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Risk contagion concerns any entity dealing with large scale risks. Suppose Z = (Z1, Z2) denotes a risk vector pertaining
to two components in some system. A relevant measurement of risk contagion would be to quantify the amount of
influence of high values of Z2 on Z1. This can be measured in a variety of ways. In this paper, we study two such
measures: the quantity E[(Z1 − t)+|Z2 > t] called Marginal Mean Excess (MME) as well as the related quantity
E[Z1|Z2 > t] called Marginal Expected Shortfall (MES). Both quantities are indicators of risk contagion and useful in
various applications ranging from finance, insurance and systemic risk to environmental and climate risk. We work
under the assumptions of multivariate regular variation, hidden regular variation and asymptotic tail independence
for the risk vector Z. Many broad and useful model classes satisfy these assumptions. We present several examples
and derive the asymptotic behavior of both MME and MES as the threshold t → ∞. We observe that although we
assume asymptotic tail independence in the models, MME and MES converge to ∞ under very general conditions;
this reflects that the underlying weak dependence in the model still remains significant. Besides the consistency of the
empirical estimators we introduce an extrapolation method based on extreme value theory to estimate both MME
and MES for high thresholds t where little data are available. We show that these estimators are consistent and
illustrate our methodology in both simulated and real data sets.
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Keywords: asymptotic tail independence, consistency, expected shortfall, heavy-tail, hidden regular variation, mean
excess, multivariate regular variation, systemic risk.

1. Introduction

The presence of heavy-tail phenomena in data arising from a broad range of applications spanning hydrology
[2], finance [37], insurance [16], internet traffic [8, 34], social networks and random graphs [5, 14] and risk
management [11, 24] is well-documented. Since heavy-tailed distributions often entail non-existence of some
higher order moments, measuring and assessing dependence in jointly heavy-tailed random variables poses
a few challenges. Furthermore, one often encounters the phenomenon of asymptotic tail independence in the
upper tails; which means given two jointly distributed heavy-tailed random variables, joint occurrence of
very high (positive) values is extremely unlikely.

In this paper, we look at heavy-tailed random variables under the paradigm of multivariate regular vari-
ation possessing asymptotic tail independence in the upper tails and we study the average behavior of one
of the variables given that the other one is large in an asymptotic sense. The presence of asymptotic tail
independence might intuitively indicate that high values of one variable will have little influence on the
expected behavior of the other; we observe that such a behavior is not always true. In fact, under a quite
general set of conditions, we are able to calculate the asymptotic behavior of the expected value of a variable
given that the other one is high.

∗B. Das gratefully acknowledges support from MOE Tier 2 grant MOE-2013-T2-1-158. B. Das also acknowledges hospitality
and support from Karlsruhe Institute of Technology during a visit in June 2015.
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A major application of assessing such a behavior is in terms of computing systemic risk, where one wants
to assess risk contagion among two risk factors in a system. Proper quantification of systemic risk has been a
topic of active research in the past few years; see [1, 3, 6, 15, 17, 28] for further details. Our study concentrates
on two such measures of risk in a bivariate set-up where both factors are heavy-tailed and possess asymptotic
tail independence. Note that our notion of risk contagion refers to the effect of one risk on another and vice
versa. Risk contagion has other connotations which we do not address here; for example, it appears in causal
models with time dependencies; see [19] for a brief discussion.

First recall that for a random variable X and 0 < u < 1 the Value-at-Risk (VaR) at level u is the quantile
function

VaRu(X) := inf{x ∈ R : Pr(X > x) ≤ 1− u} = inf{x ∈ R : Pr(X ≤ x) ≥ u}.
Suppose Z = (Z1, Z2) denotes risk related to two different components of a system. We study the behavior
of two related quantities which capture the expected behavior of one risk, given that the other risk is high.

Definition 1.1 (Marginal Mean Excess) For a random vector Z = (Z1, Z2) with E|Z1| < ∞ the
Marginal Mean Excess (MME) at level p where 0 < p < 1 is defined as:

MME(p) = E
[
(Z1 −VaR1−p(Z2))+

∣∣Z2 > VaR1−p(Z2)
]
. (1.1)

We interpret the MME as the expected excess of one risk Z1 over the Value-at-Risk of Z2 at level (1 − p)
given that the value of Z2 is already greater than the same Value-at-Risk.

Definition 1.2 (Marginal Expected Shortfall) For a random vector Z = (Z1, Z2) with E|Z1| < ∞
the Marginal Expected Shortfall (MES) at level p where 0 < p < 1 is defined as:

MES(p) = E [Z1|Z2 > VaR1−p(Z2)] . (1.2)

We interpret the MES as the expected shortfall of one risk given that the other risk is higher than its Value-at
risk at level (1− p). Note that smaller values of p lead to higher values of VaR1−p.

In the context of systemic risk, we may think of the conditioned variable Z2 to be the risk of the entire
system (for example, the entire market) and the variable Z1 as one component of the risk (for example, one
financial institution). Hence, we are interested in the average or expected behavior of one specific component
when the entire system is in distress. Although the problem is set up in a systemic risk context, the asymptotic
behaviors of MME and MES are of interest in scenarios of risk contagion in a variety of disciplines.

Clearly, we are interested in computing both MME(p) and MES(p) for small values of p, which translates
to Z2 being over a high threshold t. In other words we are interested in estimators of E[(Z1 − t)+|Z2 > t]
(for the MME) and E[Z1|Z2 > t] (for the MES) for large values of t. An estimator for MES(p) has been
proposed by [7] which is based on the asymptotic behavior of MES(p); if Z1 ∼ F1 and Z2 ∼ F2, define

R(x, y) := lim
t→∞

tPr
(

1− F1(Z1) ≤ x

t
, 1− F2(Z2) ≤ y

t

)
(1.3)

for (x, y) ∈ [0,∞)
2
. It is shown in [7] that

lim
p→0

1

VaR1−p(Z1)
MES(p) =

∫ ∞
0

R(x−α1 , 1) dx (1.4)

if Z1 has a regularly varying tail with tail parameter α1. In [25] a similar result is presented under the further
assumption of multivariate regular variation of the vector Z = (Z1, Z2); see [21, 40] as well in this context.
Under the same assumptions, we can check that

lim
p→0

1

VaR1−p(Z1)
MME(p) =

∫ ∞
c

R(x−α1 , 1) dx (1.5)

where

c = lim
p→0

VaR1−p(Z2)

VaR1−p(Z1)
,
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if c exists and is finite. For c to be finite we require that Z1 and Z2 are (right) tail equivalent (c > 0) or
Z2 has a lighter (right) tail than Z1 (c = 0). Note that in both (1.4) and (1.5), the rate of increase of the
risk measure is determined by the tail behavior of Z1; the tail behavior of Z2 has no apparent influence.
However, these results make sense only when the right hand sides of (1.4) and (1.5) are both non-zero and
finite. Thus, we obtain that as p ↓ 0,

MME(p) ∼ const. VaR1−p(Z1), and MES(p) ∼ const. VaR1−p(Z1).

Unfortunately, if Z1, Z2 are asymptotically upper tail independent then R(x, y) ≡ 0 (see Remark 2.3 below)
which implies that the limits in (1.4) and (1.5) are both 0 as well and hence, are not that useful.

Consequently, the results in [7] make sense only if the random vector Z has positive upper tail dependence,
which means that, Z1 and Z2 take high values together with a positive probability; examples of multivariate
regularly varying random vectors producing such strong dependence can be found in [22]. A classical example
for asymptotic tail independence, especially in financial risk modeling, is when the risk factors Z1 and Z2

are both Pareto-tailed with a Gaussian copula and any correlation ρ < 1 [11]; this model has asymptotic
upper tail independence leading to R ≡ 0. The results in (1.4) and (1.5) respectively, and hence, in [7]
provide a null estimate which is not very informative. Hence, in such a case one might be inclined to
believe that E(Z1|Z2 > t) ∼ E(Z1) and E((Z1 − t)+|Z2 > t) ∼ 0 as Z1 and Z2 are asymptotically tail
independent. However, we will see that depending on the Gaussian copula parameter ρ we might even have
limt→∞E((Z1 − t)+|Z2 > t) = ∞. Hence, in this case it would be nice if we could find the right rate of
convergence of MME(p) to a non-zero constant.

In this paper we investigate the asymptotic behavior of MME(p) and MES(p) as p ↓ 0 under the assumption
of regular variation and hidden regular variation of the risk vector Z exhibiting asymptotic upper tail
independence. We will see that for a very general class of models MME(p) and MES(p), respectively behave
like a regularly varying function with negative index for p ↓ 0, and hence, converge to ∞ although the tails
are asymptotically tail independent. However, the rate of convergence is slower than in the asymptotically
tail dependent case as presented in [7]. This result is an interplay between the tail behavior and the strength
of dependence of the two variables in the tails. The behavior of MES in the asymptotically tail independent
case has been addressed to some extent in [22, Section 3.4] for certain copula structures with Pareto margins.
We address the asymptotically tail independent case in further generality. For the MME, we can provide
results with fewer technical assumptions than for the case of MES and hence, we cover a broader class of
asymptotically tail independent models. The knowledge of the asymptotic behavior of the MME and the MES
helps us in proving consistency of their empirical estimators. However, in a situation where data are scarce
or even unavailable in the tail region of interest, an empirical estimator is clearly unsuitable. Hence, we also
provide consistent estimators using methods from extreme value theory which work when data availablility
is limited in the tail regions.

The paper is structured as follows: In Section 2 we briefly discuss the notion of multivariate and hidden
regular variation. We also list a set of assumptions that we impose on our models in order to obtain limits
of the quantities MME and MES under appropriate scaling. The main results of the paper regarding the
asymptotic behavior of the MME and the MES are discussed in Section 3. In Section 3.3, we illustrate a few
examples which satisfy the assumptions under which we can compute asymtptoic limits of MME and MES;
these include additive models, the Bernoulli mixture model for generating hidden regular variation and a
few copula models. Estimation methods for the risk measures MME and MES are provided in Section 4.
Consistency of the empirical estimators are the topic of Section 4.1, whereas, we present consistent estimators
based on methods from extreme value theory in Section 4.2. Finally, we validate our method on real and
simulated data in Section 5 with brief concluding remarks in Section 6.

In the following we denote by
v→ vague convergence of measures, by⇒ weak convergence of measures and

by
P→ convergence in probability. For x ∈ R, we write x+ = max(0, x).
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2. Preliminaries

For this paper we restrict our attention to non-negative random variables in a bivariate setting. We discuss
multivariate and hidden regular variation in Section 2.1. A few technical assumptions that we use throughout
the paper are listed in Section 2.2. A selection of model examples that satisfy our assumptions is relegated
to Section 3.3.

2.1. Regular variation

First, recall that a measurable function f : (0,∞)→ (0,∞) is regularly varying at ∞ with index ρ ∈ R if

lim
t→∞

f(tx)

f(t)
= xρ

for any x > 0 and we write f ∈ RVρ. If the index of regular variation is 0 we call the function slowly varying
as well. Note that in contrast, we say f is regularly varying at 0 with index ρ if limt→0 f(tx)/f(t) = xρ for
any x > 0. In this paper, unless otherwise specified, regular variation means regular variation at infinity. A
random variable X with distribution function F has a regularly varying tail if F = 1− F ∈ RV−α for some
α ≥ 0. We often write X ∈ RV−α by abuse of notation.

We use the notion of M-convergence to define regular variation in more than one dimension; for further
details see [12, 23, 27]. We restrict to two dimensions here since we deal with bivariate distributions in this

paper, although the definitions provided hold in general for any finite dimension. Suppose C0 ⊂ C ⊂ [0,∞)
2

where C0 and C are closed cones containing {(0, 0)} ∈ R2. By M(C\C0) we denote the class of Borel measures

on C \ C0 which are finite on subsets bounded away from C0. Then µn
M→ µ in M(C \ C0) if µn(f) → µ(f)

for all continuous and bounded functions on C \ C0 whose supports are bounded away from C0.

Definition 2.1 (Multivariate regular variation) A random vector Z = (Z1, Z2) ∈ C is (multivariate)
regularly varying on C \C0, if there exist a function b(t) ↑ ∞ and a non-zero measure ν(·) ∈M(C \C0) such
that as t→∞,

νt(·) := tPr(Z/b(t) ∈ · ) M→ ν(·) in M(C \ C0). (2.1)

Moreover, we can check that the limit measure has the homogeneity property: ν(cA) = c−αν(A) for some
α > 0. We write Z ∈MRV(α, b, ν,C \ C0) and sometimes write MRV for multivariate regular variation.

In the first stage, multivariate regular variation is defined on the space E = [0,∞)
2 \ {(0, 0)} = C \ C0

where C = [0,∞)
2

and C0 = {(0, 0)}. But sometimes we need to define further regular variation on subspaces
of E, since the limit measure ν as obtained in (2.1) turns out to be concentrated on a subspace of E. The
most likely way this happens is through asymptotic tail independence of random variables.

Definition 2.2 (asymptotic tail independence) A random vector Z = (Z1, Z2) ∈ [0,∞)
2

is called
asymptotically independent (in the upper tail) if

lim
p↓0

Pr(Z2 > F←2 (1− p)|Z1 > F←1 (1− p)) = 0,

where Zi ∼ Fi, i = 1, 2.

Asymptotic upper tail independence can be interpreted in terms of the survival copula of Z as well.
Assume (w.l.o.g.) that F1, F2 are strictly increasing continuous distribution functions with unique survival

copula Ĉ (see [30]) such that

Pr(Z1 > x,Z2 > y) = Ĉ(F 1(x), F 2(y)) for (x, y) ∈ R2.

Hence, in terms of the survival copula, asymptotic upper tail independence of Z implies

lim
p↓0

Ĉ(p, p)

p
= lim

p↓0

Pr(Z1 > F
←
1 (p), Z2 > F

←
2 (p))

Pr(Z1 > F
←
1 (p))

= lim
p↓0

Pr(Z2 > F←2 (p))|Z1 > F←1 (1− p)) = 0. (2.2)
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Independent random vectors are trivially asymptotically tail independent. Note that asymptotic upper
tail independence of Z ∈ MRV(α, b, ν,E) implies ν((0,∞) × (0,∞)) = 0 for the limit measure ν. On the
other hand, for the converse, if Z1 and Z2 are both marginally regularly varying in the right tail with
limt→∞ Pr(Z1 > t)/Pr(Z2 > t) = 1, then ν((0,∞)× (0,∞)) = 0 implies asymptotic upper tail independence
as well (see [32, Proposition 5.27]). However, this implication does not hold true in general, e.g., for a regularly
varying random variable X ∈ RV−α the random vector (X,X2) is multivariate regularly varying with limit
measure ν((0,∞)× (0,∞)) = 0; but of course (X,X2) is asymptotically tail-dependent.

Remark 2.3 Asymptotic upper tail independence of (Z1, Z2) implies that

R(x, y) = lim
t→∞

tPr (1− F1(Z1) ≤ x/t, 1− F2(Z2) ≤ y/t)

= lim
t→∞

t Ĉ
(x
t
,
y

t

)
≤ max(x, y) lim

s→0

Ĉ(s, s)

s
= 0 (using (2.2)).

Hence, the estimator presented in [7] for MES provides a trivial estimator in this setting.

Consequently, in the asymptotically tail independent case where the tails are equivalent we would ap-
proximate the joint tail probability by Pr(Z2 > x|Z1 > x) ≈ 0 for large thresholds x and conclude that risk
contagion between Z1 and Z2 is absent. This conclusion may be naive; hence the notion of hidden regular
variation on E0 = [0,∞)

2 \ ({0} × [0,∞) ∪ [0,∞)× {0}) = (0,∞)2 was introduced in [33]. Note that we do
not assume that the marginal tails of Z are necessarily equivalent in order to define hidden regular variation,
which is usually done in [33].

Definition 2.4 (Hidden regular variation) A regularly varying random vector Z on E possesses hidden
regular variation on E0 = (0,∞)2 with index α0 (≥ α > 0) if there exist scaling functions b(t) ∈ RV1/α and
b0(t) ∈ RV1/α0

with b(t)/b0(t)→∞ and limit measures ν, ν0 such that

Z ∈MRV(α, b, ν,E) ∩MRV(α0, b0, ν0,E0).

We write Z ∈ HRV(α0, b0, ν0) and sometimes write HRV for hidden regular variation.

For example, say Z1, Z2 are iid random variables with distribution function F (x) = 1 − x−1, x > 1.
Here Z = (Z1, Z2) possesses MRV on E, asymptotic tail independence and HRV on E0. Specifically, Z ∈
MRV(α = 1, b(t) = t, ν,E) ∩MRV(α0 = 2, b0(t) =

√
t, ν0,E0) where for x > 0, y > 0,

ν(([0, x]× [0, y])c) =
1

x
+

1

y
and ν0([x,∞)× [y,∞)) =

1

xy
.

Lemma 2.5. Z ∈MRV(α, b, ν,E)∩HRV(α0, b0, ν0,E0) implies that Z is asymptotically tail independent.

Proof. Let bi(t) = (1/(1− Fi))←(t) where Zi ∼ Fi, i = 1, 2. Due to the assumptions we have

lim
t→∞

max(b1(t), b2(t))

b0(t)
=∞ and lim inf

t→∞

min(b1(t), b2(t))

b0(t)
≥ 1.

Without loss of generality b1(t)/b0(t) → ∞. Then for any M > 0 there exists a t0 = t0(M) so that
b1(t) ≥Mb0(t) for any t ≥ t0. Hence, for x, y > 0

lim
t→∞

tPr (1− F1(Z1) ≤ x/t, 1− F2(Z2) ≤ y/t) = lim
t→∞

tPr (Z1 ≥ b1(t/x), Z2 ≥ b2(t/y))

≤ lim
t→∞

tPr
(
Z1 ≥Mb0(t/x), Z2 ≥ 2−1b0(t/y)

)
≤ Cx,yν0([M,∞)×

[
2−1,∞

)
)
M→∞→ 0,

so that Z is asymptotically tail independent (here Cx,y is some fixed constant).

Remark 2.6 The assumption Z ∈MRV(α, b, ν,E) ∩MRV(α0, b0, ν0,E0) and Z is asymptotic upper tail
independent already implies that Z ∈ HRV(α0, b0, ν0); see [29, 33]. Consequently limt→∞ b(t)/b0(t) =∞ as
well.
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2.2. Assumptions

In this section we list assumptions on the random variables for which we show consistency of relevant
estimators in the paper. Parts of the assumptions are to fix notations for future results.

Assumption A

(A1) Let Z = (Z1, Z2) ∈ [0,∞)
2

such that Z ∈MRV(α, b, ν,E) where

b(t) = (1/Pr(max(Z1, Z2) > · ))← (t) = F
←
max(Z1,Z2)(1/t) ∈ RV1/α.

(A2) E|Z1| <∞.
(A3) b2(t) := F

←
Z2

(1/t) for t ≥ 0.
(A4) Without loss of generality we assume that the support of Z1 is [1,∞). A constant shift would not affect

the tail properties of MME or MES.
(A5) Z ∈MRV(α0, b0, ν0,E0) with α0 ≥ α ≥ 1, where

b0(t) = (1/Pr(min(Z1, Z2) > · ))← (t) = F
←
min(Z1,Z2)(1/t) ∈ RV1/α0

,

and b(t)/b0(t)→∞.

Lemma 2.7. Let FZ2 ∈ RV−β, β > 0. Then Assumption A implies α ≤ β ≤ α0.

Proof. First of all, β ≥ α since otherwise Z ∈MRV(α, b, ν,E) cannot hold. Moreover,

1 ∼ tPr(Z1 > b0(t), Z2 > b0(t)) ≤ tPr(Z2 > b0(t)) ∈ RV1− β
α0

. (2.3)

Thus, if α0 < β then limt→∞ tPr(Z2 > b0(t)) = 0 which is a contradiction to (2.3).

Remark 2.8 In general, we see from this that under Assumption A, lim inft→∞ tPr(Z2 > b0(t)) ≥ 1 and
hence, for any ε > 0 there exist C1(ε) > 0, C2(ε) > 0 and x0(ε) > 0 such that

C1(ε)x−α0−ε ≤ Pr(Z2 > x) ≤ C2(ε)x−α+ε

for any x ≥ x0(ε).

We need a couple of more conditions, especially on the joint tail behavior of Z = (Z1, Z2) in order to
talk about the limit behavior of MME(p) and MES(p) as p ↓ 0. We impose the following assumptions on the
distribution of Z. Assumption (B1) is imposed to find the limit of MME in (1.1) whereas both (B1) and
(B2) (which are clubbed together as Assumption B) are imposed to find the limit in (1.2), of course, both
under appropriate scaling.

Assumption B

(B1) lim
M→∞

lim
t→∞

∫ ∞
M

Pr(Z1 > xt, Z2 > t)

Pr(Z1 > t, Z2 > t)
dx = 0.

(B2) lim
M→∞

lim
t→∞

∫ 1/M

0

Pr(Z1 > xt, Z2 > t)

Pr(Z1 > t, Z2 > t)
dx = 0.

Assumption (B1) and Assumption (B2) deal with tail integrability near infinity and near zero for a specific
integrand, respectively that comes up in calculating limits of MME and MES. The following lemma trivially
provides a sufficient condition for (B1).

Lemma 2.9. If there exists an integrable function g : [0,∞)→ [0,∞) with

sup
t≥t0

Pr(Z1 > y,Z2 > t)

tPr(Z1 > t, Z2 > t)
≤ g(y)

for y > 0 and some t0 > 0 then (B1) is satisfied.
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Lemma 2.10. Let Assumption A hold.

(a) Then (B2) implies

lim
t→∞

Pr(Z2 > t)

tPr(Z1 > t, Z2 > t)
= 0. (2.4)

(b) Suppose FZ2
∈ RV−β with α ≤ β ≤ α0. Then α0 ≤ β + 1 is a necessary and α0 < β + 1 is a suffi-

cient condition for (2.4) to hold. Hence, α0 ≤ β+1 is a necessary condition for Assumption (B2) as well.

Proof.
(a) Since the support of Z1 is [1,∞) we get for large t ≥M , by (B2),

Pr(Z2 > t)

tPr(Z1 > t, Z2 > t)
=

∫ 1/t

0

Pr(Z1 > xt, Z2 > t)

Pr(Z1 > t, Z2 > t)
dx ≤

∫ 1/M

0

Pr(Z1 > xt, Z2 > t)

Pr(Z1 > t, Z2 > t)
dx

t,M→∞→ 0.

But the left hand side is independent of M so that the claim follows.
(b) In this case

Pr(Z2 > t)

tPr(Z1 > t, Z2 > t)
∈ RV−β−1+α0

from which the statement follows.

Remark 2.11 If Z1, Z2 are independent then under the assumptions of Lemma 2.10(b), α0 = α + β.
Moreover if 1 < α ≤ β then clearly α0 = α+β > 1+β and α0 ≤ 1+β cannot hold. Hence, Assumption (B2)
is not valid if Z1 and Z2 are independent. In other words, Assumption (B2) signifies that although Z1, Z2

are asymptotically upper tail independent, there is an underlying dependence between Z1 and Z2 which is
absent in the independent case.

3. Asymptotic behavior of the MME and the MES

3.1. Asymptotic behavior of the MME

For asymptotically independent risks, from (1.5) and Remark 2.3 we have that

lim
p→0

1

VaR1−p(Z1)
MME(p) = 0,

which doesn’t provide us much in the way of identifying the rate of increase (or decrease) of MME(p). The
aim of this section is to get a version of (1.5) for the asymptotically tail independent case which is presented
in the next theorem.

Theorem 3.1. Suppose Z = (Z1, Z2) ∈ [0,∞)2 satisfies Assumption A and (B1). Then

lim
p↓0

pb←0 (b2(1/p))

b2(1/p)
MME(p) = lim

p↓0

pb←0 (VaR1−p(Z2))

VaR1−p(Z2)
MME(p) =

∫ ∞
1

ν0((x,∞)× (1,∞)) dx. (3.1)

Moreover, 0 <
∫∞

1
ν0((x,∞)× (1,∞)) dx <∞.

Proof. We know that for a non-negative random variable W , we have EW =
∫∞

0
Pr(W > x) dx. Let

t = b2(1/p). Also note that b←0 (t) = 1/Pr(min(Z1, Z2) > t) = 1/Pr(Z1 > t, Z2 > t). Then

pb←0 (b2(1/p))

b2(1/p)
MME(p) =

FZ2(t)b←0 (t)

t
E((Z1 − t)+|Z2 > t)
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=
Pr(Z2 > t)b←0 (t)

t

∫ ∞
t

Pr(Z1 > x,Z2 > t)

Pr(Z2 > t)
dx

=

∫ ∞
t

Pr(Z1 > x,Z2 > t)

tPr(Z1 > t, Z2 > t)
dx

=

∫ ∞
1

Pr(Z1 > tx,Z2 > t)

Pr(Z1 > t, Z2 > t)
dx =:

∫ ∞
1

νt(x) dx. (3.2)

Observe that for x ≥ 1, by Assumption (A5),

νt(x) =
Pr(Z1 > tx,Z2 > t)

Pr(Z1 > t, Z2 > t)
= b←0 (t)Pr

(
Z

t
∈ (x,∞)× (1,∞)

)
t→∞→ ν0((x,∞)× (1,∞)).

We also have

νt(x) =
Pr(Z1 > tx,Z2 > t)

Pr(Z1 > t, Z2 > t)
≤ 1, x ≥ 1.

Now, for x ≥ 1, we have ν0((x,∞)×(1,∞)) ≤ ν0((1,∞)×(1,∞)) = limt→∞ νt(1) = 1. Hence, for any M ≥ 1

we have
∫M

1
ν0((x,∞)× (1,∞)) dx ≤M . Therefore using Lebesgue’s Dominated Convergence Theorem,

lim
t→∞

∫ M

1

νt(x) dx =

∫ M

1

ν0((x,∞)× (1,∞)) dx. (3.3)

Next we check that 0 <
∫∞

1
ν0((x,∞)× (1,∞)) dx <∞. Define for M ≥ 1,

ψM := lim
t→∞

∫ ∞
M

νt(x)dx.

By Assumption (B1), we have

lim
M→∞

ψM = 0. (3.4)

Hence, there exists M0 > 0 such that |ψM | ≤ 1 for all M > M0. Applying Fatou’s Lemma, we know that for
any M > M0, ∫ ∞

M

ν0((x,∞)× (1,∞)) dx ≤ lim inf
t→∞

∫ ∞
M

νt(x)dx ≤ ψM ≤ 1.

Therefore, for fixed M > M0,∫ ∞
1

ν0((x,∞)× (1,∞)) dx =

∫ M

1

ν0((x,∞)× (1,∞)) dx+

∫ ∞
M

ν0((x,∞)× (1,∞)) dx ≤M + 1 <∞.

Moreover, ν0((x,∞)× (x,∞)) is homogeneous of order −α0 so that∫ ∞
1

ν0((x,∞)× (1,∞)) dx ≥
∫ ∞

1

ν0((x,∞)× (x,∞)) dx = ν0((1,∞)× (1,∞))

∫ ∞
1

x−α0 dx > 0.

Hence 0 <
∫∞

1
ν0((x,∞)× (1,∞)) dx <∞. Therefore, since t = b2(1/p) ↑ ∞ as p ↓ 0, we have

lim
p↓0

pb←0 (b2(1/p))

b2(1/p)
MME(p) = lim

t→∞

∫ ∞
1

νt(x) dx

= lim
t→∞

[∫ M

1

νt(x) dx+

∫ ∞
M

νt(x) dx

]
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= lim
M→∞

[
lim
t→∞

∫ M

1

νt(x) dx+ lim
t→∞

∫ ∞
M

νt(x) dx

]
(since it is true for any M ≥ 1)

= lim
M→∞

∫ M

1

ν0((x,∞)× (1,∞)) dx+ lim
M→∞

ψM (using (3.3))

=

∫ ∞
1

ν0((x,∞)× (1,∞)) dx (using (3.4)).

Corollary 3.2. Suppose Z = (Z1, Z2) satisfies Assumptions A, (B1) and FZ2 ∈ RV−β for some α ≤ β ≤
α0. Then MME(1/t) ∈ RV(1+β−α0)/β. For 1 + β > α0 we have limp→0 MME(p) =∞ with

1 + β − α0

β
∈
[
1− α0 − 1

β
,

1

α0

]
⊆ (0, 1]

and for 1 + β < α0 we have limp→0 MME(p) = 0.

Remark 3.3 A few consequences of Corollary 3.2 are illustrated below.

(a) When 1 +β > α0, although the quantity MME(p) increases as p ↓ 0, the rate of increase is slower than
a linear function.

(b) Let Z ∈ MRV(α, b, ν,E). Suppose Z1 and Z2 are independent and FZ1
∈ RV−α then by Karamata’s

Theorem,

MME(p) ∼ 1

α− 1
VaR1−p(Z2)Pr(Z1 > VaR1−p(Z2)) (p ↓ 0).

This is a special case of Theorem 3.1.

Example 3.4 In this example we illustrate the influence of the tail behavior of the marginals as well as
the dependence structure on the asymptotic behavior of the MME. Assume that Z = (Z1, Z2) ∈ [0,∞)2

satisfies Assumptions (A1)-(A4). We compare the following tail independent and tail dependent models:

(D) Tail dependent model: Additionally Z is tail dependent implying R 6= 0 and satisfies (1.5). We denote
its Marginal Mean Excess by MMED.

(ID) Tail independent model: Additionally Z is asymptotically tail independent satisfying (A5), (B1) and
1 + β > α0 > α. Its Marginal Mean Excess we denote by MMEI .

(a) Suppose Z1, Z2 are identically distributed. Since t/b←0 (b2(t)) ∈ RV1−α0/α and 1− α0/α < 0 we get

MMEI(p)

MMED(p)
∼
p→0

C

pb←0 (b2(1/p))
→
p→0

0.

This means in the asymptotically tail independent case the Marginal Mean Excess increases at a slower
rate to infinity, than in the asymptotically tail dependent case, as expected.

(b) Suppose Z1, Z2 are not identically distributed and for some finite constant C > 0

Pr(Z2 > t) ∼ CPr(Z1 > t, Z2 > t) (t→∞).

This means that not only Z ∈ MRV(α0, b0, ν0,E0) but also Z2 ∈ RV−α0
and Z1 is heavier tailed than

Z2. Then

lim
t→∞

b←0 (b2(t))

t
= lim
t→∞

1

tPr(Z1 > b2(t), Z2 > b2(t))
= lim
t→∞

C

tPr(Z2 > b2(t))
= C.
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Thus,

lim
p→0

1

VaR1−p(Z2)
MMEI(p) = lim

p→0

MMEI(p)

b2(1/p)
= C

∫ ∞
0

ν0((x,∞)× (1,∞)) dx

and MMEI(·) is regularly varying of index − 1
α0

at 0. In this example Z2 is lighter tailed than Z1, and
hence, once again we find that in the asymptotically tail independent case the Marginal Mean Excess
MMEI increases at a slower rate to infinity than the Marginal Mean Excess MMED in the asymptotically
tail dependent case.

3.2. Asymptotic behavior of the MES

Here we derive analogous results for the Marginal Expected Shortfall.

Theorem 3.5. Suppose Z = (Z1, Z2) satisfies Assumptions A and B. Then

lim
p↓0

pb←0 (VaR1−p(Z2))

VaR1−p(Z2)
MES(p) = lim

p↓0

pb←0 (b2(1/p))

b2(1/p)
MES(p) =

∫ ∞
0

ν0((x,∞)× (1,∞)) dx. (3.5)

Moreover, 0 <
∫∞

0
ν0((x,∞)× (1,∞)) dx <∞.

The proof of Theorem 3.5 requires further condition (B2) which can be avoided in Theorem 3.1.

Proof. The proof is similar to that of Theorem 3.1 which we discussed in detail. As in Theorem 3.1 we
rewrite

pb←0 (b2(1/p))

b2(1/p)
MES(p) =

FZ2
(t)b←0 (t)

t
E(Z1|Z2 > t) =

[∫ 1/M

0

+

∫ M

1/M

+

∫ ∞
M

]
Pr(Z1 > tx,Z2 > t)

Pr(Z1 > t, Z2 > t)
dx.

We can then conclude the statement from (B2) and similar arguments as in the proof of Theorem 3.1.

A similar comparison can be made between the asymptotic behavior of the Marginal Expected Shortfall
for the tail independent and tail dependent case as we have done in Example 3.4 for the Marginal Mean
Excess.

Remark 3.6 Define

a(t) :=
b←0 (b2(t))

t b2(t)
.

Then limt→∞ a(t) = 0 is equivalent to

lim
t→∞

Pr(Z2 > t)

tPr(Z1 > t, Z2 > t)
= 0.

Hence, a consequence of (B2) and (2.4) is that limt→∞ a(t) = 0 and finally, limp↓0 MES(p) = ∞. Again a
sufficient assumption for limt→∞ a(t) = 0 is FZ2 ∈ RV−β with α0 < β + 1 and a necessary condition is
α0 ≤ β + 1 (see Lemma 2.10).

Remark 3.7 In this study we have only considered a non-negative random variable Z1 while computing
MES(p) = E(Z1|Z2 > VaR1−p(Z2)). For a real-valued random variable Z1, we can represent Z1 = Z+

1 −Z
−
1

where Z+
1 = max(Z1, 0) and Z−2 = max(−Z2, 0). Here both Z+

1 and Z−1 are non-negative and hence can be
dealt with separately. The limit results will depend on the separate dependence structure and tail behaviors
of (Z+

1 , Z2) and (Z−1 , Z2).
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3.3. Illustrative models and examples

We finish this section up with a few models and examples where we can calculate limits for MES and MME.
In Sections 3.3.1 and 3.3.2 we discuss generative models with sufficient conditions satisfying Assumptions A
and B. In Section 3.3.3 we further discuss two copula models where Theorems 3.1 and 3.5 can be applied.

3.3.1. Mixture representation

First we look at models that are generated in an additive fashion (see [10, 38]). We will observe that many
models can be generated using the additive technique.

Model C Suppose Z = (Z1, Z2),Y = (Y1, Y2),V = (V1, V2) are random vectors in [0,∞)
2

such that
Z = Y + V . Assume the following holds:

(C1) Y ∈MRV(α, b, ν,E) where α ≥ 1.
(C2) Y1, Y2 are independent random variables.
(C3) FY2

∈ RV−α∗ , 1 ≤ α ≤ α∗.
(C4) V ∈MRV(α0, b0, ν0,E) and does not possess asymptotic tail independence where α ≤ α0 and

lim
t→∞

Pr(‖V ‖ > t)

Pr(‖Y ‖ > t)
= 0.

(C5) Y and V are independent.
(C6) α ≤ α0 < 1 + α∗.
(C7) E|Z1| <∞.

Of course, we would like to know, when Model C satisfies Assumptions A and B; moreover, when is
Z ∈ HRV(α0, b0, ν0,E0)? The next theorem provides a general result to answer these questions in certain
special cases.

Theorem 3.8. Let Z = Y + V be as in Model C. Then the following statements hold:

(a) Z ∈MRV(α, b, ν,E) ∩HRV(α0, b0, ν0,E0) and satisfies Assumption B.
(b) Suppose Y1 = 0. Then (Z1, Z1 + Z2) ∈MRV(α, b, ν,E) ∩HRV(α0, b0, ν

+
0 ,E0) with

ν+
0 (A) = ν0({(v1, v2) ∈ E0 : (v1, v1 + v2) ∈ A}) for A ∈ B(E0)

and satisfies Assumption B.
(c) Suppose lim inft→∞ Pr(Y1 > t)/Pr(Y2 > t) > 0. Then (Z1,min(Z1, Z2)) ∈ MRV(α, b, νmin,E) ∩
HRV(α0, b0, ν

min
0 ,E0) with

νmin(A) = ν({(y1, 0) ∈ E : (y1, 0) ∈ A}) for A ∈ B(E),

νmin
0 (A) = ν0({(v1, v2) ∈ E0 : (v1,min(v1, v2)) ∈ A}) for A ∈ B(E0)

and satisfies Assumption B.
(d) Suppose Y1 = 0. Then (Z1,max(Z1, Z2)) ∈MRV(α, b, ν, E) ∩HRV(α0, b0, ν

max
0 ,E0) with

νmax
0 (A) = ν0({(v1, v2) ∈ E0 : (v1,max(v1, v2)) ∈ A}) for A ∈ B(E0)

and satisfies Assumption B.

For a proof of this theorem we refer to [9].

Remark 3.9 Note that, in a systemic risk context where the entire system consists of two institutions with
risks Z1 and Z2, the above theorem addresses the variety of ways a systemic risk model can be constructed.
If risk is just additive we could refer to part (b), if the system is at risk when both institutions are at risk
then we can refer to part (c) and if the global risk is connected to any of the institutions being at risk then
we can refer to the model in part (d). Hence, many kinds of models for calculating systemic risk can be
obtained under such a model assumption.
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3.3.2. Bernoulli model

Next we investigate an example generated by using a mixture method for getting hidden regular variation
in a non-standard regularly varying model (see [12]).

Example 3.10 Suppose X1, X2, X3 are independent Pareto random variables with parameters α, α0 and
γ, respectively, where 1 < α < α0 < γ and α0 < 1 + α. Let B be a Bernoulli(q) random variable with
0 < q < 1 and independent of X1, X2, X3. Now define

Z = (Z1, Z2) = B(X1, X3) + (1−B)(X2, X2).

This is a popular example, see [10, 29, 33]. Note that

Pr(max(Z1, Z2) > t) ∼ qt−α and Pr(min(Z1, Z2) > t) ∼ Pr(Z2 > t) ∼ (1− q)t−α0 (t→∞),

so that b(1/p) ∼ q
1
α p−

1
α , b0(1/p) ∼ b2(1/p) ∼ (1− q)

1
α0 p−

1
α0 as p ↓ 0. We denote by εx, the Dirac measure

at point x. Note that the limit measure on E concentrates on the two axes. We will look at usual MRV which
is given on E by

tPr

((
Z1

b(t)
,
Z2

b(t)

)
∈ dxdy

)
M→ αx−α−1dx · ε0(dy) =: ν(dx dy) (t→∞) in M(E),

where the limit measure lies on the x-axis. Hence, we seek HRV in the next step on E\{x-axis} = [0,∞) ×
(0,∞) and get

tPr

((
Z1

b0(t)
,
Z2

b0(t)

)
∈ dxdy

)
M→ α0x

−α0−1dx · εx(dy) =: ν0(dx dy) (t→∞) in M(E\{x-axis}).

Here the limit measure lies on the diagonal where x = y. Thus, we have for any x ≥ 1,

ν0((x,∞)× (1,∞)) = x−α0 .

Now, we can explicitly calculate the values of MME and MES. For 0 < p < 1:

MES(p) =
1

qVaR1−p(Z2)−γ + (1− q)VaR1−p(Z2)−α0

[
qα

α− 1
VaR1−p(Z2)−γ +

(1− q)α0

α0 − 1
VaR1−p(Z2)−α0+1

]
,

MME(p) =
1

qVaR1−p(Z2)−γ + (1− q)VaR1−p(Z2)−α0

[
q

α− 1
VaR1−p(Z2)−γ−α+1 +

(1− q)
α0 − 1

VaR1−p(Z2)−α0+1

]
.

Therefore,

pb←0 (b2(1/p))

b2(1/p)
MME(p) ∼ 1

b2(1/p)
MME(p) ∼ 1

α0 − 1
=

∫ ∞
1

ν0((x,∞)× (1,∞)) dx (p ↓ 0),

and

pb←0 (b2(1/p))

b2(1/p)
MES(p) ∼ 1

b2(1/p)
MES(p) ∼ α0

α0 − 1
=

∫ ∞
0

ν0((x,∞)× (1,∞)) dx (p ↓ 0).

3.3.3. Copula models

The next two examples constructed by well-known copulas (see [30]) are illustrative of the limits which we
are able to compute using Theorems 3.1 and 3.5.

Example 3.11 In financial risk management, no doubt the most famous copula model is the Gaussian
copula:

CΦ,ρ(u, v) = Φ2(Φ←(u),Φ←(v)) for (u, v) ∈ [0, 1]2,
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where Φ is the standard-normal distribution function and Φ2 is a bivariate normal distribution function with
standard normally distributed margins and correlation ρ. Then the survival copula satisfies:

ĈΦ,ρ(u, u) = CΦ,ρ(u, u) ∼ u
2
ρ+1 `(u) (u→ 0),

for some function l which is slowly varying at 0, see [26, 31]. Suppose (Z1, Z2) has identical Pareto marginal
distributions with common parameter α > 0 and a dependence structure given by a Gaussian copula
CΦ,ρ(u, v) with ρ ∈ (−1, 1). Now we can check that (Z1, Z2) ∈ MRV(α, b, ν,E) with asymptotic tail in-
dependence and (Z1, Z2) ∈MRV(α0, b0, ν0,E0) with

α0 =
2α

1 + ρ
and ν0((x,∞)× (y,∞)) = x−

α
1+ρ y−

α
1+ρ , x, y > 0.

Hence, for ρ ∈ (1− 2/(α+ 1), 1) we have limp→0 MME(p) =∞. In this model, Assumptions A and (B1) are
satisfied when α > 1 + ρ and α > 1. We can also check that Assumption (B2) is not satisfied. Consequently,
we can find estimates for MME but not for MES in this example.

Example 3.12 Suppose (Z1, Z2) has identical Pareto marginal distributions with parameter α > 0 and a
dependence structure given by a Marshall-Olkin survival copula:

Ĉγ1,γ2(u, v) = uvmin(u−γ1 , v−γ2) for (u, v) ∈ [0, 1]2,

for some γ1, γ2 ∈ (0, 1). We can check that in this model, we have (Z1, Z2) ∈MRV(α, b, ν,E) with asymptotic
tail independence and (Z1, Z2) ∈MRV(α0, b0, ν0,E0) with

α0 = αmax(2− γ1, 2− γ2) and

ν0((x,∞)× (y,∞)) =

 x−α(1−γ1)y−α, γ1 < γ2,
x−αy−α max(x, y)−αγ1 , γ1 = γ2,
x−αy−α(1−γ2), γ1 > γ2,

x, y > 0.

Then min(γ1, γ2) ∈ (1− 1/α, 1) implies limp→0 MME(p) =∞. Moreover this model satisfies Assumptions A
and (B1) when γ1 ≥ γ2. Unfortunately again, (B2) is not satisfied.

4. Estimation of MME and MES

4.1. Empirical estimators for the MME and the MES

4.1.1. Empirical estimator for the MME

Suppose (Z
(1)
1 , Z

(2)
1 ), . . . , (Z

(1)
n , Z

(2)
n ) are iid samples with the same distribution as (Z1, Z2). We denote by

Z
(2)
(1:n) ≥ . . . ≥ Z

(2)
(n:n) the order statistic of the sample Z

(2)
1 , . . . , Z

(2)
n in decreasing order. We begin by looking

at the behavior of the empirical estimator

M̂MEemp,n (k/n) :=
1

k

n∑
i=1

(Z
(1)
i − Z

(2)
(k:n))+1{Z(2)

i >Z
(2)

(k:n)
}

of the quantity MME(k/n) = E((Z1 − b2(n/k))+|Z2 > b2(n/k)) with k < n. The following theorem shows
that the empirical estimator is consistent in probability.

Proposition 4.1. Let the assumptions of Theorem 3.1 hold, and let FZ2
∈ RV−β for some α ≤ β ≤ α0.

Furthermore, let k = k(n) be a sequence of integers satisfying k →∞, k/n→ 0 and b←0 (b2(n/k))/n→ 0 as
n→∞ (note that this is trivially satisfied if b0 = b2).
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(a) Then, as n→∞,

b←0 (b2(n/k))

b2(n/k)

1

n

n∑
i=1

(Z
(1)
i − Z

(2)
(k:n))+1{Z(2)

i >Z
(2)

(k:n)
}
P→
∫ ∞

1

ν0((x,∞)× (1,∞)) dx.

(b) In particular, we have
M̂MEemp,n (k/n)

MME(k/n)

P→ 1 as n→∞.

To prove this theorem we use the following lemma.

Lemma 4.2. Let the assumptions of Proposition 4.1 hold. Define for y > 0,

En(y) :=
b←0 (b2(n/k))

b2(n/k)

1

n

n∑
i=1

(Z
(1)
i − b2(n/k)y)+1{Z(2)

i >b2(n/k)y},

E(y) :=

∫ ∞
y

ν0((x,∞)× (y,∞)) dx.

Then E(y) = y1−α0E(1) and as n→∞,

(En(y))y≥1/2
P→ (E(y))y≥1/2 in D([1/2,∞) , (0,∞)),

where by D(I,E∗) we denote the space of càdlàg functions from I → E∗.

Proof.
We already know from [34, Theorem 5.3(ii)], Z ∈ MRV(α0, b0, ν0,E0) and
b←0 (b2(n/k))/n→ 0 that as n→∞,

ν
(n)
0 :=

b←0 (b2(n/k))

n

n∑
i=1

ε(
Z

(1)
i

b2(n/k)
,
Z

(2)
i

b2(n/k)

) ⇒ ν0 in M+(E0). (4.1)

Note that

En(y) =

∫ ∞
y

ν
(n)
0 ((x,∞)× (y,∞)) dx =

b←0 (b2(n/k))

b2(n/k)

1

n

n∑
i=1

(Z
(1)
i − b2(n/k)y)+1{Z(2)

i >b2(n/k)y}.

Hence, the statement of the lemma is equivalent to(∫ ∞
y

ν
(n)
0 ((x,∞)× (y,∞)) dx

)
y≥ 1

2

P→ (E(y))y≥1/2 in D([1/2,∞) , (0,∞)). (4.2)

We will prove (4.2) by a convergence-together argument.
Step 1. First we prove that E(y) = y1−α0E(1). Note that

b←0 (b2(n/k))

b2(n/k)
E((Z1 − b2(n/k)y)+1{Z2>b2(n/k)y})

=

∫ ∞
1

Pr(Z1 > xb2(n/k), Z2 > b2(n/k)y)

Pr(Z1 > b2(n/k), Z2 > b2(n/k))
dx

= y
Pr(Z1 > b2(n/k)y, Z2 > b2(n/k)y)

Pr(Z1 > b2(n/k), Z2 > b2(n/k))

∫ ∞
1

Pr(Z1 > x(b2(n/k)y), Z2 > b2(n/k)y)

Pr(Z1 > b2(n/k)y, Z2 > b2(n/k)y)
dx

= y · Pr(Z1 > b2(n/k)y, Z2 > b2(n/k)y)

Pr(Z1 > b2(n/k), Z2 > b2(n/k))
·
∫ ∞

1

νt(x) dx
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(where νt is as defined in (3.2) with t = b2(n/k)y )

n→∞→ y · y−α0 ·
∫ ∞

1

ν0((x,∞)× (1,∞)) dx = y1−α0E(1). (4.3)

The final limit follows from the definition of hidden regular variation and Theorem 3.1. On the other hand,
in a similar manner as in Theorem 3.1, we can exchange the integral and the limit such that using (2.1) we
obtain

b←0 (b2(n/k))

b2(n/k)
E((Z1 − b2(n/k)y)+1{Z2>b2(n/k)y}) =

∫ ∞
1

Pr(Z1 > xb2(n/k), Z2 > b2(n/k)y)

Pr(Z1 > b2(n/k), Z2 > b2(n/k))
dx

n→∞→
∫ ∞

1

ν0((x,∞)× (y,∞)) dx = E(y). (4.4)

Since (4.3) and (4.4) must be equal, we have E(y) = y1−α0E(1).
Step 2. Now we prove that for any y ≥ 1/2 and M > 0, as n→∞,

E(M)
n (y) :=

∫ M

1

ν
(n)
0 ((x,∞)× (y,∞)) dx

P→
∫ M

1

ν0((x,∞)× (y,∞)) dx =: E(M)(y). (4.5)

Define the function fM,y : E0 → [0,M ] as fM,y(z1, z2) = (min (z1,M)− y)1{z1>y,z2>y} which is continuous,
bounded and has compact support on E0 and for any y ≥ 1/2 define FM,y : M+(E0)→ R+ as

m 7→
∫
E0

fM,y(z1, z2)m(dz1, dz2).

Here m is a continuous map on M+(E0) under the vague topology. Hence, using a continuous mapping
theorem and (4.1) we get, as n→∞,∫ M

1

ν
(n)
0 ((x,∞)× (y,∞)) dx = FM,y(ν

(n)
0 )⇒ FM,y(ν0) =

∫ M

1

ν0((x,∞)× (y,∞)) dx (4.6)

in R+. Since the right hand side is deterministic, the convergence holds in probability as well.
Step 3. Using Assumption (B1),

E

(
sup
y≥ 1

2

∫ ∞
M

ν
(n)
0 ((x,∞)× (y,∞)) dx

)
= E

(∫ ∞
M

ν
(n)
0 ((x,∞)× (1/2,∞)) dx

)
= b←0 (b2(n/k))

∫ ∞
M

Pr(Z1 > xb2(n/k), Z2 > b2(n/k)/2) dx

=

∫ ∞
M

Pr(Z1 > xb2(n/k), Z2 > b2(n/k)/2)

Pr(Z1 > b2(n/k), Z2 > b2(n/k))
dx

n→∞,M→∞→ 0.

Step 4. Hence, a convergence-together argument (see [34, Theorem 3.5]), Step 2, Step 3 and E(M)(y)→ E(y)

as M →∞ result in En(y)
P→ E(y) as n→∞.

Step 5. From Step 1, the function E : [1/2,∞)→ (0, E(1/2)] is a decreasing, continuous function as well as
a bijection. Let E−1 denote its inverse and define for m ∈ N and k = 1, . . . ,m,

ym,k := E−1

(
E(1/2)

k

m

)
.

As in the proof of the Glivenko-Cantelli-Theorem (see [4, Theorem 20.6]) we have

sup
y≥1/2

|En(y)− E(y)| ≤ E(1/2)

m
+ sup
k=1,...,m

|En(ym,k)− E(ym,k)|.
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16 B. Das and V. Fasen

Let ε > 0. Choose m ∈ N such that m > 2E(1/2)/ε. Then

Pr

(
sup
y≥1/2

|En(y)− E(y)| > ε

)
≤ Pr

(
sup

k=1,...,m
|En(ym,k)− E(ym,k)| > E(1/2)m−1

)

≤
m∑
k=1

Pr
(
|En(ym,k)− E(ym,k)| > E(1/2)m−1

) n→∞→ 0,

where we used En(ym,k)
P→ E(ym,k) as n → ∞ for any k = 1, . . . ,m, m ∈ N by Step 4. Hence, we can

conclude the statement.

Proof of Proposition 4.1.
(a) By assumption, FZ2 ∈ RV−β . From [34, p. 82] we know thatZ(2)

(dkye:n)

b2(n/k)


y>0

P→
(
y−

1
β

)
y>0

in D((0,∞] , (0,∞))

and in particular, this and Lemma 4.2 result in(En(y))y≥ 1
2
,

Z(2)
(dkye:n)

b2(n/k)


y>0

 P→
(

(E(y))y≥ 1
2
, (y−

1
β )y>0

)
in D([1/2,∞) , (0,∞))× D((0,∞] , (0,∞)).

Let D↓(
(
0, 2β

]
, [1/2,∞)) be a subfamily of D(

(
0, 2β

]
, [1/2,∞)) consisting of non-increasing functions. Let

us similarly define C↓(
(
0, 2β

]
, [1/2,∞)). Define the map ϕ : D([1/2,∞) , (0,∞)) × D↓(

(
0, 2β

]
, [1/2,∞))

with (f, g) 7→ f ◦ g. From [39, Theorem 13.2.2], we already know that ϕ restricted to D([1/2,∞) , (0,∞))×
C↓(
(
0, 2β

]
, [1/2,∞)) is continuous. Thus, we can apply a continuous mapping theorem and obtain as n→∞,En

Z(2)
(dkye:n)

b2(n/k)


y∈(0,2β ]

P→
(
E(y−

1
β )
)
y∈(0,2β ]

in D(
(
0, 2β

]
, (0,∞)).

As a special case we get the marginal convergence as n→∞,

b←0 (b2(n/k))

b2(n/k)

1

n

n∑
i=1

Z
(1)
i 1{Z(2)

i >Z
(2)

(k:n)
} = En

 Z
(2)
(k:n)

b2(n/k)

 P→ E(1) =

∫ ∞
0

ν0((x,∞)× (1,∞)) dx.

(b) Finally, from part (a) and Theorem 3.1 we have

1
k

∑n
i=1 Z

(1)
i 1{Z(2)

i >Z
(2)

(k:n)
}

MME(k/n)
=

b←0 (b2(n/k))
b2(n/k)

1
n

∑n
i=1 Z

(1)
i 1{Z(2)

i >Z
(2)

(k:n)
}

k
n b
←
0 (b2(n/k))

b2(n/k) MME(k/n)

P→
∫∞

0
ν0((x,∞)× (1,∞)) dx∫∞

0
ν0((x,∞)× (1,∞)) dx

= 1,

which is what we needed to show. 2

4.1.2. Empirical estimator for the MES

An analogous result holds for the empirical estimator

M̂ESemp,n (k/n) :=
1

k

n∑
i=1

Z
(1)
i 1{Z(2)

i >Z
(2)

(k:n)
}

of MES(k/n) = E(Z1|Z2 > b2(n/k)) where k < n.
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Proposition 4.3. Let the assumptions of Theorem 3.5 hold, and let FZ2
∈ RV−β for some α ≤ β ≤ α0.

Furthermore, let k = k(n) be a sequence of integers satisfying k →∞, k/n→ 0 and b←0 (b2(n/k))/n→ 0 as
n→∞.

(a) Then, as n→∞,

b←0 (b2(n/k))

b2(n/k)

1

n

n∑
i=1

Z
(1)
i 1{Z(2)

i >Z
(2)

(k:n)
}
P→
∫ ∞

0

ν0((x,∞)× (1,∞)) dx.

(b) In particular,
M̂ESemp,n (k/n)

MES(k/n)

P→ 1, as n→∞

The proof of the theorem is analogous to the proof of Proposition 4.1 based on the following version of
Lemma 4.2. Hence, we skip the details.

Lemma 4.4. Let the assumptions of Proposition 4.3 hold. Define for y > 0,

E∗n(y) :=
b←0 (b2(n/k))

b2(n/k)

1

n

n∑
i=1

Z
(1)
i 1{Z(2)

i >b2(n/k)y},

E∗(y) :=

∫ ∞
0

ν0((x,∞)× (y,∞)) dx.

Then E∗(y) = y1−α0E∗(1) and as n→∞,

(E∗n(y))y≥1/2
P→ (E∗(y))y≥1/2 in D([1/2,∞) , (0,∞)).

Proof. The only differences between the proofs of Lemma 4.2 and Lemma 4.4 are that in the proof of

Lemma 4.4 we use E
∗(M)
n (y) :=

∫M
1
M
ν

(n)
0 ((x,∞)× (y,∞)) dx and that in Step 3, we have

lim
M→∞

lim
n→∞

E

(
sup
y≥ 1

2

[∫ 1
M

0

+

∫ ∞
M

]
ν

(n)
0 ((x,∞)× (y,∞)) dx

)
= 0

where Assumption (B2) has to be used.

4.2. Estimators for the MME and the MES based on extreme value theory

In certain situations we might be interested in estimating MME(p) or MES(p) in a region where no data
are available. Since empirical estimators would not work in such a case we can resort to extrapolation via
extreme value theory. We start with a motivation for the definition of the estimator before we provide its’
asymptotic properties. For the rest of this section we make the following assumption.

Assumption D FZ2
∈ RV−β for α ≤ β ≤ α0 < β + 1.

Assumption D guarantees that limt→∞ a(t) = 0 (see Remark 3.6). The idea here is that for all p ≥ k/n, we
estimate MME(p) empirically since sufficient data are available in this region; on the other hand for p < k/n
we will use an extrapolating extreme-value technique. For notational convenience, define the function

a(t) :=
b←0 (b2(t))

t b2(t)
.

Since b←0 ∈ RVα0
and b2 ∈ RV1/β , we have a ∈ RV α0−β−1

β
. Now, let k := k(n) be a sequence of integers so

that k/n→ 0 as n→∞. From Theorem 3.1 we already know that

lim
p↓0

a(1/p)MME(p) =

∫ ∞
1

ν0((x,∞)× (1,∞)) dx = lim
n→∞

a(n/k)MME(k/n).
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18 B. Das and V. Fasen

Hence,

MME(p) ∼ a(n/k)

a(1/p)
MME(k/n) ∼

(
k

np

) β−α0+1
β

MME(k/n) (p ↓ 0). (4.7)

If we plug in the estimators α̂0,n, β̂n and M̂MEn(k/n) for α0, β and MME(k/n) respectively in (4.7) we
obtain an estimator for MME(p) given by

M̂MEn(p) =

(
k

np

) β̂n−α̂0,n+1

β̂n

M̂MEemp,n(k/n).

Similarly, we may obtain an estimator of MES(p) given by

M̂ESn(p) =

(
k

np

) β̂n−α̂0,n+1

β̂n

M̂ESemp,n(k/n).

If β > α then the parameter α, the index of regular variation of Z1, is surprisingly not necessary for the
estimation of either Marginal Mean Excess or Marginal Expected Shortfall.

Theorem 4.5. Let Assumptions A, (B1) and D hold. Furthermore, let k = k(n) be a sequence of integers
satisfying k → ∞, k/n → 0 as n → ∞. Moreover, pn ∈ (0, 1) is a sequence of constants with pn ↓ 0 and

npn = o(k) as n→∞. Let α̂0,n and β̂n be estimators for α0 and β, respectively such that

ln

(
k

npn

)
(α̂0,n − α0)

P→ 0 and ln

(
k

npn

)(
β̂n − β

)
P→ 0 (n→∞). (4.8)

(a) Then
M̂MEn(pn)

MME(pn)

P→ 1 as n→∞.

(b) Additionally, if Assumption (B2) is satisfied then
M̂ESn(pn)

MES(pn)

P→ 1 as n→∞.

Proof. (a) Rewrite

M̂MEn(pn)

MME(pn)
=

(
k
npn

) β̂n−α̂0,n+1

β̂n M̂MEemp,n(k/n)

MME(pn)

=
M̂MEemp,n(k/n)

MME(k/n)

a(n/k)MME(k/n)

a(1/pn)MME(pn)

a(1/pn)
a(n/k)(

npn
k

) β−α0+1
β

(
k
npn

) β̂n−α̂0,n+1

β̂n

(
k
npn

) β−α0+1
β

=: I1(n) · I2(n) · I3(n) · I4(n).

An application of Proposition 4.1 implies

I1(n) =
M̂MEemp,n(k/n)

MME(k/n)

P→ 1

as n→∞. For the second term I2(n), using Theorem 3.1 we get

I2(n) =

k
n b
←
0 (b2(n/k))

b2(n/k) MME(k/n)

pnb←0 (b2(1/pn))
b2(1/pn) MME(pn)

P→ 1 (n→∞).
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Since a ∈ RV(α0−β−1)/β , k/n → 0 and npn = o(k), we obtain limn→∞ I3(n) = 1 as well. For the last term
I4(n) we use the representation

(
k
npn

) β̂n−α̂0,n+1

β̂n

(
k
npn

) β−α0+1
β

= exp

((
1− α̂0,n

β̂n
− 1− α0

β

)
ln

(
k

npn

))
,

and

1− α̂0,n

β̂n
− 1− α0

β
= (β − β̂n)

1− α̂0,n

β̂nβ
+ (α0 − α̂0,n)

1

β
.

Since by assumption (4.8) we have α̂0,n
P→ α, β̂n

P→ β, using a continuous mapping theorem we get,

ln

(
k

npn

)
(β − β̂n)

1− α̂0,n

β̂nβ
+ ln

(
k

npn

)
(α0 − α̂0,n)

1

β

P→ 0.

Hence, we conclude that I4(n)
P→ 1 as n→∞ which completes the proof.

(b) This proof is analogous to (a) and hence is omitted here.

5. Simulation study

In this section, we study the developed estimators for different models. We simulate from models described
in Section 2 and Section 3, estimate MME and MES values from the data and compare them with the actual
values from the model. We also compare our estimator with a regular empirical estimator and observe that
our estimator provides a smaller variance in most simulated examples. Moreover our estimator is scalable to
smaller p < 1/n where n is the sample size, which is infeasible for the empirical estimator.

5.1. Estimators and assumption checks

As an estimator of β, the index of regular variation of Z2 we use the Hill-estimator based on the data

Z
(2)
1 , . . . , Z

(2)
n whose order statistics is given by Z

(2)
(1:n) ≥ . . . ≥ Z

(2)
(n:n). The estimator is

β̂n =
1

k2

k2∑
i=1

[ln(Z
(2)
(i:n))− ln(Z

(2)
(k1:n))]

for some k2 := k2(n) ∈ {1, . . . , n}. Similarly, we use as estimator for α0, the index of hidden regular

variation, the Hill-estimator based on the data min(Z
(1)
1 , Z

(2)
1 ), . . . ,min(Z

(1)
n , Z

(2)
n ). Therefore, define Zmin

i =

min(Z
(1)
i , Z

(2)
i ) for i ∈ N. The order statistics of Zmin

1 , . . . , Zmin
n are denoted by Zmin

(1:n) ≥ . . . ≥ Zmin
(n:n). The

Hill-estimator for α0 is then

α̂0,n =
1

k0

k0∑
i=1

[ln(Zmin
(i:n))− ln(Zmin

(k2:n))]

for some k0 := k0(n) ∈ {1, . . . , n}.

Corollary 5.1. Let Assumptions A and D hold. Furthermore, suppose the following conditions are satisfied:

1. min(k, k0, k2)→∞, max(k, k0, k2)/n→ 0 as n→∞.
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2. pn ∈ (0, 1) such that pn ↓ 0, npn = o(k) and ln(k/(npn)) = o(min(
√
k0,
√
k2)) as n→∞.

3. The second order conditions

lim
t→∞

b0(tx)
b0(t) − x

1/α0

A0(t)
= x1/α0

xρ0 − 1

ρ0
and lim

t→∞

b2(tx)
b2(t) − x

1/β

A2(t)
= x1/β x

ρ2 − 1

ρ2
, x > 0,

where ρ0, ρ2 ≤ 0 are constants and A0, A2 are positive or negative functions hold.
4. limt→∞A0(t) = limt→∞A2(t) = 0.
5. There exist finite constants λ0, λ2 such that

lim
n→∞

√
k0A0

(
n

k0

)
= λ0 and lim

n→∞

√
k2A2

(
n

k2

)
= λ2.

Then (4.8) is satisfied.

Proof. From [13, Theorem 3.2.5] we know that
√
k2(β − β̂n)

D→ N as n → ∞ where N is a normally

distributed random variable. In particular, β̂n
P→ β as n → ∞. The analogous result holds for α̂0,n as well.

Since by assumption ln(k/npn) = o(
√
ki) (i = 0, 2), we obtain

√
k0(α̂0,n − α0)

ln
(

k
npn

)
√
k0

P→ 0 and
√
k2(β̂n − β)

ln
(

k
npn

)
√
k2

P→ 0, (n→∞)

which is condition (4.8).

Remark 5.2 In our simulation study in Section 5.2 we take k = k1 = k2. In the study of extreme values,
the choice of k plays an important role and much work goes on in this area; see [35] for a brief overview. We
choose k to be 10% of n, which is an ad-hoc choice but often used in practice.

Remark 5.3 An alternative to the Hill estimator is the probability weighted moment estimator based on
the block maxima method which is under some regularity condition consistent and asymptotically normally
distributed as presented in [18, Theorem 2.3] and hence, satisfies (4.8). Moreover, the peaks-over-threshold
(POT) method is a further option to estimate α0, β which satisfies as well under some regularity conditions
(4.8); for more details on the asymptotic behavior of estimators based on the POT method see [36].

5.2. Simulated Examples

First we use our methods on a few simulated examples.

Example 5.4 (Gaussian copula) Suppose (Z1, Z2) has identical Pareto marginal distributions with com-
mon parameter α > 0 and a dependence structure given by a Gaussian copula CΦ,ρ(u, v) with ρ ∈ (−1, 1)
as given in Example 3.11. A further restriction from the same example leads us to assume ρ ∈ (1− 2

α+1 , 1)
so that limp→0 MME(p) =∞.

In the Gaussian copula model, we can numerically compute the value of MME(p) for any specific 0 < p < 1.
In our study we generate the above distribution for four sets of choices of parameters:

(a) α = 2, ρ = 0.9. Hence α0 = 2.1.
(b) α = 2, ρ = 0.5. Hence α0 = 2.67.
(c) α = 2.3, ρ = 0.8. Hence α0 = 2.55.
(d) α = 1.9, ρ = 0.8. Hence α0 = 2.11.
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α=2.3, ρ=0.8
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Empirical vs. actual: 
α=1.9, ρ=0.8

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

MME(p1)
MME(p1)

MME(p2)
MME(p2)

MME(p3)
MME(p3)

MME(p4)
MME(p4)

0
1

2
3

4
5

6

Estimated vs. actual: 
α=1.9, ρ=0.8

Figure 5.1. Box plots of M̂MEemp(p)/MME(p) with p1 = 1/500, p2 = 1/1000 and of M̂ME(p)/MME(p) with p1 = 1/500, p2 =
1/1000, p3 = 1/5000, p4 = 1/10000 for Example 5.4 with Gaussian copula: (a) top left: α = 2, ρ = 0.9 and α0 = 2.1; (b) top
right: α = 2, ρ = 0.5 and α0 = 2.67; (c) bottom left: α = 2.3, ρ = 0.8 and α0 = 2.55, (d) bottom right: α = 1.9, ρ = 0.8 and
α0 = 2.11.

The parameters α and α0 are estimated using the Hill estimator which appears to estimate the parameters
quite well; see [34] for details. The estimated values α̂ and α0 are used to compute estimated values of MME.

In order to check the performance of the estimator when p � 1/n we create box-plots for M̂ME/MME
from 500 samples in each of the four models, where n = 1000, k = 100 and we restrict to 4 values of p given
by 1/500, 1/1000, 1/5000, 1/10000. The plot is given in Figure 5.1. Overall the ratio of the estimate to its
real target value seem close to one, and we conclude that the estimators are reasonably good.

Example 5.5 (Marshall-Olkin copula) Suppose (Z1, Z2) has identical Pareto marginal distributions
with parameter α > 0 and a dependence structure given by a Marshall-Olkin survival copula with parameters
γ1, γ2 ∈ (0, 1) as given in Example 3.12.

We note that a parameter restriction from Example 3.12 is given by min(γ1, γ2) ∈ (1− 1/α, 1). Hence, we
find estimates of MME for the γ1 ≥ γ2 case but not for MES in this example. For γ1 ≥ γ2, we can explicitly
compute

MME(p) =
1

α− 1
p1−γ2−1/α.
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Empirical vs. actual:
α=2, γ1=0.8, γ2=0.7
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Estimated vs. actual: 
α=2, γ1=0.8, γ2=0.7
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Empirical vs. actual:
α=2.5, γ1=0.8, γ2=0.8
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Estimated vs. actual: 
α=2.5, γ1=0.8, γ2=0.8

Figure 5.2. Box plots of M̂MEemp(p)/MME(p) with p1 = 1/500, p2 = 1/1000 and M̂ME(p)/MME(p) with p1 = 1/500, p2 =
1/1000, p3 = 1/5000, p4 = 1/10000 for Example 5.5 with Marshall-Olkin copula: (a) left two plots: α = 2, γ1 = 0.8, γ2 = 0.7
and α0 = 2.6; (b) right two plots: α = 2.5, γ1 = 0.8, γ2 = 0.8 and α0 = 3.

In our study we generate the above distribution for two sets of choice of parameters:

(a) α = 2, γ1 = 0.8, γ2 = 0.7. Hence α0 = 2.6.
(b) α = 2.5, γ1 = 0.8, γ2 = 0.8. Hence α0 = 3.

In Figure 5.2, we create box-plots for M̂ME/MME from 500 samples in each of the four models, where
n = 1000, k = 100 and we restrict to 4 values of p given by 1/500, 1/1000, 1/5000, 1/10000. Again we observe
that the ratio of the estimate to its real target value seem to be close to one, and we conclude that the
estimators are reasonably good.
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Figure 5.3. (a) Left two plots: Box plots of M̂MEemp(p)/MME(p) with p1 = 1/500, p2 = 1/1000 as well as M̂ME(p)/MME(p)
with p1 = 1/500, p2 = 1/1000, p3 = 1/5000, p4 = 1/10000 for Model C in Example 5.6 with α = 1.5, α0 = 2. (b) Right two
plots: Analog plots for MES.

Example 5.6 (Model C) We look at Model C where Y = (Y1, Y2) and Y1, Y2 are iid Pareto (α) random
variables, V = (V1, V2) with V1 = V2 following Pareto (α0) and Z = Y + V . Using Theorem 3.8 we can

imsart-bj ver. 2014/10/16 file: eshrv_jmva_resub.tex date: April 26, 2017



23

check that Z ∈ MRV(α, b, ν) ∩ HRV(α0, b0, ν0) if α < α0 < α + 1 and all conditions (A), (B1) and (B2)
are satisfied. Thus, we can find limits for both MME(p) and MES(p) for p going to 0. It is also possible to
calculate MME and MES explicitly. We do so for α = 1.5 and α0 = 2 here.

We found that the Hill plots were not that stable, hence we used an L-moment estimator (a probability
weighted moment estimator could be used as well) to estimate α and α0; see [13, 20] for details. The

estimates of the tail parameters are not shown here. In Figure 5.3, we create box-plots for M̂ME/MME

and M̂ES/MES where n = 1000, k = 100 with 500 samples and we restrict to 4 values of p given by
1/500, 1/1000, 1/5000, 1/10000. The ratios of the estimators and the targets seem close to one. Of course,
the empirical estimators for p = 1/500, p = 1/1000 do not perform so well.

5.3. Data Example: Returns from Netflix and S&P

In this section we use the method we developed in order to estimate MME and MES from a real data
set. We observe a data set which exhibits asymptotic tail independence and we compare estimates of both
statistics (MME and MES) under this assumption versus a case when we use a formula that does not assume
asymptotic independence (similar to estimates obtained in [7]).
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Figure 5.4. Left plot: Scatter plot of (NFLX, SNP). Right plot: angular density plot to of the rank-transformed returns data.

We observe return values from daily equity prices of Netflix (NASDAQ:NFLX) as well as daily return
values from S&P 500 index for the period January 1, 2004 to December 31, 2013. The data was downloaded
from Yahoo Finance (http://finance.yahoo.com/). The entire data set uses 2517 trading days out of which
687 days exhibited negative returns in both components and we used these 687 data points for our study.

A scatter plot of the returns data shows some concentration around the axes but the data seems to exhibit
some positive dependence of the variables too; see leftmost plot in Figure 5.4. Since the scatterplot doesn’t
clearly show whether the data has asymptotic tail independence or not, we create an angular density plot of
the rank-transformed data. Under asymptotic independence we should observe two peaks in the density, one
concentrating around 0 and the other around π/2, which is what we see in the right plot in Figure 5.4; see [34]
for further discussion on the angular density. Hence, we can discern that our data exhibits asymptotic tail
independence and proceed to compute the hidden regular variation tail parameter using min(NFLX, SNP)
as the data used to get a Hill estimate of α0. The left two plots in Figure 5.5 show Hill plots of both the
Netflix negative returns (NFLX) and the S&P 500 negative returns (SNP). A QQ plot (not shown) suggests
that both margins are heavy-tailed and by choosing k = 50 for the Hill-estimator we obtain as estimate of
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Figure 5.5. Hill plots of the tail parameters of the two negative returns (NFLX,SNP) and that of hidden tail parameter α0

estimated using min(NFLX,SNP).

the tail parameters α̂NFLX = 2.39, α̂SNP = 2.46 (indicated by blue horizontal lines in the plot). Again using
a Hill-estimator with k = 50, the estimate α̂0 = 2.86 is obtained; see the rightmost plot in Figure 5.5.

Now, we use the values of α̂SNP = 2.46 and α̂0 = 2.86 to compute estimated values of MME and MES.
In Figure 5.6 we plot the empirical estimates of MME and MES (dotted lines), the extreme value estimate
without assuming asymptotic independence (blue bold line) and the extreme value estimate assuming asymp-
totic independence (black bold line). We observe that both MME and MES values are smaller under the
assumption of asymptotic independence than in the case where we do not assume asymptotic independence.
Hence, without an assumption of asymptotic independence, the firm might over-estimate its’ capital shortfall
if the systemic returns tend to show an extreme loss.
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Figure 5.6. MME and MES plots under the tail dependence model as well as the asymptotic independent model.
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6. Conclusion

In this paper we study two measures of systemic risk, namely Marginal Expected Shortfall and Marginal
Mean Excess in the presence of asymptotic independence of the marginal distributions in a bivariate set-up.
We specifically observe that the very useful Gaussian copula model with Pareto-type tails satisfies our model
assumptions for the MME and we can find the right rate of increase (decrease) of MME in this case. Moreover
we observe that if the data exhibit asymptotic tail independence, then we can provide an estimate of MME
that is closer to the empirical estimate (and possibly smaller) than the one that would be obtained if we did
not assume asymptotic tail independence.

In a companion paper, [9], we investigate various copula models and mixture models which satisfy our
assumptions under which we can find asymptotic limits of MME and MES. A further direction of work would
involve finding the influence of multiple system-wide risk events (for example, multiple market indicators)
on a single or group of components (for example, one or more financial institutions).
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