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Abstract

A non-standard, but not uncommon, situation is to observe multiple samples of nonnegative data which have a high
proportion of zeros. This is the so-called excess of zeros situation and this paper looks at the problem of making
inferences about the means of the underlying distributions. Under the semiparametric setup, proposed by Wang et al.
[31], we develop a unified inference framework, based on an empirical likelihood ratio (ELR) statistic, for making
inferences on the means of multiple such distributions. A chi-square-type limiting distribution of this statistic is
established under a general linear null hypothesis about the means. This result allows us to construct a new test
for mean equality. Simulation results show favorable performance of the proposed ELR when compared with other
existing methods for testing mean equality, especially when the correctly specified basis function in the density ratio
model is the logarithm function. A real data set is analyzed to illustrate the advantages of the proposed method.

Keywords: Density ratio model, Empirical likelihood, Estimating equation, Multinomial logistic regression,
Non-standard mixture model, Semi-continuous data
2010 MSC: 62H15, 62H10, 62E20

1. Introduction1

Making reliable inferences on the means of multiple distributions is an important, and fundamental, topic in2

statistics. In this paper, we investigate this topic in the case of multiple skewed nonnegative distributions with an3

excess of zero values. Specifically, suppose we have m + 1 independent samples modeled as4

∀i∈{0,...,m} xi1, . . . , xini ∼ Fi(x) = νi1(x = 0) + (1 − νi)1(x > 0)Gi(x), (1)

where ni is the sample size of the ith group, 1 is an indicator function and the Gis are cumulative distribution functions5

with common support which may be continuous or discrete. Under the formulation (1), the mean of each mixture6

distribution Fi, with i ∈ {0, . . . ,m}, can be expressed as7

µi =

∫ ∞

0
xdFi(x) = (1 − νi)

∫ ∞

0
xdGi(x).

Our interest is to make inferences about µ0, . . . , µm. These include testing the null hypothesisH∗0 : µ0 = · · · = µm, and8

constructing confidence intervals for µi − µ j and µi/µ j, for i , j.9

Multiple samples, with a non-standard mixture structure as shown in (1), frequently arise from many research10

areas; see [31] and also a recent special issue of the Biometrical Journal [2] and references therein. The mean of11

a population with excess zeros has been considered an important summary quantity. For example, in fishery and12

health economics studies, the population total often has a crucial scientific meaning. It can provide information for13
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recovering the population total, e.g., the total egg production of Atlantic mackerel [20], and the total expenditure of14

patients [7].15

A natural way to make inference on the means is by using fully parametric models. The papers [27] and [34]16

proposed modeling the Gis by a log-normal distribution, based on which they developed a Wald and a likelihood17

ratio test, for testing the overall mean equality. Several confidence intervals for the two-sample mean difference18

and mean ratio have been considered in [7] and [35], when the positive data in both samples follow log-normal19

distributions. Although the log-normal distributions are quite natural for modeling the positive observations, other20

parametric models, such as the Gamma distribution, have also been argued to be suitable in applications [16, 17].21

However, as concluded in [17], “when sample sizes are not large, different parametric models that fit the data equally22

well can lead to substantially different inferences”. This fact may pose an issue of model robustness in the fully23

parametric approach.24

Another approach is to use nonparametric methods. The nonparametric ANOVA-type statistic (ATS) and the25

Wald-type permutation statistic (WTPS) are two representative methods for comparing the means of multiple non-26

normal and heteroscedastic samples. The ATS, proposed in [3], is an extension of the classical ANOVA F-test for27

heteroscedastic factorial designs. Brunner et al. [3] suggested using an F-distribution with random degrees of freedom28

to approximate the finite-sample distribution of the ATS. It can be shown that the ATS is equivalent to the Welch two-29

sample t-test [32] when m = 1. More recently, the WTPS was proposed in [19] for testing a linear hypothesis about30

the means which does not make any distributional assumptions, and is appropriate under very general heteroscedastic31

factorial designs. In practice, the homoscedastic variance assumption is usually difficult to justify for multiple groups32

of observations with excess zeros; see, e.g., [34] and Section 4 of this paper. Hence, it is appropriate to directly apply33

the ATS and WTPS methods. The empirical likelihood method has also received considerable interest in dealing with34

such problems. Chen et al. [5] and Chen and Qin [6] used it to construct the confidence interval for the mean of a35

population with excess zeros. For the two-sample case, Taylor and Pollard [25] considered a test for the means, and36

Kang et al. [13] and Wu and Yan [33] studied the construction of confidence intervals for the mean difference, by37

using the empirical likelihood.38

To borrow information across similar populations to improve the inferential results, Wang et al. [31] proposed a39

semiparametric setup for modeling the distributions Fis in (1), in which Gis are linked by the semiparametric density40

ratio model (DRM) of Anderson [1]. Under this framework, Wang et al. [31] proposed a procedure to test for41

homogeneity in distributions, i.e., F0 = · · · = Fm. They demonstrate that the proposed procedure is robust to changes42

of underlying distributions, is competitive to, and sometimes more powerful than, the existing methods. In this paper,43

we study the inference procedures for the means under the semiparametric framework of [31]. For the convenience of44

presentation, we concentrate on continuous distributions Gis whose support consists of all nonnegative real numbers.45

The proposed inference method can be similarly applied to discrete distributions Gis for count data, as discussed46

in [31].47

Let dGi(x) denote the density of Gi(x), for i ∈ {0, . . . ,m}. The DRM postulates that, for each i ∈ {0, . . . ,m},48

dGi(x) = exp{αi + β>i q(x)}dG0(x), (2)

where q(x) is a non-trivial, pre-specified, basis function of dimension d, and αis and βis are unknown parameters.49

Obviously, α0 = 0 and β0 = 0d×1 for an arbitrarily selected baseline group indexed, without loss, by 0. Here and after,50

we use bold notation for a vector or matrix. Under (1) and (2), we develop a unified framework, based on an empirical51

likelihood ratio (ELR) statistic, for making inferences on the means of multiple distributions, without having to fully52

specify their distributions. We show that the ELR statistic has a simple χ2-type limiting distribution under a general53

linear null hypothesis about the means. This result allows us to construct a new test for mean equality. Software54

implementing the proposed ELR for testing overall mean equality, with basis function q(x) = ln(x) in the DRM, has55

been developed in R language [24], and is available in [30].56

We note that testing the general linear null hypothesis about the means, considered in (3) of Section 2, is essentially57

different from testing homogeneity in distributions, i.e., F0 = · · · = Fm, considered in [31]. Note that the full models58

are the same for these two hypothesis testing problems, but the null models are distinct. Hence, different testing59

procedures are required in these two testing problems, although both testing procedures are developed by using the60

empirical likelihood ratio principle. The empirical likelihood under the null hypothesis that F0 = · · · = Fm has a61

simple form as shown in [31]. However, as demonstrated in Section 2, the empirical likelihood under the null model62

2



considered here actually involves sample selection bias problem induced by the DRM in (2) together with estimating63

equations induced by the linear null hypothesis. Unlike existing works, e.g., [4, 22, 29, 31], we no longer have a64

simple analytical form for the profile empirical likelihood or dual empirical likelihood under the general linear null65

hypothesis. This makes the theoretical derivation more subtle and complicated; see [23] and our proofs in the Online66

Supplement. Additionally, due to the non-standard mixture structure (1), the summations in the definition of the ELR67

(see Section 2) are over random numbers, i.e., the number of positive observations in each group. Hence, standard68

large-sample techniques may not be directly applicable. Despite of these above challenges, we show that the ELR69

enjoys a simple χ2-type limiting distribution.70

The structure of this paper is as follows. In Section 2, we formulate the research problem, construct the empirical71

likelihood ratio statistic, and study its asymptotic properties. Simulation results are reported in Section 3, and a72

real data set is analyzed in Section 4. Some concluding remarks are provided in Section 5. For the convenience of73

presentation, numerical implementation of the proposed ELR is discussed in Appendix A, and the form of U matrix,74

needed in regularity conditions, is defined in Appendix B. The proofs are given in the Online Supplement.75

2. Empirical likelihood inference under the DRM76

2.1. Notation and problem setup77

Let us first introduce some notation. Let ni0 and ni1 denote the (random) numbers of zero and positive observations78

for the ith group, for i ∈ {0, . . . ,m}. Define n·0 = n00 + · · · + nm0 and n·1 = n01 + · · · + nm1 the total zero and nonzero79

sample sizes, and let n = n0 + · · · + nm denote the total sample size. Without loss of generality, we use the first ni180

observations xi1, . . . , xini1 to denote the positive observations in the ith group for i ∈ {0, . . . ,m}.81

Let µ = (µ0, . . . , µm)> be the mean vector of the m + 1 groups. The main goal of this section is to develop a test82

for the following general linear hypothesis about the means83

H0 : Cµ = d, (3)

where the p × (m + 1) matrix C and p × 1 vector d have real, non-random, entries that are completely specified under84

the null hypothesis and do not depend on sample sizes. We assume that C has full row rank so that rank(C) = p, with85

p ≤ m + 1.86

We comment that formulation (3) is very flexible and includes a variety of inference problems as special cases.87

For example, when88

C =



−1 1 0 . . . 0
−1 0 1 . . . 0
...

...
...

. . .
...

−1 0 0 . . . 1


m×(m+1)

, d = 0m×1, (4)

then the hypothesis (3) becomesH∗0 : µ0 = · · · = µm. In our numerical studies, in Section 3, we focus on this special,89

though important, hypothesisH∗0 .90

2.2. Empirical likelihood ratio91

For a compact presentation, we use vector notation. Let ν = (ν0, . . . , νm)>, and θ = (θ>0 , . . . , θ
>
m)> with θi =92

(αi,β
>
i )> for i ∈ {0, . . . ,m}. Further, let ω(x; θ) =

(
ω1(x; θ1), . . . , ωm(x; θm)

)> with ωi(x; θi) = exp{αi + β>i q(x)} for93

i ∈ {0, . . . ,m}.94

Under the DRM (2) for the Gis, we can refine the definition of the means based on the pooled positive samples95

∀i∈{0,...,m} µi = (1 − νi)
∫ ∞

0
xωi(x; θi)dG0(x).
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Under the general null hypothesis H0 in (3), we have Cµ − d = 0p×1, or equivalently E0 {g(X; ν, θ)} = 0p×1, where96

X ∼ G0(x) and E0 means that the expectation is taken under G0(x), and97

g(x; ν, θ) =



g1(x; ν, θ)
...

gp(x; ν, θ)


= C



(1 − ν0)x
(1 − ν1)xω1(x; θ1)

...
(1 − νm)xωm(x; θm)


− d. (5)

Therefore, the information about the means in null hypothesis H0 can come in the form of an unbiased estimat-98

ing equation (5). For parameters estimated through unbiased estimating equations, the empirical likelihood method99

has been shown to provide an effective inference platform [21]. Based on the construction of unbiased estimating100

equation (5), we proceed to develop inference procedures using the empirical likelihood method.101

Along the lines of empirical likelihood [18], we restrict the form of baseline distribution G0 to be102

G0(x) =

m∑

i=0

ni1∑

j=1

pi j1(xi j ≤ x).

Given multiple groups of samples from (1) in which the Gis satisfy the DRM (2), the empirical log-likelihood function103

can be written as104

˜̀(ν, θ,G0) =

m∑

i=0

ln{νni0
i (1 − νi)ni1 } +

m∑

i=0

ni1∑

j=1

{αi + β>i q(xi j) + ln(pi j)}.

We always have the following set of natural constraints:105

C1 =


(ν, θ,G0) : νi ∈ (0, 1), pi j > 0,

m∑

i=0

ni1∑

j=1

pi j = 1,
m∑

i=0

ni1∑

j=1

pi j{ω(xi j, θ) − ι} = 0m×1


,

where ι denotes a vector of 1s. Under the general null hypothesis H0 in (3), we also have the following set of106

constraints:107

C2 =


(ν, θ,G0) :

m∑

i=0

ni1∑

j=1

pi jg(xi j; ν, θ) = 0p×1


.

The empirical likelihood ratio (ELR) statistic for testing the general null hypothesis given in (3) is then defined108

via109

Rn = 2
{

sup
(ν,θ,G0)∈C1

˜̀(ν, θ,G0) − sup
(ν,θ,G0)∈C1∩ C2

˜̀(ν, θ,G0)
}
. (6)

For the convenience of presentation, the numerical evaluation of Rn is discussed in Appendix A.110

2.3. Large-sample property111

In this section, we study the asymptotic distribution of the ELR statistic, Rn, for the general hypothesis testing112

problem in (3) under (1) and (2).113

Suppose that the true value of (ν>, θ>)> is (ν∗>, θ∗>)> under the null hypothesis H0. Deriving the asymptotic114

distribution of Rn relies on the following regularity conditions:115

R1. ν∗i ∈ (0, 1) for all i ∈ {0, . . . ,m}.116

R2. limmin(n0,...,nm)→∞ ni/n→ ρ∗i , where ρ∗i ∈ (0, 1) for all i ∈ {0, . . . ,m}.117

R3.
∫ (

1,q>(x)
)> (

1,q>(x)
)

dGi(x) exists and is positive definite for all i ∈ {0, . . . ,m}.118
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R4.
∫

exp{β>i q(x)}dGi(x) < ∞ in a neighborhood of β∗i , where β∗i is the true value of βi under the null hypothesis119

H0, for all i ∈ {0, . . . ,m}.120

R5. The matrix U defined in (B.1), in Appendix B, is positive definite.121

R6.
∥∥∥∂g(x; ν, θ)/∂η

∥∥∥ and ‖g(x; ν, θ)‖3 are bounded by some integrable function of x with respect to G0(x) in a neigh-122

borhood of (ν∗>, θ∗>)>, where η = (ν>, θ>)> and ‖ · ‖ denotes Euclidean norm.123

Condition R1 states that the parameter ν∗ is an interior point of the parameter space of ν. Condition R2 assumes124

that the ratio of each group’s sample size over n converges to a constant as min(n0, . . . , nm)→ ∞. For simplicity, and125

convenience of presentation, we write ρ∗i = ni/n and assume that it is a constant. This does not affect our technical126

development. Under Conditions R1 and R2, there is no need to distinguish the stochastic orders with respect to n or127

ni. Condition R3 is an identifiability condition, and it ensures that the components of (1,q>(x)1(x > 0)) are linearly128

independent under all Gi(x)s. Conditions R3–R6 guarantee that a quadratic approximation of Rn is applicable.129

The following theorem defines the asymptotic null distribution of Rn under the general null hypothesisH0 in (3).130

Theorem 1. Suppose we have m + 1 groups of samples of the form (1) and condition (2) is satisfied. Assume, also,131

that the regularity conditions R1–R6 hold. Under the null hypothesis H0, given in (3), we have Rn  χ2
p as n → ∞,132

where χ2
p is a chi-squared random variable with p degrees of freedom, and p = rank(C) for some full rank C inH0.133

For convenience of presentation, proof of Theorem 1 is given in the Online Supplement. Here we make three134

remarks about Theorem 1.135

(a) As a direct consequence of Theorem 1, the ELR test for the overall equality of m + 1 group means, H∗0 , has a136

limiting chi-squared distribution with m degrees of freedom, since the rank of C in (4) is m.137

(b) The mean differences and ratios are two quantities commonly used to measure the magnitudes of relative dif-138

ferences among the group means. The result of Theorem 1 is also useful for the construction of confidence139

intervals, or regions, for the mean differences and ratios. As an illustration, suppose we are interested in con-140

structing a confidence interval for the mean difference δ = µ1 − µ0 in the two-sample problem. The unbiased141

estimating equation (5) can be replaced by142

d(x; ν, θ, δ) = (1 − ν1)xω1(x; θ1) − (1 − ν0)x − δ.
Then, the ELR, defined in (6), becomes a function of δ, since this parameter δ is incorporated through d(x; ν, θ, δ)143

in the constraint set C2. We denote it as Rn(δ). It follows that the 95% ELR confidence interval for δ can be144

constructed as {δ : Rn(δ) ≤ χ2
1,0.95}, where χ2

1,0.95 denotes the 95th quantile of the χ2
1 distribution.145

(c) A Wald-type statistic may also be constructed based on the normal approximation to (ν̂, θ̂) defined in Appendix146

A. However, such a statistic is not invariant to transformations [8]. For example, mean differences and mean147

ratios are two different nonlinear transformations of (ν, θ). The Wald-type statistics for testing mean ratios equal148

to one, and for testing mean differences equal to zero, could lead to two different conclusions.149

3. Simulation studies150

In this section, we use Monte Carlo simulations to evaluate the finite-sample performance of the proposed ELR151

test for testing the overall mean equality, that is an important case covered by the hypothesis testing problem (3). The152

ELR test statistic is calculated by the procedure discussed in Appendix A with the forms of C and d given in (4).153

We fix the number of groups under comparison to be m + 1 = 2 or m + 1 = 3. We compare the type I error rates154

and the power of the proposed ELR test with the ATS of [3] and WTPS of [19]. Note that the classical ANOVA F-test155

is designed for the case that the variances of Fi are homogenous, which may not be satisfied in our setup. Recall that156

both the ATS and WTPS do not require such an assumption. Hence in our comparison, we only include the ATS and157

WTPS.158

For each test, the type I error rate and the power at the 5% significance level are calculated based on 10,000 and159

2000 repetitions, respectively. The computations for the ATS and WTPS methods use the R package “GFD” [10].160
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Following the suggestion in [19], we use 10,000 permutation samples (the default number in “GFD”) to calculate the161

type I error rate and the power of the WTPS.162

The random observations are generated, conditional on all ν̂is , 0 or 1, from (1) with all the Gis being log-normal,163

or all the Gis being Gamma distributions. Note that if any ν̂is equals 0 or 1, then some test statistics may not be well164

defined. This is not a problem in practice. In the following, we useLN(ai, bi) to denote a log-normal distribution with165

mean ai and variance bi both with respect to the log scale (i.e., mean and variance of the associated normal random166

variable), and GAM(ai, bi) to denote a Gamma distribution with shape parameter ai and scale parameter bi.167

The parameter settings under the null hypothesis (LN1–LN6 and GAM1–GAM6) that all the means are equal, and168

the alternative hypothesis (LN7–LN15 and GAM7–GAM15) are given in Table 1. Note that in the following we use the169

same model notation for two- and three-sample comparisons when no confusion is caused. We consider the case with170

equal sample sizes by setting (n0, n1) to be (50, 50) and (100, 100) for the two-sample comparison, and (n0, n1, n2) to be171

(50, 50, 50) and (100, 100, 100) for the three-sample comparison. We also consider the case with unequal sample sizes172

by setting (n0, n1) to be (50, 150) and (150, 50) for the two-sample comparison, and (n0, n1, n2) to be (50, 150, 100)173

and (150, 50, 100) for the three-sample comparison. With the parameter settings in Table 1, these combinations of174

unequal sample sizes correspond to two cases where increasing the sample sizes is related with increasing variances175

(positive pairing) or with decreasing variances (negative pairing).176

To evaluate the performance of the ELR test with respect to the choices of user-specified basis function q(x) in a177

DRM, we consider the following three scenarios that may be encountered in practice:178

Scenario I: All the distributions Gis are homogenous, and thus any basis function is correctly specified under179

the models LN1, LN2, LN7–LN9, and GAM1, GAM2, GAM7–GAM9.180

Table 1: Parameter settings for simulation studies. In the second column, each LN1–LN15 and each GAM1–GAM15 denote mixture
models whose continuous parts follow the distributions LN(ai, bi) and GAM(ai, bi), respectively, for i ∈ {0, 1} under two-sample
comparison, or for i ∈ {0, 1, 2} under three-sample comparison.

Scenario Model (ν0, ν1, ν2) (a0, a1, a2) (b0, b1, b2) Means Variances

I (null) LN1 (0.3, 0.3, 0.3) (0.00, 0.00, 0.00) (1.00, 1.00, 1.00) (1.15, 1.15, 1.15) (3.84, 3.84, 3.84)
LN2 (0.7, 0.7, 0.7) (0.00, 0.00, 0.00) (1.00, 1.00, 1.00) (0.49, 0.49, 0.49) (1.97, 1.97, 1.97)

II (null) LN3 (0.3, 0.5, 0.4) (0.33, 0.66, 0.48) (1.00, 1.00, 1.00) (1.60 ,1.60, 1.60) (7.38, 11.36, 9.04)
LN4 (0.5, 0.7, 0.6) (0.37, 0.89, 0.60) (1.00, 1.00, 1.00) (1.20, 1.20, 1.20) (6.39, 11.61, 8.35)

III (null) LN5 (0.3, 0.5, 0.4) (0.05, 0.29, 0.16) (0.80, 1.00, 0.90) (1.10, 1.10, 1.10) (2.64, 5.37, 3.75)
LN6 (0.5, 0.7, 0.6) (0.00, 0.50, 0.25) (0.94, 0.96, 0.89) (0.80, 0.80, 0.80) (2.64, 4.94, 3.24)

I (alternative) LN7 (0.5, 0.3, 0.4) (0.00, 0.00, 0.00) (1.00, 1.00, 1.00) (0.82, 1.15, 0.99) (3.01, 3.84, 3.45)
LN8 (0.7, 0.5, 0.6) (0.00, 0.00, 0.00) (1.00, 1.00, 1.00) (0.49, 0.82, 0.66) (1.97, 3.01, 2.52)
LN9 (0.6, 0.4, 0.5) (0.00, 0.00, 0.00) (1.00, 1.00, 1.00) (0.66, 0.99, 0.82) (2.52, 3.45, 3.01)

II (alternative) LN10 (0.3, 0.3, 0.3) (0.00, 0.50, 0.25) (1.00, 1.00, 1.00) (1.15, 1.90, 1.48) (3.84, 10.44, 6.33)
LN11 (0.7, 0.7, 0.7) (0.00, 0.75, 0.50) (1.00, 1.00, 1.00) (0.49, 1.05, 0.82) (1.97, 8.84, 5.36)
LN12 (0.4, 0.6, 0.5) (0.00, 1.00, 0.50) (1.00, 1.00, 1.00) (0.99, 1.79, 1.36) (3.45, 18.63, 8.20)

III (alternative) LN13 (0.3, 0.3, 0.3) (0.00, 0.50, 0.25) (1.00, 0.80, 0.90) (1.15, 1.72, 1.41) (3.84, 6.46, 4.99)
LN14 (0.7, 0.7, 0.7) (0.00, 0.75, 0.50) (1.00, 0.80, 0.90) (0.49, 0.95, 0.78) (1.97, 5.76, 4.33)
LN15 (0.6, 0.4, 0.5) (0.00, 0.50, 0.25) (1.00, 0.60, 0.80) (0.66, 1.34, 0.96) (2.52, 3.63, 3.17)

I (null) GAM1 (0.3, 0.3, 0.3) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (0.70, 0.70, 0.70) (0.91, 0.91, 0.91)
GAM2 (0.7, 0.7, 0.7) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (0.30, 0.30, 0.30) (0.51, 0.51, 0.51)

II (null) GAM3 (0.3, 0.5, 0.4) (1.43, 2.00, 1.67) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (1.43, 2.00, 1.67)
GAM4 (0.5, 0.7, 0.6) (2.00, 3.33, 2.50) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (2.00, 3.33, 2.50)

III (null) GAM5 (0.3, 0.5, 0.4) (1.71, 1.20, 1.33) (1.00, 2.00, 1.50) (1.20, 1.20, 1.20) (1.82, 3.84, 2.76)
GAM6 (0.5, 0.7, 0.6) (2.00, 1.50, 1.75) (1.00, 2.22, 1.43) (1.00, 1.00, 1.00) (2.00, 4.56, 2.93)

I (alternative) GAM7 (0.5, 0.3, 0.4) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (0.50, 0.70, 0.60) (0.75, 0.91, 0.84)
GAM8 (0.7, 0.5, 0.6) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (0.30, 0.50, 0.40) (0.51, 0.75, 0.64)
GAM9 (0.6, 0.4, 0.5) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (0.40, 0.60, 0.50) (0.64, 0.84, 0.75)

II (alternative) GAM10 (0.3, 0.3, 0.3) (1.00, 2.00, 1.50) (1.00, 1.00, 1.00) (0.70, 1.40, 1.05) (0.91, 2.24, 1.52)
GAM11 (0.7, 0.7, 0.7) (1.00, 2.00, 1.50) (1.00, 1.00, 1.00) (0.30, 0.60, 0.45) (0.51, 1.44, 0.92)
GAM12 (0.4, 0.6, 0.5) (1.00, 2.50, 1.50) (1.00, 1.00, 1.00) (0.60, 1.00, 0.75) (0.84, 2.50, 1.31)

III (alternative) GAM13 (0.3, 0.3, 0.3) (1.50, 1.00, 1.25) (1.00, 2.00, 1.50) (1.05, 1.40, 1.31) (1.52, 3.64, 2.71)
GAM14 (0.7, 0.7, 0.7) (1.75, 1.25, 1.50) (1.00, 2.00, 1.50) (0.53, 0.75, 0.68) (1.17, 2.81, 2.08)
GAM15 (0.6, 0.4, 0.5) (2.00, 1.00, 1.50) (1.00, 2.00, 1.50) (0.80, 1.20, 1.13) (1.76, 3.36, 2.95)
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Scenario II: The parameters ais are not equal while the parameters bis are held constant, and thus the basis181

function q(x) = ln(x) is correctly specified under the models LN3, LN4, LN10–LN12, and GAM3, GAM4,182

GAM10–GAM12.183

Scenario III: All the parameters ais and bis are not equal, and thus the basis function q(x) = (ln(x), ln2(x))>184

is correctly specified under the LN models LN5, LN6, LN13–LN15, and the basis function q(x) = (x, ln(x))> is185

correctly specified under the GAM models GAM5, GAM6, GAM13–GAM15.186

In the following comparisons, the simulation results are discussed by the above three scenarios.187

3.1. Scenario I188

The simulated type I error rates of the ELR, ATS, and WTPS under Scenario I are summarized in Tables 2–3, and189

the simulated power under the same scenario are plotted in Figure 1. Here, the DRM (2) is correctly specified with any190

form of q(x). After experimenting with several forms of q(x), the basis function q(x) = ln(x) is recommended since191

the ELR with such basis function has the most accurate type I error and the largest power. Hence, we only present the192

results under the basis function q(x) = ln(x).193

Table 2: Scenario I: Simulated probabilities (%) of rejectingH∗0 at 5% significance level when data are generated from log-normal
mixture models according to the parameter settings given in Table 1. Here the ELR is defined under basis function q(x) = ln(x).

Model Two-sample Comparison Three-sample Comparison

(n0, n1) ELR ATS WTPS (n0, n1, n2) ELR ATS WTPS

LN1 (50, 50) 5.10 4.05 4.85 (50, 50, 50) 5.01 3.03 4.97
(100, 100) 4.83 4.84 5.15 (100, 100, 100) 5.10 3.77 4.75
(50, 150) 5.10 5.85 4.92 (50, 150, 100) 5.01 5.00 5.06
(150, 50) 4.94 5.91 4.84 (150, 50, 100) 5.14 4.75 5.08

LN2 (50, 50) 4.96 3.68 5.01 (50, 50, 50) 4.77 2.45 5.13
(100, 100) 5.07 4.04 4.73 (100, 100, 100) 4.87 3.01 4.98
(50, 150) 4.74 5.78 3.99 (50, 150, 100) 5.20 4.67 4.97
(150, 50) 4.77 6.15 4.25 (150, 50, 100) 5.15 4.79 5.02

* NOTE: The Monte Carlo error is 0.218 (%) under the null models LN1–LN2.

Based on our simulation results, our major observations for both the two- and three-sample comparisons are194

summarized as follows.195

(a) It can be seen from the results in Tables 2–3, that the proposed ELR test and the WTPS method well control196

the type I error rates close to their nominal level. However, the ATS method tends to be conservative for equal197

sample sizes; and when the sample sizes are unequal it tends to be liberal for the two-sample comparisons.198

Table 3: Scenario I: Simulated probabilities (%) of rejecting H∗0 at 5% significance level when data are generated from Gamma
mixture models according to the parameter settings given in Table 1. Here the ELR is defined under basis function q(x) = ln(x).

Model Two-sample Comparison Three-sample Comparison

(n0, n1) ELR ATS WTPS (n0, n1, n2) ELR ATS WTPS

GAM1 (50, 50) 5.16 4.68 4.82 (50, 50, 50) 5.47 4.34 4.99
(100, 100) 4.98 4.56 4.84 (100, 100, 100) 5.17 4.62 5.09
(50, 150) 4.83 5.89 5.18 (50, 150, 100) 5.28 4.82 4.94
(150, 50) 5.13 5.74 5.08 (150, 50, 100) 5.32 5.11 5.07

GAM2 (50, 50) 5.28 4.50 4.99 (50, 50, 50) 5.22 3.20 4.84
(100, 100) 5.02 4.94 5.16 (100, 100, 100) 5.10 4.15 5.15
(50, 150) 5.28 6.06 4.74 (50, 150, 100) 5.14 5.30 4.78
(150, 50) 5.06 6.12 4.88 (150, 50, 100) 5.18 5.15 4.97

* NOTE: The Monte Carlo error is 0.218 (%) under the null models GAM1–GAM2.
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Figure 1: Scenario I: Simulated power (%) of rejectingH∗0 at 5% significance level when data are generated from log-normal mixture
models or Gamma mixture models with parameter settings given in Table 1. The ELR test is defined under q(x) = ln(x). The
horizontal axis denotes combinations of sample sizes (n0, n1) equal to (50, 50), (100, 100), (50, 150) and (150, 50) for two-sample
comparisons; and (n0, n1, n2) equal to (50, 50, 50), (100, 100, 100), (50, 150, 100) and (150, 50, 100) for three-sample comparisons,
from left to right.

(b) In terms of power, it can be observed from Figure 1, that the performance of the proposed ELR test seems to199

be less sensitive to the sample sizes than the other two tests. Although there is no uniformly dominant method200

for all the settings in Figure 1, the ELR test seems to be the most powerful for equal sample sizes and unequal201

sample sizes with a negative pairing. For the unequal sample sizes with positive pairing, the WTPS method202
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may have some advantage over the ELR test for the LN models, and thus it may be favorable in this scenario,203

while recalling that the ATS method may have inflated type I error.204

3.2. Scenario II205

The simulated type I error rates for Scenario II are summarized in Tables 4–5, and the simulated power for Scenario206

II are plotted in Figure 2.207

Table 4: Scenario II: Simulated probabilities (%) of rejectingH∗0 at 5% significance level when data are generated from log-normal
mixture models according to the parameter settings given in Table 1. Here the ELR is defined under basis function q(x) = ln(x).

Model Two-sample Comparison Three-sample Comparison

(n0, n1) ELR ATS WTPS (n0, n1, n2) ELR ATS WTPS

LN3 (50, 50) 5.27 4.26 5.08 (50, 50, 50) 5.01 3.29 4.97
(100, 100) 5.12 5.31 5.74 (100, 100, 100) 5.19 3.74 5.08
(50, 150) 5.13 5.48 4.32 (50, 150, 100) 5.37 4.17 4.37
(150, 50) 5.11 7.37 6.22 (150, 50, 100) 5.28 6.27 6.51

LN4 (50, 50) 5.19 5.16 5.53 (50, 50, 50) 5.10 3.60 4.87
(100, 100) 5.34 4.89 5.42 (100, 100, 100) 5.41 3.85 5.79
(50, 150) 5.42 4.82 3.06 (50, 150, 100) 5.23 3.61 3.67
(150, 50) 5.36 8.88 7.52 (150, 50, 100) 5.47 7.18 7.67

* NOTE: The Monte Carlo error is 0.218 (%) under the null models LN3–LN4.

Table 5: Scenario II: Simulated probabilities (%) of rejecting H∗0 at 5% significance level when data are generated from Gamma
mixture models according to the parameter settings given in Table 1. Here the ELR is defined under basis function q(x) = ln(x).

Model Two-sample Comparison Three-sample Comparison

(n0, n1) ELR ATS WTPS (n0, n1, n2) ELR ATS WTPS

GAM3 (50, 50) 5.00 4.64 4.83 (50, 50, 50) 5.36 4.41 4.96
(100, 100) 4.84 4.57 4.69 (100, 100, 100) 5.16 4.79 5.10
(50, 150) 5.03 5.60 5.14 (50, 150, 100) 4.91 4.84 4.85
(150, 50) 5.11 5.43 5.16 (150, 50, 100) 5.09 5.10 4.83

GAM4 (50, 50) 5.10 5.21 5.39 (50, 50, 50) 5.04 4.29 4.91
(100, 100) 5.28 5.26 5.33 (100, 100, 100) 5.25 4.82 5.10
(50, 150) 5.16 5.02 4.38 (50, 150, 100) 5.30 4.84 4.69
(150, 50) 4.92 6.05 5.58 (150, 50, 100) 4.93 5.65 5.29

* NOTE: The Monte Carlo error is 0.218 (%) under the null models GAM3–GAM4.

Based on our simulation results, our major observations for both the two- and three-sample comparisons are208

summarized as follows.209

(c) In terms of type I error control, it can be seen from the results in Tables 4–5, that the ELR test under q(x) = ln(x)210

always retains error rates close to the nominal level, and the results seem insensitive to whether sample sizes are211

equal or not. On the other hand, the type I error rates of both ATS and WTPS methods seem to be sensitive to212

whether the sample sizes are equal or not. For equal sample sizes, both ATS and WTPS methods control the type213

I error satisfactory, although the ATS method may be conservative in some settings. For unequal sample sizes214

with positive pairing, both the ATS and WTPS methods are conservative in their type I error rates; however,215

with the negative pairing, they tend to have inflated type I error rates, particularly for the LN models.216

(d) In terms of power, it can be observed from Figure 2, that the performance of the proposed ELR test is, again, not217

as sensitive to unequal sample sizes as the other two tests. Further, in all the settings in Figure 2, the ELR test is218

the most, or one of the most, powerful tests, for both the equal and unequal sample sizes under comparisons. In219

some special cases, the gain in power could be over 50%. Together with the observations from the type I error220

rates, the proposed ELR test under q(x) = ln(x) is much preferred in this scenario.221

9



30
40

50
60

70
80

LN10 :  two-sample comparison

Sample sizes

P
ow

er
s 

(%
)

50 100 pos neg

10
20

30
40

50
60

LN11 :  two-sample comparison

Sample sizes

P
ow

er
s 

(%
)

50 100 pos neg

10
20

30
40

50
60

LN12 :  two-sample comparison

Sample sizes

P
ow

er
s 

(%
)

50 100 pos neg

20
30

40
50

60

LN10 :  three-sample comparison

Sample sizes

P
ow

er
s 

(%
)

50 100 pos neg

10
20

30
40

50

LN11 :  three-sample comparison

Sample sizes

P
ow

er
s 

(%
)

50 100 pos neg

10
20

30
40

50

LN12 :  three-sample comparison

Sample sizes

P
ow

er
s 

(%
)

50 100 pos neg

80
85

90
95

GAM10 :  two-sample comparison

Sample sizes

P
ow

er
s 

(%
)

50 100 pos neg

30
40

50
60

70

GAM11 :  two-sample comparison

Sample sizes

P
ow

er
s 

(%
)

50 100 pos neg

30
40

50
60

70

GAM12 :  two-sample comparison

Sample sizes

P
ow

er
s 

(%
)

50 100 pos neg

70
80

90
10
0

GAM10 :  three-sample comparison

Sample sizes

P
ow

er
s 

(%
)

50 100 pos neg

20
30

40
50

60

GAM11 :  three-sample comparison

Sample sizes

P
ow

er
s 

(%
)

50 100 pos neg

20
30

40
50

60

GAM12 :  three-sample comparison

Sample sizes

P
ow

er
s 

(%
)

50 100 pos neg

ELR ATS WTPS

Figure 2: Scenario II: Simulated power (%) of rejecting H∗0 at 5% significance level when data are generated from log-normal
mixture models or Gamma mixture models with parameter settings given in Table 1. The ELR test is defined under q(x) =

ln(x). The horizontal axis denotes combinations of sample sizes (n0, n1) equal to (50, 50), (100, 100), (50, 150) and (150, 50) for
two-sample comparisons; and (n0, n1, n2) equal to (50, 50, 50), (100, 100, 100), (50, 150, 100) and (150, 50, 100) for three-sample
comparisons, from left to right.
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3.3. Scenario III222

The simulated type I error rates for Scenario III are summarized in Tables 6–7, and the simulated power for223

Scenario III are plotted in Figure 3.224

Table 6: Scenario III: Simulated probabilities (%) of rejecting H∗0 at 5% significance level when data are generated from log-
normal mixture models according to the parameter settings given in Table 1. Here the ELR is defined under basis function q(x) =

(ln(x), ln2(x))>.

Model Two-sample Comparison Three-sample Comparison

(n0, n1) ELR ATS WTPS (n0, n1, n2) ELR ATS WTPS

LN5 (50, 50) 6.00 4.97 5.53 (50, 50, 50) 5.82 3.89 5.89
(100, 100) 5.64 5.17 5.49 (100, 100, 100) 5.44 4.11 5.41
(50, 150) 5.28 4.49 3.31 (50, 150, 100) 4.93 3.58 3.68
(150, 50) 6.05 8.11 7.16 (150, 50, 100) 5.91 6.16 6.40

LN6 (50, 50) 5.68 4.74 5.57 (50, 50, 50) 5.36 3.43 5.33
(100, 100) 5.48 5.22 5.79 (100, 100, 100) 5.33 3.90 5.62
(50, 150) 4.91 4.70 3.10 (50, 150, 100) 5.23 3.85 3.73
(150, 50) 5.79 8.19 6.72 (150, 50, 100) 6.10 7.24 7.08

* NOTE: The Monte Carlo error is 0.218 (%) under the null models LN5–LN6.

Table 7: Scenario III: Simulated probabilities (%) of rejecting H∗0 at 5% significance level when data are generated from Gamma
mixture models according to the parameter settings given in Table 1. Here the ELR is defined under basis function q(x) =

{x, ln(x)}>.

Model Two-sample Comparison Three-sample Comparison

(n0, n1) ELR ATS WTPS (n0, n1, n2) ELR ATS WTPS

GAM5 (50, 50) 5.86 5.18 5.29 (50, 50, 50) 5.76 4.75 5.44
(100, 100) 5.40 4.92 5.03 (100, 100, 100) 5.21 4.61 4.85
(50, 150) 5.15 4.92 4.17 (50, 150, 100) 5.20 4.69 4.32
(150, 50) 5.76 6.20 6.01 (150, 50, 100) 5.59 5.96 5.83

GAM6 (50, 50) 5.91 5.46 5.63 (50, 50, 50) 5.93 4.60 5.53
(100, 100) 5.82 5.51 5.61 (100, 100, 100) 5.46 4.99 5.50
(50, 150) 5.42 4.96 3.90 (50, 150, 100) 5.22 4.45 4.02
(150, 50) 6.24 7.15 6.67 (150, 50, 100) 5.83 6.96 6.53

* NOTE: The Monte Carlo error is 0.218 (%) under the null models GAM5–GAM6.

Based on our simulation results, our major observations for both two-sample and three-sample comparisons are225

summarized as follows.226

(e) In terms of type I error control, it can be seen from the results in Tables 6–7 that the ELR test, under basis227

functions q(x) = (ln(x), ln2(x))> for LN models, or q(x) = (x, ln(x))> for GAM models, may fail to keep the228

error under control, except for the unequal sample sizes with positive pairing. In this scenario, the WTPS229

method may also lead to inflated type I error rates in some settings. On the other hand, the ATS method seems230

to have overall good control of the type I error, except for the case of unequal sample sizes with negative231

pairing. Indeed, when the sample sizes are unequal with negative pairing, all three methods under comparison232

lead to inflated type I error rates. In general, for the cases of equal sample sizes and unequal sample sizes233

with positive pairing, the ATS is a suitable testing method in this scenario. In this scenario with more complex234

data distributions, the ELR and WTPS methods seem to need larger sample sizes than those considered to give235

adequate approximations.236

(f) In terms of power, it can be observed from Figure 3 that the ATS method still has consistent performance in the237

settings of equal sample sizes and unequal sample sizes with positive pairing. However, keep in mind that the238

ELR and WTPS methods both may fail to control the type I error rates. Therefore, no fair comparison can be239

made with ELR and WTPS methods.240
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Figure 3: Scenario III: Simulated power (%) of rejecting H∗0 at 5% significance level when data are generated from log-normal
mixture models or Gamma mixture models with parameter settings given in Table 1. The ELR test is defined under q(x) =

(ln(x), ln2(x))>. The horizontal axis denotes combinations of sample sizes (n0, n1) equal to (50, 50), (100, 100), (50, 150) and
(150, 50) for two-sample comparisons; and (n0, n1, n2) equal to (50, 50, 50), (100, 100, 100), (50, 150, 100) and (150, 50, 100) for
three-sample comparisons, from left to right.

In summary, for testing mean equality in the three scenarios considered, the proposed ELR test is robust to the241

assumption of parametric models that generate the data. The ELR test generally performs best in Scenario II with basis242

function q(x) = ln(x) correctly specified in a DRM. As we may expect, the failure of selecting an appropriate form243

of q(x) in a DRM may affect the control of type I error of the ELR test in some settings, and potential convergence244
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problems in computation can also be an issue.245

In our simulation studies, the numerical procedure for calculating ELR, discussed in Appendix A, converges246

fast and is in general not sensitive to the selection of initial values when the basis function q(x) = ln(x) is used247

in Scenarios I and II. However, when the basis function of increasing dimension are specified in Scenario III, we248

found that the computation may not be very stable and a good choice of initial value can be helpful. Besides, in our249

experience, the ELR with correctly specified basis function is also important for convergence in Scenarios II and III.250

In practice, a comprehensive DRM selection strategy, as described in [9], would be encouraged at a preliminary251

stage of data analysis. The performance of Akaike’s information criterion (AIC) was evaluated in [9], and was shown252

to be robust for moderate sample sizes. We comment that such a preliminary DRM selection procedure is not too253

restrictive. Given the difficulty in identifying a suitable parametric model for many practical situations, the proposed254

ELR test can be an attractive and robust semiparametric alternative approach.255

Combining the conclusions of our simulation results and numerical experience, we recommend using the ELR test256

when the basis function q(x) = ln(x) is selected in the DRM.257

We also comment that for the three-sample comparisons, the unequal sample sizes combinations presented in this258

section correspond to two extreme cases that are perfectly positive, or negative, pairing with the unequal variances.259

For these cases with positive and negative paring, the findings for ATS and WTPS methods are consistent with those260

in [28] and [19]. We do not report all possible patterns of unequal sample sizes and variances combinations in261

simulation. For other combinations that are somewhat in between those reported, the pattern of results do not exhibit262

large difference from those reported. In general, the ELR test has been observed to be robust against unequal sample263

sizes when compared with the ATS and WTPS methods. In the next section, we examine a real data example in which264

the relation between sample sizes and variances are not dramatically positively or negatively paired.265

4. An illustrative real data example266

In this section, we analyze a real data set from Koopmans [15, p. 107]. It arises in a biological study of the267

seasonal activity patterns of a species of field mice. The measurements are the average distances (in meters) travelled268

between captures by those mice at least twice in a given month. One of the objectives in this study is to discover if269

the mean measurements differ between the four seasons. In addition to the continuous positive measurements, there270

are substantial proportions of zero values, especially in the fall and winter data. Some summary statistics are:271

X the sample estimate of ν> is (0.18, 0.11, 0.37, 0.29) with sample sizes (17, 27, 27, 34);272

X the sample means are (26.94, 30.81, 13.04, 15.03);273

X the sample variances are (679.31, 1118.93, 178.88, 293.54).274

As discussed in Section 3, we need to select a basis function q(x) in a DRM that provides a reasonable fit to this275

data. We apply the AIC, discussed in [9], to select a basis function in the DRM for the positive data in this example.276

The results are given in Table 8. It can be seen that the DRM with q(x) = ln(x) has the smallest AIC among five277

commonly used basis functions, and hence it is recommended in this example. Furthermore, we have also applied278

the ELR test for homogeneity in distributions developed in [31] to this real data set; their bootstrap ELR test for279

homogeneity based on q(x) = ln(x) gives a p-value of 0.0402, with 10, 000 times bootstrap resampling. With this280

preliminary data analysis, it seems reasonable to categorize this real data example into the Scenario II considered in281

Section 3.2.282

Table 8: AIC for five commonly used basis functions q(x) in a DRM for the positive field mice data.

q(x) ln(x) x (ln(x), ln2(x))> (x, ln(x))> (x, ln(x), ln2(x))>
AIC 219.63 220.45 224.19 224.05 228.86
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Table 9: Fitted parameters for log-normal mixture models and Gamma mixture models under the null and alternative hypotheses
for field mice data. The models LN16 and GAM16 are fitted under the null hypothesis; and the models LN17 and GAM17 are fitted
under the alternative hypothesis. The last two columns are the means and variances corresponding to each model.

Model (ν0, ν1, ν2, ν3) (a0, a1, a2, a3) (b0, b1, b2, b3) Means Variances

LN16 (0.28, 0.21, 0.28, 0.23) (3.11, 3.03, 3.12, 3.05) (0.41, 0.41, 0.41, 0.41) (19.95, 19.95, 19.95, 19.95) (430.69, 362.72, 433.63, 376.22)

LN17 (0.18, 0.11, 0.37, 0.29) (3.29, 3.25, 2.91, 2.87) (0.37, 0.37, 0.37, 0.37) (26.68, 27.49, 13.84, 14.99) (539.26, 474.92, 248.75, 235.92)

GAM16 (0.27, 0.20, 0.28, 0.23) (2.32, 2.13, 2.35, 2.20) (12.22, 12.22, 12.22, 12.22) (20.68, 20.68, 20.68, 20.68) (410.53, 362.76, 417.95, 381.00)

GAM17 (0.18, 0.11, 0.37, 0.29) (2.88, 2.77, 2.10, 2.04) (11.24, 11.24, 11.24, 11.24) (26.65, 27.67, 14.87, 16.22) (451.68, 406.71, 297.12, 291.97)

We further fit this data by log-normal mixture models and Gamma mixture models, under the null and alternative283

hypotheses, by the parametric maximum likelihood method. Here the null hypothesis is that the means of measure-284

ments for all four seasons are the same. The details are provided in Table 9. These fitted models will be used in our285

confirmative simulation later on.286

We then applied the proposed ELR test, and other testing methods discussed in Section 3, for the mean equality in287

this real data. The observed test statistics and their corresponding p-values are reported in Table 10.288

Table 10: Test statistics, corresponding p-values, and confirmative simulation for field mice data. The ELR test is under basis
function q(x) = ln(x) in a DRM.

Pair Method Field Mice Data Confirmative Simulation

Test statistic p-value LN16 LN17 GAM16 GAM17

All four seasons ELR 12.40 0.00613 5.20 86.36 5.21 79.11
ATS 3.17 0.0435 3.92 68.11 3.99 62.07
WTPS 9.71 0.0388 4.83 76.58 4.67 66.88

Spring vs. Autumn ELR 5.65 0.0175 5.05 59.35 5.29 53.19
ATS 4.15 0.0542 4.36 47.32 4.61 42.50
WTPS 4.15 0.0431 4.56 49.07 4.61 43.05

Spring vs. Winter ELR 4.95 0.0261 4.91 57.24 5.23 45.97
ATS 2.92 0.1009 4.69 42.15 4.90 34.24
WTPS 2.92 0.0991 4.62 43.61 4.80 34.56

Summer vs. Autumn ELR 6.56 0.0105 5.16 79.56 5.29 74.43
ATS 6.58 0.0149 4.40 74.16 4.72 68.31
WTPS 6.58 0.0071 4.88 74.92 4.91 68.41

Summer vs. Winter ELR 6.62 0.0101 5.37 78.91 5.31 70.61
ATS 4.98 0.0319 4.50 71.83 4.77 62.69
WTPS 4.98 0.0262 4.80 72.96 4.92 62.91

From the results in Table 10, the proposed ELR test as well as the other two tests all produce significant p-values289

at 5% significance level. It is worth emphasizing that the proposed ELR test provides the strongest evidence in290

terms of its p-value. Therefore, a natural followup concern is to detect any potential pairwise mean differences. We291

further test for the two-sample mean equality for six pairwise combinations of this data. The testing results for the292

significant pairs are given in Table 10. We particularly highlight one pairwise comparison, that is, Spring vs. Winter.293

The proposed ELR test in this two-sample mean comparison gives a significant p-value of 0.0261 at 5% significance294

level. In comparison, both the ATS and WTPS methods fail to detect the mean difference for this particular pair at 5%295

significance level.296

These results may be further verified by the simulation according to model settings in Table 9. The simulation re-297

sults based on 10,000 repetitions are summarized in Table 10. It can be seen that all the simulation results demonstrate298

very good agreement with our real data analysis.299
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5. Concluding remarks300

In this paper, we discussed the problem of making statistical inferences on the means of multiple distributions301

with excess zero observations. Under the semiparametric framework developed in [31], we proposed an ELR statistic302

and derived its limiting distribution under a fairly general linear null hypothesis about the means. We illustrated the303

good behaviour of the proposed ELR in finite sample simulation studies, and also with a real data example, where304

the emphasis was on testing mean equality. In particular, we identified a scenario, where the ELR showed a clear305

advantage, when q(x) = ln(x) is the correctly specified basis function in the DRM, compared with other existing tests306

for mean equality.307

It would be interesting to further consider the model selection problem for density ratios, and to approximate the308

power function of the test by exploring the limiting distribution of the ELR statistic under an alternative. We leave this309

for future work. The proposed ELR based inference framework on the means can also be extended to more general310

settings. For example, given that we have prior knowledge that all, or part of, the group means are equal [11, 12, 26],311

then the proposed framework can be used to obtain refined inference results.312
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Appendix A. Numerical implementation321

In this Appendix, we discuss numerical calculation of Rn, defined in (6), for some given C and d. In what follows,322

Im denotes a m × m unit diagonal matrix, and ι denotes a vector with all entries being 1.323

We first discuss how to calculate sup(ν,θ,G0)∈C1
˜̀(ν, θ,G0) in Rn. Note that the optimization problem of maximizing324

˜̀(ν, θ,G0) subject to C1 for given (ν, θ) is identical to the one discussed in [31]. Following a similar profiling procedure325

as used in [21] and the results of [4, 14] on the dual empirical log-likelihood, we have326

sup
(ν,θ,G0)∈C1

˜̀(ν, θ,G0) = sup
(ν,θ)

`A(ν, θ) − n·1 ln(n·1), (A.1)

where327

`A(ν, θ) =

m∑

i=0

ln{νni0
i (1 − νi)ni1 } +

m∑

i=1

ni1∑

j=1

{αi + β>i q(xi j)} −
m∑

i=0

ni1∑

j=1

ln

ρ0 +

m∑

r=1

ρr exp{αr + β>r q(xi j)}
 ,

with ρr = nr1/n·1 for r ∈ {0, . . . ,m}. The numerical calculation of (ν̂, θ̂) = arg max(ν,θ) `A(ν, θ) and `A(ν̂, θ̂) =328

sup(ν,θ) `A(ν, θ) can be solved straightforwardly via the connection with logistic regression, as discussed in [31].329

We next discuss how to calculate sup(ν,θ,G0)∈C1∩ C2
˜̀(ν, θ,G0) in Rn. We start with the profiling procedure of330

˜̀(ν, θ,G0) by profiling out the infinite-dimensional parameter G0. First, we set up the Lagrangian function. For331

given (ν, θ), define332

Ψ(G0, λ, t) = ˜̀(ν, θ,G0) +

m∑

i=0

ni1∑

j=1

pi jλ
>{ω(xi j, θ) − ι} +

m∑

i=0

ni1∑

j=1

pi jt>g(xi j; ν, θ),
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where λ = (λ1, . . . , λm)> and t = (t1, . . . , tp)> are corresponding Lagrangian multipliers. The point (pi1, . . . , pini : i ∈333

{0, . . . ,m}) that maximize ˜̀(ν, θ,G0) must be a stationary point of Ψ satisfying334

∂Ψ(G0, λ, t)/∂pi j = 0, ∂Ψ(G0, λ, t)/∂λi = 0, and ∂Ψ(G0, λ, t)/∂ti = 0. (A.2)

It follows from (A.2) that, for fixed (ν, θ), ˜̀(ν, θ,G0) attains its maximum at335

pi j =
1

n·1
× 1

1 + λ>{ω(xi j, θ) − ι} + t>g(xi j; ν, θ)
, (A.3)

where the Lagrange multipliers, λ and t, solve following equations336

1
n·1

m∑

i=0

ni1∑

j=1

ω(xi j, θ) − ι
1 + λ>{ω(xi j, θ) − ι} + t>g(xi j; ν, θ)

= 0m×1, (A.4)

and337

1
n·1

m∑

i=0

ni1∑

j=1

g(xi j; ν, θ)
1 + λ>{ω(xi j, θ) − ι} + t>g(xi j; ν, θ)

= 0p×1. (A.5)

Therefore, using (A.3) to profile out pi j, the profile empirical log-likelihood function of (ν, θ) under the null hypothesis338

H0 given in (3) can be written as `N(ν, θ) − n·1 ln(n·1) with339

`N(ν, θ) =

m∑

i=0

ln{νni0
i (1 − νi)ni1 } +

m∑

i=1

ni1∑

j=1

{αi + β>i q(xi j)} −
m∑

i=0

ni1∑

j=1

ln
[
1 + λ>{ω(xi j, θ) − ι} + t>g(xi j; ν, θ)

]
.

Then, it follows that340

sup
(ν,θ,G0)∈C1∩ C2

˜̀(ν, θ,G0) = sup
(ν,θ)

`N(ν, θ) − n.1 ln(n.1). (A.6)

Let
(ν̃, θ̃) = arg max

(ν,θ)
`N(ν, θ)

be the maximum EL estimate of (ν, θ) under H0 in (3). Hence, to calculate sup(ν,θ,G0)∈C1∩ C2
˜̀(ν, θ,G0), it is sufficient341

to obtain (ν̃, θ̃).342

Unfortunately, the numerical calculation of (ν̃, θ̃) may not be an easy task since there are no analytical solutions343

for λ and t in the definition of `N(ν, θ).344

Let ψ = (ν>, θ>, λ>, t>)> and define345

`(ν, θ, λ, t) =

m∑

i=0

ln{νni0
i (1 − νi)ni1 } +

m∑

i=1

ni1∑

j=1

{αi + β>i q(xi j)} −
m∑

i=0

ni1∑

j=1

ln
[
1 + λ>{ω(xi j, θ) − ι} + t>g(xi j; ν, θ)

]
. (A.7)

Then `N(ν, θ) = `(ν, θ, λ, t) with λ and t being the solutions of (A.4) and (A.5). Note that, λ and t in `N(ν, θ) are346

actually functions of ν and θ.347

Let λ̃ and t̃ be the solutions of (A.4) and (A.5) when (ν, θ) is replaced by (ν̃, θ̃). Hence, `(ν̃, θ̃, λ̃, t̃) = `N(ν̃, θ̃).348

Further let ψ̃ = (ν̃>, θ̃>, λ̃>, t̃>)>.349

We summarize some key properties of using `(ν, θ, λ, t) to find (ν̃, θ̃) = arg max(ν,θ) `N(ν, θ) and `N(ν̃, θ̃) =350

sup(ν,θ) `N(ν, θ) in the following proposition.351

Proposition 1. For `(ν, θ, λ, t), defined in (A.7), and (ν̃, θ̃) = arg max(ν,θ) `N(ν, θ), then ψ̃ is a stationary point of352

`(ν, θ, λ, t). That is, ψ̃ is a solution of ∂`(ν, θ, λ, t)/∂ψ = 0.353
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Proof. We sketch some key steps. First, when `N(ν̃, θ̃) is maximized, the following equations are satisfied:354

∂`N(ν̃, θ̃)/∂ν = 0, ∂`N(ν̃, θ̃)/∂θ = 0.

Further, note that since λ and t in `N(ν, θ) are the solutions of (A.4) and (A.5), they are actually functions of ν and θ.355

For illustration, we only show

0 =
∂`N(ν̃, θ̃)
∂βi

=
∂`(ν̃, θ̃, λ̃, t̃)

∂βi
+

m∑

r=1

∂`(ν̃, θ̃, λ̃, t̃)
∂λr

∂λr

∂βi

∣∣∣∣
(ν,θ)=(ν̃,θ̃)

+

p∑

s=1

∂`(ν̃, θ̃, λ̃, t̃)
∂ts

∂ts

∂βi

∣∣∣∣
(ν,θ)=(ν̃,θ̃)

=
∂`(ν̃, θ̃, λ̃, t̃)

∂βi
− 0 × ∂λr

βi

∣∣∣∣
(ν,θ)=(ν̃,θ̃)

− 0 × ∂ts

βi

∣∣∣∣
(ν,θ)=(ν̃,θ̃)

=
∂`(ν̃, θ̃, λ̃, t̃)

∂βi
,

where the second last line is followed from (A.4) and (A.5). One can similarly verify that356

∂`N(ν̃, θ̃)/∂η = ∂`(ν̃, θ̃, λ̃, t̃)/∂η = 0.

Hence ψ̃ is a stationary point of `(θ). This completes the proof. �357

With the result of Proposition 1, (ν̃, θ̃) can be obtained by solving for a stationary point, in fact a saddlepoint of358

`(ν, θ, λ, t), over the space of ψ. To numerically calculate ψ̃, we minimize the sum of squares of ∂`(ν, θ, λ, t)/∂ψ by359

using the built-in nlminb function in R [24]. Once we obtain ψ̃, we calculate sup(ν,θ,G0)∈C1∩ C2
˜̀(ν, θ,G0) by (A.6).360

Combining (A.1) and (A.6), we finish the numeric calculation of Rn by361

Rn = 2{`A(ν̂, θ̂) − `N(ν̃, θ̃)}.

Appendix B. Definition of the U matrix362

This Appendix gives the definition of the U matrix, which is involved in R5 of the regularity conditions in Sec-363

tion 2.3. The inverse of this U matrix is required in a quadratic approximation of Rn, as shown in the Online Supple-364

ment.365

We first need some notation before we proceed. Recall that the true value of η = (ν>, θ>)> is η∗ = (ν∗>, θ∗>)>

under the null hypothesisH0. For simplicity, recall that we write ρ∗i = ni/n, for i ∈ {0, . . . ,m}, and assume that it is a
constant. Further, we denote ∆∗ =

∑m
i=0 ρ

∗
i (1−ν∗i ), and λ∗r = ρ∗r (1−ν∗r )/∆∗, for all r ∈ {1, . . . ,m}. Let λ∗ = (λ∗1, . . . , λ

∗
m)>.

For a compact presentation, we further denote

λ∗0 = 1 −
m∑

i=1

λ∗i , h(X; η∗) =

m∑

i=0

λ∗iωi(X; θ∗i ).

Define, for each i ∈ {0, . . . ,m},366

hi(X; η∗) = λ∗iωi(X; θ∗i )/h(X; η∗).

Finally, let Q(X) = (1,q>(X))>, h = (h1(X; η∗), . . . , hm(X; η∗))>, ω = (ω1(X; θ∗0), . . . , ωm(X; θ∗m))>, as well as g =367

(g1(X; η∗), . . . , gp(X; η∗))>.368

Now we can define the form of the U matrix as follows. Let ⊗ denote the Kronecker product. Define369

U = A44 + A41A−1
11 A14 + A42A−1

22 A24 − V(A33)−1V>, (B.1)

where

A11 = diag
{

ρ∗0
ν∗0(1 − ν∗0)

, . . . ,
ρ∗m

ν∗m(1 − ν∗m)

}
, A>14 = A41 = −∆∗Cdiag(µ)diag{(ι − ν∗)−1},

A22 = ∆∗E0

[
h(X; η∗){diag(h) − (hh>)} ⊗ {Q(X)Q>(X)}

]
,

A24 = A>42 = ∆∗E0

[ {
diag(ω)(0m×1, Im)diag(ι − ν∗)C>X − (hg>)

}
⊗Q(X)

]
,

A44 = ∆∗E0

{
gg>

h(X; η∗)

}
, A33 =

1
∆∗
{diag(λ∗) − λ∗λ∗>}, V = Cdiag(ι − ν∗)(0m×1, Im)>E0

{
diag(ω)X

}
.
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