability, a common assumption in
these models is that the random effects and the error terms are normally distributed. When this is the case, it is well
known that maximum likelihood estimation (MLE) and restricted maximum likelihood estimation (RMLE) perform
quite well; see, e.g., [2, 5, 6]. However, conclusions derived under these restrictive assumptions may not be robust to
departures from Gaussianity, especially when data show multimodality and skewness; see, e.g., [16].

The impact of misspecification in the random effects distribution has been extensively investigated in the literature;
see, e.g., [9, 10, 15, 16]. However, there seems to be no general consensus about its effect and the proposed alternatives
are restricted to specific mixed models. Formal tests to detect mixture distributions in the random effects have also
been proposed. For example, [7] provides a goodness-of-fit test for both random effects and error terms, but the
statistic does not have an exact χ2 distribution and it is a bit cumbersome to implement in practice. More recently,
[11] proposed to check the normality of the random effects using gradient functions.

Therefore, it is of practical interest to develop a simple test that enables to check the normal distribution assumption
of both random effects and error terms. This is not an easy task, however, because in linear mixed models the lack of
Gaussianity can arise in more than one component of the regression error. The identification of which component is
causing the departure from normality is then crucial. This paper is concerned with the efficient estimation and testing
of linear mixed models when standard distributional assumptions such as normality or symmetry cannot be justified.
Specifically, some very simple and intuitive tests to detect departures from normality in the form of skewness and/or
kurtosis are proposed based on moment conditions, for which estimators of the higher order moments are necessary.

Note that despite the great importance of higher order moments for statistical inference, there are few references
in the literature that define and study estimators for higher than second order moments. Two examples are [3, 8] but
the methods they advocate exhibit some weaknesses: the first is not easily extended to multivariate problems, and the
second is not valid if symmetry fails in practice. To overcome this situation, [14] developed an alternative method that
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provides consistent estimators of higher order moments. However, their technique is somewhat problematic for the
third and fourth moments. In these cases there are several choices of estimating equations that can provide consistent
estimators, so finding efficient ones becomes a critical issue.

Thus, the aim of this paper is twofold: (i) to develop a new approach leading directly to efficient estimators of the
higher order moments of the error term, thereby solving the efficiency issue in [14]; (ii) to propose tests for detecting
departures from normality for both random effects and error terms, based on a proposal made by [4] in the context of
longitudinal models. The method proposed here has the following promising features. First, it results in closed form
expressions for the estimators of the higher order moments, including the third and fourth order moment. Second,
using generalized least squares (GLS) residuals, no further distributional assumptions on either random effects or
error terms are needed to show the consistency of these estimators. Third, the proposed tests enable one to identify
departures from normality in the form of skewness and/or kurtosis of each component of the regression error, jointly
or separately. Fourth, the estimators of the higher order moments allow one to study distributional properties of
the estimators through their Fourier transform. To the best of our knowledge, all these results are original. For
methodological reasons, we restrict our attention to the linear mixed model, but the underlying ideas are applicable to
handle non-linear, semi-parametric or nonparametric models as well.

Finally, in order to illustrate the feasibility and possible gains of the proposed method, a Monte Carlo study
is conducted to assess the finite-sample performance of our proposed estimators and test statistics. As a concrete
example, an empirical study based on data from the Organization for Economic Co-operation and Development
(OECD) is carried out to measure and assess the importance of various factors determining two commonly accepted
measures of health care outcomes: life expectancy and infant mortality.

The rest of the article is organized as follows. In Section 2, we introduce the linear mixed model and describe
the estimation method. In Section 3, the corresponding asymptotic properties are studied. In Section 4, we derive
some tests to detect departures from normality in the form of skewness or kurtosis, and we study their asymptotic
properties. Section 5 contains some simulation results and an empirical application to illustrate the usefulness of the
method. Section 6 presents our main conclusions. All proofs are collected in the Appendix.

2. Statistical model and estimation procedure

Assume that data are available from a linear mixed model of the form

yi j = α + x>i jβ + bi + εi j, (1)

where i ∈ {1, . . . , n} and j ∈ {1, . . . , `i} denote the group index and the measurements within this group, respectively,
`i is the sample size within group i, and n is the number of subjects. Also, yi j is the response variable corresponding
to the jth observation in the ith group, while xi j is a p × 1 vector of covariates. Further, the relation between xi j and
yi j described in Eq. (1) contains an intercept parameter α, a p × 1 fixed effect parameter vector β, and some random
effects bi, all of which are unknown. All these quantities are also perturbed by random errors εi j. Throughout this
paper, it is assumed that εi j and bi are independent and identically distributed (iid), and εi j is independent of all bi and
xi j for all i and j. Without loss of generality, we further assume that the expectations of the random effects and errors
are zero so that β is identifiable. Otherwise, unknown nonzero expectations can be incorporated in the intercept.

For each k ∈ {2, . . . , 8}, let γk
b = E(bk

i ) and γk
ε = E(εk

i j) be the kth moments of the unobserved random effects
and the idiosyncratic errors, respectively. This paper is concerned with the efficient estimation and testing of these
unknown terms. Since these estimators are based on a suitable combination of the GLS residuals of (1), in this section
we first obtain the estimators of the parameters of interest, β and α, and later we focus on the estimation of γk

b and γk
ε .

In all our developments, we are unwilling to impose any condition on the statistical relationship between bi and
the covariates of the model. Rewriting the regression model (1) in vectorial form, we have

yi = ı`iα + xiβ + vi, vi = ı`i bi + εi, (2)

where for any i ∈ {1, . . . , n}, vi is a composed error term, yi = (yi1, . . . , yi`i )
>, vi = (vi1, . . . , vi`i )

>, and εi = (εi1, . . . , εi`i )
>

are `i-dimensional vectors for subject i, xi = (xi1, . . . , xi`i )
> is an `i × p dimensional matrix, and ı`i is a unitary vector

of length `i.
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In order to obtain consistent estimators for β, a standard solution is to sweep out bi by the `i × `i idempotent
transformation matrix Q`i = I`i − ı`i (ı

>
`i
ı`i )
−1ı>`i

, leading, for each i ∈ {1, . . . , n}, to

Q`i yi = Q`i xiβ + Q`iεi, (3)

where I`i is a `i × `i identity matrix.
By regressing Q`i yi on Q`i xi, the ordinary least squares (OLS) estimators for β are obtained as in [14]. However,

as pointed out by [13], the OLS estimators are the best linear unbiased estimators (BLUEs) under model (3), but
not under the original model (2) since they ignore the correlation within units. As it is well known, for all j, the
variance-covariance matrix of the composed error term vi of Eq. (2) is of the form

V`i = E(viv>i ) = γ2
ε I`i + γ2

bı`i ı
>
`i
.

Let P`i = I`i − Q`i be a `i × `i matrix and λ = 1 − {γ2
ε /(γ

2
ε + `iγ

2
b)}1/2. Following [12], the square root of the inverse

matrix of V`i is V−1/2
`i

= γ−1
ε Ω

−1/2
`i

, where Ω`i = I`i − λP`i is a matrix of size `i × `i.
With the aim of obtaining spherical disturbances, we premultiply (2) by V−1/2

`i
, which leads to the expression

V−1/2
`i

yi = V−1/2
`i

ı`iα + V−1/2
`i

xiβ + V−1/2
`i

vi. (4)

Note that the resulting estimator from (4) is infeasible since V−1/2
`i

depends on some unknown terms, i.e., γ2
ε and

γ2
b. Therefore, in order to get a feasible OLS estimator of β, this covariance matrix must be estimated. Based on

the spectral decomposition of Ω`i , we propose to replace the unknown covariance components by their consistent
estimators, i.e., γ̂2

ε and γ̂2
b, that are computed using the methods proposed in the following subsection. Then, assuming

for a moment that γ̂2
ε and γ̂2

b are given, the generalized least squares (GLS) estimators have the form

β̂ =

 n∑
i=1

ẍ>i Ω̂−1
`i

ẍi

−1 n∑
i=1

ẍ>i Ω̂−1
`i

ÿi, (5)

α̂ =
1
n

n∑
i=1

yi• −
1
n

n∑
i=1

x>i•β̂,

where Ω̂
−1/2
`i

= I`i−λ̂P`i , λ̂ = 1−{̂γ2
ε /(̂γ

2
ε +`îγ

2
b)}1/2, ẍi = xi−ı`i x is an `i×p matrix and ÿi = yi−ı`i y is an `i-dimensional

vector defined in terms of

x =
1
N

n∑
i=1

`i∑
j=1

xi j and y =
1
N

n∑
i=1

`i∑
j=1

yi j,

where N = `1 + · · · + `n is the overall sample size,

xi• =
1
`i

`i∑
j=1

xi j and yi• =
1
`i

`i∑
j=1

yi j.

As stated in Section 3, under weak conditions on the group sizes and the design variables, β̂ is the BLUE estimator for
β under the true model. Therefore, efficient estimators for the kth order moments of the errors can be proposed using
the GLS residuals.

Since we aim at considering much more general situations than those covered by [3] and, at the same time, we
want to address the efficiency issue of [14], a variant of the fundamental lemma presented by the latter is proposed.
In particular, instead of looking for a suitable combination of the polynomial functions of vi j = bi + εi j as they
propose, this alternative approach is based on the mean deviation error term of the form ε̃i j = εi j − ε i•, where ε i• =

(εi1 + · · · + εi`i )/`i.
In order to illustrate the proposed technique, we define the following nonlinear function for each m ∈ {1, . . . , k}:

f k
m(i) =

`i∑
j=1

ε̃m
i j

 `i∑
j=1

ε̃i j


k−m

.

The following lemma can be used to derive estimating equations for γk
ε = E(εk

i j) .
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Lemma 1. For any a, b ∈ R, write a ∧ b = min(a, b) and a ∨ b = max(a, b). We have

f k
m(i) =

k∑
t=0

t∧m∑
s=(t−k+m)∨0

(
m
s

)(
k − m
t − s

)  `i∑
j=1

ε s
i j


 `i∑

j=1

εi j


t−s

(−ε i•)k−t`k−m−t+s
i .

This lemma is slightly different from the one obtained in [14], but it still maintains its usefulness since many
of the terms in the expansion of f k

m(i) will vanish when we take expectations. In addition, it is very useful from
an empirical point of view. The fundamental lemma presented in [14] provides several polynomial functions of the
error term, the f k

m(i)’s, that have to be combined in a proper way in order to obtain efficient estimates for γk
ε . The

transformation proposed here addresses this efficiency issue since it enables one to obtain unique f k
m(i)’s that provide

efficient estimators for each γk
ε . Also, note that this proposal can be easily extended to longitudinal, semi-parametric

and nonparametric models with additive structure.

2.1. Estimation of second order moments

Focus first on the estimation of the second order moments of the random effects and error terms. From Lemma 1,
we obtain the following two polynomial functions of the error

f 2
2 (i) =

`i∑
j=1

ε2
i j − 2ε i•

`i∑
j=1

εi j + `iε
2
i•, f 2

1 (i) = `2
i ε

2
i• − 2`iε i•

`i∑
j=1

εi j +

 `i∑
j=1

εi j


2

.

Upon rearranging terms, we find f 2
1 (i) = 0 and E{ f 2

2 (i)} = (`i − 1)γ2
ε . Averaging over all i ∈ {1, . . . , n} and replacing

the unknown ε̃i j by the residuals ̂̃ε i j, we see that the estimator of γ2
ε is of the form

γ̂2
ε =

1∑n
i=1 `i

n∑
i=1

`i

(`i − 1)

`i∑
j=1

̂̃ε2
i j,

where ̂̃ε i j = (yi j − yi•) − (xi j − xi•)>β̂.
In addition, since E(vi jvih) = γ2

b, when j , h, and E(v2
i j) = γ2

b + γ2
ε , the estimator for γ2

b can be written as

γ̂2
b =

n∑
i=1

2
n`i(`i − 1)

`i−1∑
j=1

`i∑
h= j+1

v̂i ĵvih, (6)

where v̂i j = yi j − α̂ − x>i jβ̂.

2.2. Estimation of third order moments

In this section we consider the estimation of higher order moments of the random error terms with minimal
variance. As before, using Lemma 1 for the third order moments of the idiosyncratic error term, we obtain

f 3
3 (i) =

`i∑
j=1

ε3
i j − 3ε i•

`i∑
j=1

ε2
i j + 3ε2

i•

`i∑
j=1

εi j − `iε
3
i•,

f 3
2 (i) =

 `i∑
j=1

ε2
i j


 `i∑

j=1

εi j

 − 2ε i•

 `i∑
j=1

εi j


2

− `iε i•

`i∑
j=1

ε2
i j + 3`iε

2
i•

`i∑
j=1

εi j − `
2
i ε

3
i•,

f 3
1 (i) =

 `i∑
j=1

εi j


3

− 3`iε i•

 `i∑
j=1

εi j


2

+ 3`2
i ε

2
i•

`i∑
j=1

εi j − `
3
i ε

3
i•.
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Rearranging terms, we find f 3
2 (i) = 0 and f 3

1 (i) = 0. Then, unlike what happens in [14], Lemma 1 provides a unique
polynomial function of the error term that leads to an estimating equation from which the estimator for γ3

ε can be
directly obtained. Taking expectations on f 3

3 (i), we get

E{ f 3
3 (i)} =

(`i − 1)(`i − 2)
`i

γ3
ε

from which the estimator for γ3
ε has the form

γ̂3
ε =

1∑n
i=1 `i

n∑
i=1

`2
i

(`i − 1)(`i − 2)

`i∑
j=1

̂̃ε3
i j.

For the estimation of γ3
b, note that E(vi jvihvi`) = γ3

b when j , h and h , `. In this situation, the estimator for γ3
b can be

written as

γ̂3
b =

n∑
i=1

6
n`i(`i − 1)(`i − 2)

`i−2∑
j=1

`i−1∑
h= j+1

`i∑
g=h+1

v̂i ĵviĥvig.

2.3. Estimation of fourth order moments

Finally, for the estimator of the fourth order moments of the error terms, we get from Lemma 1 that

f 4
4 (i) =

`i∑
j=1

ε4
i j − 4ε i•

`i∑
j=1

ε3
i j + 6ε2

i•

`i∑
j=1

ε2
i j − 4ε3

i•

`i∑
j=1

εi j − `iε
4
i•,

with f 4
3 (i) = 0, f 4

2 (i) = 0 and f 4
1 (i) = 0, after rearranging terms.

Lemma 1 then yields a unique expression for the estimation of the fourth order moment of the idiosyncratic error
term. Taking expectations on f 4

4 (i), we find

E{ f 4
4 (i)} =

`3
i − 4`2

i + 6`i − 3

`2
i

 γ4
ε +

6`2
i − 15`i + 9

`2
i

 (γ2
ε )

2

so that the corresponding estimator has the form

γ̂4
ε =

1∑n
i=1 `i(`3

i − 4`2
i + 6`i − 3)

n∑
i=1

`3
i

`i∑
j=1

̂̃ε4
i j − `i(`i − 1)(6`i − 9)(̂γ2

ε )
2

 . (7)

Finally, for the fourth order moment estimator of the random effects, we propose

γ̂4
b =

n∑
i=1

2
n`i(`i − 1)

`i−1∑
j=1

`i∑
h= j+1

v̂2
i ĵv

2
ih − 2̂γ2

bγ̂
2
ε − (̂γ2

ε )
2,

where γ̂2
ε and γ̂2

b are the consistent estimators for γ2
ε and γ2

b, respectively, obtained previously.

3. Asymptotic properties

To study the asymptotic properties of the proposed GLS estimators, we first give a set of regularity conditions.

Assumption 1. The random variables b1, . . . , bn and ε1t, . . . , εnt are iid with mean zero and variances γ2
b and γ2

ε ,
respectively. Moreover, bi and εit are independent for all i ∈ {1, . . . , n}.

Assumption 2. Let N = `1 + · · · + `n. As n→ ∞,
∑n

i=1(1/`i)/n→ 0 and N/n→ ∞.
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Assumption 3. Let Σn = (1/
∑n

i=1 `i)
∑n

i=1 ẍ>i Ω−1
`i

ẍi be a p × p matrix, lim
n→∞

Σn = Σ for some positive definite p × p
matrix Σ.

Assumption 4. Let xi• = (1/`i)
∑`i

j=1 xi j be bounded covariates, maxi, j‖xi j − λxi•‖/
√

N → 0.

Theorem 1. Under Assumptions 1–4, as n→ ∞,
√

N (̂β − β) N(0, γ2
εΣ
−1) and

√
n (α̂ − α) N(0, γ2

b).

Comparing the results of this theorem with the corresponding in Theorem 2.1 in [14], it can be emphasized that
a BLUE estimator for the true model can be obtained taking quasi-temporary differences instead of using a mean
deviation transformation as those one in (3). More precisely, if γ̂2

b is relatively smaller than γ̂2
ε , it results that λ̂ , 1

and the OLS and GLS estimators will be very different. In fact, β̂GLS will be more efficient than OLS since its
variance-covariance matrix will be smaller. In the opposite case, when λ̂ ' 1, both estimation procedures will provide
similar results.

In what follows we focus on the properties of γ̂k
ε and γ̂k

b, for k ∈ {2, 3, 4}.

Theorem 2. Under Assumptions 1–4, when γ4
ε and γ4

b are finite, as n → ∞,
√

N (̂γ2
ε − γ

2
ε ) N(0, µ2

ε ) and
√

n (̂γ2
b −

γ2
b) N(0, µ2

b), where µ2
ε = γ4

ε − (γ2
ε )

2 and µ2
b = γ4

b − (γ2
b)2.

Theorem 2 reveals that although the estimators that we propose here for γ2
ε and γ2

b are a bit different from those
obtained in [14], their asymptotic properties are exactly the same. This result will be corroborated in the simulations.
In addition, in Appendix A it is shown that γ̂2

ε and γ̂2
b have iid representations, i.e.,

√
N (̂γ2

ε − γ
2
ε ) =

1
√

N

n∑
i=1

`i∑
j=1

(ε2
i j − γ

2
ε ) + oP(1)

and

√
n (̂γ2

b − γ
2
b) =

1
√

n

n∑
i=1

(b2
i − γ

2
b) + oP(1).

In the following theorems, the asymptotic normality of the estimators for the third and fourth order moments of
the error term is established.

Theorem 3. Under Assumptions 1–4, when γ6
ε and γ6

b are finite, as n → ∞,
√

N (̂γ3
ε − γ

3
ε ) N(0, µ3

ε ) and
√

n (̂γ3
b −

γ3
b) N(0, µ3

b), where µ3
ε = γ6

ε − (γ3
ε )

2 + 9(γ2
ε )

3 − 6γ2
εγ

4
ε and µ3

b = γ6
b − (γ3

b)2 + 9(γ2
b)3 − 6γ2

bγ
4
b.

Theorem 4. Under Assumptions 1–4, when γ8
ε and γ8

b are finite, as n → ∞,
√

N (̂γ4
ε − γ

4
ε ) N(0, µ4

ε ) and
√

n (̂γ4
b −

γ4
b) N(0, µ4

b), where µ4
ε = γ8

ε − (γ4
ε )

2 + 16(γ3
ε )

2γ2
ε − 8γ3

εγ
5
ε and µ4

b = γ8
b − (γ4

b)2 − 8γ3
bγ

5
b + 16(γ3

b)2γ2
b.

Based on the results of Theorems 3 and 4 we can conclude that once again the proposed estimators for γ3
ε , γ

3
b, γ4

ε ,
and γ4

b are a bit different from those obtained in [14], but their asymptotic results are similar. In addition, the proposed
estimators achieve the corresponding minimum variance and they are as efficient as the moment estimators based on
the true unknown terms εi j and bi.

To sum up, it can be pointed out that the alternative lemma proposed in this paper effectively provides a unique
estimating equation for all higher order moments of the error term even when standard distributional assumptions are
violated. Thus, this method enables one to solve the efficiency issue discussed in [14]. In principle, one could go
further beyond the fourth moment. For practical issues, however, when one wants to study distributional properties of
our estimators through their Fourier transform, an expansion involving the first few moments is enough.

4. Test statistics

With the aim of detecting departures from normality of either random effects or error terms, jointly and separately,
in this section we propose tests for skewness, kurtosis and normality based on the previous higher order estimators.
First, we focus on the skewness and kurtosis tests and derive their limiting distribution under arbitrary skewness and
kurtosis coefficients. Later, we extend the results to the specific normal setting. Finally, we focus on a normality test
and develop its limiting properties.
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4.1. Tests for skewness and kurtosis
When we are interested in testing for skewness in both random effects and error terms, the quantities of interest

for each component are

sb = E(b3)/{E(b2)}3/2 = γ3
b/(γ

2
b)3/2, sε = E(ε3)/{E(ε2)}3/2 = γ3

ε /(γ
2
ε )

3/2,

whereas for kurtosis the corresponding quantities are

κb = E(b4)/{E(b2)}4/2 = γ4
b/(γ

2
b)2, κε = E(ε4)/{E(ε2)}4/2 = γ4

ε /(γ
2
ε )

2.

Let γ̂k
b and γ̂k

ε be the consistent estimators obtained previously for γk
b and γk

ε , respectively, when k ∈ {2, 3, 4}. We
propose the following statistics to construct tests for skewness

ŝb = γ̂3
b/(̂γ

2
b)3/2, ŝε = γ̂3

ε /(̂γ
2
ε )

3/2, (8)

whereas to test for kurtosis the proposed statistics are of the form

κ̂b = γ̂4
b/(̂γ

2
b)2, κ̂ε = γ̂4

ε /(̂γ
2
ε )

2. (9)

In the following, we focus on the limiting distribution of these statistics under any conjectured coefficients of
skewness and kurtosis.

Theorem 5. Under Assumptions 1–4, when γ6
b and γ6

ε are finite, as n→ ∞,
√

N (̂sε − sε) N[0, α>ε Γεαε/(γ2
ε )

3] and
√

n (̂sb − sb)  N[0, α>b Γbαb/(γ2
b)3], where αε = (1,−3γ2

ε ,−3γε sε/2)> and αb = (1,−3γ2
b,−3γbsb/2)> are vectors of

dimension 1 × 3, while Γε and Γb are 3 × 3 matrices of the form

Γε =

 γ6
ε − (γ3

ε )
2 γ4

ε γ5
ε − γ

3
εγ

2
ε

γ4
ε γ2

ε γ3
ε

(γ5
ε − γ

3
εγ

2
ε ) γ3

ε γ4
ε − (γ2

ε )
2

 , Γb =

 γ
6
b − (γ3

b)2 γ4
b γ5

b − γ
3
bγ

2
b

γ4
b γ2

b γ3
b

γ5
b − γ

3
bγ

2
b γ3

b γ4
b − (γ2

b)2

 .
Theorem 6. Under Assumptions 1–4, when γ8

b and γ8
ε are finite, as n → ∞,

√
N (̂κε − κε)  N[0, β>ε Ωεβε/(γ2

ε )
4]

and
√

n (̂κb − κb)  N[0, β>b Ωbβb/(γ2
b)4], where βε = (1,−4γ3

ε ,−2γ2
ε κε)

> and βb = (1,−4γ3
b,−2γ2

bκb)> are vectors of
dimension 1 × 3, whereas Ωb and Ωε are 3 × 3 dimensional matrices such as

Ωε =

 γ
8
ε − (γ4

ε )
2 γ5

ε γ6
ε − γ

4
εγ

2
ε

γ5
ε γ2

ε γ3
ε

γ6
ε − γ

4
εγ

2
ε γ3

ε γ4
ε − (γ2

ε )
2

 , Ωb =

 γ
8
b − (γ4

b)2 γ5
b γ6

b − γ
4
bγ

2
b

γ5
b γ2

b γ3
b

γ6
b − γ

4
bγ

2
b γ3

b γ4
b − (γ2

b)2

 .
When the underlying distribution is symmetric, sb = 0 and sε = 0. Then, standardizing the above skewness test

statistics we obtain the following corollary.

Corollary 1. Under Assumptions 1–4 and assuming that γ6
b and γ6

ε are finite, let sd(̂sε) = {α̂>ε0Γ̂ε0α̂ε0/(̂γ2
ε )

3}1/2 and
sd(̂sb) = {α̂>b0Γ̂b0α̂b0/(̂γ2

b)3}1/2, where α̂ε0, α̂b0, Γ̂ε0, Γ̂b0, γ̂2
ε and γ̂2

b are the consistent estimators for αε0, αb0, Γε0, Γb0,
γ2
ε and γ2

b, respectively. Under the null hypothesis of symmetry, as n → ∞, π̂ε3 =
√

N ŝε/sd(̂sε)  N(0, 1) and
π̂b3 =

√
n ŝb/sd(̂sb)  N(0, 1), where α̂ε0, α̂b0, Γ̂ε0 and Γ̂b0 are the corresponding expressions of α̂ε , α̂b, Γ̂ε and Γ̂b,

respectively, under the null.

The following corollary can then be exploited to test whether the distribution of the random effects and error terms
is mesokurtic.

Corollary 2. Under Assumptions 1–4 and assuming that γ8
b and γ8

ε are finite, let sd(̂κε) = {̂β>ε3Ω̂ε3β̂ε3/(̂γ2
ε )

4}1/2 and
sd(̂κb) = {̂β>b3Ω̂b3β̂b3/(̂γ2

b)4}1/2, where β̂ε3, β̂b3, Ω̂ε3, Ω̂b3, γ̂2
ε and γ̂2

b are the consistent estimators for βε3, βb3, Ωε3, Ωb3,
γ2
ε and γ2

b, respectively. Under the null hypothesis that κε = 3 and κb = 3, as n → ∞, π̂ε4 =
√

N (̂κε − 3)/sd(̂κε)  
N(0, 1) and π̂b4 =

√
n (̂κb − 3)/sd(̂κb)  N(0, 1), where β̂ε3, β̂b3, Ω̂ε3 and Ω̂b3 are the corresponding expressions of

β̂ε , β̂b, Ω̂ε and Ω̂b, respectively, under the null.

Corollaries 1 and 2 imply that, under the null hypothesis, the proposed statistics for skewness and kurtosis are
asymptotically standard normal. Simple Student t tests can thus be implemented by standardizing the corresponding
statistics with the square root of a consistent estimator of their variances.
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4.2. Test for normality

As pointed out by [1], the above skewness and kurtosis tests are useful since they can be used to test whether the
data conform to any distribution of interest. In this section, we propose to extend the normality test proposed in [1]
for time series data to a linear mixed model. Then, we are able to detect whether the random effects or the error terms
departure from normality, jointly and separately.

Let π̃b3 and π̃b4 be the statistics for skewness and kurtosis evaluated under the null hypothesis of normality of the
random effects, i.e., sb = 0 and κb = 3, respectively. Then, the proposed statistic to construct tests for normality of the
random effects is

π̃b34 = π̃2
b3 + π̃2

b4.

Similarly, let π̃ε3 and π̃ε4 be the statistics for skewness and kurtosis evaluated under the null hypothesis of normality
of the error terms, i.e., sε = 0 and κε = 3, respectively. The proposed statistic to test for normality of the error terms is

π̃ε34 = π̃2
ε3 + π̃2

ε4.

Theorem 7. Under Assumptions 1–4 and assuming that γ8
b and γ8

ε are finite, under the null hypothesis of normality,
as n→ ∞, π̃ε34  χ2

2 and π̃b34  χ2
2.

Under the normality assumption, it can be proved that π̃ε3 and π̃ε4 are asymptotically independent, and similarly
for π̃b3 and π̃b4. Thus, the proof of this theorem follows the same lines as the corresponding statements for Theorem 5
and it is therefore omitted.

Looking at the results of Corollaries 1–2 and Theorem 7, it can be pointed out that the statistics proposed in this
section have the following appealing features. First, the skewness test statistics are valid even if the null hypothesis
is not normally distributed, albeit symmetric. Second, in [1] and [4] it is pointed that one of the main weaknesses
of this type of statistics for kurtosis is that it can be influenced by skewness. However, the statistics proposed in
this paper are not affected by this problem. Third, the statistics proposed for the random effects are not affected by
skewness or kurtosis in the remainder terms. The same holds for the statistics proposed for the error terms. Fourth,
the proposed normality tests allow to detect whether one specific term departs from normality. Fifth, all these tests
can be computed directly without having to use bootstrap techniques as in [4]. The only requirement is to compute
consistent estimators up the eight moment of the random effects and error terms, but they are easily obtained using
Lemma 1. These consistent estimators are given in Appendix B.

5. Monte Carlo simulation and application

To study the possible gains of the estimation procedures proposed in this paper, a simulation study was carried out.
In Section 5.1, we compare the performance in small samples of these estimators with respect to the ones proposed in
[14]. As further evidence of the usefulness of the proposed method, Section 5.2 contains an application to a real data
set.

5.1. Simulation study

Consider the linear mixed model defined, for all i ∈ {1, . . . , n} and j ∈ {1, . . . , `i}, by

yi j = α + x>i jβ + bi + εi j, (10)

where α = 1 and β = (1, 2)>. The group values are randomly drawn from a Poisson distribution with mean 5. Also,
the explanatory variables are jointly normal with zero means, unit variances and correlation 0.6.

5.1.1. Finite-sample performance of the proposed estimators. In order to estimate the previous regression model, we
separately consider the following combinations of distributions:

(a) εi j ∼ 0.5N(0, 1) and bi ∼ 0.5N(0, 1);

(b) εi j ∼ 0.5N(0, 1) and bi ∼ 0.5 t8;
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(c) εi j ∼ 0.5N(0, 1) and bi ∼ 0.5 Γ(1, 1) − 0.5;

(d) εi j ∼ 0.5 Γ(1, 1) − 0.5 and bi ∼ 0.5N(0, 1);

(e) εi j ∼ 0.5 t8 and bi ∼ 0.5N(0, 1).

whereN(0, 1) refers to the univariate standard normal distribution, t8 denotes the univariate Student t distribution with
8 degrees of freedom, and Γ(1, 1) is the univariate Gamma distribution with both scale and shape parameters equal
to 1, i.e., a unit exponential distribution.

The following simulation results are based on 1000 samples of data in which the number of subjects is either 50,
100 or 150. The estimated mean, standard deviation (Std) and the root mean squared error (RMSE) of the estimators
of the model parameters are listed in Table 1, while the results for the higher order moments are collected in Table 2.
For the sake of comparison, in Table 1 the OLS estimators are included in brackets, while in Table 2 it is the estimators
of the moments of [14] that are in brackets.

As can be seen from Tables 1–2, the proposed estimators perform quite well. As the sample size n increases, both
the estimated standard deviation and the RMSE are lower in the five cases considered. In addition, when we compare
the behavior between the proposed estimators in this paper and those obtained in [14], one can note that our estimators
perform slightly better in all cases considered. This difference is reduced as the sample size increases, as one might
expect from the theoretical results.

5.1.2. Finite-sample performance of the test statistic. In order to assess the performance of the proposed tests statistics,
we used the same data generating process as in (10) and explored their effectiveness under the distributional processes
(a)–(e).

In Table 3 we report the proportion of rejections over 1000 Monte Carlo replications, and the results are based on
either 10%, 5% or 1% nominal size. For the sake of practical implementation, the following Wald tests were used:
π̂2
ε3 and π̂2

b3 are used to test for skewness, π̂2
ε4 and π̂2

b4 for kurtosis, and π̃ε34 and π̃b34 for normality. Thus, under the
corresponding null hypothesis, the skewness and kurtosis statistics have χ2

1 asymptotic distribution, whereas π̃ε34 and
π̃b34 follow a χ2

2 distribution.
Table 3, case (a), reports the results for the experiment when both random effects and error terms follow a standard

normal distribution. Looking at these results, it can be pointed out that all proposed tests show a good empirical size
for the different sample sizes. Specifically, tests for skewness in ε starts with oversized figures for n = 50 (0.132 when
α = 0.05) but reduces to 0.126 as the sample size increases. The test for kurtosis starts with undersized values for
n = 50 (0.038 when α = 0.05) but the level reaches 0.051 as n increases. Further, the tests for joint skewness and
kurtosis achieve the correct empirical size as n increases in a similar way to the test of skewness. Meanwhile, for the
random effects it can be seen that all tests are undersized for the smaller sample size, but all of them almost achieve
the corresponding level of significance as n→ ∞.

In addition, as noted in [1], there are numerous distributions for which tests based on higher order moments are
not valid. In order to corroborate this fact, in cases (b)–(e) the performance of the proposed tests was analyzed under
different non-Gaussian distributions. In particular, in case (b) we assumed bi ∼ 0.5 t8, so the power of the kurtosis
tests for this term should increase in a similar way as the sample size. In fact, looking at this result it can be seen that
effectively the power of the kurtosis test in bi increases with n, but the tests for skewness and kurtosis in εi j achieve
the empirical size. An opposite behavior is observed in case (e), where εi j ∼ 0.5 t8 is assumed. These results show
that kurtosis in one component does not affect tests for kurtosis in the other error component.

In case (c) we assumed b j ∼ 0.5 Γ(1, 1) − 0.5. As it is well known, this gamma function is not symmetric and
presents excess of kurtosis. Then, the tests for skewness and kurtosis for bi should have a non-trivial power. The
opposite can be said for case (d), where εi j ∼ 0.5 Γ(1, 1) − 0.5 is assumed. As the reader can see, all these results are
corroborated in Table 3.

Finally, it can be pointed out that through these Monte Carlo experiments it has been proved that the methodology
proposed in this paper enables us to obtain more efficient estimators in finite samples for the higher order moments
of both components of the error term which are very useful for the empirical analysis. In addition, the proposed tests
enable us to assess whether the data conform to any distribution of interest. In addition, they are not affected by the
presence of skewness and/or kurtosis in the other component.
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Table 1: Finite-sample performance of α̂ and β̂ in cases (a)–(e).

Case n Results β̂1 β̂2 α̂

(a) True 1.000 2.000 1.000
50 Mean 1.001 (1.002) 2.000 (1.999) 0.991 (0.991)

Std 0.043 (0.043) 0.041 (0.043) 0.074 (0.074)
RMSE 0.044 (0.044) 0.042 (0.044) 0.075 (0.075)

100 Mean 1.001 (1.001) 1.999 (1.999) 1.002 (1.002)
Std 0.027 (0.028) 0.027 (0.027) 0.055 (0.055)
RMSE 0.027 (0.028) 0.027 (0.028) 0.056 (0.056)

150 Mean 0.999 (0.999) 1.997 (1.997) 0.999 (1.002)
Std 0.022 (0.023) 0.022 (0.024) 0.040 (0.040)
RMSE 0.021 (0.023) 0.021 (0.023) 0.040 (0.040)

(b) True 1.000 2.000 1.000
50 Mean 0.998 (0.998) 2.002 (2.002) 1.004 (1.004)

Std 0.040 (0.041) 0.041 (0.041) 0.084 (0.084)
RMSE 0.040 (0.041) 0.041 (0.041) 0.084 (0.085)

100 Mean 1.002 (1.002) 2.000 (2.000) 1.001 (1.001)
Std 0.030 (0.031) 0.031 (0.032) 0.061 (0.061)
RMSE 0.030 (0.031) 0.031 (0.032) 0.061 (0.061)

150 Mean 1.000 (1.000) 2.000 (1.999) 0.9998 (0.998)
Std 0.023 (0.024) 0.024 (0.024) 0.051 (0.051)
RMSE 0.024 (0.024) 0.024 (0.024) 0.051 (0.051)

(c) True 1.000 2.000 1.000
50 Mean 1.001 (1.000) 1.998 (1.998) 1.000 (1.000)

Std 0.041 (0.042) 0.041 (0.041) 0.080 (0.080)
RMSE 0.041 (0.042) 0.041 (0.041) 0.080 (0.080)

100 Mean 1.000 (0.999) 2.000 (2.001) 1.001 (1.001)
Std 0.028 (0.028) 0.029 (0.029) 0.053 (0.054)
RMSE 0.028 (0.028) 0.029 (0.029) 0.053 (0.054)

150 Mean 1.000 (1.000) 2.000 (2.000) 1.000 (1.000)
Std 0.023 (0.023) 0.023 (0.024) 0.044 (0.044)
RMSE 0.023 (0.023) 0.023 (0.024) 0.044 (0.044)

(d) True 1.000 2.000 1.000
50 Mean 1.001 (1.001) 2.000 (2.000) 0.999 (0.999)

Std 0.041 (0.043) 0.040 (0.043) 0.037 (0.037)
RMSE 0.041 (0.043) 0.040 (0.043) 0.037 (0.037)

100 Mean 0.999 (0.999) 2.000 (2.001) 0.999 (0.999)
Std 0.028 (0.030) 0.028 (0.030) 0.027 (0.027)
RMSE 0.028 (0.030) 0.028 (0.030) 0.027 (0.027)

150 Mean 0.999 (0.999) 2.000 (2.000) 1.000 (1.000)
Std 0.022 (0.024) 0.023 (0.024) 0.022 (0.022)
RMSE 0.022 (0.024) 0.022 (0.024) 0.022 (0.022)

(e) True 1.000 2.000 1.000
50 Mean 1.008 (1.008) 1.994 (1.993) 0.994 (0.994)

Std 0.048 (0.049) 0.048 (0.050) 0.086 (0.086)
RMSE 0.049 (0.050) 0.049 (0.051) 0.086 (0.086)

100 Mean 0.996 (0.996) 1.999 (2.000) 1.002 (1.002)
Std 0.035 (0.035) 0.035 (0.035) 0.058 (0.058)
RMSE 0.035 (0.035) 0.035 (0.035) 0.058 (0.058)

150 Mean 1.000 (1.000) 1.998 (1.998) 1.000 (1.000)
Std 0.026 (0.028) 0.025 (0.027) 0.046 (0.046)
RMSE 0.026 (0.028) 0.025 (0.027) 0.046 (0.046)
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Table 2: Finite-sample performance of γk
ε and γk

b, for k ∈ {2, 3, 4}, in cases (a)–(e).

Case n Results γ̂2
ε γ̂3

ε γ̂4
ε γ̂2

b γ̂3
b γ̂4

b

(a) True 0.250 0.000 0.187 0.250 0.000 0.187
50 Mean 0.248 (0.248) 0.000 (0.000) 0.179 (0.179) 0.239 (0.239) 0.000 (0.000) 0.186 (0.186)

Std 0.022 (0.022) 0.026 (0.026) 0.038 (0.040) 0.064 (0.064) 0.034 (0.034) 0.131 (0.136)
RMSE 0.011 (0.011) 0.028 (0.028) 0.027 (0.030) 0.042 (0.042) 0.069 (0.071) 0.079 (0.084)

100 Mean 0.250 (0.250) 0.001 (0.001) 0.186 (0.188) 0.244 (0.244) 0.004 (0.004) 0.176 (0.176)
Std 0.017 (0.017) 0.018 (0.018) 0.035 (0.037) 0.036 (0.036) 0.021 (0.021) 0.071 (0.075)
RMSE 0.006 (0.006) 0.020 (0.020) 0.019 (0.020) 0.025 (0.025) 0.048 (0.048) 0.046 (0.047)

150 Mean 0.250 (0.250) 0.001 (0.001) 0.189 (0.189) 0.245 (0.245) 0.000 (0.000) 0.181 (0.182)
Std 0.013 (0.013) 0.014 (0.014) 0.027 (0.026) 0.031 (0.031) 0.030 (0.033) 0.056 (0.056)
RMSE 0.005 (0.005) 0.015 (0.015) 0.016 (0.016) 0.021 (0.021) 0.039 (0.039) 0.045 (0.045)

(b) True 0.250 0.000 0.187 0.333 0.000 0.500
50 Mean 0.248 (0.248) 0.001 (0.001) 0.184 (0.185) 0.327 (0.327) 0.000 (0.000) 0.477 (0.477)

Std 0.023 (0.023) 0.025 (0.025) 0.045 (0.047) 0.097 (0.097) 0.044 (0.051) 0.598 (0.594)
RMSE 0.040 (0.041) 0.041 (0.041) 0.084 (0.085) 0.048 (0.048) 0.124 (0.112) 0.209 (0.210)

100 Mean 0.248 (0.248) 0.000 (0.000) 0.185 (0.185) 0.327 (0.327) 0.003 (0.006) 0.463 (0.464)
Std 0.017 (0.017) 0.021 (0.021) 0.035 (0.036) 0.066 (0.066) 0.031 (0.035) 0.335 (0.335)
RMSE 0.030 (0.031) 0.031 (0.032) 0.061 (0.061) 0.034 (0.034) 0.119 (0.106) 0.177 (0.177)

150 Mean 0.249 (0.249) 0.000 (0.000) 0.185 (0.186) 0.327 (0.327) 0.000 (0.000) 0.468 (0.469)
Std 0.013 (0.013) 0.014 (0.014) 0.026 (0.027) 0.053 (0.053) 0.027 (0.028) 0.358 (0.360)
RMSE 0.024 (0.024) 0.024 (0.024) 0.051 (0.051) 0.028 (0.028) 0.103 (0.104) 0.136 (0.137)

(c) True 0.250 0.000 0.187 0.250 0.250 0.562
50 Mean 0.247 (0.247) 0.000 (0.000) 0.182 (0.182) 0.240 (0.240) 0.226 (0.227) 0.489 (0.489)

Std 0.023 (0.023) 0.024 (0.024) 0.044 (0.046) 0.102 (0.102) 0.234 (0.234) 0.800 (0.800)
RMSE 0.010 (0.010) 0.028 (0.028) 0.027 (0.030) 0.049 (0.049) 0.128 (0.129) 0.368 (0.366)

100 Mean 0.249 (0.249) 0.000 (0.000) 0.187 (0.187) 0.249 (0.249) 0.246 (0.248) 0.560 (0.560)
Std 0.016 (0.016) 0.019 (0.019) 0.032 (0.034) 0.072 (0.072) 0.180 (0.180) 0.691 (0.690)
RMSE 0.007 (0.007) 0.021 (0.022) 0.019 (0.021) 0.034 (0.034) 0.093 (0.093) 0.330 (0.328)

150 Mean 0.250 (0.250) 0.000 (0.000) 0.187 (0.187) 0.250 (0.250) 0.242 (0.244) 0.534 (0.533)
Std 0.013 (0.013) 0.014 (0.014) 0.024 (0.026) 0.057 (0.057) 0.133 (0.134) 0.463 (0.464)
RMSE 0.006 (0.006) 0.016 (0.016) 0.016 (0.016) 0.028 (0.028) 0.074 (0.076) 0.231 (0.234)

(d) True 0.250 0.250 0.562 0.250 0.000 0.187
50 Mean 0.252 (0.252) 0.246 (0.246) 0.542 (0.545) 0.237 (0.237) 0.000 (0.000) 0.181 (0.1739)

Std 0.042 (0.042) 0.116 (0.116) 0.375 (0.383) 0.059 (0.059) 0.028 (0.029) 0.122 (0.104)
RMSE 0.012 (0.012) 0.045 (0.045) 0.091 (0.111) 0.039 (0.039) 0.067 (0.074) 0.104 (0.082)

100 Mean 0.250 (0.250) 0.249 (0.249) 0.545 (0.545) 0.245 (0.245) 0.000 (0.000) 0.176 (0.182)
Std 0.031 (0.031) 0.078 (0.078) 0.259 (0.262) 0.046 (0.046) 0.022 (0.022) 0.092 (0.086)
RMSE 0.007 (0.007) 0.024 (0.024) 0.052 (0.062) 0.029 (0.029) 0.048 (0.049) 0.072 (0.072)

150 Mean 0.250 (0.250) 0.249 (0.249) 0.548 (0.548) 0.217 (0.217) 0.000 (0.000) 0.151 (0.157)
Std 0.022 (0.022) 0.060 (0.060) 0.245 (0.245) 0.037 (0.037) 0.019 (0.019) 0.078 (0.079)
RMSE 0.006 (0.006) 0.029 (0.029) 0.069 (0.079) 0.021 (0.021) 0.038 (0.040) 0.052 (0.045)

(e) True 0.333 0.000 0.500 0.250 0.000 0.187
50 Mean 0.330 (0.330) −0.010 (−0.010) 0.445 (0.448) 0.241 (0.241) 0.000 (0.001) 0.176 (0.176)

Std 0.044 (0.044) 0.055 (0.055) 0.171 (0.178) 0.060 (0.060) 0.018 (0.061) 0.104 (0.103)
RMSE 0.014 (0.014) 0.054 (0.054) 0.064 (0.073) 0.035 (0.035) 0.069 (0.072) 0.078 (0.071)

100 Mean 0.326 (0.326) 0.001 (0.001) 0.466 (0.469) 0.242 (0.242) 0.000 (0.000) 0.186 (0.184)
Std 0.025 (0.025) 0.053 (0.053) 0.158 (0.168) 0.044 (0.044) 0.013 (0.043) 0.082 (0.079)
RMSE 0.009 (0.009) 0.036 (0.036) 0.058 (0.063) 0.029 (0.029) 0.049 (0.054) 0.061 (0.060)

150 Mean 0.329 (0.329) 0.004 (0.004) 0.487 (0.492) 0.246 (0.246) 0.000 (0.000) 0.182 (0.189)
Std 0.025 (0.025) 0.046 (0.046) 0.164 (0.164) 0.037 (0.037) 0.012 (0.039) 0.072 (0.071)
RMSE 0.007 (0.007) 0.028 (0.028) 0.057 (0.054) 0.026 (0.026) 0.041 (0.044) 0.054 (0.052)
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Table 3: Finite-sample performance of skewness, kurtosis and normality tests in cases (a)–(e).

Error Term Random Effects
Significance Level Significance Level

Case n Results 0.10 0.05 0.01 0.10 0.05 0.01

(a) 50 Skewness 0.221 0.132 0.046 0.035 0.020 0.017
Kurtosis 0.073 0.038 0.013 0.049 0.025 0.003
Normality 0.147 0.078 0.005 0.024 0.013 0.002

100 Skewness 0.225 0.148 0.036 0.043 0.028 0.011
Kurtosis 0.095 0.041 0.007 0.082 0.049 0.014
Normality 0.160 0.087 0.006 0.045 0.023 0.002

150 Skewness 0.201 0.126 0.029 0.086 0.041 0.006
Kurtosis 0.102 0.051 0.009 0.116 0.051 0.012
Normality 0.133 0.067 0.010 0.083 0.041 0.002

(b) 50 Skewness 0.271 0.183 0.054 0.201 0.153 0.086
Kurtosis 0.106 0.062 0.024 0.059 0.025 0.010
Normality 0.192 0.093 0.020 0.097 0.073 0.026

100 Skewness 0.200 0.136 0.022 0.182 0.125 0.080
Kurtosis 0.071 0.031 0.015 0.189 0.107 0.040
Normality 0.224 0.086 0.015 0.264 0.154 0.015

150 Skewness 0.140 0.100 0.020 0.157 0.112 0.005
Kurtosis 0.076 0.076 0.026 0.242 0.175 0.109
Normality 0.155 0.099 0.013 0.281 0.180 0.032

(c) 50 Skewness 0.255 0.154 0.074 0.362 0.241 0.081
Kurtosis 0.090 0.033 0.016 0.127 0.059 0.029
Normality 0.168 0.071 0.014 0.197 0.134 0.051

100 Skewness 0.177 0.198 0.062 0.548 0.391 0.161
Kurtosis 0.137 0.057 0.010 0.307 0.180 0.066
Normality 0.192 0.085 0.012 0.343 0.278 0.016

150 Skewness 0.151 0.133 0.062 0.616 0.464 0.188
Kurtosis 0.102 0.045 0.015 0.441 0.290 0.072
Normality 0.123 0.079 0.017 0.384 0.335 0.062

(d) 50 Skewness 0.525 0.394 0.224 0.032 0.021 0.011
Kurtosis 0.670 0.493 0.186 0.037 0.029 0.009
Normality 0.268 0.211 0.044 0.027 0.014 0.001

100 Skewness 0.587 0.278 0.112 0.038 0.021 0.011
Kurtosis 0.657 0.517 0.240 0.077 0.050 0.016
Normality 0.142 0.095 0.022 0.043 0.028 0.006

150 Skewness 0.741 0.403 0.052 0.086 0.044 0.008
Kurtosis 0.682 0.555 0.335 0.081 0.060 0.022
Normality 0.243 0.099 0.007 0.054 0.035 0.002

(e) 50 Skewness 0.196 0.099 0.024 0.034 0.024 0.006
Kurtosis 0.386 0.252 0.074 0.069 0.045 0.019
Normality 0.302 0.163 0.020 0.037 0.023 0.006

100 Skewness 0.161 0.086 0.022 0.042 0.025 0.010
Kurtosis 0.557 0.411 0.145 0.089 0.057 0.020
Normality 0.414 0.256 0.025 0.054 0.034 0.005

150 Skewness 0.146 0.075 0.017 0.087 0.042 0.007
Kurtosis 0.676 0.526 0.226 0.102 0.065 0.019
Normality 0.485 0.329 0.043 0.051 0.030 0.002
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5.2. Application to a real data set
In order to illustrate our proposed method, in this section we perform an empirical analysis of the health care

delivery system of the OECD countries. Furthermore, we compare our GLS results with the standard OLS estimators.
These data are from the OECD Health Data 2015 and the Education Statistics of The World Bank. With the aim

of having enough sample variability for all covariates, we consider 19 OCDE countries, i.e., all OECD nations except
Belgium, Canada, Chile, France, Germany, Greece, Ireland, Italy, Korea, Norway, Portugal, Sweden, Switzerland, the
Netherlands, and Turkey. After removing the missing observations we obtain a dataset for which we do not have the
same number of time observations per country. The total sample size of this study is 225 observations. The variables
included in this study are defined in Table 4.

Table 4: Variables description.

Variable Description Source

LIFE Life expectancy at birth, for the total population OECD Health Data 2015
MORT Maternal and infant mortality rate, per 1000 live births OECD Health Data 2015
TECH Number of medical technology∗, per million population OECD Health Data 2015
PHYS Density of practicing physicians, per 1000 population OECD Health Data 2015
PATIENT In-patient care average length of stay in hospital OECD Health Data 2015
INMUNI Percentage of children immunized against 2000 measles OECD Health Data 2015
HEXP Total expenditure on health per capital, (US$ PPP) OECD Health Data 2015
ALCO Alcohol consumption litres per capita (age 15+) OECD Health Data 2015
EDU School life expectancy years, primary and secondary The World Bank

∗Medical technology: Computed tomography scanners, magnetic resonance imaging, positron emission tomography scanners, gamma cameras,
digital subtraction angiography, mammograph, radiation therapy equipment, and lithrotriptors

Before specifying the structural model of health outcome, we wish to stress issues related to the characteristics of
the health care delivery system of the OECD countries. In the last decade, expenditures on health and health care have
increased considerably mainly due to medical advancement, population aging, and rising public demand. Specifically,
as described in the OECD database, health expenditure as a percentage of gross domestic product (GDP) was around
7.23% in 2000, and this figure has increased in recent years reaching 8.99% in 2013. Nevertheless, in recent years
there has been a slight reduction in this growth mainly due to the global economic crisis. In this situation, it is of
great interest to be able to identify the relative importance of various factors in key aspects of health outcomes such
as life expectancy or maternal and infant mortality in order to develop efficient public policies. Nevertheless, these
estimators can lead to unreliable inference in those cases in which life expectancy or maternal and infant mortality
follow a skewed distribution. Therefore, testing for skewness or normality is an interesting issue.

Specifically, in this application we propose to assess the impact of economic, institutional, and social factors in
the health outcome, approximated through the life expectancy and the infant and maternity mortality rate. With this
aim, we consider two different regression models.

In the first regression model, the dependent variable is life expectancy (LIFE), which represents the typical number
of years that a person at that age can be anticipated to live, presuming that age-specific mortality levels remain
constant. In the second regression model, the dependent variable is the maternal and infant mortality rate (MORT)
that encompasses the number of deaths of children under one year of age that occurred in a given year.

Assuming that LIFE and MORT are functions of the countries’ medical investment, the quality of the health care
system, and the educational level of the population, the regression models to estimate are the following:

LIFEi j = α + β1TECHi j + β2PHYSi j + β3PATIENTi j + β4INMUNIi j

+ β5HEXPi j + β6ALCOi j + β7EDUi j + bi + εi j,

MORTi j = α + β1TECHi j + β2PHYSi j + β3PATIENTi j + β4INMUNIi j

+ β5HEXPi j + β6ALCOi j + β7EDUi j + bi + εi j,

13



where i ∈ {1, . . . , 19} denotes the individuals (i.e., countries) and j ∈ {1, . . . , `i} is the number of observations per
individual.

Tables 5 and 6 collect the regression results of life expectancy and maternal and infant mortality, respectively,
whereas Table 7 reports the skewness, kurtosis, and normality tests for both regression models.

Analyzing the results in Tables 5 and 6, it can be pointed out that the signs of the parameter estimates of all the
variables in the life expectancy and mortality regression are as expected. From the life expectancy point of view,
more medical resources (PHYS), a higher level of immunization (INMUNI), a higher health expenditure (HEXP),
a higher literacy rate (EDU), and a better access to medical technology (TECH) have a positive impact. Contrary,
high in-patient utilization (PATIENT) and high alcohol consumption (ALCO) reduce life expectancy. Also, higher
in-patient utilization (PATIENT) and a greater number of children immunized (INMUNI) are related with an increment
in the mortality rate, whereas the rest of the explanatory variables of this regression reduce the mortality rate.

In addition, in the first regression all the explanatory variables considered, except ALCO, are statistically significant
at the 10% level or better using the statistical test proposed previously. For the second regression, all the explanatory
variables, except PATIENT and INMUNI, are statistically significant even at the 1% level. Then, higher supply of
physicians and the inversion in medical training and education should be the primary focus of the OECD national
health care policy. Further, several differences can be noticed when we compare the results of the OLS and GLS
estimators. Specifically, the OLS estimators show more significant coefficients, while the GLS method proposed in
this paper is more conservative.

In addition, from Table 7 it is found that the idiosyncratic error term for the life expectancy regression model is
symmetric but with large kurtosis, and the joint test for skewness and normality is rejected at the 5% significance
level. Meanwhile, for the infant and maternity mortality rate, one finds that εi j is symmetric with kurtosis close to
the normal value of 3 and the joint test is rejected at the 5% significance level. As to the country level component, in
both regression models it is shown to be symmetric with a kurtosis coefficient close to the normal value. Then, based
on these results we can conclude that alternative estimation techniques for generalized linear mixed models should be
used in order to provide more reliable results. This issue is left for future work.

6. Conclusion

Linear mixed models provide a useful tool to fit continuous longitudinal data, and the random effects and error
terms are commonly assumed to have a normal distribution. However, these restrictive assumptions may result in a
lack of robustness against departures from normality and invalid statistical inferences, especially when data exhibit
multimodality and skewness. Therefore, it is of practical interest to test for normality. In this paper, we propose a very
simple and intuitive test for skewness, kurtosis, and normality based on GLS residuals. This requires the estimation of
higher order moments, and an alternative estimation procedure is developed to this end. Compared to other procedures
in the literature, our method is very appealing since it results in closed form expressions for the estimators even for the

Table 5: Estimated results for life expectancy

OLS GLS
β̂OLS ŝe(̂βOLS ) β̂GLS ŝe(̂βGLS )

INTERCEPT 5.679∗∗∗ 0.041 5.924∗∗∗ 0.042
PHYS 0.764∗∗ 0.351 0.677∗ 0.354
PATIENT −0.149∗∗ 0.069 −0.175∗∗ 0.069
INMUNI 0.051∗∗ 0.021 0.037∗ 0.021
HEXP 0.001∗∗∗ 0.000 0.001∗∗∗ 0.000
ALCO −0.040 0.059 −0.049 0.059
EDU 0.292∗∗ 0.124 0.212∗ 0.125
TECH 0.0083∗∗∗ 0.002 0.008∗∗∗ 0.002
∗ Significant at the 10% level. ∗∗ Significant at the 5% level. ∗∗∗ Significant at the
1% level.
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Table 6: Estimated results for maternal and infant mortality

OLS GLS
β̂OLS ŝe(̂βOLS ) β̂GLS ŝe(̂βGLS )

INTERCEPT 0.917∗∗∗ 0.055 1.697∗∗∗ 0.054
PHYS −1.433∗∗∗ 0.461 −1.709∗∗∗ 0.462
PATIENT 0.128∗∗∗ 0.088 0.052 0.091
INMUNI 0.044∗ 0.026 0.001 0.028
HEXP −0.000 0.000 −0.000 0.000
ALCO −0.179∗∗ 0.078 −0.211∗∗∗ 0.078
EDU −0.286∗ 0.149 −0.542∗∗∗ 0.164
TECH −0.007∗∗∗ 0.002 −0.006∗∗ 0.003
∗ Significant at the 10% level. ∗∗ Significant at the 5% level. ∗∗∗ Significant at the
1% level.

Table 7: Estimated results for maternal and infant mortality

π̂2
ε3

π̂2
b3

π̂2
ε4

π̂2
b4

π̃ε34 π̃b34

LIFE 1.806 0.055 9.033*** 0.794 9.194** 0.774
MORT 1.774 0.061 1.381 0.001 8.577** 0.001
∗ Significant at the 10% level. ∗∗ Significant at the 5% level. ∗∗∗ Significant at the
1% level. Note: Using the results of Corollaries 1–2 and Theorem 4, the proposed test
statistics follow a chi-square distribution even when standard distributional assumptions
for the disturbances do not hold.

third and fourth order moments. In addition, no further distributional assumptions on either random effects or error
terms are needed to show the consistency of the proposed estimators and tests statistics.

Finally, to illustrate the value and practicality of this new methodology, the finite-sample behavior of the proposed
estimators and tests statistics has been analyzed through several simulation experiments. A study of the health care
delivery system of the OECD countries was also carried out. As a result it was shown that health care expenditures,
higher supply of physicians, and the inversion in medical training and education should be priority aspects of the
OECD national health care policies because of their positive impact in both lengthening life expectancy and reducing
infant mortality. In addition, the test for skewness of the error terms suggests that alternative estimation techniques
would provide more reliable results.

Appendix A

Proof of Theorem 1. In order to prove the claims in Theorem 1, we follow the standard proofs scheme as in [14].
Fix a ∈ Rp. Under the conditions of Theorem 1 we have to show

√
N (̃β − β)  N(0, a>Σ−1

2 a). Using the results of
Theorem 2, it can be proved that Ω̂`i is a consistent estimator for Ω`i . Also, it is easy to show that the jth element of
ÿi is yi j − λyi• and similarly for ẍi. Then, the estimator (5) can be rewritten as

β̂ − β =

 1
N

n∑
i=1

`i∑
j=1

(xi j − λxi•)(xi j − λxi•)>

−1

1
N

n∑
i=1

`i∑
j=1

(xi j − λxi•)(yi j − λyi•) + oP(1).

According to this expression, β̂ − β is a sum of zero-mean independent random vectors. Then, to obtain the
convergence in distribution of this estimator it is necessary to check the variance term and Lindeberg’s condition.
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Focus first on the variance of
√

N a> (̂β − β). Under Assumption 3, we get

γ2
ε

N

n∑
i=1

`i∑
j=1

{a>Σ−1
n (xi j − λxi•)}2 = γ2

εa
>Σ−1

2n a→ γ2
εa
>Σ−1

2 a.

Furthermore, to verify Lindeberg’s condition, we fix δ > 0. Then, the Lindeberg function equals

Ln(δ) =
1
N

n∑
i=1

{a>Σ−1
n (xi j − λxi•)}2

∫
{|a>Σ−1

n (xi j−λxi•)||εi j−λε i• |≥δ
√

N}
(εi j − λε i•)2dP.

Then, under Assumption 3 and by the Cauchy–Schwarz inequality, we can conclude that

Ln(δ) ≤ a>Σ−1
n a

∫
{|a>Σ−1

n ||εi j−λε i• |≥δC̃−1
n }

(εi j − λε i•)2dP→ 0,

where C̃n = (1/
√

N) maxi j‖xi j − λxi•‖. Remember that under Assumption 4, C̃n → 0 as n → ∞ so Lindeberg’s
condition is proved.

Focus now on the behavior of α̂. We can write

α̂ − α =
1
n

n∑
i=1

bi + ε −
1
n

n∑
i=1

x′i• (̂β − β).

Under the assumptions of the theorem, it is straightforward to show that

√
n (α̂ − α) =

1
√

n

n∑
i=1

bi + oP(1) N(0, γ2
b).

Thus the proof of Theorem 1 is complete. �

Proof of Theorem 2. We first study the asymptotic properties of γ̂2
ε and later we focus on γ̂2

b. Remember that̂̃ε i j = (yi j − yi•) − (xi j − xi•)>β̂, so it follows from (6) that

γ̂2
ε =

1
N

n∑
i=1

`i∑
j=1

ε2
i j −

1
N

n∑
i=1

1
(`i − 1)

`i∑
j=1

`i∑
h, j

εi jεih +
1
N

n∑
i=1

`i

(`i − 1)

`i∑
j=1

{(xi j − xi•)> (̂β − β)}2

−
2
N

n∑
i=1

`i

(`i − 1)

`i∑
j=1

ε̃i j(xi j − xi•)> (̂β − β) = Iε − IIε + IIIε − IVε , say. (A1)

As it is going to be shown below, only the first one of these four terms matters; the others are negligible. Analyzing
each of these terms separately and proceeding as in [14], under Assumption 4 and using the results of Theorem 1, it
is straightforward to obtain that IIε/

√
N, IIIε/

√
N, and IVε/

√
N converges in probability to 0.

Using these results in (A1) we can write

√
N (̂γ2

ε − γ
2
ε ) =

1
√

N

n∑
i=1

`i∑
j=1

(ε2
i j − γ

2
ε ) + oP(1),

and by the Central Limit Theorem it can be proved that, as n→ ∞,
√

N (̂γ2
ε − γ

2
ε ) N(0, µ2

ε ), where µ2
ε = γ4

ε − (γ2
ε )

2.
Thus, the first part of Theorem 1 is proved.

Focus now on the asymptotic properties of γ̂2
b. Let us denote b =

∑n
i=1 bi/n, ε =

∑n
i=1

∑`i
j=1 εi j/N and x =∑n

i=1
∑`i

j=1 xi j/N. Using these definitions, we have

α̂ − α = b + ε − x> (̂β − β).
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Hence, the residual term v̂i j is
v̂i j = (bi + εi j) − (b + ε) − (xi j − x)> (̂β − β). (A2)

Using the results of Theorem 1, the higher order terms of (xi j − xi•)> (̂β − β) can be ignored. Then, replacing (A2) in
(6) the estimator for γ2

b has the form

γ̂2
b =

1
n

n∑
i=1

b2
i +

2
n

n∑
i=1

1
`i

`i∑
j=1

biεi j +
1
n

n∑
i=1

2
`i(`i − 1)

`i−1∑
j=1

`i∑
h= j+1

εi jεih − ε
2

+ oP(n−1/2)

= Ib + IIb + IIIb − IVb + oP(n−1/2), say. (A3)

By arguments similar to those used previously, it is straightforward to show that IIb, IIIb, and IVb are independent
variables with zero mean and finite variance. Then, we can conclude that n1/2IIb, n1/2IIIb, and n1/2IVb converge in
probability to zero. Using these results in (A3) and under Assumption 4 we obtain

√
n (̂γ2

b − γ
2
b) =

1
√

n

n∑
i=1

(b2
i − γ

2
b) + oP(1).

By the Central Limit Theorem, as n→ ∞,
√

n (̂γ2
b − γ

2
b) N(0, µ2

b), where µ2
b = γ4

b − (γ2
b)2. �

Proof of Theorem 3. As in the previous proof, using the results of Theorem 1 we can show the higher order terms of
(xi j − xi•)> (̂β − β) to be negligible. Therefore, replacing v̂i j with (A2) in (7) we obtain

n̂γ3
b =

∑
i

{b3
i − 3b2

i (b + ε)} +
∑

i

6
`i(`i − 1)(`i − 2)

∑
j,h,g

εi jεihεig

+
∑

i

2
`i(`i − 1)

∑
j,h

{4biεi jεih − 3εi jεih(b + ε)} +
∑

i

1
`i

∑
j

{3b2
i εi j − 6biεi j(b + ε) + 3εi j(b + ε)2}

+ 3nb(b + ε)2 − n(b + ε)3 + oP(n1/2).

Under Assumption 4, the first expression is the leading term since the rest of the elements are negligible and the
resulting equation to study is

γ̂3
b − γ

3
b =

1
n

∑
i

{b3
i − γ

3
b − 3b2

i (b + ε)} + oP(n−1/2) =
1
n

∑
i

{b3
i − γ

3
b − 3γ3

bbi} + oP(n−1/2).

Then, by the Central Limit Theorem, the first part of Theorem 3 is proved.
On the other hand, for γ̂3

ε , we can use the previous arguments. Then, ignoring once again the higher order terms
of (xi j − xi•)> (̂β − β), we can write

Nγ̂3
ε =

∑
i

`2
i

(`i − 1)(`i − 2)

∑
j

ε̃3
i j + oP(N1/2).

Then, by the expansion of ε̃3
i j the expression to study is

Nγ̂3
ε =

∑
i

∑
j

ε3
i j −

∑
i

3
(`i − 1)

∑
j,h

ε2
i jεih +

∑
i

2
(`i − 1)(`i − 2)

∑
j,h,g

εi jεihεig + oP(N1/2)

=
∑

i

∑
j

(ε3
i j − γ

2
ε εi j) + oP(N1/2).

So it is proved that after centering ε3
i j,

N (̂γ3
ε − γ

3
ε ) =

∑
i

∑
j

ε3
i j − `iγ

3
ε − 3

∑
j

γ2
ε εi j

 + oP(N1/2). (A4)
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Finally, the conclusion for γ̂3
ε now readily follows from the Central Limit Theorem and Theorem 3 is proved. �

Proof of Theorem 4. For γ̂4
b we need arguments similar to before. Using the results of Theorem 1 we neglect again

all terms that contain (xi j − xi•)> (̂β − β). Then, replacing v̂i j with (A2), we get that the expression to study, after
rearranging terms, is

n̂γ4
b =

∑
i

{bi − (b + ε)}4 +
∑

i

4
`i

∑
j

{bi − (b + ε)}3εi j +
∑

i

2
`i

∑
j

{bi − (b + ε)}2ε2
i j

+
∑

i

8
`i(`i − 1)

∑
j,h

{bi − (b + ε)}2εi jεih +
∑

i

8
`i(`i − 1)

∑
j,h

{bi − (b + ε)}ε2
i jεih

−
∑

i

2
`i(`i − 1)

∑
j,h

ε2
i jε

2
ih − 2̂γ2

bγ̂
2
ε − (̂γ2

ε )
2 + oP(n1/2).

Based on the previous results for γ̂2
ε and γ̂2

b, it is easy to show γ̂2
ε

p
−→ γ2

ε and γ̂2
b

p
−→ γ2

b. Using these results and the
assumptions of the theorem, after rearranging terms, we find that the equation to analyze is

n(̂γ4
b − γ

4
b) =

∑
i

[{bi − (b + ε)}4 − γ4
b] + oP(n1/2) =

∑
i

(b4
i − γ

4
b − 4γ3

bbi) + oP(n1/2) (A5)

and by the Central Limit Theorem the first part of this theorem is proved.
Finally, for γ̂4

ε , it can be shown that

Nγ̂4
ε =

∑
i

∑
j

ε4
i j −

n∑
i=1

 4`2
i − 12`i + 9

`3
i − 4`2

i + 6`i − 3

∑
j,h

ε3
i jεih +

∑
i

 6`i − 9
`3

i − 4`2
i + 6`i − 3

∑
j,h

ε2
i jε

2
ih

+
∑

i

 6`i − 9
`3

i − 4`2
i + 6`i − 3

 ∑
j,h,g

ε2
i jεihεig −

∑
i

 3
`3

i − 4`2
i + 6`i − 3

 ∑
j,h,g,r

εi jεihεigεir

−
∑

i

 `i(`i − 1)(6`i − 9)
`3

i − 4`2
i + 6`i − 3

 (̂γ2
ε )

2 + oP(N1/2)

=
∑

i

∑
j

(ε4
i j − 4γ3

ε εi j) + oP(N1/2).

Then, after centering we get
N (̂γ4

ε − γ
4
ε ) =

∑
i

∑
j

(ε4
i j − γ

4
ε − 4γ3

ε εi j) + oP(N1/2)

and the proof of Theorem 4 follows from the Central Limit Theorem. �

Proof of Theorem 5. Following the standard proof scheme as in [1], we first focus on the behavior of ŝε and later on
the properties of ŝb. From (8), we obtain

ŝε − sε =
γ̂3
ε − γ

3
ε

(̂γ2
ε )3/2 − sε

{
(̂γ2
ε )

3/2 − (γ2
ε )

3/2

(̂γ2
ε )3/2

}
. (A6)

Also, by the delta method we know that

√
N {(̂γ2

ε )
k/2 − (γ2

ε )
k/2} =

k
2

(γ2
ε )

k/2−1
√

N (̂γ2
ε − γ

2
ε ) + oP(1). (A7)

By inserting (A4) and (A7), for k = 3, into (A6) we get

ŝε − sε =
1

(̂γ2
ε )3/2

 1
N

∑
i j

(ε3
i j − γ

3
ε ) −

3γ2
ε

N

∑
i j

εi j

 − 3sεγε
2(̂γ2

ε )3/2

 1
N

∑
i j

(ε2
i j − γ

2
ε )

 + oP

(
1
√

N

)
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and rearranging the expression to analyze leads to

√
N (̂sε − sε) =

α>ε
(̂γ2
ε )3/2

1
√

N

∑
i

∑
j

sεi j + oP(1),

where αε = (1,−3γ2
ε ,−3sεγε/2)> and sεi j = (ε3

i j − γ
3
ε , εi j, ε

2
i j − γ

2
ε )
> are 3 × 1 vectors.

Under the assumptions of Theorem 5, it is easy to show that E(
∑

i j sεi j/
√

N) = 0 and its variance-covariance matrix
is of the form

Γε =

 γ
6
ε − (γ2

ε )
3 γ4

ε γ5
ε − γ

3
εγ

2
ε

γ4
ε γ2

ε γ3
ε

γ5
ε − γ

3
εγ

2
ε γ3

ε γ4
ε − (γ2

ε )
2

 . (A8)

Using the result of Theorem 2, γ̂2
ε

p
−−→ γ2

ε , and by the Central Limit Theorem the first part of this theorem is proved.
Similarly, ŝb can be written as

√
n(̂sb − sb) =

α>b
(̂γ2

b)3/2

1
√

n

∑
i

sb
i + oP(1),

where αb = (1,−3γ2
b,−3sbγb/2)> and sb

i = (b3
i − γ

3
b, bi, b2

i − γ
2
b)> are 3 × 1 vectors. Again, under the assumptions of

Theorem 5 E(
∑n

i=1 sεi /
√

n) = 0 whereas its variance-covariance matrix is

Γb =

 γ
6
b − (γ2

b)3 γ4
b γ5

b − γ
3
bγ

2
b

γ4
b γ2

b γ3
b

γ5
b − γ

3
bγ

2
b γ3

b γ4
b − (γ2

b)2

 .
This concludes the proof of Theorem 5. �

Proof of Theorem 6. Focus on the asymptotic properties of the kurtosis statistics and insert (A6) and (A8), for k = 4,
into (9). Then, κ̂ε can be written as

κ̂ε − κε =
1

(̂γ2
ε )2

 1
N

∑
i j

(ε4
i j − γ

4
ε ) −

4γ3
ε

N

∑
i j

εi j

 − 2κεγ2
ε

(̂γ2
ε )2

1
n

∑
i j

(ε2
i j − γ

2
ε )

 + oP

(
1
√

N

)
and rearranging terms leads to

√
N (̂κε − κε) =

β>ε
(̂γ2
ε )2

1
√

N

∑
i

∑
j

κεi j + oP(1),

where βε = (1,−4γ3
ε ,−2κεγ2

ε )
> and κεi j = (ε4

i j − γ
4
ε , εi j, ε

2
i j − γ

2
ε )
> are 3 × 1 vectors.

Again, under the assumptions of Theorem 6 it is straightforward to show that E(
∑

i j κ
ε
i j/
√

N) = 0 and its variance-covariance
matrix is

Ωε =

 γ
8
ε − (γ4

ε )
2 γ5

ε γ6
ε − γ

4
εγ

2
ε

γ5
ε γ2

ε γ3
ε

γ6
ε − γ

4
εγ

2
ε γ3

ε γε − (γ2
ε )

2

 .
Then, using the results of Theorem 4 and the Central Limit Theorem, we can conclude the proof of the first part of the
theorem.

Finally, focusing on the behavior of κ̂b and inserting (A5) and (A8), for k = 4, into (9), we find that the expression
to analyze in closed form is

√
n (̂κb − κb) =

β>b
(̂γ2

b)2

1
√

n

∑
i

κb
i + oP(1),

where βb = (1,−4γ3
b,−2κbγ

2
b)> and κb

i = (b4
i − γ

4
b, bi, b2

i − γ
2
b)> are 3 × 1 vectors.
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As before, under the assumptions of this theorem, we have E(
∑

i κ
b
i /
√

n) = 0 whereas its variance matrix is of the
form

Ωb =

 γ
8
b − (γ4

b)2 γ5
b γ6

ε − γ
4
εγ

2
ε

γ5
b γ2

b γ3
b

γ6
b − γ

4
bγ

2
b γ3

b γb − (γ2
b)2

 .
The conclusion for κ̂b follows easily from the Central Limit Theorem and Theorem 4. This completes the proof of
Theorem 6. �

Appendix B

In this Appendix we collect the proposed estimators for the higher order moments up to the eight moment of both
the random effects and the error terms. As before, using Lemma 1 and rearranging terms the proposed estimators for
the error term are of the form

γ̂5
ε =

1∑n
i=1 `i(`4

i − 5`3
i + 10`2

i − 10`i + 4)

n∑
i=1

`4
i

`i∑
j=1

̂̃ε5
i j − 10`i(`i − 1)(`i − 2)2γ̂3

ε γ̂
2
ε

 ,

γ̂6
ε =

1∑n
i=1 `i(`5

i − 6`4
i + 15`3

i − 20`2
i + 15`i − 5)

n∑
i=1

`5
i

`i∑
j=1

̂̃ε6
i j − 15`i(`i − 1)(`3

i − 4`2
i + 7`i − 5)̂γ4

ε γ̂
2
ε

+ 10`i(`i − 1)(2`2
i − 6`i + 5)(̂γ3

ε )
2 − 15`i(`i − 1)(`i − 2)(3`i − 10)(̂γ2

ε )
3

 ,

γ̂8
ε =

1∑n
i=1 `i(`7

i − 8`6
i + 28`5

i − 56`4
i + 70`3

i − 56`2
i + 28`i − 7)

n∑
i=1

`7
i

`i∑
j=1

̂̃ε8
i j

− 28`i(`i − 1)(`5
i − 6`4

i + 15`3
i − 20`2

i + 16`i − 7)̂γ6
ε γ̂

2
ε + 56`i(`i − 1)(`4

i − 5`3
i + 11`2

i − 13`i + 7)̂γ5
ε γ̂

3
ε

35`i(`i − 1)(2`3
i − 8`2

i + 12`i − 7)(̂γ4
ε )

2 − 70`i(`i − 1)(`i − 2)(3`3
i − 24`2

i + 42`i − 42)̂γ4
ε (̂γ

2
ε )

2

+ 280`i(`i − 1)(`i − 2)(2`2
i − 7`i + 14)̂γ2

ε (̂γ
3
ε )

2 − 210`i(`i − 1)(`i − 2)(`i − 3)(4`i − 21)(̂γ2
ε )

4


Furthermore, the proposed estimators for the random effects are of the form

γ̂5
b =

1
n

n∑
i=1

48
`i(`i − 1)(`i − 2)(`i − 3)

`i−3∑
j=1

`i−2∑
h= j+1

`i−1∑
g=h+1

`i∑
r=g+1

v̂2
i ĵviĥviĝvir −

1
n

n∑
i=1

6
`i(`i − 1)(`i − 2)

`i−2∑
j=1

`i−1∑
h= j+1

`i∑
g=h+1

v̂2
i ĵv

2
iĥvig,

γ̂6
b =

1
n

n∑
i=1

72
`i(`i − 1)(`i − 2)(`i − 3)

`i−3∑
j=1

`i−2∑
h= j+1

`i−1∑
g=h+1

`i∑
r=g+1

v̂2
i ĵv

2
iĥviĝvir

−
1
n

n∑
i=1

12
`i(`i − 1)(`i − 2)

`i−2∑
j=1

`i−1∑
h= j+1

`i∑
g=h+1

v̂2
i ĵv

2
iĥv2

ig + 3̂γ2
b (̂γ2

ε )
2 + 2(̂γ2

ε )
3,
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γ̂8
b =

1
n

n∑
i=1

240
`i(`i − 1)(`i − 2)(`i − 3)(`i − 4)

`i−4∑
j=1

`i−3∑
h= j+1

`i−4∑
g=h+1

`i−1∑
r=g+1

`i∑
l=r+1

v̂2
i ĵv

2
iĥv2

iĝvir̂vil

−
1
n

n∑
i=1

24
`i(`i − 1)(`i − 2)(`i − 3)

`i−3∑
j=1

`i−2∑
h= j+1

`i−1∑
g=h+1

`i∑
r=g+1

v̂2
i ĵv

2
iĥv2

iĝv2
ir − 2̂γ6

bγ̂
2
ε + 2̂γ2

b (̂γ2
ε )

3 + (̂γ2
ε )

4.

Under the assumptions of Theorems 5 and 6, it is straightforward to show that γ̂k
ε

p
−−→ γk

ε and γ̂k
b

p
−−→ γk

b for k ∈ {2, 6}.
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