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Abstract

We present a unified approach to goodness-of-fit testing in R
d and on lower-

dimensional manifolds embedded in R
d based on sums of powers of weighted vol-

umes of k-th nearest neighbor spheres. We prove asymptotic normality of a class

of test statistics under the null hypothesis and under fixed alternatives. Under

such alternatives, scaled versions of the test statistics converge to the α-entropy

between probability distributions. A simulation study shows that the procedures

are serious competitors to established goodness-of-fit tests.

1 Introduction and summary

Nearest neighbor methods have been successfully applied in a variety of fields, such as

classification (see [10]), density and regression function estimation (see [5], [8]), and mul-

tivariate two-sample testing (see, e.g., [12], [21], and [26]). Moreover, nearest neighbor
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methods have also been employed in the context of testing the goodness-of-fit of given

data with a distributional model (see [6], [11] and [15]).

This paper is devoted to a class of universally consistent goodness-of-fit tests based

on nearest neighbors. These tests can be applied not only to test for uniformity on

a compact domain in R
d, but also to test for a specified density on a m-dimensional

manifold embedded in R
d, where m ≤ d. Here, prominent special cases involve testing

for uniformity on a circle or on a sphere.

To be specific, let M denote a C1 m-dimensional manifold embedded in R
d, where

m ≤ d. M is endowed with the subset topology and is a closed subset of Rd. Let dx

be the Riemannian volume element on M. A probability density function on M is a

measurable non-negative real-valued function f on M satisfying
∫
M

f(x) dx = 1. The

support K(f) of f is the smallest closed set K ⊂ M such that
∫
K
f(x) dx = 1.

Let P(M) denote the class of bounded probability density functions f on M, and

write Pb(M) ⊂ P(M) for the subset of probability density functions f such that K(f)

is compact and either (i) K(f) has no boundary or (ii) K(f) is a C1 submanifold-with-

boundary of M; we refer to Section 2 of [23] for details. Notice that K(f) could be

an m-sphere (or any ellipsoid) embedded in R
d. Let Pc(M) denote those probability

density functions f ∈ Pb(M) which are bounded away from zero on their support.

In what follows we let Xi, i ≥ 1, be independent and identically distributed (i.i.d.)

random variables with density f , defined on a common probability space (Ω,A,P), and

we put Xn := {X1, ..., Xn}.
Given a locally finite subset X of M and x ∈ X , we write x(k) for the kth nearest

neighbor (with respect to the Euclidean norm | · |) of x among X \ {x}. Let vm :=

πm/2/Γ(m/2 + 1) be the volume of the unit m-sphere.

Given a fixed α ∈ (0,∞) and a fixed positive integer J , consider the volume score

function induced by the J nearest neighbor distances:

ξ
(α)
J (x,X ) :=

J∑

k=1

(vm|x− x(k)|m)α, (1.1)

i.e., sums of volumes (to power α) of the k nearest neighbor balls around x, k ∈ {1, ..., J}.
When X consists of Θ(n) elements in a compact subset of M, where an ≤ Θ(n) ≤ bn,
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n ≥ 1, for some 0 < a < b < ∞, we study the re-scaled volume scores

ξ
(α)
n,J(x,X ) :=

J∑

k=1

(vm|n1/m(x− x(k))|m)α.

Recalling that Xn := {X1, ..., Xn}, we consider the random measure

µ
(α)
n,J :=

∑

Xi∈Xn

ξ
(α)
n,J(Xi,Xn)δXi

, (1.2)

with δx denoting the Dirac point mass at x. If h is an arbitrary measurable bounded

function on M, we write 〈µ(α)
n,J , h〉 for

∫
M

h(x) dµ
(α)
n,J(x).

Given a fixed f0 ∈ P(M), this paper considers testing goodness-of-fit of the hypoth-

esis

H0 : the unknown density of Xi isf0, (1.3)

against general alternatives, based on the statistic

T
(α)
n,J := 〈µ(α)

n,J , f
α
0 〉 :=

∑

Xi∈Xn

ξ
(α)
n,J(Xi,Xn)(f0(Xi))

α. (1.4)

Notice that for the special case m = d and J = 1, this type of statistic has been stud-

ied in [6] and [15], but without allowing for lower-dimensional manifolds, and without

considering fixed alternatives to H0.

In Section 2, we prove the asymptotic normality of T
(α)
n,J as n tends to infinity both

under H0 and under fixed alternatives to H0, and we show that T
(α)
n,J /n has an almost

sure limit under a fixed alternative to H0. In the case 0 < α < 1, this limit is, apart

from a multiplicative constant, the α-entropy between f and f0. As a consequence, the

statistic T
(α)
n,J yields a universally goodness-of-fit test of H0 for each α ∈ (0,∞), α 6= 1,

and each J . The versatility of this class of tests is demonstrated in Section 3, which

presents the results of a simulation study comparing our tests with several well-known

competitors. The paper concludes with some remarks and open problems.

2 Main results

The limit theory for the statistic (1.4) may be deduced from general theorems established

in [23] and goes as follows.
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Theorem 2.1 If f ∈ Pc(M), α ∈ (0,∞), then as n → ∞ we have

T
(α)
n,J

n
→

J∑

k=1

Γ(α + k)

Γ(k)

∫

M

f0(x)
αf(x)1−α dx (2.1)

in L2 and also P-a.s.

Remarks. (i) Notice that the right-hand side of (2.1) is distribution-free if α = 1. Thus,

in view of the testing problem (1.3), it is indispensable to have α 6= 1.

(ii) If dimM = d, if the support K(f) of f is a convex polyhedron, and if f0 is the

uniform density over M, then the asserted L2 convergence in (2.1) is given by Theorem

2 of [29]. That paper, which is based on [22], shows that

E ξ
(α)
n,J(X1,Xn) →

∫

K(f)

E ξ
(α)
J (0,Hf(x)) f(x) dx (2.2)

holds in L2 as n → ∞. Here, 0 denotes a point at the origin of Rm, and Hτ , τ ∈ (0,∞),

stands for a homogeneous Poisson process of intensity τ in R
m, with R

m embedded in

R
d so that the random variable ξ

(α)
J (0,Hτ ) is well-defined. As will be shown in the

upcoming proof, the paper [23] upgrades (2.2) to give convergence of the measures at

(1.2), it provides L2 and a.s. convergence, and also allows K(f) to be replaced by a C1

m-dimensional submanifold of Rd.

(iii) The statistic T
(α)
n,J may be considered a multivariate analogue of the statistic

∑n+1
i=1 Uα

i introduced in [18] for testing the hypothesis of a uniform distribution in the

unit interval [0, 1]. Here, Ui = F (X(i)) − F (X(i−1)), where 0 := X(0) ≤ X(1) ≤ . . . ≤
X(n) ≤ X(n+1) := 1 are the order statistics of i.i.d. random variables X1, . . . , Xn with

common density function f . From the asymptotic distribution of
∑n+1

i=1 Uα
i (see, e.g.,

[31]), it follows that

1

n

n+1∑

i=1

(nUi)
α → Γ(α + 1)

∫ 1

0

f(x)1−α dx

in probability as n → ∞. This result obviously corresponds to (2.1) for J = 1 and f0

being the uniform density over M, where m = d and M has Lebesgue measure one.
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(iv) If α ∈ (0, 1), the integral

rα(f0, f) :=

∫

M

f0(x)
αf(x)1−α dx

figuring on the right-hand side of (2.1) is known as the α-entropy between (the distribu-

tions associated with) f0 and f , see [28]. Notice that 1− r1/2(f0, f) = H2(f0, f), where

H(f0, f) is the Hellinger distance of f0 and f . By Hölder’s inequality, rα(f0, f) ≤ 1, with

equality if and only if the distributions pertaining to f0 and f coincide. If α ∈ (1,∞),

put W := f0(X1)/f(X1), and recall that X1 has density f . Then

rα(f0, f) = E [W α] ,

and, by Jensen’s inequality, rα(f0, f) ≥ (EW )α = 1. As above, equality holds if the

distributions associated with f0 and f are the same.

(v) It follows from (iii) and Theorem 2.1 that, for fixed α ∈ (0, 1), a test of fit that

rejects the hypothesis H0 figuring in (1.3) for small values of T
(α)
n,J is consistent against

each fixed alternative density f . If α ∈ (1,∞), rejection of H0 is for large values of T
(α)
n,J ,

and the resulting test is universally consistent.

Before stating variance asymptotics and a central limit theorem we introduce more

notation from [23], especially (3.8) and (3.9) of that paper. Given u ∈ R
m, abbreviate

Hτ ∪ {u} by Hu
τ . We consider an integrated ‘covariance’ of scores

V (τ) := V ξ
(α)
J (τ) := E ξ

(α)
J (0,Hτ )

2

+ τ

∫

Rm

{
E ξ

(α)
J (0,Hu

τ )ξ
(α)
J (u,H0

τ )− (E ξ
(α)
J (0,Hτ ))

2
}
du

and an integrated ‘add-one cost’

δ(τ) := δξ
(α)
J (τ) := E ξ

(α)
J (0,Hτ ) + τ

∫

Rm

E [ξ
(α)
J (0,Hu

τ )− ξ
(α)
J (0,Hτ )] du.

As shown in Theorem 3.2 of [23], these integrals are finite. Let N(0, σ2) denote a mean

zero normal random variable with variance σ2.

5



Theorem 2.2 If f ∈ Pc(M) is a.e. continuous and α ∈ (0,∞), then

lim
n→∞

n−1Var(T
(α)
n,J ) = σ2(f0, f)

:=

∫

M

f0(x)
2αV (f(x))f(x) dx−

(∫

M

δ(f(x))f0(x)
αf(x) dx

)2

∈ (0,∞).

Moreover, as n → ∞,

T
(α)
n,J − ET

(α)
n,J√

n

D−→ N(0, σ2(f0, f)).

Remark. Theorem 2.1 of [1] provides variance asymptotics and a central limit theorem

for sums of functions of kth nearest neighbor distances in the special case m = d.

Proof of Theorem 2.1. We deduce this from Theorem 3.1 of [23] with ρ = ∞, especially

display (3.16) of [23], with the f in (3.16) of [23] set to fα
0 and with the κ in (3.16) of

[23] set to f . Observe that ξ
(α)
J belongs to the class Σ(k, r) of that paper, and notice

that

sup
n

E (ξ
(α)
n,J(X1,Xn))

p < ∞

holds for all p ∈ [1,∞), i.e., the moment condition (3.4) of [23] holds for all p.

The limit (3.16) of [23] tells us that as n → ∞ we have convergence in L2

T
(α)
n,J

n
→
∫

M

f0(x)
α
E ξ

(α)
J (0,Hf(x))f(x) dx, (2.3)

where ξ
(α)
J (0,Hf(x)) is defined at (1.1). The last assertion in Theorem 3.1 of [23] also

gives a.s. convergence in (2.3).
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Given τ ∈ (0,∞) and Hτ , we let X
(k)
τ ∈ Hτ be the kth nearest neighbor to the

origin. We compute

E ξ
(α)
J (0,Hτ ) =

J∑

k=1

E (vm|X(k)
τ |m)α

=
J∑

k=1

vαm(τ
−1/m)αmE (|X(k)

1 |)αm

=
(vm

τ

)α J∑

k=1

v−(αm)/m
m

Γ(k + α)

Γ(k)

= τ−α
J∑

k=1

Γ(k + α)

Γ(k)
,

where the penultimate equality follows by display (15) of [29] (with α replaced by αm,

d replaced by m). We have thus shown

E ξ
(α)
J (0,Hτ ) = τ−α

J∑

k=1

Γ(k + α)

Γ(k)
. (2.4)

Letting τ equal f(x) in (2.3) and applying (2.4) gives the claimed limit (2.1).

Proof of Theorem 2.2. This is an immediate consequence of Theorem 3.2 of [23] as well

as remark (iv) on p. 2174 of [23]. In that remark we may set the function f there to

fα
0 , we set ρ = ∞, and we put µξ

n,k,ρ equal to µ
(α)
n,J . Keeping ρ set to infinity, it is a

straightforward matter to show that µ
(α)
n,J satisfies the moment conditions (3.5) and (3.6)

of [23]. Since µ
(α)
n,J satisfies all the conditions of remark (iv) on p. 2174 of [23], Theorem

2.2 follows as desired.

3 Simulations

By means of a simulation study, this section compares the finite-sample power perfor-

mance of the test based on T
(α)
n,J with that of several competitors. All simulations are

performed using the statistical computing environment R, see [25]. We consider testing

for uniformity on the unit square [0, 1]2, on the unit circle S1 = {x ∈ R
2 : |x| = 1},
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and on the unit sphere S2 = {x ∈ R
3 : |x| = 1}. Since, strictly speaking, there is not

only one new test, but a whole family of tests that depend on the choice of the power α

and the number J of neighbors taken into account, the impact on finite-sample power

of α and J will be of particular interest. In each scenario, we consider the sample sizes

n = 50, n = 100 and n = 200, and the nominal level of significance is set to 0.05.

Throughout, critical values for T
(α)
n,J under H0 (see Tables 7 – 9) have been simulated

with 100 000 replications, and each entry in a table referring to the power of the test is

based on 10 000 replications.

3.1 Unit square [0, 1]2

For testing the hypothesis H0 that the distribution of X1 is uniform over the unit square

[0, 1]2, we considered the following competitors to the new test statistic.

(i) The Distance to Boundary Test DB (see [2]), which is based on the distance of

X1, . . . , Xn to the boundary ∂W of W := [0, 1]2. Writing DB(y, ∂W ) := min{|x−
y| : x ∈ ∂W} for the distance of y ∈ W to ∂W and R := max{DB(x, ∂W ) :

x ∈ W} for the largest of such distances (which equals 0.5 in our case), the test

statistic computes the values

Yj :=
DB(Xj, ∂W )

R
, j = 1, . . . , n.

Under H0 the random variables Y1, . . . , Yn have a Beta(1, 2)-distribution. The test

employs the Kolmogorov-Smirnov type statistic

DBn =
√
n sup

y∈[0,1]

|Gn(y)−G0(y)|.

Here, Gn is the empirical distribution function of Y1, . . . , Yn, and G0 is the distri-

bution function of the Beta(1, 2)-distribution. Rejection of H0 is for large values

of DBn, and critical values can be taken from the Kolmogorov distribution. Note

that this test is not consistent against some easily computable alternatives, e.g.,

the uniform distribution on the subset [0.5, 1]2 of W .
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(ii) The Maximal Spacing Test MS, see [3]. Writing B(x, r) for an open circle centered

at x with radius r, this test considers the maximum radius

∆n := sup{r > 0 : there is some xwithB(x, r) ⊂ [0, 1]2 \ Xn}

of a circle that does not contain any of X1, . . . , Xn as an inner point. Rejection of

H0 is for large values of the test statistic Vn := π∆2
n. The limit distribution of Vn

under H0 follows from (2.5) of [13], which states that

nVn − log n− log log n
D−→ G, n → ∞,

where the random variable G follows a Gumbel distribution with distribution

function exp(− exp(−x)), x ∈ R. Letting uα denote the (1 − α)-quantile of this

distribution, the test rejects H0 at asymptotic level α if

Vn > n−1(uα + log n+ log logn).

Nothing is known regarding the consistency of this test.

Since dealing with nearest neighbors in the square involves boundary effects (see,

e.g., [7]), we initially employed both the Euclidean metric and the torus metric, i.e., the

Euclidean metric on the 3d-torus, obained as the quotient of the unit square by pasting

opposite edges together via the identifications (x, y) ∼ (x + 1, y) ∼ (x, y + 1). Because

the power of the tests was in general somewhat higher for the torus metric than for the

Euclidean metric, we decided to use the torus metric. It should be stressed that this

choice conforms to the general set-up adopted in [23] so that Theorem 2.1 and Theorem

2.2 remain valid.

An empirical study of uniformity tests in several settings including the hypercube

can be found in [24]. Guided by the simulation study in [4], we used a contamination

and a clustering model as alternatives to the uniform distribution. The contamination

model, denoted by CON, for the distribution of X1 is the mixture

(1− ε1 − ε2)U[0, 1]
2 + ε1N2(c1, σ

2
1) + ε2N2(c2, σ

2
2),

conditionally on X1 ∈ [0, 1]2. Here, ε1 = 0.135, ε2 = 0.24, σ1 = 0.09, σ2 = 0.12,

c1 = (0.25, 0.25), c2 = (0.7, 0.7), U[0, 1]2 is the uniform distribution over [0, 1]2, and
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Figure 1: Realization of the CON model (left) and the CLU model (right), n = 200

N2(cj, σ
2
j ) stands for the bivariate normal distribution with expectation vector cj and

covariance matrix σ2
j I2, where I2 is the identity matrix of order 2. In other words, this

model produces a uniform background noise and two radially symmetric point sources

of data, centered at the points c1 and c2. The additional specification ”conditionally on

X1 ∈ [0, 1]2” means that a realization was discarded whenever the generated point did

not fall into the unit square.

The clustering alternative CLU (say) considers an alternative to H0 in the non i.i.d.

case, using a two step-technique. In a first step, one simulates n1 = 10 i.i.d. random

points with the uniform distribution U[0, 1]2, which are then discarded but play the role

of centers of clusters. In a second step, one generates, independently of each other, for

each of those n1 centers n2 = n/n1 points that are uniformly distributed in a disc of

radius 0.05, the midpoint being the center. Similar to the CON alternative, each point

was discarded if it fell outside [0, 1]2, and the point was simulated according to U[0, 1]2

to describe a small uniform noise effect. Figure 1 shows a realization of the CON (left)

and the CLU (right) model.
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Alt. n DB MS Alt. n DB MS

CON

50 31 6

CLU

50 44 67

100 58 14 100 44 85

200 89 24 200 44 94

Table 1: Empirical rejection rates of DB and MS, unit square

Table 1 shows the percentages (out of 10000 replications) of rejections of H0 of the

distance to boundary test and the maximal spacing test, rounded to the nearest integer.

Obviously, the latter test is sensitive to a cluster alternative, but much inferior to the

distance to boundary test against the contamination alternative.

Alt. α n\J 1 2 3 4 5 6 7 8 9 10 15 20 25

CON

0.5

50 14 22 29 36 43 48 53 56 59 61 66 65 60
100 19 27 36 45 53 60 66 71 76 79 90 93 94

200 25 38 50 60 68 75 81 86 89 91 98 99 ∗

CLU

50 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
100 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
200 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

CON

2

50 11 11 9 6 4 3 2 2 1 1 0 0 1
100 21 27 29 29 26 23 19 14 10 7 1 0 0
200 33 50 59 65 68 70 70 69 68 66 44 14 1

CLU

50 39 40 36 29 22 16 12 8 6 5 9 12 13
100 54 52 43 33 24 17 12 8 5 4 6 10 13
200 64 59 46 32 22 14 9 5 3 2 3 6 8

CON

5

50 13 18 19 20 20 19 17 15 14 12 10 11 13
100 23 34 44 51 56 59 61 63 63 63 53 35 20
200 36 58 74 83 89 92 94 96 97 97 98 98 98

CLU

50 54 63 65 65 63 61 59 57 55 61 64 61 56
100 78 87 88 86 85 83 80 77 74 76 83 81 81
200 93 98 97 97 96 95 93 91 89 89 94 92 92

Table 2: Empirical rejection rates of the test based on T
(α)
n,J , unit square

Table 2 exhibits the corresponding percentages of the test based on T
(α)
n,J . An asterisk

denotes power 100% . As was to be expected, rejection rates depend crucially on the

power α and the the number of neighbors J taken into account. In each row, the

maximum rejection rates have been highlighted using boldface ciphers. The beginning
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of a sequence of asterisks has also been emphasized, thus indicating the smallest value

of J for which the maximum power is attained. A comparison with Table 1 shows the

choice α = 0.5 yields a very strong test against cluster alternatives, even for J = 1.

Likewise, taking α = 5 and any J ≤ 15, the test based on T
(α)
n,J outperforms both DB

and MS.

3.2 The circle S1

A good overview of tests for uniformity on the circle is presented in the monograph [14].

We considered the following classical procedures.

(i) The modified Rayleigh Test, suggested in [17] and denoted by Ra in what follows,

is based on the statistic

Ran :=

(
1− 1

2n
+

Tn

8n

)
Tn. (3.1)

Here, Tn := 2n |Xn|2, and Xn = n−1
∑n

j=1Xj is the sample mean vector. Under

H0, the limit distribution of Ran as n → ∞ is the χ2
3-distribution.

(ii) Kuiper’s test (see [19]), denoted by Ku, uses a transformation of X1, . . . , Xn to

normed radial data U1, . . . , Un, as described in [14], p. 153. Writing 0 ≤ U(1) ≤
· · · ≤ U(n) ≤ 1 for the order statistics of U1, . . . , Un, Kuiper’s test is a Kolmogorov-

Smirnov type test using the statistic

Kun :=
√
n

(
max
1≤j≤n

(
U(j) −

j − 1

n

)
+ max

1≤j≤n

(
j

n
− U(j)

))

(see [14], p. 153).

(iii) Using the same radial data transformation as in (ii), Watson’s test (see [30]),

denoted by Wa, employs the statistic (see [14], p. 156)

Wan :=

n∑

j=1

(
U(j) −

2j − 1

2n
− 1

n

n∑

ℓ=1

Uℓ +
1

2

)2

+
1

12n
.
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The implementation and critical values of the Kuiper (ii) and the Watson (iii) test were

taken from the R-package Directional, as provided by [27]. As alternative distributions

on the circle we considered the von Mises-Fisher (MF) and the Bimodal von Mises-Fisher

(BMF) distributions, see [14], Section 2.3 and [20], Section 9.3. Note that a unit random

vector has the (d−1)-dimensional von Mises-Fisher distribution if its probability density

function with respect to the uniform distribution is

fµ,κ(x) =
(κ
2

)d

2
−1 1

Γ
(
d
2

)
I d

2
−1(κ)

exp (κµ′x) , |x| = 1. (3.2)

Here, κ > 0 is a concentration parameter, the unit vector µ denotes the mean direction,

Iν is the modified Bessel function of the first kind and order ν, and the prime stands for

tranpose. For the simulations in Tables 3 and 4 we chose µ = (1, 0)′ and κ = 0.5. The

Bimodal von Mises-Fisher distribution is a mixture of a von Mises-Fisher distribution

with µ = (1, 0)′ and µ = (−1, 0)′ with the same concentration parameter κ = 1.

Alt. n Ra Ku Wa Alt. n Ra Ku Wa

MF

50 58 53 58

BMF

50 6 63 61
100 88 84 88 100 6 97 99
200 ∗ 99 ∗ 200 6 ∗ ∗

Table 3: Empirical rejection rates of the tests based on Ra, Ku and Wa, circle

A comparison of Table 3 and Table 4 shows that, among the values of α taken into

account, the choice α = 0.05 and J = 25 yields the highest power of the new tests

against the von Mises-Fisher distribution. This power is comparable with that of Ra,

Ku and Wa if n = 50, but the latter tests are superior if n = 100 or n = 200. Against

the bimodal von Mises-Fisher distribution, the choice α = 0.5 and J = 20 results in a

test that outperforms Ku and Wa for n = 50 and is at least as powerful as these tests

if n = 100 or n = 200. Against this alternative, the Rayleigh test is not competitive.

3.3 Sphere S2

We now treat the case of testing for uniformity on a sphere in R
3, for which many tests

have been proposed. A good overview, also for the corresponding testing problems in

higher dimensions, is given in [9, 20]. We considered the following procedures.
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Alt. α n\J 1 2 3 4 5 6 7 8 9 10 15 20 25

MF

0.5

50 8 9 10 12 13 15 16 18 19 21 32 42 50

100 10 12 13 15 17 19 20 21 23 25 34 43 53

200 12 15 18 20 23 25 27 30 31 33 43 54 63

BMF

50 28 44 56 67 76 82 87 90 93 95 98 98 97
100 37 56 71 80 87 92 95 97 98 99 ∗ ∗ ∗
200 55 77 88 94 97 98 99 ∗ ∗ ∗ ∗ ∗ ∗

MF

2

50 17 24 29 32 34 36 36 35 33 31 11 1 0
100 22 33 42 48 53 57 60 63 64 66 67 64 50
200 30 46 58 66 72 77 80 83 85 87 92 94 95

BMF

50 36 41 37 28 16 8 3 1 0 0 0 0 0
100 64 79 83 83 81 77 71 63 53 42 3 0 0
200 86 96 99 99 99 99 99 99 99 99 94 73 28

MF

5

50 19 27 33 37 41 44 46 48 50 51 50 39 15
100 24 36 46 52 59 63 67 70 72 75 82 85 86

200 32 50 62 71 78 83 86 89 91 92 96 97 98

BMF.

50 48 61 66 66 61 52 41 28 16 8 2 6 18
100 75 91 96 98 99 99 99 99 99 98 92 51 4
200 92 99 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Table 4: Empirical rejection rates of the test based on T
(α)
n,J , circle

(i) The Rayleigh Test (see [17]), denoted by R̃a, rejects the hypothesis of uniformity

for large values of

R̃an :=

(
1− 1

2n
+

Tn

16n

)
Tn,

where Tn := 2n |Xn|2. Under H0, the limit distribution of R̃an as n → ∞ is χ2
3.

(ii) The data-driven Sobolev test for uniformity applied to the sphere, here called the

Jupp test and denoted by JT (see [16]), computes

Bn(k) = Sn(k)− k(k + 2) log n,

where

Sn(k) =
2k + 1

n

n∑

j,ℓ=1

Pk(X
′
jXℓ),

and Pk is the Legendre polynomial of order k. The test statistic is then JTn :=

Sn(k̂), where

k̂ = k̂(n) = inf
{
k ∈ N : Bn(k) = sup

m∈N

Bn(m)
}
. (3.3)

14



As suggested in [16], p. 1250, a suitable approximation of the supremum in (3.3)

can be done by considering sup1≤m≤5 Bn(m) instead. Critical values may be ob-

tained from the χ2
3-distribution, since JTn

D−→ χ2
3 as n → ∞ under the hypothesis

H0 of uniformity.

As alternatives we considered the von Mises-Fisher distribution as in (3.2) with concen-

tration parameter κ = 0.5 and mean direction to µ = (1, 0, 0)′. A second alternative is

the Kent distribution, see [20], p. 176, with density

fµ,κ,β(x) =
1

c(β, κ)
exp (κµ′x+ βx′(τ1τ

′
1 − τ2τ

′
2)x) , |x| = 1.

Here, c(β, κ) is a normalizing constant, and τ1, τ2 and µ are mutually orthogonal vectors.

The references to the Kent distribution in Tables 5 and 6 use κ = 0.25, µ = (1, 0, 0)′ and

β = 2.

The results of the simulation study are given in Tables 5 and 6. The presented

procedure is competitive for sample sizes n ≥ 100 to the other tests and outperforms

the modified Rayleigh test for the Kent distribution.

Alt. n R̃a JT Alt. n R̃a JT

MF

50 36 36

Kent

50 10 99
100 66 66 100 13 ∗
200 94 94 200 22 ∗

Table 5: Empirical rejection rates of R̃a and JT , sphere.

4 Conclusions and open problems

We have introduced a new, flexible class of universally consistent goodness-of-fit tests

based on sums of powers of volumes of weighted kth nearest neighbor balls. Under fixed

alternatives, scaled versions of the test statistics converge to the α-entropy between

probability distributions. The approach is fairly general, since it covers both goodness-

of-fit testing for distributions with a compact, ’full-dimensional’ support in R
d, but

also on lower-dimensional manifolds embedded in R
d. Our approach requires J , the
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Alt. α n\J 1 2 3 4 5 6 7 8 9 10 15 20 25

MF.

0.5

50 7 8 9 10 11 13 14 15 16 17 23 27 31

100 8 9 10 11 12 13 15 16 17 18 25 32 39

200 9 11 13 14 16 17 19 20 22 24 31 39 47

Kent

50 66 87 95 98 99 99 ∗ ∗ ∗ ∗ ∗ ∗ ∗
100 83 97 99 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
200 96 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

MF.

2

50 10 12 13 13 13 13 12 11 10 8 3 2 1
100 13 17 19 22 24 25 26 26 25 25 20 14 6
200 17 24 30 36 40 43 46 48 50 51 55 54 50

Kent

50 14 9 4 1 0 0 0 0 0 0 0 0 0
100 41 42 36 27 18 10 5 2 0 0 0 0 0
200 77 87 88 86 83 78 71 62 51 41 4 0 0

MF.

5

50 12 15 18 21 23 25 26 27 27 27 26 20 11
100 15 22 28 33 38 42 44 48 50 51 57 59 59

200 19 31 41 50 57 63 67 71 74 76 84 87 90

Kent

50 29 35 34 30 25 18 12 7 4 2 2 8 29
100 63 79 86 88 88 87 86 83 80 76 40 1 0
200 91 99 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 97 96

Table 6: Empirical rejection rates of the test based on T
(α)
n,J , sphere

maximum number of neighbors taken into account, to remain fixed as n → ∞. It

would be desirable to obtain limit theorems also for the case that J = J(n) tends to

infinity with the sample size n. Another problem is to generalize the theory to cover

testing for a parametric family {f(·;ϑ) : ϑ ∈ Θ} of densities. This could be done by

substituting f(Xi; ϑ̂n) for the weight f0(Xi), where ϑ̂n is a suitable estimator of ϑ, based

on X1, . . . , Xn.
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the case of a planar unknown support, The Canadian Journal of Statistics, 40, 2,

378–395.

[5] G. Biau, L. Devroye, V. Dujmovic and A. Krzyzak (2012), An affine invariant k-

nearest neighbor regression estimate, J. Multiv. Anal., 112, 24–34.

[6] P. J. Bickel and L. Breiman (1983), Sums of functions of nearest neighbor distances,

moment bounds, limit theorems and a goodness of fit test, Ann. Probab., 11, 185–214.

[7] H. Dette and N. Henze (1990), Some peculiar boundary phenomena for extremes of

rth nearest neighbor links, Statist. & Probab. Lett., 10, 381–390.

[8] L. Devroye and T. Wagner (1977), The strong uniform consistency of nearest neigh-

bor density estimates, Ann. Statist., 5, 536–540.

[9] N.I. Fisher, T. Lewis and B.J.J. Embleton, Statistical analysis of spherical data,

Cambridge University Press, 1987.

[10] S. Gadat, T. Klein and C. Marteau (2016), Classification in general finite dimen-

sional spaces with the k-nearest neighbor rule, Ann. Statist., 44, 982–1009.

[11] N. Henze (1982), The limit distribution of maxima of ”weighted” rth nearest neigh-

bour distances, J. Appl. Probab., 19, 344–354.

[12] N. Henze (1988), A multivariate two-sample test based on the number of nearest

neighbor type coincidences, Ann. Statist., 16, 772–783.

[13] Janson, S. (1987), Maximal spacings in several dimensions, Ann. Probab., 15, 274-

280.

[14] S. R. Jammalamadaka and A. SenGupta, Topics in circular statistics, World Sci-

entific Publishing, 2001.

17



[15] S. R. Jammalamadaka and S. Zhou (1993), Goodness of fit in multidimensions

based on nearest neighbor distances, J. Nonparam. Statist., 2, 271–284.

[16] P.E. Jupp (2008), Data-driven Sobolev tests of uniformity on compact Riemannian

manifolds, Ann. Statist., 36, 1246–1260.

[17] P. E. Jupp (2001), Modifications of the rayleigh and bingham tests for uniformity

of directions, J. Multiv. Anal., 77, 1–20.

[18] B.F. Kimball (1947), Some basic theorems for developing tests of fit for the case of

the non-parametric distribution function, I, Ann. Math. Statist., 18, 540–548.

[19] N.H. Kuiper (1960), Tests concerning random points on a circle, Ned. Akad. Wet.

Proc., 63, 38–47.

[20] K. V. Mardia and P. E. Jupp, Directional Statistics, Wiley, 2000.

[21] P.K. Mondal, M. Biswas and A.K. Ghosh (2015) , On high dimensional two-sample

tests based on nearest neighbors, J. Multiv. Anal., 141, 168–178.

[22] M.D. Penrose and J.E. Yukich (2003), Weak laws of large numbers in geometric

probability, Ann. Appl. Probab., 13, 277–303.

[23] M. D. Penrose and J. E. Yukich (2013), Limit theory for point processes in mani-

folds, Annals of Applied Probability, 23, No. 6, 2161–2211.

[24] A. Petrie and Th. R. Willemain (2013), An empirical study of tests for uniformity

in multidimensional data, Comput. Statist. Data Anal., 64, 253–268.

[25] R Core Team, R: A language and environment for statistical computing, Statistical

Computing, Vienna, Austria (2016).

[26] M.F. Schilling (1986), Multivariate two-sample tests based on nearest neighbors, J.

Amer. Statist. Ass., 81, 799–806.

[27] M. Tsagris, G. Athineou and A. Sajib (2016), Directional: Directional Statistics.

R package version 2.1.

18



[28] I. Vajda (1970), On the amount of information contained in a sequence of indepen-

dent observations, Kybernetika, 6, 306–323.

[29] A. R. Wade (2007), Explicit laws of large numbers for random nearest neighbor

type graphs, Adv. in Appl. Probab., 39, 326–342.

[30] G. S. Watson (1961), Goodness-of-fit tests on the circle, Biometrika, 48, 109–114.

[31] L. Weiss (1957), The asymptotic power of certain tests of fit based on sample

spacings, Ann. Math. Statist., 28, 783–786.

B. Ebner and N.Henze, Institute of Stochastics, Karlsruhe Institute of Technology

(KIT), Englerstr. 2, D-76133 Karlsruhe:

Bruno.Ebner@kit.edu Norbert.Henze@kit.edu

J. E. Yukich, Department of Mathematics, Lehigh University, Bethlehem PA 18015:

joseph.yukich@lehigh.edu

19



α n\J 1 2 3 4 5 6 7 8 9 10 15

0.5∗
50 0.78 2.02 3.58 5.43 7.52 9.82 12.32 15.01 17.88 20.91 38.24
100 0.81 2.07 3.67 5.54 7.66 9.99 12.52 15.23 18.12 21.18 38.67
200 0.83 2.12 3.73 5.62 7.76 10.11 12.66 15.40 18.31 21.38 38.97

1.5

50 1.74 5.59 12.10 21.70 34.70 51.48 72.29 97.46 127.19 161.76 414.95
100 1.63 5.33 11.67 21.04 33.80 50.30 70.84 95.67 125.04 159.20 409.94
200 1.54 5.14 11.33 20.53 33.11 49.37 69.63 94.19 123.27 157.12 405.75

2

50 2.90 10.18 24.03 46.44 79.42 124.97 185.22 262.12 357.71 473.86 1435.79
100 2.65 9.62 23.06 45.02 77.52 122.63 182.27 258.48 353.32 468.77 1425.60
200 2.47 9.17 22.25 43.72 75.65 120.05 178.89 254.30 348.28 462.78 1413.86

3

50 11.03 44.74 121.28 266.69 511.32 891.65 1449.73 2233.59 3295.24 4692.49 19245.32
100 9.94 41.83 116.04 258.27 501.19 882.49 1445.57 2240.49 3324.52 4754.26 19656.36
200 8.87 38.72 109.44 246.81 482.75 855.10 1409.72 2193.28 3264.21 4685.00 19603.93

4

50 54.72 257.57 788.16 1930.49 4070.50 7751.35 13650.51 22653.06 35839.35 54392.65 291880.50
100 50.79 242.73 758.58 1880.32 4024.20 7785.46 13870.01 23246.64 37053.41 56712.60 311282.60
200 45.04 222.23 704.17 1776.53 3848.90 7489.95 13461.61 22687.94 36382.98 55935.54 312608.60

5

50 312.65 1734.80 6015.97 16205.09 37517.20 77431.40 147116.35 260944.95 439900.80 707981.50 4871049.50
100 306.50 1698.35 5908.46 16242.55 37930.64 79553.08 153602.30 276095.80 471859.40 768763.70 5476554.00
200 281.05 1570.43 5554.40 15449.12 36579.58 77266.56 149773.42 271403.80 465433.00 763477.00 5557572.00

Table 7: Empirical 95% (∗: 5%) quantiles of n−1T
(α)
n,J , unit square
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α n\J 1 2 3 4 5 6 7 8 9 10 15

0.5∗
50 0.79 2.03 3.60 5.45 7.54 9.84 12.33 15.01 17.86 20.86 37.98
100 0.81 2.08 3.68 5.56 7.68 10.02 12.55 15.27 18.16 21.21 38.66
200 0.84 2.12 3.74 5.64 7.77 10.13 12.69 15.42 18.34 21.42 39.01

1.5

50 1.68 5.38 11.69 20.98 33.58 49.76 69.79 93.90 122.32 155.15 390.82
200 1.58 5.21 11.42 20.63 33.18 49.41 69.59 93.96 122.79 156.32 401.12
100 1.51 5.06 11.18 20.28 32.72 48.84 68.92 93.23 122.03 155.58 401.79

2

50 2.76 9.75 23.12 44.77 76.69 120.49 178.17 251.15 341.35 450.18 1319.84
100 2.57 9.36 22.56 44.17 76.19 120.63 179.35 254.37 347.56 460.84 1391.83
200 2.41 9.02 21.93 43.20 74.85 118.92 177.36 252.23 345.50 459.05 1401.71

3

50 10.60 43.34 118.42 261.50 501.48 873.17 1414.22 2164.48 3171.86 4477.84 17233.30
100 9.58 41.12 114.99 257.73 501.28 884.43 1447.28 2241.43 3320.23 4740.78 19363.40
200 8.70 38.47 109.41 247.74 485.79 861.66 1420.44 2211.10 3291.23 4721.69 19694.42

4

50 52.85 250.52 773.08 1900.67 4007.25 7624.74 13366.61 21984.31 34446.25 51695.70 254726.46
100 49.10 239.95 762.58 1905.83 4108.24 7956.09 14162.64 23708.80 37708.27 57628.95 309717.34
200 44.64 222.63 715.20 1821.47 3969.98 7720.87 13872.85 23382.36 37446.71 57560.69 318814.82

5

50 298.41 1675.10 5838.66 15867.96 36735.05 75663.47 142943.40 250659.04 417322.93 662873.89 4100114.35
100 297.07 1704.63 6065.70 16774.09 39537.66 83076.29 160282.91 287664.48 489264.08 791912.14 5477284.59
200 278.18 1595.17 5727.94 15994.55 38089.13 80827.49 156752.23 284457.16 487537.46 797292.10 5757879.69

Table 8: Empirical 95% (∗: 5%) quantiles of n−1T
(α)
n,J , circle.
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α n\J 1 2 3 4 5 6 7 8 9 10 15

0.5∗
50 0.78 2.01 3.58 5.43 7.51 9.82 12.33 15.02 17.88 20.92 38.28
100 0.81 2.07 3.67 5.54 7.66 9.99 12.52 15.24 18.13 21.19 38.68
200 0.83 2.12 3.73 5.62 7.76 10.11 12.66 15.40 18.31 21.39 38.97

1.5

50 1.74 5.57 12.07 21.64 34.62 51.35 72.12 97.19 126.83 161.28 413.52
100 1.63 5.33 11.66 21.04 33.81 50.29 70.78 95.60 124.97 159.14 409.60
200 1.54 5.14 11.34 20.54 33.11 49.37 69.63 94.16 123.21 157.03 405.72

2

50 2.89 10.15 23.98 46.38 79.42 125.09 185.38 262.19 357.62 473.44 1429.69
100 2.65 9.63 23.07 45.00 77.51 122.55 182.25 258.53 353.50 469.04 1425.90
200 2.46 9.18 22.24 43.71 75.61 119.96 178.79 254.13 348.09 462.50 1413.42

3

50 11.05 44.70 121.62 267.35 514.39 899.85 1465.00 2259.71 3334.17 4753.49 19354.84
100 9.88 41.61 115.67 258.08 501.29 882.86 1446.89 2243.22 3329.77 4766.78 19759.49
200 8.89 38.78 109.53 247.04 483.45 856.25 1409.95 2195.31 3266.71 4688.33 19641.06

4

50 55.17 257.13 789.21 1934.64 4099.03 7841.76 13896.74 23139.96 36671.41 55854.21 298772.54
100 50.44 241.42 756.21 1882.42 4046.14 7822.84 13949.15 23382.01 37302.88 57241.48 315602.34
200 45.06 221.64 706.06 1778.94 3853.76 7503.19 13470.18 22738.34 36479.18 56091.39 313949.22

5

50 312.86 1751.03 6086.85 16525.35 38243.32 79307.62 151325.83 270378.36 456890.66 738839.85 5085970.95
100 304.65 1690.91 5915.53 16290.68 38389.23 80548.51 155432.36 279993.35 478289.61 780194.53 5581455.18
200 285.05 1578.28 5582.39 15450.00 36521.11 77144.17 149839.80 272028.17 466294.26 763822.88 5578854.38

Table 9: Empirical 95% (∗: 5%) quantiles of n−1T
(α)
n,J , sphere.
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