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Abstract

We introduce a broad and flexible class of multivariate distributions obtained by both scale and shape mixtures of multivari-
ate skew-normal distributions. We present the probabilistic properties of this family of distributions in detail and lay down
the theoretical foundations for subsequent inference with this model. In particular, we study linear transformations, marginal
distributions, selection representations, stochastic representations and hierarchical representations. We also describe an EM-
type algorithm for maximum likelihood estimation of the parameters of the model and demonstrate its implementation on a
wind dataset. Our family of multivariate distributions unifies and extends many existing models of the literature that can be
seen as submodels of our proposal.

Keywords: EM-algorithm, Scale mixtures of normal distributions, Scale mixtures of skew-normal distributions, Shape
mixtures of skew-normal distributions, Skew-normal distribution, Skew scale mixtures of normal distributions.

1. Introduction

In recent years, the use of the multivariate skew-normal (SN) distribution [13, 14] in both theoretical and applied studies
has been increasingly popular. In several of these studies, the location-scale version of the multivariate SN distribution has
been implemented using different parametrizations but equivalent to the original one [3]; see also the books by Genton [22]
and Azzalini and Capitanio [16]. In this paper, we consider the multivariate SN version with the parametrization proposed
by Arellano-Valle and Genton [9]. According to these authors, a p-dimensional random vector Y follows a multivariate SN
distribution with location parameter µ ∈ Rp, scale parameter Σ > 0 (a p × p positive definite matrix) and skewness/shape
parameter λ ∈ Rp, denoted by Y ∼ SN p(µ,Σ, λ), if its probability density function (pdf) is given, for all y ∈ Rp, by

fSN(y | µ,Σ, λ) = 2φp(y | µ,Σ)Φ1{λ>Σ−1/2 (y − µ)} , (1)

where φp(y | µ,Σ) = |Σ|−1/2φp(z), with φp(z) = (2π)−p/2 exp(−z>z/2) and z = Σ−1/2(y−µ), is the pdf of the p-variate normal
distribution with mean vector µ and covariance matrix Σ, denoted by Np(µ,Σ), Φ1 denotes the cumulative distribution
function (cdf) of the standard normal distribution N1(0, 1), and Σ−1/2 is the symmetric square root matrix of Σ−1. When
λ = 0, the SN distribution reduces to the multivariate normal distribution, viz. Y ∼ Np(µ,Σ). Also, in terms of the
“standardized” random vector Z ∼ SN p(λ) ≡ SN p(0, Ip, λ), where Ip is the identity matrix of dimension p × p, the
multivariate SN distribution can be represented stochastically as follows:

Y = µ + Σ1/2Z, with Z d
= δ|Z0| + (Ip − δδ>)1/2Z1, (2)

where “ d
=” means “equal in distribution”, δ = λ/(1 + λ>λ)1/2, |Z0| denotes the absolute value of Z0, and Z0 ∼ N1(0, 1) is

independent of Z1 ∼ Np(0, Ip). This representation is very useful to derive most of the main properties of the multivariate
SN distribution. It is equivalent to the following hierarchical representation as location mixture of the multivariate normal
distribution, which is of great utility in the formulation of the SN statistical model

Y | U = u ∼ Np(µ + λ̄u,Ψ), (3)
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where U = γ |Z0| ∼ HN1(0, γ2), a half-normal random variable, λ̄ = Σ1/2λ, Ψ = Σ − γ2λ̄λ̄
> and γ = 1/(1 + λ>λ)1/2. Also,

from (2) or (3) it follows straightforwardly that the expectation and variance of Y are, respectively,

E(Y) = µ +

√
2
π
γλ̄ and var(Y) = Σ − 2

π
γ2λ̄λ̄

>
. (4)

Currently the multivariate SN distribution is the most popular member of the so called “skew-symmetric” (SS) class
introduced by Azzalini and Capitanio [13] in their Lemma 1. In the location-scale case, it is defined in terms of its pdf,
given, for all y ∈ Rp, by

fSS(y | µ,Σ) = 2|Σ|−1/2 f0{Σ−1/2(y − µ)}G0[w{Σ−1/2(y − µ)}], (5)

where f0 is the pdf of a p-variate centrally symmetric distribution, i.e., f0(−z) = f0(z) for all z ∈ Rp, G0 is a univariate cdf
such that G0(−z) = 1 −G0(z) for all z ∈ R (symmetric about zero), and w is an odd real-valued function, so w(−z) = −w(z).
The SS class is equivalent to the one studied by Wang et al. [34] for which G0{w(z)} is replaced by a nonnegative function
Π(z) such that Π(z) + Π(−z) = 1 for all z ∈ Rp. The SS class includes the generalized skew-elliptical (GSE) distributions
studied by Genton and Loperfido [23] in which f0 is a p-variate spherical density generator and Π(z) is used. As with the
SN case, the linear function w(z) = λ>z with λ ∈ Rp in the SS pdf given in (5) is interpreted as a skewness/shape parameter
vector. Although it has been the most common specification of the function w(z), one can find many other options such as
w(z) = λ>z/(1 + τz>z)1/2 and w(z) = λ>z + τ(λ>z)3, where τ > 0, among others. For a more comprehensive and detailed
discussion on SS distributions, see the book of Azzalini and Capitanio [16].

Among the different extensions of the multivariate SN distribution, we emphasize here the rich families obtained as
scale and/or shape mixtures of the SN distribution, which have been initially studied in [7, 10, 17, 20, 21]. Most of these
distributions are part of the SS class, and have hierarchical representations that are useful in statistical analysis based on
these models. In this work, we introduce a multivariate class of scale and shape mixtures of the SN (hereinafter SSMSN)
distributions which contains all of the aforementioned subfamilies as special cases, thus extending some related results
presented firstly within a univariate context by Arellano-Valle et al. [7]. The relevance of such distributions is due to the fact
that they can be represented hierarchically in terms of the multivariate normal distribution. This facilitates substantially the
implementation of both classical and Bayesian statistical analysis. After introducing the SSMSN class, we present the main
probabilistic properties of this representable family and we establish the theoretical foundations for subsequent inference
with this model.

2. Scale and shape mixtures of multivariate SN distributions

2.1. Background

The symmetric heavy tails family obtained as scale mixtures of normal (SMN) distributions [1] has attracted much
attention during the last two decades mainly because they allow for robust modeling of symmetric empirical distributions;
see, e.g., [2, 4, 5, 18, 19, 27]. This motivated Branco and Dey [17] to introduce the scale mixtures of skew-normal (SMSN)
distributions, thus providing a more flexible family of robust statistical models. With similar motivations, [7, 10] introduced
the shape mixtures of skew-normal (SHMSN) distributions, [20, 21] studied the so-called skew-scale mixtures of normal
(SSMN) and [33] considered the SMSN subclass of skew-normal generalized hyperbolic (SNGH) distributions. More
recently, other forms of mixtures have emerged such as the variance-mean (or location-scale) mixtures of skew-normal
distributions [12] and the location-scale mixtures of skew-elliptical distributions [31], both including the SMSN family as a
particular case, but not the SHMSN and SSMN families.

In this section, we introduce the SSMSN family of multivariate skewed distributions which is obtained as scale and
shape/skewness mixtures of the multivariate SN distribution. The SSMSN family contains as special cases the SMSN class,
hence also the asymmetric SNGH and symmetric SMN classes, the SHMSN, SSMN, and also the scale mixtures of skew-
Normal-Cauchy distributions considered recently by [25]. For a better understanding of the new SSMSN family, we start
recalling the definitions of the SMSN and SHMSN classes of distributions.

Let Y be a p-dimensional continuous random vector. The distribution of Y is in the multivariate SMSN class with
location parameter µ, dispersion matrix Σ and skewness/shape parameter λ, if there is a random variable V ∼ H(· | ν), a
univariate cdf indexed by the parameter vector ν, such that Y | V = v ∼ SN p[µ, κ(v)Σ, λ]. That is, for Σ > 0 the pdf of Y is
given, for all y ∈ Rp, by

fSMSN(y | µ,Σ, λ, ν) =

∫

S(H)
fSN{y | µ, κ(v)Σ, λ}dH(v | ν), (6)

for some positive scale (weight) function κ(v), where for any distribution F, S(F) denotes the support of F, and
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fSN (y | µ,Σ, λ) with y ∈ Rp is the multivariate skew-normal pdf in (1). We denote this family by Y ∼ SMSN p(µ,Σ,H, κ).
In (6), it is also usual to assume that S(H) ⊆ (0,∞) and κ(v) = 1/v.

Similarly, the multivariate SHMSN class, in which Y | S = s ∼ SN p[µ,Σ, η(s)λ], for some mixing random variable
S ∼ G(· | τ) and shape function η(s) such that the distribution of η(S ) is not symmetric about zero, leads to the pdf defined,
for all y ∈ Rp, by

fSHMSN(y | µ,Σ, λ, τ) =

∫

S(G)
fSN{y | µ,Σ, η(s)λ}dG(s | τ).

To refer to this family, we use the notation Y ∼ SHMSN p(µ,Σ, λ,G, η). For λ = 0, we have that the SMSN pdf (6) reduces
to the SMN pdf given, for all y ∈ Rp, by

fSMN(y | µ,Σ, ν) =

∫

S(H)
φp{y | µ, κ(v)Σ}dH(v | ν), (7)

where in (7) we simply get the p-variate normal pdf φp(y | µ,Σ) with y ∈ Rp.

2.2. Definition and preliminary properties
We explore the idea of mixing simultaneously the scale and shape/skewness parameters of the SN distribution with

different, but not necessarily independent, mixing distributions. We thus develop the SSMSN family of distributions defined
as follows.

Definition 1. A p-dimensional random vector Y follows a scale and shape mixture of multivariate skew-normal distributions
with a location parameter µ ∈ Rp, a p×p scale matrix Σ > 0 and shape parameter λ ∈ Rp, if there are two random variables
V and S , which have joint distribution Q(v, s | ν, τ) indexed by a vector of parameters (ν, τ), such that

Y | V = v, S = s ∼ SN p[µ, κ(v)Σ, η(v, s)λ], (8)

for some scale (weight) function κ(v) and real-valued shape function η(v, s) such that the distribution of η(V, S ) is not
symmetric about zero.

According to (8), the marginal pdf of Y is given, for all y ∈ Rp, by

f (y | µ,Σ, λ, ν, τ) =

∫

S(Q)
fSN{y | µ, κ(v)Σ, η(v, s)λ}dQ(v, s | ν, τ). (9)

For a SSMSN random vector Y with SN conditional distribution as in (8) or (9), we denote it Y ∼ SSMSN p(µ,Σ, λ,Q, κ, η)
or Y ∼ SSMSN p(µ,Σ, λ, ν, τ, κ, η). We use Y ∼ SSMSN p(λ,Q, κ, η) or Y ∼ SSMSN p(λ, ν, τ, κ, η) when µ = 0 and
Σ = Ip.

The SSMSN family includes finite mixtures either in the scale SN parameter or the shape SN parameter or in both,
depending on whether the mixing random variables S or V or both are discrete. Although it is not seen explicitly from (9),
the SSMSN pdf in (9) belongs to the GSE subclass of the SS class defined in (5) as established by the following proposition.

Proposition 1. The SSMSN pdf in (9) is equivalent to the GSE class given, for all y ∈ Rp, by

f (y | µ,Σ, λ, ν, τ) = 2 fS MN(y | µ,Σ, ν)Π{Σ−1/2(y − µ)}, (10)

where Π(z) =
∫
S(Q0) Φ1{κ(v)−1/2η(v, s)A(z)}dQ0(v, s | y, ν, τ), with z = Σ−1/2(y − µ), A(z) = λ>z and Q0(v, s | y, ν, τ) being

the conditional distribution of (V, S ) | Y0 = y in which Y0 denotes the symmetric SMN random vector obtained when λ = 0,
i.e., with pdf fS MN(y | µ,Σ, ν).
Proof. First, note for λ = 0 that the SSMSN pdf in (9) reduces to the symmetric SMN pdf fS MN(y | µ,Σ, ν) given in
(7). Denote by Y0 the corresponding SMN random vector. In this case, f0(y | v, s,µ,Σ) = φp{y | µ, κ(v)Σ} becomes the
conditional pdf of Y0 | V = v, S = s, which obviously does not depend on s. Let Q0(v, s | y, ν, τ) be the conditional
distribution of (V, S ) | Y0 = y. This conditional distribution depends on y only through z = Σ−1/2(y− µ) since {(V, S ) | Y0 =

y} d
= {(V, S ) | Z0 = z}, where Z0 = Σ−1/2(Y0−µ) has a spherical SMN distribution; more specifically, Z0 = κ(V)1/2U0, where

U0 ∼ Np(0, Ip). Using these facts in (9) and writing Q0(v, s | y, ν, τ) as Q0(v, s | z, ν, τ) and A(z) = λ>z = λ>Σ−1/2(y − µ),
we then have

f (y | µ,Σ, λ, ν, τ) = 2 fS MN(y | µ,Σ, ν)
∫

S(Q0)
Φ1{κ(v)−1/2η(v, s)A(z)}dQ0(v, s | z, ν, τ)
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= 2 fS MN(y | µ,Σ, ν)
∫

S(Q0)
Pr{κ(v)1/2U0 ≤ η(v, s)A(z)}dQ0(v, s | z, ν, τ)

= 2 fS MN(y | µ,Σ, ν)E[Pr{κ(V)1/2U0 ≤ η(V, S )A(z) | Z0 = z}],

where U0 ∼ N1(0, 1) is independent of (V, S ) and Z0 = κ(V)1/2U0, and so of U0 ∼ Np(0, Ip). Let Z0 = κ(V)1/2U0 and
W = η(V, S ), and denote by Π(z) = E[Pr{Z0 ≤ WA(z) | Z0 = z}], where the last expectation is with respect to the conditional
distribution of W | Z0 = z (or (V, S ) | Z0 = z). Then, the last expression above for the SSMSN pdf becomes

f (y | µ,Σ, λ, ν, τ) = 2 fS MN(y | µ,Σ, ν)Π(z),

in which
0 ≤ Π(z) = E[FZ0 |W,Z0=z{WA(z)}] = F{Z0−WA(z)}|Z0=z(0) , 1/2

since, by assumption, the distribution of W is not symmetric (at zero). Also, since A(−z) = −A(z) and (Z0,Z0) =

κ(V)1/2(U0,U0) is a spherical random vector, hence also centrally symmetric, we have

Π(−z) = E[Pr{Z0 ≤ WA(−z) | Z0 = −z}] = E[Pr{Z0 ≤ −WA(z) | Z0 = −z}]
= E[Pr{−Z0 ≥ WA(z) | −Z0 = z}] = E[Pr{Z0 ≥ WA(z) | Z0 = z}]
= 1 − Π(z).

That is, Π(z) ≥ 0 and Π(z) + Π(−z) = 1 for all z ∈ Rp. Thus the proposition is proved. �

From the proof of Proposition 1, for any given z = Σ−1/2(y − µ) we have in (10) that Π(z) = E[FZ0z |Wz {WzA(z)}] in

which the expectation is with respect to Wz = η(Vz, S z), with Z0z
d
= (Z0 | Z0 = z), (Vz, S z) d

= {(V, S ) | Z0 = z} and
(Z0,Z0) = κ(V)(U0,U0), with U0 ∼ N1(0, 1) and U0 ∼ Np(0, Ip) which are independent.

Other preliminary properties of the SSMSN distributions are given in the following proposition. They are proved using
(4) with γ replaced by γ(v, s) = η(v, s)/{1 + η(v, s)2λλ>}1/2 and the basic properties of the conditional expectation.

Proposition 2. Let Y ∼ SSMSN p(µ,Σ, λ,Q, κ, η), γ(v, s) = η(v, s)/{1 + η(v, s)2λλ>}1/2 and λ̄ = Σ1/2λ. The following
statements hold true.

i) If E{κ(V)1/2} < ∞, then E(Y) = µ +
√

2/πE{κ(V)1/2γ(V, S )}λ̄.
ii) If additionally E{κ(V)} < ∞, then var(Y) = E{κ(V)}Σ − (2/π)E{κ(V)1/2γ(V, S )}2λ̄λ̄>.

In particular, if the mixing variables V and S are independent and η(v, s) = ι(s), so that γ(s) = ι(s)/{1 + ι(s)2λ>λ}1/2, then
in i) and ii) we have E{κ(V)1/2γ(V, S )} = E{κ(V)1/2}E{γ(S )}.

One important aspect of Definition 1 is that the hypothesis of independence between the mixing random variables (V, S )
is not required for the construction of the SSMSN class. The assumption of independence between V and S is useful mainly
to simplify the calculation of (9) and also to study some of its main properties. Indeed, if V and S are independent then
Q(v, s | ν, τ) = H(v | ν)G(s | τ), for all (v, s), where H(v | ν) and G(s | τ) are the marginal distributions of V and S ,
respectively. To refer to this case we use the notation Y ∼ SSMSN p(µ,Σ, λ,HG, κ, η). Another important simplification
in the construction of SSMSN distributions occurs when the same mixing variable in the scale and shape functions is
considered, i.e., when it is assumed that S = V and so H = G. In the next subsection, we describe several special SSMSN
subfamilies.

2.3. Special subclasses of SSMSN distributions
The family of SSMSN distributions introduced in Definition 1 is quite large, and contains several subfamilies of asym-

metric distributions frequently considered in the literature due to their desirable properties. In fact, some well-known
SSMSN subfamilies are obtained as follows:

1. If η(v, s) = κ(v) = 1, then the SSMSN pdf (9) becomes the SN pdf (1).

2. If η(v, s) = 1, then the SMSN distributions defined by (6) follow. As examples, for κ(v) = 1/v, we have the multivari-
ate skew-t with V ∼ G(ν/2, ν/2), and the multivariate skew-slash, with V ∼ B(ν, 1).

3. If κ(v) = 1 and η(v, s) = ι(s), then the SHMSN distributions follow, i.e., for all y ∈ Rp,

f (y | µ,Σ, λ, ν, τ) = 2φp(y | µ,Σ)
∫

S(G)
Φ1{ι(s)λ>Σ−1/2(y − µ)}dG(s | τ).
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As examples, for ι(S ) = S ∼ N(1, τ), we have a multivariate extension of the skew-generalized-normal (SGN) studied
by [11], with pdf given by 2φp(y | µ,Σ)Φ1{w(z)}, y ∈ Rp, with w(z) = λ>z/{1 + τ(λ>z)2}1/2 and z = Σ−1/2(y− µ). For
η(S ) = |S | ∼ HN(0, 1), we obtain the multivariate skew-normal-Cauchy (SNC) distribution studied recently by [26].

4. If η(v, s) = κ(v)1/2, then the SSMN distributions follow, i.e., for all y ∈ Rp,

f (y | µ,Σ, λ, ν, τ) = 2
∫

S(H)
φp{y | µ, κ(v)Σ}dH(v | ν)Φ1{λ>Σ−1/2(y − µ)}.

In this case, for κ(v) = 1/v, two examples are the multivariate skew-t-normal (STN) and the multivariate skew-slash-
normal (SLSN), for which V ∼ G(ν/2, ν/2) and V ∼ B(ν, 1), respectively.

However, the SSMSN family allows us to go beyond the above distributions by varying the scale and shape functions
κ(v) and η(v, s) for a given distribution of (V, S ), or alternatively by fixing the scale and shape functions and varying the
distribution of (V, S ). In the particular case where the mixing variables V and S are independent, it is also convenient to
distinguish the following two types of SSMSN subfamilies:

I. Shape mixtures of SMSN (hereinafter SHSMSN): If η(v, s) = ι(s), then, for all y ∈ Rp,

f (y | µ,Σ, λ, ν, τ) = 2
∫

S(H)
φp {y | µ, κ(v)Σ}

∫

S(G)
Φ1{κ(v)−1/2ι(s)λ>Σ−1/2(y − µ)}dG(s | τ)dH(v | ν), (11)

which we denote by Y ∼ SHSMSN p(µ,Σ, λ,HG, κ, ι).

II. Shape mixtures of SSMN (hereinafter SHSSMN): If η(v, s) = κ(v)1/2ι(s), then, for all y ∈ Rp,

f (y | µ,Σ, λ, ν, τ) = 2
∫

S(H)
φp{y | µ, κ(v)Σ}dH(v | ν)

∫

S(G)
Φ1{ι(s)λ>Σ−1/2(y − µ)}dG(s | τ), (12)

which we denote by Y ∼ SHSSMN p(µ,Σ, λ,HG, κ, κ1/2ι).

In the construction of the SHSMSN and SHSSMN subfamilies, a relevant aspect that we must consider is that if the
distribution of ι(S ) is symmetric (with respect to the origin), then (11) and (12) become symmetric SMN pdfs because
E[Φ1 {ι(S )x}] = 1/2 for all x ∈ R, a fact that was proved in [7] in a univariate context. For instance, this fact occurs
when the function ι(·) is odd and G(·|τ) is symmetric (with respect to the origin). Obviously, to avoid this undesirable
result for λ , 0, it is sufficient to impose the condition that ι(S ) is not symmetrically distributed around zero. In particular,
when ι(·) is odd it is sufficient to assume that G(·|τ) is not symmetric around zero. Moreover, a convenient choice for the
mixing functions is κ(v) = 1/v with η(v, s) = s for the SHSMSN class given by (11), and with η(v, s) = v−1/2s for the
SHSSMN class given by (12), while discarding in both cases the symmetry (around the origin) for the distribution of S .
Under such specifications, several members of the SHSMSN and SHSSMN classes defined above in I and II, respectively,
can be obtained by combining the G(ν/2, ν/2) and B(ν, 1) distributions for V with the distributions N1(1, 1) andHN1(0, 1)
for S . In fact, as examples in the SHSSMN class we find:

IIa. Modified skew-t-normal (MSTN) distribution: V ∼ G(ν/2, ν/2) and S ∼ N(1, 1), with pdf given, for all y ∈ Rp, by

f (y | µ,Σ, λ, ν, τ) = 2tp(y | µ,Σ, ν)Φ1


λ>Σ−1/2(y − µ)√

1 + {λ>Σ−1/2(y − µ)}2


.

IIb. Modified skew-slash-normal (MSSLN) distribution: V ∼ B(ν, 1) and S ∼ N(1, 1), with pdf given, for all y ∈ Rp, by

f (y | µ,Σ, λ, ν, τ) = 2slp(y | µ,Σ, ν)Φ1


λ>Σ−1/2(y − µ)√

1 + {λ>Σ−1/2(y − µ)}2


.

IIc. Skew-t-Cauchy (STC) distribution: V ∼ G(ν/2, ν/2) and S ∼ HN(0, 1), with pdf given, for all y ∈ Rp, by

f (y | µ,Σ, λ, ν, τ) = 2tp(y | µ,Σ, ν)C1{λ>Σ−1/2(y − µ)}.
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IId. Skew-slash-Cauchy (SSLC) distribution: V ∼ B(ν, 1) and S ∼ HN(0, 1), with pdf given, for all y ∈ Rp, by

f (y | µ,Σ, λ, ν, τ) = 2slp(y | µ,Σ, ν)C1{λ>Σ−1/2(y − µ)}.

Here tp(· | µ,Σ, ν) and slp(· | µ,Σ, ν) denote, respectively, the p-variate pdfs of the Student t and the slash distributions
with location µ, dispersion Σ and ν degrees of freedom, and C1(x) = 1/2 + (1/π) arctan(x) is the cdf of the unit Cauchy
distribution. Note, however, that the above examples can also be obtained without the assumption of independence between
V and S by considering κ(v) = 1/v and η(v, s) = s/v, with: IIa. V ∼ G(ν/2, ν/2) and S | V = v ∼ N1(0, v); IIb. V ∼ B(ν, 1)
and S | V = v ∼ N1(0, v); IIc. V ∼ G(ν/2, ν/2) and S | V = v ∼ HN1(0, v); IId. V ∼ B(ν, 1) and S | V = v ∼ HN1(0, v).

3. Main probabilistic properties

In this section, we study some of the main properties of the SSMSN family given in Definition 1. In particular, we show
that the SSMSN family is closed under nonsingular linear transformations, which is a highly desirable property in families
of parametric distributions.

3.1. Linear transformations

Proposition 3. If Y ∼ SSMSN p(µ,Σ, λ,Q, κ, η), then for any q × p matrix A of rank q and q × 1 vector b, b + AY ∼
SSMSNq(b + Aµ,ΣA, λA,Q, κ, ηA), where ΣA = AΣA>, λA = Σ

−1/2
A AΣ1/2λ and ηA(v, s) = η(v, s)/{1 + η(v, s)2(λ>λ −

λ>AλA)}1/2.

Proof. Let YA = b + AY, where by definition Y | V = v, S = s ∼ SN p[µ, κ(v)Σ, η(v, s)λ]. Then by adapting Eq. (11) in [13]
to our parametrization, we have YA | V = v, S = s ∼ SNq[µA, κ(v)ΣA, ηA(v, s)λA]. Thus the result is proved. �

It follows from Proposition 3 that a linear transformation of a random vector with SSMSN distribution changes, in
general, both the skewness parameter from λ to λA and the shape function from η(v, s) to ηA(v, s). An exception occurs when
p = q, which corresponds to a nonsingular linear transformation, in which λA = Σ

1/2
A A−>Σ−1/2λ and so ηA(v, s) = η(v, s).

The next corollary follows straightforwardly from Proposition 3 and considers only a nonsingular linear transformation.

Corollary 1. If Y ∼ SSMSN p(µ,Σ, λ,Q, κ, η), then for any nonsingular matrix A ∈ Rp×p and vector b ∈ Rp, we have
b + AY ∼ SSMSN p(b + Aµ,AΣA>, λA,Q, κ, η).

In particular, if b = −Σ−1/2µ and A = Σ−1/2 then the “standardized” type of random vector is X = Σ−1/2(Y − µ) ∼
SSMSN p(0, Ip, λ,Q, κ, η) ≡ SSMSN p(λ,Q, κ, η). This yields the following corollary.

Corollary 2. If X ∼ SSMSN p(0, Ip, λ,Q, κ, η), then Y = µ + Σ1/2X ∼ SSMSN p(µ,Σ, λ,Q, κ, η).

According to Corollary 2, most properties of the SSMSN family can be studied from the “standardized” random vector
X = Σ−1/2(Y − µ) ∼ SSMSN p(0, Ip, λ,Q, κ, η). For instance, as shown by the following corollary, there exist linear
transformations whose distribution is canonical SSMSN.

Corollary 3. Let X∗ = ΓX, where X ∼ SSMSN p(0, Ip, λ,Q, κ, η) and Γ ∈ Rp×p is an orthogonal matrix such that
Γλ = λ∗e1, with λ∗ = (λ>λ)1/2 and e1 being the first unit vector of Rp. Then, X∗ ∼ SSMSN p(0, Ip, λ∗e1,Q, κ, η).

An important consequence of Corollary 3 is that conditionally on V and S , the components X∗1, . . . , X∗p of X∗ are
independent random variables, with X∗1 | V = v, S = s ∼ SN1(0, κ(v), η(v, s)λ∗) and the random variables X∗2, . . . , X∗p
are independent and identically distributed (iid) as follows: X∗i | V = v iid∼ N1[0, κ(v)] for i ∈ {2, . . . , p}. This means that
X∗1 ∼ SSMSN1(0, 1, λ∗,Q, κ, η) and X∗i

iid∼ SMN1(0, 1,G, κ) for i ∈ {2, . . . , p}, thus extending a similar result proved by
[13] for the multivariate SN distribution. As X = Γ>X∗, the result of Corollary 3 also allows to substantially simplify the
calculation of moments of higher order and other related quantities such as Mardia’s measures of multivariate skewness and
kurtosis.

The next corollary shows that in the linear transformation λ>X the shape function is also not altered. Its proof is a direct
consequence from Proposition 3 by letting µ = 0, Σ = Ip, b = 0 and A = λ (q = 1).

Corollary 4. If X ∼ SSMSN p(0, Ip, λ,Q, κ, η), then λ>X ∼ SSMSN1(0, λ2
∗, λ∗,Q, κ, η), where λ∗ = (λ>λ)1/2.
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3.2. Marginal distributions
Given a partition Y1 ∈ Rq and Y2 ∈ Rp−q of Y ∼ SSMSN p(µ,Σ, λ,Q, κ, η), suppose we want to obtain the marginal

pdf of Y1 and the conditional pdf of Y2 given Y1 = y1. Denote the induced partitions for µ, Σ, λ and λ̄ = Σ1/2λ by

µ =

(
µ1
µ2

)
, Σ =

(
Σ11 Σ12
Σ21 Σ22

)
, λ =

(
λ1
λ2

)
and λ̄ =

(
λ̄1
λ̄2

)
.

Also, consider the standard notation µ2·1 = µ2 + Σ21Σ
−1
11 (y1 − µ1) and Σ22·1 = Σ22 − Σ21Σ

−1
11Σ12.

Proposition 4. If Y = (Y>1 ,Y
>
2 )> ∼ SSMSNq+p−q (µ,Σ, λ,Q, κ, η), then Y1 ∼ SSMSNq(µ1,Σ11, λ(1),Q, κ, η(1)), where

λ(1) = Σ
−1/2
11 λ̄1 = Σ

−1/2
11 AΣ1/2λ, with A = (Iq, 0), η(1)(v, s) = η(v, s)/{1+η(v, s)2λ̄

>
2·1Σ

−1
22·1λ̄2·1}1/2, with λ̄2·1 = −Σ21Σ

−1
11 λ̄1+λ̄2 =

BΣ1/2λ and B = (−Σ21Σ
−1
11 , Ip−q).

Proof. It is immediate from Proposition 3 with A = (Iq, 0). �

By using similar arguments as in Proposition 1, the marginal pdf of the random vector Y1 ∼ SSMSNq(µ1,Σ11,Q, κ, η(1))
can also be computed as

f (y1 | µ1,Σ11, ν, τ) = 2 fq(y1 | µ1,Σ11, ν)E[FZ0z1 |W1z1
{W1z1 A1(z1)}],

where fq(y1 | µ1,Σ11, ν) is the respective SMN marginal pdf,

z1 = Σ
−1/2
11 (y1 − µ1), A1(z1) = λ>(1)z1, Z0z1

d
= {Z0 | Z01 = z1}, W1z1 = η(1)(Vz1 , S z1 ) d

= {η(1)(V, S ) | Z01 = z1},

and (Z0,Z01) = κ(V)1/2(U0,U01), with U0 ∼ N1(0, 1), U01 ∼ Nq(0, Iq) and (V, S ) being independent.
On the other hand, the conditions Σ12 = Σ>21 = 0 and λ2 = 0 allow us to recover the skewness function for the marginal

distribution of Y1, but they remove the skewness from the marginal distribution of Y2. Moreover, they are conditionally
independent given V = v. In fact, under these conditions it easily follows that the conditional joint pdf of Y1 and Y2 given
(V, S ) = (v, s) reduces to

f (y1, y2 | v, s) = 2φq{y1 | µ1, κ(v)Σ11}φp−q{y2 | µ2, κ(v)Σ22}Φ1{η(v, s)κ(v)−1/2λ̄
>
1 Σ
−1
11 (y1 − µ1)}.

These facts are summarized next.

Corollary 5. If in Proposition 4, Σ12 = 0 and λ2 = 0 then Y1 ∼ SSMSNq(µ1,Σ11, λ(1),Q, κ, η), with λ(1) as before, and
Y2 is symmetrically distributed as Y2 ∼ SMN p−q(µ2,Σ22,G, κ). Also, they are conditionally independent given V, with
Y1 | V = v ∼ SHMSNq[µ1, κ(v)Σ11, λ(1),H, η] and Y2 | V = v ∼ Np−q[µ2, κ(v)Σ22].

3.3. Selection representation
As indicated in the next proposition, the SSMSN distributions are also selection distributions as those defined by [6, 8].

Proposition 5. Let X0 = κ(V)1/2{η(V, S )λ>Z1 − Z0} and X1 = κ(V)1/2Z1, where Z0 ∼ N(0, 1), Z1 ∼ Np(0, Ip), (V, S ) ∼
Q(v, s | ν, τ), which are mutually independent. Then, the selection random vector defined by

X d
= (X1 | X0 > 0) = κ(V)1/2(Z1 | Z0 < η(V, S )λ>Z1),

is SSMSN p(0, Ip, λ,HG, κ, η) distributed.

Proof. First note that conditionally on (V, S ) = (v, s), the random variables X0 and X1 have a multivariate normal joint
distribution given by

(
X0
X1

) ∣∣∣∣V = v, S = s ∼ N1+p

[(
0
0

)
, κ(v)

(
1 + η(v, s)2λ>λ η(v, s)λ>

η(v, s)λ Ip

)]
.

Thus using Eq. (13) in [6], we find that X | V = v, S = s has a SN p(0, κ(v)Ip, η(v, s)λ) conditional pdf: f (x | v, s) =

2φp{x; 0, κ(v)Σ}Φ1{κ(v)−1/2η(v, s)λ>x}, which concludes the proof. �

Proposition 5 provides an alternative way to define the SSMSN class as:

Y = µ + Σ1/2X, with X = κ(V)1/2Z, (13)
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where Z d
= (Z1 | Z0 < η(V, S )λ>Z1) and is such that Z | V = v, S = s ∼ SN p[0, Ip, η(v, s)], since (V, S ) ∼ Q(v, s | ν, τ),

Z0 ∼ N1(0, 1) and Z1 ∼ Np(0, Ip) are mutually independent.
When the mixing variables V and S are independent, we can also identify some subfamilies of SSMSN distributions

such as the SHSMSN and SHSSMN classes given by (11) and (12), respectively, according to the specification of η(v, s) as
indicated below.

In fact, for the SHSMSN class in (11), V and S are independent and η(v, s) = ι(s). Hence, in (13), Z | S = s ∼
SN p(0, Ip, ι(s)λ) and is independent of V . This means that Z has a SHMSN distribution and is independent of V , and
therefore the distribution of X = κ(V)1/2Z becomes also a scale mixture of SHMSN distributions. In this case, the random
vector X can be represented in terms of the SMN spherical random vector (U0,U1) = κ(V)1/2(Z0,Z1) as X d

= (U1 | U0 <
ι(S )λ>U1). Therefore, since S and V are independent, the conditional pdf of X | S = s belongs to the class of skew-spherical
pdfs of the form 2 f (p)(‖x‖2)F(1)

‖x‖2 {ι(s)λ>x}, where f (p) is a SMN p-dimensional spherical density generator and F(1)
a (x) is the

cdf induced by the univariate conditional density generator f (1)
a (u) = f (p+1)(u+a)/ f (p)(a). This means that the location-scale

SHSMSN distributions are shape mixtures of SMSN distributions.
Similarly, in the SHSSMN class defined in (12), in which V and S are also independent and η(v, s) = κ(v)1/2ι(s), by

letting ι(s) = κ̃(s)−1/2 we have that X d
= (U1 | U0 < λ>U1), but in this case U0 = κ̃(S )1/2Z0 and U1 = κ(V)1/2Z1 are

independent SMN spherical random variables. This yields a class of multivariate skew-symmetric distributions with pdf
of the form 2 f (p)(‖x‖2)F̃(1)(λ>x), where f (p) is a p-dimensional spherical density generator and F̃(1) is a univariate cdf
induced by a univariate spherical density generator f̃ (1). The corresponding location-scale distributions obtained under such
conditions are only a subclass of (12). The univariate SSMSN class presented recently by [24] is obtained following this
alternative route for p = 1.

3.4. Stochastic representation

Next, we extend the stochastic representation of the multivariate SN distribution, initially discussed in [8, 9, 14], to the
whole SSMSN family.

Proposition 6. Suppose that X = κ(V)1/2Z, where

Z =
η(V, S )λ√

1 + η(V, S )2λ>λ
|Z0| +

{
Ip − η(V, S )2λλ>

1 + η(V, S )2λ>λ

}1/2

Z1, (14)

with Z0 ∼ N(0, 1), Z1 ∼ Np(0, Ip) and (V, S ) ∼ Q(v, s | ν, τ) being mutually independent. Then Y = µ + Σ1/2X ∼
SSMSN p(µ,Σ, λ,Q, κ, η).

Proof. By (14), κ(V)1/2Z | V = v, S = s ∼ SN p[0, κ(v)Ip, η(v, s)λ], which is equal to the conditional distribution of X given
(V, S ) = (v, s). This proves by definition that X ∼ SSMSN p(0, Ip, λ,Q, κ, η). Thus, the proof follows by Corollary 2. �

As a consequence of Proposition 6, we have the following corollary.

Corollary 6. Let R2 = (Y − µ)>Σ−1(Y − µ), where Y ∼ SSMSN p(µ,Σ, λ,Q, κ, ι). Then, R2 d
= κ(V)R2

0, where R2
0 ∼ χ2

p and
is independent of V ∼ H.

Proof. Let X = Σ−1/2(Y − µ). Since X d
= κ(V)1/2Z, with Z given by (14), then R2 = X>X d

= κ(V)Z>Z. Since, Z |
V = v, S = s ∼ SN p[0, Ip, η(v, s)λ], by Proposition 7 in [13] it follows that (Z>Z | V = v, S = s) d

= Z>0 Z0 for all
(v, s), where Z0 ∼ Np(0, Ip) which is independent of (V, S ) and hence of V . Since Z>0 Z0 is also independent of V , then

κ(V)Z>Z d
= κ(V)Z>0 Z0 which completes the proof. �

3.5. Hierarchical representation

Considering the stochastic representation in (14), we can represent hierarchically the SSMSN distributions in terms of
the multivariate normal distribution. Such representation is established in the following proposition and has a key role for
classical and Bayesian statistical analysis of the SSMSN models. In order to simplify the notation, we let

λ̄ = Σ1/2λ, Ψ(v, s) = Σ − γ(v, s)2λ̄λ̄
> and γ(v, s) =

η(v, s)√
1 + η(v, s)2λ̄

>
Σ−1λ̄

.
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Proposition 7. If Y ∼ SSMSN p(µ,Σ, λ,Q, κ, η), then

Y | U = u,V = v, S = s ∼ Np[µ + κ(v)1/2γ(v, s)λ̄u, κ(v)Ψ(v, s)],

where U = |Z0| ∼ HN(0, 1) and (V, S ) ∼ Q(v, s | ν, τ) are independent.

The hierarchical representation given in Proposition 7 is very useful to implement the MCMC and/or EM methodologies
for obtaining Bayesian and/or classical inference under the SSMSN models. A useful consequence of the hierarchical
representation in Proposition 7 is considered next. To this end, the following lemma will be used.

Lemma 1. If Ψ = Σ − γ2λ̄λ̄
> and γ = η/(1 + η2λ̄

>
Σ−1λ̄)1/2, then

φp(y | µ + κ1/2γλ̄u, κΨ)φ1(u | 0, 1) = φp(y | µ, κΣ)φ1{u | κ−1/2γλ̄
>
Σ−1(y − µ), 1 − γ2λ̄

>
Σ−1λ̄}.

Let q(v, s | ν, τ) denote the joint pdf (or probability mass function) of V and S . By Proposition 7, Lemma 1 and the
change of variable W = κ(V)1/2γ(v, s)U, the joint distribution of (Y,V, S ,W) can be represented, for all y ∈ Rp, v ∈ S(H),
s ∈ S(G), w > 0, as

f (y, v, s,w | µ,Σ, λ, ν, τ) = 2φp {y | µ, κ(v)Σ} φ1{w | η(v, s)λ̄>Σ−1(y − µ), κ(v)}q(v, s | ν, τ).

Eq. (15) is very useful to simplify the implementation of MCMC and/or EM methodologies for obtaining Bayesian and/or
classical inference under the SSMSN models. In this sense, the following conditional posterior distributions and moments
related to the latent random quantities (V, S ,W) are sometimes necessary. To establish this result, it is assumed that the scale
and shape mixing variables V and S are independent, with marginal pdfs (or probability functions) given, respectively, by
h(v | ν) and g(s | τ). The proof of this result is straightforward from (15), the Bayes formula and some basic probabilistic
properties.

Proposition 8. Under the joint pdf in (15), with q(v, s | ν, τ) = h(v | ν)g(s | τ) for all (v, s), the conditional distribution of
(V, S ,W) given Y = y is such that f (v, s,w | y) = f (w | v, s, y) f (s | v, y) f (v | y), where

f (w | v, s, y) =
1

Φ1{κ(v)−1/2η(v, s)λ̄>Σ−1(y − µ)}
φ1{w | η(v, s)λ̄>Σ−1(y − µ), κ(v)}, w > 0,

f (s | v, y) =
1

Ψ1{λ̄>Σ−1(y − µ) | v}
Φ1{κ(v)−1/2η(v, s)λ̄>Σ−1(y − µ)}g(s | τ), s ∈ S(G),

f (v | y) =
2

f (y | µ,Σ, λ̄, ν, τ)φp {y | µ, κ(v)Σ} h(v | ν)Ψ1{λ̄>Σ−1(y − µ) | v}, v ∈ S(H),

where Ψ1(x | v) =
∫
S(G) Φ1{κ(v)−1/2η(v, s)x}g(s | τ)ds. Also, if µw = η(v, s)λ̄>Σ−1(y − µ) and σ2

w = κ(v), then

E(W | v, s, y) = µw + σw
φ1(µw/σw)
Φ1(µw/σw)

, E(W2 | v, s, y) = µ2
w + σ2

w + µwσw
φ1(µw/σw)
Φ1(µw/σw)

.

4. Maximum likelihood estimation for SSMSN

4.1. EM-algorithm

In this section, we describe how to use the EM-type algorithm for maximum likelihood (ML) estimation of the SSMSN
model parameters. To this end, we use the ECME, a fast extension of the original EM algorithm proposed by [28]. Given
a random sample y1, . . . , yn from the SSMSN p(µ,Σ, λ, ν, τ) distribution, the corresponding log-likelihood function for
θ = (µ,Σ, λ, ν, τ) is

`(θ | y) =

n∑

i=1

ln
[∫

S(G)

∫

S(H)
2φp{yi | µ, κ(vi)Σ}Φ1{κ(vi)−1/2η(vi, si)λ>zi}q(vi, si | ν, τ)dsidvi

]
, (15)

where zi = Σ−1/2(yi − µ), and we assume that q(v, s | ν, τ) = g(v | ν)h(s | τ), ∀ (v, s), in which, except for the unknown
parameters (scalar or vectors) ν and τ, g(· | ν) and h(· | τ) are known pdfs or probability mass functions. In general, it is
difficult to maximize (15) directly with respect to θ. Considering the hierarchical representation described in Section 3.5 for
the SSMSN family, we develop in this section an EM algorithm to search for the ML estimator, θ̂, of θ.
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We start by assuming the scale and shape functions κ(·) and η(·) to be known, and for the ith sample unit we denote the
complete data arising from (15) by di = (y>i , vi, si,wi)> for all i ∈ {1, . . . , n}, where y1, . . . , yn are observed data and (vi, si,wi)
for all i ∈ {1, . . . , n}, are missing data. Also, we let d = (y>, v>, s>,w>)>, where y = (y>1 , . . . , y

>
n )>, v = (v1, . . . , vn)>,

s = (s1, . . . , sn)> and w = (w1, . . . ,wn)>. The corresponding random vector is denoted by D = (Y>,V>,S>,W>)>. By (15)
the complete log-likelihood function is

`c(θ | d) =

n∑

i=1

ln φp {yi | µ, κ(vi)Σ}+
n∑

i=1

ln φ1{wi | η(vi, si)λ̄
>
Σ−1(yi−µ), κ(vi)}+

n∑

i=1

ln g(vi | ν)+

n∑

i=1

ln h(si | τ)+n ln 2. (16)

The last three terms of `c(θ | d) are not relevant to the estimation of (µ,Σ, λ), therefore they can be ignored in the imple-
mentation of the ECM step of the ECME algorithm described below.

To facilitate the estimation process, consider the reparameterization, ∆ = Σ−1/2λ. The E-Step on the (k + 1)th iteration
of the ECME algorithm requires the calculation of Q(θ | θ(k)) = Eθ(k) {`c(θ | D) | Y = y}, where θ(k) is the estimated value of
θ in the k-th algorithm step. To do this, we need to calculate different conditional expectations as described below. In fact,
from (16) it follows that

Q(θ | θ(k)) = c(θ(k)|y) − n
2

ln |Σ| − 1
2

n∑

i=1

κ̂−1
i

(k)
(yi − µ)>Σ−1(yi − µ) − 1

2
∆>

n∑

i=1

κ̂−1
i η2

i

(k)
(yi − µ)(yi − µ)>∆

+ ∆>
n∑

i=1

κ̂−1
i ηiwi(yi − µ) +

n∑

i=1

Eθ(k) {ln g(Vi | ν) | Yi = yi} +
n∑

i=1

Eθ(k) {ln h(S i | τ) | Yi = yi}, (17)

in which

c(θ(k)|y) = n
{

ln 2 − p + 1
2

ln(2π)
}

+
p + 1

2

n∑

i=1

Eθ(k) {ln κ(Vi) | Yi = yi} − 1
2

n∑

i=1

Eθ(k) {κ(Vi)−1W2
i | Yi = yi},

and, for all i ∈ {1, . . . , n},

κ̂−1
i

(k)
= Eθ(k) {κ(Vi)−1 | Yi = yi},

κ̂−1
i η2

i

(k)
= Eθ(k) {κ(Vi)−1η(Vi, S i)2 | Yi = yi},

κ̂−1
i ηiwi

(k)
= Eθ(k) {κ(Vi)−1η(Vi, S i)Wi | Yi = yi}.

Analytical expressions of these conditional expectations can be explored from Proposition 5. Otherwise, they can be cal-
culated numerically using, e.g., the MCMC procedure. The properties of the conditional expectation can help us to do
this, since E{κ(V)−1η(V, S )2 | Y} = E[κ(V)−1E{η(V, S )2 | V,Y} | Y] and E{κ(V)−1η(V, S )W | Y} = E[κ(V)−1E{η(V, S )E(W |
V, S ,Y) | V,Y} | Y], where by Proposition 5,

E(W | V = v, S = s,Y = y) = η(v, s)∆>(y − µ) + κ(v)1/2 φ1{κ(v)−1/2η(v, s)∆>(y − µ)}
Φ1{κ(v)−1/2η(v, s)∆>(y − µ)} ,

E{η(V, S )2 | V = v,Y = y} =
1

Ψ1{∆>(y − µ) | v}
∫

S(G)
η(v, s)2Φ1{κ(v)−1/2η(v, s)∆>(y − µ)}dG(s | τ),

E{t(V) | Y = y} =
2

f (y | µ,Σ,∆, ν, τ)
∫

S(H)
t(v)φp {y | µ, κ(v)Σ}Ψ1{∆>(y − µ) | v}dH(v | ν),

provided that η(v, s)2 and t(v) are integrable functions. Some simplifications occur for the SHSMSN and SHSSMN cases in
which η(v, s) = ι(s) and η(v, s) = κ(v)1/2ι(s), respectively.

E-step. Compute Q(θ | θ(k)) using (17), where c(θ(k)|y) can be ignored.

CM-steps. Proceed in the following steps as:
CM-Step 1. Update µ(k) by

µ(k+1) =


n∑

i=1

κ̂−1
i

(k)
(Σ(k))−1 +

n∑

i=1

κ̂−1
i η2

i

(k)
∆(k)∆̂

(k)>

−1 (Σ(k))−1

n∑

i=1

κ̂−1
i

(k)
yi + ∆(k)∆̂

(k)>
n∑

i=1

κ̂−1
i η2

i

(k)
yi −

n∑

i=1

κ̂−1
i ηiwi

(k)
∆(k)

 .
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CM-step 2. Update Σ(k) by

Σ(k+1) =
1
n

n∑

i=1

κ̂−1
i

(k)
(yi − µ(k+1))(yi − µ(k+1))>.

CM-Step 3. Update ∆(k) by

∆(k+1) =


n∑

i=1

κ̂−1
i η2

i

(k)
(yi − µ(k+1))(yi − µ(k+1))>



−1 n∑

i=1

κ̂−1
i ηiwi

(k)
(yi − µ(k+1)).

CM-Step 4. Update λ(k) by λ(k+1) = (Σ(k))1/2∆(k).

CM-Step 5. Update (ν(k), τ(k)) by

ν(k+1) = argmaxν


n∑

i=1

Eθ(k) {ln g(Vi | ν) | Yi = yi}
 , τ(k+1) = argmaxτ


n∑

i=1

Eθ(k) {ln h(S i | τ) | Yi = yi}
 .

In those cases where these last expectations are difficult to evaluate, the CM-step 4 can be replaced by the following CML-
step as suggested by [28]:

CML-Step. Update (ν, τ) by

(ν(k+1), τ(k+1)) = argmax(ν,τ)


n∑

i=1

ln f (yi | µ(k+1),Σ(k+1), λ(k+1), ν, τ)

 .

The CML-step requires uni- or bi-dimensional searches, which can be easily accomplished by using, for example, the
optim or optimize routines in R [32]. The iterations of the ECME algorithm continue until the difference between two
successive log-likelihood values, |`(θ(k+1)|y) − `(θ(k)|y)|, is sufficiently small, say 10−4. As in [21], the initial values used
in the EM algorithm are the vector of sample means for µ, the sample covariance matrix for Σ and the vector of sample
skewnesses for λ. An alternative to attain global maximization is to consider several starting values.

Expressions for the observed information matrix can also be derived directly from the observed likelihood function in
(15). To assume the mixing distributions to be completely known facilitates substantially these derivations, since in this
case we only need the derivatives corresponding to the SN model. Another way to obtain estimates of standard errors is by
using the approximation from the derivatives of the Q-function as proposed by Louis [29].

4.2. Observed information matrix

To compute the asymptotic covariance of the ML estimates of θ̂ = (̂β
>
, α̂>, λ̂

>
)>, whit α = vec(B), where Σ1/2 = B =

B(α), we employ the information-based method suggested by [29] and [30]. We use the notation Ḃk = ∂B(α)/∂αk, with
k ∈ {1, . . . , p(p + 1)/2}. The empirical information matrix is defined as

Ie(θ|y) =

n∑

i=1

ŝîs>i ,

where ŝi = (̂s>
i,β
, ŝ>i,α, ŝ

>
i,λ

)> are the estimates of individual scores s(yi|θ) = ∂Q(θ)/∂θ. The explicit expressions for the

elements of ŝi are summarized below:

ŝi,β = Σ̂
−1

(yi − µ̂) − κ̂iηiwi∆̂ + κ̂iη
2
i ∆̂∆̂

>
(yi − µ̂);

ŝi,αk = −tr(B̂−1̂̇Bk) +
1
2
κ̂−1

i (yi − µ̂)>B̂−1(B̂−1̂̇Bk + ̂̇BkB̂−1)B̂−1(yi − µ̂)

− λ̂>B̂−1̂̇BkB̂−1(yi − µ̂)
[
κ̂iηiwi + κ̂−1

i η2
i λ̂
>

B̂−1(yi − µ̂)
]
, for all k ∈ {1, . . . , p(p + 1)/2};

ŝi,λ = Σ̂
−1/2

(yi − µ̂)
[
κ̂iηiwi − κ̂−1

i η2
i (yi − µ̂)>Σ̂

−1/2
λ̂
]
.
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5. Wind data application

To illustrate the flexibility of the SSMSN distributions, we use a wind speed data set that consists of hourly average
wind speed in the Pacific North-West of the United States collected at three meteorological towers approximately located
on a line and ordered from west to east: Goodnoe Hills (gh), Kennewick (kw), and Vansycle (vs). The data was collected
from 25 February to 30 November 2003 recorded at midnight, a time when wind speeds tend to peak. More information
about the data can be found in [15].

Denote by Y(t) the three-dimensional vector of wind speed at the towers (gh, kw and vs) recorded at time t ∈
{1, . . . , 278}. Azzalini and Genton [15] applied a Ljung–Box test to the data that indicated some serial correlation at the
Goodnoe Hills tower, but not at the other two towers. So, the authors proposed a skew-t model that modeled heavy tails
and asymmetric behaviors. Descriptive statistics of the wind speed data are reported in Table 1, confirming the presence of
skewness and kurtosis.

Table 1: Descriptive statistics of the wind speed data.

Mean Covariance Mardia’s Marginal Mardia’s Marginal
skewness skewness kurtosis kurtosis

vs 17.0 185.3 — — 3.5 −0.8 23.7 4.4
gh 12.7 126.9 177.8 — — −0.7 — 2.6
kw 14.0 148.2 110.6 297.2 — −0.4 — 3.0

Next, we fit various SSMSN models described in this paper to the wind data. The results of the fit in terms of log-
likelihood, AIC and BIC are provided in Table 2. We can see that the models with higher log-likelihood are the skew-t,
skew-t-normal and skew-t-Cauchy. We also see that both AIC and BIC criteria favor the skew-t-Cauchy model, and then
the skew-t closely followed by the skew-t-normal.

Table 2: Fit of various SSMSN distributions to the wind speed dataset. Best fit indicated by #1, second best by #2, and third best by #3.

Family Particular distributions `(̂θ|y) AIC BIC
SN [14] skew-normal −3229.2 6482.4 6525.9

SMSN [17]
skew-t −3180.7 6387.5 #2 6434.6 #2
skew-contaminated-normal −3186.4 6400.7 6451.5
skew-slash −3186.9 6399.7 6446.9

SHMSN [7]
skew-generalized-normal −3236.6 6499.2 6546.4
skew-curved-normal −3217.5 6459.0 6502.5
skew-normal-Cauchy −3227.5 6479.1 6522.6

SSMN [21]
skew-t-normal −3180.9 6387.8 #3 6434.9 #3
contaminated-skew-normal −3183.0 6394.0 6444.8
skew-slash-normal −3184.9 6395.8 6443.0

SHSSMN (this paper)
Modified skew-t-normal −3199.9 6425.9 6473.1
skew-t-Cauchy −3178.7 6383.4 #1 6430.5 #1
Modified skew-slash-normal −3218.1 6462.2 6509.4
skew-slash-Cauchy −3227.7 6481.4 6528.5

According to fitted contour plots in Figure 1, the skew-normal does not seem to fit all the data completely well, whereas
the three models with smaller AIC and BIC, the skew-t, skew-t-normal and skew-t-Cauchy, seem to better fit the wind speed
data.

6. Discussion

We proposed a broad and flexible class of multivariate SSMSN distributions which are obtained by both scale and shape
mixtures of multivariate skew-normal distributions and allows to unify several subfamilies considered in the literature that
can be seen as submodels of our proposal. We presented the main probabilistic properties of this family of distributions in
detail and we gave the theoretical foundations for subsequent inference with this class of models. In particular, we showed
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Figure 1: Contours levels for SSMSN distributions fitted to wind speed data: (a) vs×gh; (b) vs×kw and (c) gh×kw.

that by specifying the shape mixing function as η(v, s) = ι(s) and η(v, s) = κ(v)1/2ι(s) we obtain two different subclasses of
SSMSN distributions that correspond to the shape (scale) mixtures of SMSN (SHMSN) distributions and the shape mixture
of SSMN distributions. Further extensions of the SSMSN class considered here can be studied from the results in [10].
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