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Abstract

The orientation of a rigid object can be described by a rotation
that transforms it into a standard position. For a symmetrical object
the rotation is known only up to multiplication by an element of the
symmetry group. Such ambiguous rotations arise in biomechanics,
crystallography and seismology. We develop methods for analyzing
data of this form. A test of uniformity is given. Parametric models for
ambiguous rotations are presented, tests of location are considered, and
a regression model is proposed. A brief illustrative example involving
orientations of diopside crystals is given.

Keywords: Frame, Orientation, Regression, Symmetry, Tensor, Test of
uniformity.

1 Introduction

Data that are rotations of R3 occur in various areas of science, such as
palaeo-magnetism (Pesonen et al., 2003; Villaláın et al., 2016; Koymans et
al., 2016), plate tectonics and seismology (Stein & Wysession, 2003; Hard-
ebeck, 2006; Arnold & Townend, 2007; Walsh et al., 2009; Khalil & Mc-
Clay, 2016), biomechanics (Rivest, 2005; Lekadir et al., 2015; Spronck et al.,
2016), crystallography (Hielscher et al., 2010; Griffiths et al., 2016) and tex-
ture analysis, i.e., analysis of orientations of crystalites (Kunze & Schaeben,
2004, 2005; Du et al., 2016). The sample space is the 3-dimensional rotation
group, SO(3), and methods for handling such data are now an established
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part of directional statistics; see §13.2 of Mardia & Jupp (2000). In some
contexts the presence of symmetry means that the rotations are observed
subject to ambiguity, so that it is not possible to distinguish a rotation X
from XR for any rotation R in some given subgroup K of SO(3). From
the mathematical point of view, the sample space is the quotient SO(3)/K
of SO(3) by K. Such spaces arise in many scientific contexts: the case in
which K is generated by the rotations through 180◦ about the coordinate
axes gives the orthogonal axial frames considered by Arnold & Jupp (2013),
which can be used to describe aspects of earthquakes; many groups K of
low order occur as the symmetry groups of crystals; the icosahedral group is
the symmetry group of some carborane molecules (Jemmis, 1982), of most
closed-shell viruses (Harrison, 2013), of the natural quasicrystal, icosahedrite
(Bindi et al., 2011), and of the blue phases of some liquid crystals (Seide-
man,1990, §6.1.2). The object of this paper is to give a unified account of
some general tools for the analysis of data consisting of ambiguous rotations
with a finite symmetry group.

2 Ambiguous rotations

2.1 Symmetry groups

The orientation of a rigid object in R3 can be described by a rotation that
transforms it into some standard position. If the object is asymmetrical then
this rotation is unique, so that the orientations of the object correspond to
elements of the rotation group SO(3). If the object is symmetrical then the
set of rotations that have no visible effect on the object forms a subgroup
K of SO(3). Then the orientations of the object correspond to elements
of the homogeneous space SO(3)/K, i.e. the set of equivalence classes of
elements of SO(3) under the right action of K. We shall consider the cases
in which K is finite. In particular, the orientations of T-shaped, X-shaped
and +-shaped objects in R3 are elements of SO(3)/K with K = C2, D2 and
D4, respectively. For U in SO(3) we shall denote the equivalence class of U
in SO(3)/K by [U].

The finite subgroups of SO(3) are known also as the point groups of
the first kind. The classification result for these groups, given e.g. in Miller
(1972), states that any such group is isomorphic to one of the following: the
cyclic groups, Cr, for r = 1, 2, . . ., the dihedral groups, Dr, for r = 2, 3, . . .,
the tetrahedral group, T , the octahedral group, O, and the icosahedral
group, Y . These groups are listed in Table 1, together with the frames of vec-
tors that will be used to represent elements of the sample spaces SO(3)/K.
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The group C1 has one element, the identity, I3.

2.2 Frames and symmetric frames

For each point group K of the first kind, every element of SO(3)/K can
be represented uniquely by a K-frame, i.e. an equivalence class of a frame,
meaning a set of vectors or axes in R3. For K = Cr with r ≥ 3 or K = Dr

with r ≥ 3, it is convenient to take the vectors of the frame to be unit normals
to the sides of a regular r-gon; for K = C2 we take a unit vector and an axis
orthogonal to it; for K = D2 we take a pair of orthogonal axes; for K = T , O
or Y , it is convenient to take the vectors to be unit normals to the sides of a
regular tetrahedron, cube or dodecahedron, respectively. Permutation of the
vectors of the frame by the action of K leads to ambiguity. This ambiguity is
removed by passing to the corresponding K-frame, i.e. the equivalence class
of the frame under such permutations. The K-frames will be denoted by
square brackets, e.g. for K = Cr, [u1, . . . ,ur] denotes the K-frame arising
from (u1, . . . ,ur). By a symmetric frame, we shall mean a K-frame for
some K. The frames that we consider are listed in Table 1, together with
an indication of the ambiguities.

Table 1: Symmetry groups and frames.
Group Name Frame
C1 trivial (u1,u2,u3) u1,u2,u3 orthonormal, u3 = u1 × u2

C2 cyclic (u0,±u1) u0,u1 orthonormal
Cr (r ≥ 3) cyclic (u1, . . . ,ur) u1, . . . ,ur coplanar,

known up to cyclic order,
uT
i ui−1 = cos(2π/r) for i = 2, . . . , r

D2 dihedral (±u1,±u2) orthogonal axes
Dr (r ≥ 3) dihedral (u1, . . . ,ur) u1, . . . ,ur coplanar,

known up to cyclic order and reversal,
uT
i ui−1 = cos(2π/r) for i = 2, . . . , r

T = A4 tetrahedral {u1, . . . ,u4} uT
i uj = −1/3 for i 6= j

O = Σ4 octahedral {±u1,±u2,±u3} orthogonal axes
= cubic

Y = A5 icosahedral {±u1, . . . ,±u6} |uT
i uj | = 5−1/2 for i 6= j

= dodecahedral

The ui are unit vectors.

Special cases of Table 1 include the 7 crystal systems: triclinic, mono-
clinic, trigonal, tetragonal, orthorhombic, hexagonal and cubic with sym-
metry groups C1, C2, C3, C4, D2, D6 and O, respectively.
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3 Transforming symmetric frames to tensors

3.1 Embeddings of the sample spaces

In order to carry out statistics on SO(3)/K, we shall take the embedding
approach used in, e.g. §10.8 of Mardia & Jupp (2000). We shall embed
SO(3)/K in an inner-product space, E, on which SO(3) acts. The embed-
ding will be a well-defined equivariant one-to-one function t : SO(3)/K →
E such that t([U]) has expectation 0 if [U] is uniformly distributed on
SO(3)/K. For E = L2(SO(3)), the space of square-integrable functions on
SO(3), a very wide class of such embeddings can be obtained by averag-
ing over K. Let t0 : SO(3) → L2(SO(3)) be an embedding used in the
Hilbert space approach to Sobolev tests of uniformity; see §§10.8, 13.2.2
of Mardia & Jupp (2000), Giné (1975) and §4 of Prentice (1978). Define
t : SO(3)/K → L2(SO(3)) by t([U]) = |K|−1

∑
R∈K t0(UR), where |K|

denotes the number of elements in K. If t is one-to-one then it is an em-
bedding. In general, such t are quite complicated, so in this paper, for
each K, we focus on a simple choice of embedding, tK , of SO(3)/K into
an appropriate space of symmetric tensors. These tK are given in Table 2.
Corresponding expressions for 〈tK([U]), tK([W])〉 with U,W ∈ SO(3) are
given in Table 3. Here 〈·, ·〉 is the standard inner product on the appropriate
tensor product.

Table 2: Some embeddings tK : SO(3)/K → E.
Group, K tK
C1 tC1

(u1,u2,u3) = (u1,u2,u3)
C2 tC2

(u0,±u1) =
(
u0,u1uT

1 − (1/3)I3
)

Cr (r ≥ 3)
r odd tCr ([u1, . . . ,ur]) =

(
u0,
∑r

i=1⊗rui

)
r even tCr ([u1, . . . ,ur]) =

(
u0,
∑r

i=1⊗rui − r/(r + 1) symm(⊗r/2I3)
)

D2 tD2
(±u1,±u2) = (u1uT

1 − (1/3)I3,u2uT
2 − (1/3)I3,u3uT

3 − (1/3)I3)
Dr (r ≥ 3)
r odd tDr ([u1, . . . ,ur]) =

∑r
i=1⊗rui

r even tDr ([u1, . . . ,ur]) =
∑r

i=1⊗rui − r/(r + 1) symm(⊗r/2I3)
T tT ({u1,u2,u3,u4}) = ⊗3u1 +⊗3u2 +⊗3u3 +⊗3u4

O tO({±u1,±u2,±u3}) = ⊗4u1 +⊗4u2 +⊗4u3 − (3/5) symm(⊗2I3)

Y tY ({±u1, . . . ,±u6}) =
∑6

i=1⊗10ui − (6/11)symm(⊗5I3)

For Cr, u0 = {sin(2π/r)}−1 u1 × u2. For D2, u3 = ±u1 × u2. ‘symm’ denotes symmetrization

over permutations of factors of the tensor product.

Define ρ2 by
ρ2 = ‖t([U])‖2, (1)
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which has the same value for all U in SO(3). Then t embeds SO(3)/K in
the sphere of radius ρ with centre the origin in the vector space E.

Table 3: Inner products of transforms of symmetric frames.

Group, K Inner product
C1 〈tC1 (u1,u2,u3), tC1 (v1,v2,v3)〉 = uT

1 v1 + uT
2 v2 + uT

3 v3

C2 〈tC2
(u0,±u1), tC2

(v0,±v1)〉 = uT
0 v0 +

(
uT
1 v1

)2 − 1/3
Cr (r ≥ 3)
r odd 〈tCr ([u1, . . . ,ur]), tCr ([v1, . . . ,vr])〉 = uT

0 v0 +
∑r

i=1

∑r
j=1

(
uT
i vj

)r
r even 〈tCr ([u1, . . . ,ur]), tCr ([v1, . . . ,vr])〉 = uT

0 v0 +
∑r

i=1

∑r
j=1

(
uT
i vj

)r − r2/(r + 1)

D2 〈tD2 (±u1,±u2), tD2 ± v1,±v2)〉 =
(
uT
1 v1

)2
+
(
uT
2 v2

)2
+
(
uT
3 v3

)2 − 1
Dr (r ≥ 3)
r odd 〈tDr ([u1, . . . ,ur]), t

¯Dr
([v1, . . . ,vr])〉 =

∑r
i=1

∑r
j=1

(
uT
i vj

)r
r even 〈tDr ([u1, . . . ,ur]), tDr ([v1, . . . ,vr])〉 =

∑r
i=1

∑r
j=1

(
uT
i vj

)r − r2/(r + 1)

T 〈tT ({u1,u2,u3,u4}), tT ({v1,v2,v3,v4})〉 =
∑4

i=1

∑4
j=1

(
uT
i vj

)3
O 〈tO({±u1,±u2,±u3}), tO({±v1,±v2,±v3})〉 =

∑3
i=1

∑3
j=1

(
uT
i vj

)4 − 9/5

Y 〈tY ({±u1, . . . ,±u6}), tY ({±v1, . . . ,±v6})〉 =
∑6

i=1

∑6
j=1

(
uT
i vj

)10 − 36/11

For Cr, u0 = {sin(2π/r)}−1 u1 × u2. For D2, u3 = ±u1 × u2.

Each symmetric frame can be represented by an element U of SO(3).
In the triclinic case, where K = C1, U is unique and t([U]) = U. We
have restricted our attention to point groups, K, of the first kind, i.e., ex-
cluding reflections. However, in situations where reflection symmetries are
also present we can adopt a right-handed convention for all orientations,
and then neglect reflections. For example, we can treat observations on
O(3)/{I3,−I3} in the same way as those on SO(3) = SO(3)/C1.

3.2 Sample mean

Observations [U1], . . . , [Un] in SO(3)/K can usefully be summarized by the
sample mean t̄ of their images by t, i.e., by t̄ = n−1

∑n
i=1 t([Ui]). The sam-

ple mean [Ū] is defined as the [U] in SO(3)/K that maximizes 〈t([Ū]), t̄〉.
Although [Ū] is not necessarily unique, it follows from Theorem 3.2 of
Bhattacharya & Patrangenaru (2003) that if [U1], . . . , [Un] are generated
by a continuous distribution then [Ū] is unique with probability 1.

3.3 Sample dispersion

A sensible measure of dispersion is

d = ρ2 − ‖t̄‖2, (2)
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analogous to the quantity 1 − R̄2 used for spherical data; see p. 164 of
Mardia & Jupp (2000). The dispersion satisfies the inequalities 0 ≤ d ≤ ρ2,
where ρ2 is defined in (1). Since t is one-to-one, d = 0 if and only if
[U1] = . . . = [Un]. Transformation of [U1], . . . , [Un] to [VU1], . . . , [VUn]
with V in SO(3) leaves d unchanged. If K = C1 then d = 3 − trace

(
R̄2
)
,

where R̄ =
(
X̄T X̄

)1/2
with X̄ = t̄, the sample mean of X = (u1,u2,u3), as

in p. 290 of Mardia & Jupp (2000). If K = D2 then d = d1, where d1 is one
of the measures of dispersion defined in §2.3 of Arnold & Jupp (2013).

4 Tests of uniformity

4.1 A simple test

The uniform distribution on SO(3)/K is the unique distribution that is
invariant under the action of SO(3) on SO(3)/K in which V in SO(3) maps
[U] to [VU]. Since the embeddings t were chosen so that E {t([U])} = 0 for
U uniformly distributed on SO(3)/K, it is intuitively reasonable to reject
uniformity if t̄ is far from 0, i.e. if n ‖t̄‖2 is large. Significance can be
assessed using simulation from the uniform distribution. For large samples,
the following asymptotic result can be used.

Proposition 1
Given a random sample on SO(3)/K, define S by

S = (ν/ρ2)n ‖t̄‖2 = nν(1− d/ρ2), (3)

where ρ2 and d are given by (1) and (2), respectively, and ν is the dimension
of E.

(i) For K = C1, Dr with r ≥ 2, T,O or Y , under uniformity, the asymp-
totic distribution of S is S ∼ χ2

ν , as n→∞.

(ii) For K = C2,
S = (1/3)SR + (2/15)SB,

where SR = 3nR̄2 is the Rayleigh statistic for uniformity of u0 and
SB = (15/2)n

{
tr(T̄2)− (1/3)

}
is the Bingham statistic for unifor-

mity of ±u1, R̄ being the mean resultant length of u0 and T̄ being
the sample scatter matrix of ±u1. Under uniformity, SR and SB are
asymptotically independent with asymptotic distributions χ2

3 and χ2
5,

respectively.
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(iii) For K = Cr with r ≥ 3,

(νC/ρ
2
C)S = (1/3)SR + (νD/ρ

2
D)SD,

where the subscripts C and D refer respectively to Cr-frames and the
corresponding Dr-frames obtained by replacing the directed normal to
the plane of a Cr-frame by the undirected normal, and SR = 3nR̄2

is the Rayleigh statistic for uniformity of u0. Under uniformity, SR
and SD are asymptotically independent with asymptotic distributions
χ2

3 and χ2
νD

, respectively.

Values of ρ2 and ν are given in Table 4. In the case K = C1, S is the
Rayleigh statistic (Mardia & Jupp, 2000, p. 287) for testing uniformity on
SO(3). In the case K = D2, S is the statistic given in §3 of Arnold & Jupp
(2013) for testing uniformity on O(3)/Z3

2.

Table 4: Values of squared radius, ρ2, and dimension, ν
Group ρ2 ν
C1 3 9
C2 5/3 8
Cr (r ≥ 3)
r odd 1 + 21−rr2 (r + 2)(r + 1)/2 + 3

r even 1 + r221−r
{

1 + 2−1
(

r
r/2

)}
− r2/(r + 1) (r + 2)(r + 1)/2 + 3

D2 2 10
Dr (r ≥ 3)
r odd 21−rr2 (r + 2)(r + 1)/2

r even r221−r
{

1 + 2−1
(

r
r/2

)}
− r2/(r + 1) (r + 2)(r + 1)/2

T 32/9 10
O 6/5 9
Y 18816/6875 21

4.2 Some consistent tests

The test of uniformity based on S is consistent only against alternatives
for which E{t([U])} is non-zero. For example, in any equal mixture of
two frame cardioid distributions with densities (8) having concentrations κ
and −κ, E{t([U])} = 0, and so, in asymptotically large samples, S cannot
distinguish between such mixtures and the uniform distribution.
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Tests of uniformity on SO(3)/K that are consistent against all alterna-
tives can be obtained as follows by averaging over K Prentice’s generaliza-
tion to RP 3 of Giné’s Gn test of uniformity; see §4 of Prentice (1978) and
§13.2.2 of Mardia & Jupp (2000). Given [U1], . . . , [Un] in SO(3)/K, with
representatives U1, . . . ,Un in SO(3), put

TG = −
n∑
i=1

n∑
j=1

∑
R∈K

{3− trace (UT
i UjR)}1/2 , (4)

cf. the construction in §2 of Jupp & Spurr (1983). Uniformity is rejected
if TG is large compared with the randomization distribution obtained by
replacing U1, . . . ,Un by R1U1, . . . ,RnUn, where R1, . . . ,Rn are indepen-
dent random rotations obtained from the uniform distribution on SO(3).
The orthorhombic case, K = D2, is considered in §3 of Arnold & Jupp
(2013). It follows from Theorem 3.1 of Jupp & Spurr (1983) and the con-
sistency of Giné’s test on RP 3 (Mardia & Jupp, 2000, p. 289) that the test
based on TG is consistent against all alternatives. More general Sobolev
statistics on SO(3)/K can be obtained from Sobolev statistics on SO(3) by
averaging over K, as in (4).

Permutational multi-sample tests, tests of symmetry, tests of indepen-
dence, and goodness-of-fit tests for symmetric frames can be obtained by
applying the machinery of Wellner (1979), Jupp & Spurr (1983), Jupp &
Spurr (1985) and Jupp (2005), respectively, to the embedding t. These tests
of independence are considered in §7.

5 Distributions on SO(3)/K

5.1 A general class of distributions

An appealing class of distributions on SO(3)/K consists of those with den-
sities of the form

f([U]; [M], κ) = g (〈t([U]), t([M])〉;κ) , (5)

where g (·;κ) is a suitable known function and [M] ∈ SO(3)/K. The para-
meter [M] measures location and κ measures concentration. If g (·;κ) is a
strictly increasing function, as in (6) or León et al. (2006) with κ > 0, then
the mode is [M].

In the caseK = C1, the densities (5) depend on U only through trace(UMT)
and the axes and the rotation angles of the random rotations are indepen-
dent, with the axes being uniformly distributed. These distributions were
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introduced by Bingham et al. (2009) under the name of uniform axis-random
spin distributions and by Hielscher et al. (2010) under the name of radially
symmetric distributions. For K 6= C1, elements of SO(3)/K do not have
well-defined axes and, in general, the distributions on SO(3) with densities
f̃ of the form f̃(U) = f([U]; [M], κ) do not have uniformly distributed axes.

Taking g(x;κ) proportional to eκx in (5) gives the densities of the form

f([U]; [M], κ) = c(κ)−1 exp{κ〈t([U]), t([M])〉}. (6)

For κ > 0, the mode is [M] and the maximum likelihood estimate of [M]
is the sample mean. The family (6) is a subfamily of the crystallographic
exponential family introduced by Boogaart (2002, §3.2). For K = C1, (6)
is the density of the matrix Fisher distribution with parameter matrix κM
and c(κ) = 0F1(3/2, (κ2/4)I3) (Mardia & Jupp, 2000, §13.2.3). For K = D2,
(6) is the density of the equal concentration frame Watson distributions
considered in Arnold & Jupp (2013, §6.1). Taking g(x;κ) proportional to
(1 + x)κ in (5) gives the densities of the form

f([U]; [M], κ) = c(κ)−1 {1 + 〈t([U]), t([M])〉}κ . (7)

ForK = C1, these densities are those of the de la Vallée Poussin distributions
introduced by Schaeben (1997), and, under the name of Cayley distributions,
by León et al. (2006).

Taking g(x) = 1 + κx with 0 ≤ κ ≤ ρ−2 in (5) gives the densities

f([U]; [M], κ) = 1 + κ〈t([U]), t([M])〉 (8)

of the frame cardioid distributions, which are analogous to the cardioid
distributions on the circle (Mardia & Jupp, 2000, §3.5.5). Useful estimators
of [M] and κ in (8) are the moment estimators, [M̂] and κ̂, where [M̂] is the
sample mean defined in §3.2 and κ̂ = (1− 1/n)−1s−2〈t̄, t([M̂])〉 with s2 the
sample variance of 〈t([U]), t([M̂])〉.

Distributions on SO(3)/K can be identified with distributions on SO(3)
that are invariant under the action of K. One way of generating such distri-
butions is to average a given distribution on SO(3) over K. This averaging
construction has been used by Walsh et al. (2009) in the orthorhombic case,
Du et al. (2016) in the cubic case, and by Matthies (1982), Gorelova et al.
(2014) and Niezgoda et al. (2016) in the general crystallographic case. Be-
cause the parameters of the distributions (5) are readily interpretable and
the distributions (6), being exponential models, have pleasant inferential
properties, we find these models more useful than many models obtained by
averaging over K, especially as the latter can be quite demanding numeri-
cally.

9



5.2 Concentrated distributions

A standard coordinate system on SO(3) is given by the inverse of a restrict-
ion of the exponential map S 7→

∑∞
k=0(k!)−1Sk from the space of skew-

symmetric 3×3 matrices to SO(3). This can be modified to provide coordi-
nate systems on SO(3)/K. Let [M] be an element of SO(3)/K. There are
neighbourhoods N[M] of [M] in SO(3)/K and V of 0 in R3 such that each
[U] in N[M] can be written uniquely as [U] = [M exp {A(v)}], where

A(v) =

 o −v3 v2

v3 0 −v1

−v2 v1 0


with v = (v1, v2, v3)T in V. Define p[M] from N[M] to V by p[M]([U]) = v,
where [U] = [M exp {A(v)}]. Then p[M] is a coordinate system on N[M].
Second-order Taylor expansion about 0 of [U] as a function of v, together
with some computer algebra, gives the high-concentration asymptotic dis-
tribution of [U].

Proposition 2
For [U] near [M] in SO(3)/K put [U] = [M exp {A(v)}] for v near 0

in R3. If [U] has density (6) with t = tK as in Table 2 then the asymptotic
distribution of κ1/2v as κ → ∞ is normal with mean 0 and variance Σ,
where Σ is given in Table 5. If [U] has density (7) with t = tK then
(κ/2)1/2v has this asymptotic distribution.

Table 5: High-concentration asymptotic variance, Σ, of κ1/2.
Group Σ
C1 (1/2)I3
C2 diag(1/2, 1/4, 1/6)
Cr (r ≥ 3) diag

[
(1 + rAr)−1, (1 + rAr)−1, {2rAr − r(r − 1)Ar−1}−1

]
D2 (1/4)I3
Dr (r ≥ 3) diag

[
(rAr)−1, (rAr)−1, {rAr − r(r − 1)Ar−1}−1

]
T 0.070I3
O (1/8)I3
Y 0.026I3

For Cr and Dr, v3 is the component of v normal to the plane of u1, . . . ,ur and

Ar =
∑r

k=1 cos(k2π/r)r.
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6 Tests of location

6.1 One-sample tests

Let [M] be an element of SO(3)/K which is some measure of location of
a distribution on SO(3)/K. There are various tests of the null hypothesis
that [M] = [M0], where [M0] is a given element of SO(3)/K. The case with
K = D2 was considered by Arnold & Jupp (2013, §8).

Permutation tests can be based on the following symmetries of SO(3)/K:
For R inK, define ρ[M0](R) as the transformation that takes [U] to ρ[M0](R)[U] =
[M0RMT

0 U]. Then ρ[M0](R) is well-defined and preserves [M0].
For a sample summarized by the sample mean t̄ of t, an appealing mea-

sure of the squared distance between the sample and [M0] is
‖t̄−t([M0])‖2. It is appropriate to reject the null hypothesis for large values
of ‖t̄−t([M0])‖2. If the distribution of [U] is symmetric under ρ[M0] then sig-
nificance can be assessed by comparing the observed value of ‖t̄− t([M0])‖2
with its randomization distribution, which can be obtained by replacing
[U1], . . . , [Un] by ρ[M0](R1)[U1], . . . , ρ[M0](Rn)[Un], where R1, . . . ,Rn are
independent and distributed uniformly on K.

If [U1], . . . , [Un] is a sample from a concentrated distribution with den-
sity (6) and mode [M] then it is sensible to test H0 : [M] = [M0] by applying
Hotelling’s 1-sample T 2 test to p[M0]([U1]), . . . , p[M0]([Un]), where p[M0] is
the projection onto the tangent space given in §5.2.

6.2 Two-sample tests

Suppose that two independent random samples [U1], . . . , [Un] and [V1], . . . , [Vm]
on SO(3)/K are summarized by the sample means t̄1 and t̄2 of t([U1]), . . . , t([Un])
and t([V1]), . . . , t([Vm]). Then the squared distance between the two sam-
ples can be measured by ‖t̄1 − t̄2‖2. It is appropriate to reject the null
hypothesis that the parent populations are the same if ‖t̄1 − t̄2‖2 is large.
Significance can be assessed by comparing the observed value of ‖t̄1 − t̄2‖2
with its randomization distribution, obtained by sampling from the potential
values corresponding to the partitions of the combined sample into samples
of sizes n and m.

Suppose that [U1], . . . , [Un] and [V1], . . . , [Vm] are samples from con-
centrated distributions with density (6) on SO(3)/K. Let [Ṁ] be the max-
imum likelihood estimate of the mode [M] under the null hypothesis that
the parent populations are the same. Then the null hypothesis can be tested
by applying Hotelling’s 2-sample T 2 test to p[Ṁ]([U1]), . . . , p[Ṁ]([Un]) and
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p[Ṁ]([V1]), . . . , p[Ṁ]([Vm]), where p[Ṁ] is the projection onto the tangent
space given in §5.2.

7 Independence, regression and misorientation

7.1 Independence

Let tj : SO(3)/Kj → E, for j = 1, 2, be equivariant functions into some
common inner-product space E such that tj([U]) has expectation 0 if [U]
is uniformly distributed on SO(3)/Kj . Then association of random vari-
ables [U] on SO(3)/K1 and [V] on SO(3)/K2 can be measured in terms of
association of t1([U]) and t2([V]).

The general approach of Jupp & Spurr (1985) leads to the following test
of independence. Given pairs ([U1], [V1]), . . . , ([Un], [Vn]) in SO(3)/K1 ×
SO(3)/K2, independence of U and V is rejected for large values of∑n

i=1

∑n
j=1〈t1([Ui]), t1([Uj ])〉〈t2([Vi]), t2([Vj ])〉. The observed value of this

statistic is compared with the randomization distribution given [U1], . . . , [Un],
[V1], . . . , [Vn]. An alternative randomization test rejects independence for
large values of the correlation coefficient r defined in (11). For K1 = K2 =
C1 and t1 = t2 = tC1 of Table 2, this is one of the tests considered by Rivest
& Chang (2006).

7.2 Regression

A reasonable model for homoscedastic regression of [V] in SO(3)/K2 on [U]
in SO(3)/K1 has regression function [U] 7→ [AU] for some A in SO(3) and
error distribution that is a mild generalization of (6), so that the density of
[V] given [U] is

f([V] | [U]; A, κ) = c(κ)−1 exp{κ〈t2([V]), t1([AU])〉}. (9)

For K1 = K2 = C1 and t1 = t2 = tC1 of Table 2 , model (9) is a generaliza-
tion of the spherical regression model of Chang (1986). It is the submodel
A2 = I3 of the models with regression function U 7→ AUA2 that were in-
troduced by Prentice (1989) and explored by Chang & Rivest (2001) and
Rivest & Chang (2006). For K1 6= C1, it is not possible in general to extend
the model (9) to have regression function of the form [U] 7→ [AUA2]. If
K1 6= K2 then the tj given in Table 3.1 are not suitable, since in many
cases 〈t2([V]), t1([AU])〉 = 0 for all values of [U], [V] and A. Instead, it
is sensible to take E = L2(SO(3)) and the tj obtained by the averaging
construction described in the first paragraph of §3.1.
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For κ > 0, the maximum likelihood estimate of A is

Â = arg max
A∈SO(3)

n∑
i=1

〈t2([Vi]), t1([AUi])〉. (10)

In general, Â is a well-defined element of SO(3), rather than an element of
some quotient.

Put ρ12 = maxU∈SO(3)〈t1([U]), t2([I3])〉. If ρ12 > 0 then define

r = (nρ12)−1
n∑
i=1

〈t1([ÂUi]), t2([Vi])〉, (11)

where Â is given by (10). Then −1 ≤ r ≤ 1 and r can be regarded as a
form of uncorrected sample correlation of [U] and [V]. If K1 = K2 = D2,
n = 1 and t1 = t2 = t is defined by t([U]) = U diag(1, 0,−1)UT then
r = cosω, where ω is the misorientation angle for D2 introduced by Tape &
Tape (2012). Application of Proposition 2 to the decomposition

n∑
i=1

{
ρ2 − 〈t([I3]), t([VT

i AUi])〉
}

=
n∑
i=1

{
ρ2 − 〈t([I3]), t([VT

i ÂUi])〉
}

+
n∑
i=1

{
〈t([I3]), t([VT

i ÂUi])〉 − 〈t([I3]), t([VT
i AUi])〉

}
gives the following high-concentration asymptotic distributions.

Proposition 3
For (U1,V1), . . . , (Un,Vn) from model (9),

(i) Asymptotically, for large κ,

2κ
n∑
i=1

{
ρ2 − 〈t([I3]), t([VT

i AUi])〉
}
∼ χ2

3n,

2κ
n∑
i=1

{
ρ2 − 〈t([I3]), t([VT

i ÂUi])〉
}
∼ χ2

3(n−1), (12)

2κ
n∑
i=1

{
〈t([I3]), t([VT

i ÂUi])〉 − 〈t([I3]), t([VT
i AUi])〉

}
∼ χ2

3. (13)

and the quantities in (12) and (13) are asymptotically independent.
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(ii) An approximate high-concentration 100(1− α)% confidence region for
A is{

A : 2κ̂

n∑
i=1

{
〈t([I3]), t([VT

i ÂUi])〉 − 〈t([I3]), t([VT
i AUi])〉

}
< χ2

3;α

}
.

7.3 Misorientation

The relationship between ambiguous rotations [U] in SO(3)/K1 and [V] in
SO(3)/K2 can be described by the misorientation, which is an element of
the double coset space K1\SO(3)/K2. Since [U] and [V] are images of UR1

and VR2 in SO(3) for any R1 in K1 and R2 in K2, (UR1)TVR2 determines
a well-defined element of K1\SO(3)/K2. See p. 274 of Morawiec (1997). In
crystallography it is usual to identify K1\SO(3)/K2 with an asymmetric
domain, a neighbourhood of 0 in R3 that is in one-to-one correspondence,
modulo null sets, with K1\SO(3)/K2 under v 7→ exp{A(v)} followed by
projection of SO(3) to K1\SO(3)/K2. Then the misorientation between [U]
and [V] is taken as the element, P, of the asymmetric domain that satisfies
V = UP and has smallest rotation angle among all such rotations in the
domain. In the case in which the conditional distribution of [V] given [U] is
uniform the distributions of the angle and axis of the misorientation are given
in Morawiec (2004, Ch. 7). For general pairs ([U1], [V1]), . . . , ([Un], [Vn]) in
SO(3)/K1 × SO(3)/K2, we define the mean misorientation as the element
Â of SO(3) defined in (10). An alternative definition of the mean mis-
orientation is the element (Â1, [Â2]) of SO(3)× (K\SO(3)) that maximizes∑

i maxRi∈K〈t1([A1Ui]), t2([ViRiA2])〉.

8 Example

To illustrate the estimators and tests introduced above, we consider some
samples of orientations of diopside crystals. These crystals are monoclinic,
so we can represent their orientations by C2-frames.

The stereonet in Fig. 1 shows the u0 vectors and ±u1 axes given by
orientations of 100 diopside crystals. A randomization test of uniformity
based on S from (3) in §4.1 has p−value less than 0.001, leading to decisive
rejection of uniformity.

The stereonets in Fig. 2 show the u0 vectors and ±u1 axes given by
orientations of 34 crystals from one region of a specimen and 37 crystals

14



Figure 1: Stereonet of u0 vectors, shown as red triangles, and ±u1 axes,
shown as circles, given by orientations of 100 diopside crystals. The disc is a
stereographic projection of these vectors and axes, showing the whole of the
sphere, so that each axis appears twice with filled circles denoting the lower
ends of axes and open circles the upper ends. The sample mean is shown in
large symbols.

from another region. The two-sample permutation test of §6.2 yields a p-
value of 0.07 for equality of the populations of the orientations in the two
regions, so the hypothesis of equality is not rejected.

Acknowledgements

We thank David Mainprice for providing the diopside data.

15



(a) (b)

Figure 2: Stereonets of u0 vectors, shown as red triangles, and ±u1 axes,
shown as circles, given by orientations of two samples of diopside crystals.
Each disc is a stereographic projection of these axes and vectors, showing
the whole of the sphere, so that each axis appears twice. (a): 34 orientations
from one region of a specimen. (b): 37 orientations from another region.
The sample means are shown as large symbols.
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