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Abstract

We consider sparse Bayesian estimation in the classical multivariate linear regression model with p regressors and
q response variables. In univariate Bayesian linear regression with a single response y, shrinkage priors which can
be expressed as scale mixtures of normal densities are popular for obtaining sparse estimates of the coefficients. In
this paper, we extend the use of these priors to the multivariate case to estimate a p × q coefficients matrix B. We
derive sufficient conditions for posterior consistency under the Bayesian multivariate linear regression framework and
prove that our method achieves posterior consistency even when p > n and even when p grows at nearly exponential
rate with the sample size. We derive an efficient Gibbs sampling algorithm and provide the implementation in a
comprehensive R package called MBSP. Finally, we demonstrate through simulations and data analysis that our model
has excellent finite sample performance.

Keywords: heavy tail, high-dimensional data, posterior consistency, shrinkage estimation, sparsity, variable selection

1. Introduction

1.1. Background

We consider the classical multivariate normal linear regression model,

Y = XB + E, (1)

where Y = (y1, . . . , yq) is an n × q response matrix of n samples and q continuous response variables, X is an n × p
matrix of n samples and p covariates, B ∈ Rp×q is the coefficient matrix, and E = (ε1, . . . , εn)> is an n × q noise
matrix. Under normality, we assume that εi

i.i.d.
∼ Nq(0,Σ), i = 1, . . . , n. In other words, each row of E is identically

distributed with mean 0 and covariance Σ. Throughout this paper, we also assume that Y and X are centered so there
is no intercept term in B.

Our focus is on sparse Bayesian estimation and variable selection on the coefficients matrix B in (1). In practical
settings, particularly in high-dimensional settings when p > n, it is important not only to provide robust estimates of
B, but to choose a subset of regressor variables from the p rows of B which are good for prediction on the q responses.
Although p may be large, the number of predictors that are actually associated with the responses is generally quite
small. A parsimonious model also tends to give far better estimation and prediction performance than a dense model,
which further motivates the need for sparse estimates of B.

In frequentist approaches to univariate regression, the most commonly used method for inducing sparsity is
through imposing regularization penalties on the coefficients of interest. Popular choices of penalty functions in-
clude the LASSO [40] and its many variants, e.g., [38, 47, 50, 51]. Many of these penalized regression methods
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include either an `1 penalty function or a combination of an `1 and `2 penalty to shrink irrelevant predictors or groups
of predictors to exactly zero.

These `1 and `2 regularization methods have been naturally extended to the multivariate regression setup where
sparsity in the coefficients matrix is desired. For example, Rothman et al. [35] utilized an `1 penalty on each individual
coefficient of B in (1), in addition to an `1 penalty on the off-diagonal entries of the covariance matrix to perform joint
sparse estimation of B and Σ. Li et al. [26] proposed the multivariate sparse group lasso, which utilizes a combination
of a group `2 penalty on rows of B and an `1 penalty on the individual coefficients bi j to perform sparse estimation
and variable selection at both the group and within-group levels. Wilms and Croux [45] also consider a model which
imposes an `2 penalty on the rows of B to shrink entire rows to zero, while simultaneously estimating the covariance
matrixΣ. Much of the frequentist literature on sparse estimation of (1) has focused on producing robust point estimates
of B, rather than on characterizing uncertainty of the estimates. On the other hand, Bayesian methods naturally provide
a vehicle for uncertainty quantification through the posterior density.

In the Bayesian univariate regression model, spike-and-slab priors, introduced by Mitchell and Beauchamp [30],
have been a popular choice for inducing sparsity in the coefficients for regression problems. These priors are a mixture
density with a point mass at zero used to force some coefficients to zero (the “spike”) and a continuous density (the
“slab”) to model the nonzero coefficients. Since then, many variants of spike-and-slab have been developed. George
and McCulloch [20] proposed a stochastic search variable selection (SSVS) method, which places a mixture prior of
two normal densities with different variances (one small and one large) on each of the coefficients and which facilitates
efficient Gibbs sampling. Recently, Ishwaran and Rao [25] and Narisetty and He [31] also used the mixture prior of
normals but used rescaling of the variances (dependent upon the sample size n) in order to better control the amount
of shrinkage for each individual coefficient. In order to perform group estimation and group variable selection, Xu
and Ghosh [46] also introduced the Bayesian group lasso with spike-and-slab priors (BGL-SS), which is a mixture
density with a point mass at a vector 0mg ∈ Rmg , where mg denotes the size of group g and a normal distribution to
model the “slab.”

This two-components mixture approach has been extended to the multivariate framework by several authors [9,
28, 29]. In particular, Brown et al. [9] and Liquet et al. [29] first facilitate variable selection by associating each of
the p rows of B, bi, 1 ≤ i ≤ p, with a p-dimensional binary vector γ = (γ1, . . . , γp), where each entry in γ follows
a Bernoulli distribution. The selected bi’s are then estimated by placing a multivariate Zellner g-prior (see Zellner
[48]) on the sub-matrix of the selected covariates. Liquet et al. [28] extend [46]’s work to the multivariate case with a
method called Multivariate Group Selection with Spike and Slab Prior (MBGL-SS). Under MBGL-SS, rows of B are
grouped together and modeled with a prior mixture density with a point mass at 0 ∈ Rmgq having positive probability
(where mg denotes the size of the gth group and q is the number of responses). Liquet et al. [28] use the posterior
median B̂ = (̂bi j)p×q as the estimate for B, so that entire rows are estimated to be exactly zero.

Finally, both frequentist and Bayesian reduced rank regression (RRR) approaches have been developed to tackle
the problem of sparse estimation of B in (1). RRR constrains the coefficient matrix B to be rank-deficient. Chen and
Huang [14] proposed a rank-constrained adaptive group lasso approach to recover a low-rank matrix with some rows
of B estimated to be exactly zero. Bunea et al. [10] also proposed a joint sparse and low-rank estimation approach
and derived its non-asymptotic oracle bounds. The RRR approach was recently adapted to the Bayesian framework
by Goh et al. [23] and Zhu et al. [49]. In the Bayesian framework, rank-reducing priors are used to shrink most of the
rows and columns in B towards 0p ∈ Rp or 0>q ∈ Rq.

1.2. Global-local shrinkage priors

When p is large, (point mass) spike-and-slab priors can face computational problems since they require either
searching over 2p possible models. This has led to the creation of a wide number of absolutely continuous shrinkage
priors which behave similarly to spike-and-slab priors but which require significantly less computational effort. In
univariate regression, these priors can be placed on each individual coefficient βi, i = 1, . . . , p, and are represented as
scale-mixtures of normals:

βi
ind
∼ N(0, τξi), ξi ∼ π(ξi), (2)

where π(ξi) typically follows a heavy-tailed density. These types of priors are known as global-local (GL) shrinkage
priors. For GL priors, τ represents a global parameter that shrinks all coefficients to zero, while ξi is a tuning parameter
that controls the degree of shrinkage for each individual βi. These priors contain significant probability around zero
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Prior π(ξi)/C L(ξi)
Student’s t ξ−a−1

i exp(−a/ξi) exp (−a/ξi)
Horseshoe ξ−1/2

i (1 + ξi)−1 ξa+1/2
i /(1 + ξi)

Horseshoe+ ξ−1/2
i (ξi − 1)−1 ln(ξi) ξa+1/2

i (ξi − 1)−1 ln(ξi)
NEG (1 + ξi)−1−a {ξi/(1 + ξi)}a+1

TPBN ξu−1
i (1 + ξi)−a−u {ξi/(1 + ξi)}a+u

GDP
∫ ∞

0
λ2

2 exp
(
−
λ2ξi

2

)
λ2a−1 exp(−ηλ)dλ

∫ ∞
0 ta exp(−t − η

√
2t/ξi)dt

HIB ξu−1
i (1 + ξi)−(a+u) exp

(
− s

1+ξi

)
{ξi/(1 + ξi)}a+u

×

(
φ2 +

1−φ2

1+ξi

)−1
× exp

(
− s

1+ξi

) (
φ2 +

1−φ2

1+ξi

)−1

Table 1: Polynomial-tailed priors, their respective prior densities for π(ξi) up to normalizing constant C, and the slowly-varying component L(ξi).

so that most coefficients are shrunk to zero. However, they retain heavy enough tails in order to correctly identify and
prevent overshrinkage of the true signals (or non-zero coefficients). This combination of heavy mass around zero and
tail robustness makes global-local shrinkage priors especially appealing when inducing sparsity.

Examples of GL shrinkage priors include the popular horseshoe prior [12] and the Bayesian lasso [32]. Priors of
the type (2) have also been considered by numerous authors, including [3, 4, 6, 24, 33, 37]. Armagan et al. [2] noted
that a number of these priors utilize a beta prime density as the prior for π(ξi). This family of generalized beta priors
was first studied by Libby and Novick [27], and Armagan et al. [2] referred to this general class of shrinkage priors
as the “three parameter beta normal” (TPBN) mixture family. The TPBN family in particular includes the horseshoe,
the Strawderman-Berger [4, 37], and the normal-exponential-gamma (NEG) [24] priors. Polson and Scott [33] also
generalized the beta prime density to the family of hypergeometric inverted beta (HIB) priors. Finally, Armagan et al.
[3] introduced another general class of priors called the generalized double Pareto (GDP) family.

These priors have been studied extensively and have been shown to have a number of good theoretical properties.
For example, Armagan et al. [1] gave sufficient conditions for posterior consistency in univariate linear regression
when several well-known shrinkage priors are placed on the coefficients. Ghosh and Chakrabarti [21], van der Pas et al.
[41], and van der Pas et al. [42] showed that when these priors are used to estimate sparse normal means, the posterior
distributions concentrate around the true means at the minimax rate under mild conditions. van der Pas et al. [44] also
obtained minimax-optimal posterior contraction rates for the horseshoe under both empirical Bayes and hierarchical
Bayesian choices for the global shrinkage parameter τ in (2). For the normal means model, the theoretical properties
of model selection (including the variable selection method applied in this article) and uncertainty quantification
under scale-mixture priors were also recently investigated by Salomond [36] and van der Pas et al. [43]. Finally, in
the context of multiple hypothesis testing, Bhadra et al. [6], Datta and Ghosh [16], Ghosh and Chakrabarti [21], and
Ghosh et al. [22] showed that multiple testing rules induced by these shrinkage priors can achieve optimal Bayes risk
in terms of 0-1 symmetric loss (or expected number of misclassified signals).

Ghosh et al. [22] observed that for a large number of global-local shrinkage priors of the form (2), the local
parameter ξi has a hyperprior distribution π(ξi) that can be written as

π(ξi) = Kξ−a−1
i L(ξi), (3)

where K > 0 is the constant of proportionality, a is positive real number, and L is a positive measurable, non-constant,
slowly varying function over (0,∞).

Definition 1. A positive measurable function L defined over (A,∞), for some A ≥ 0, is said to be slowly varying (in
Karamata’s sense) if for every fixed α > 0, lim

x→∞
L(αx)/L(x) = 1.

A thorough treatment of functions of this type can be found in the classical text by Bingham et al. [8]. Table 1
provides a list of several well-known global-local shrinkage priors that fall in the class of priors of the form (2), the
corresponding density π(ξi) for ξi, and the slowly-varying component L(ξi) in (3). Following Tang et al. [39], we refer
to these scale-mixture priors as polynomial-tailed priors.
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Although polynomial-tailed priors have been studied extensively in univariate regression, their potential utility for
multivariate analysis seems to have been largely overlooked. In this paper, we introduce a new Bayesian approach
for estimating the unknown p × q coefficient matrix B in (1) using polynomial-tailed priors. We call our method the
Multivariate Bayesian model with Shrinkage Priors (MBSP).

While there have been many methodological developments for Bayesian multivariate linear regression, theoretical
results in this domain have not kept pace with applications. There appears to be very little theoretical justification for
adopting Bayesian methodology in multivariate regression. In this article, we take a step towards resolving this gap
by providing sufficient conditions under which Bayesian multivariate linear regression models can obtain posterior
consistency. To our knowledge, our paper is the first one to give general conditions for posterior consistency under
model (1) when p > n and when p grows at nearly exponential rate with sample size n. We further illustrate that
our method based on polynomial-tailed priors achieves strong posterior consistency in both low-dimensional and
ultrahigh-dimensional settings.

The rest of our paper is organized as follows. In Section 2, we introduce the MBSP model and provide some insight
into how it facilitates sparse estimation and variable selection. In Section 3, we present sufficient conditions for our
model to achieve posterior consistency in both the cases where p grows slower than n and the case when p grows
at nearly exponential rate with n. In Section 4, we show how to implement MBSP using the TPBN family of priors
as a special case and how to utilize our method for variable selection. Efficient Gibbs sampling and computational
complexity considerations are also discussed. In Section 5, we illustrate our method’s finite sample performance
through simulations and analysis of a real data set. Finally, in Section 6, we discuss some directions for future
research.

2. Multivariate Bayesian Model with Shrinkage Priors (MBSP)

2.1. Preliminary Notation and Definitions

We first introduce the following notation and definitions.

Definition 2. A random matrix Y is said to have the matrix-normal density if Y has the density function (on the space
Ra×b):

f (Y) =
|U|−b/2|V|−a/2

(2π)ab/2 e−
1
2 tr[U−1(Y−M)V−1(Y−M)>], (4)

where M ∈ Ra×b, and U and V are positive definite matrices of dimension a × a and b × b respectively. If Y is
distributed as a matrix-normal distribution with pdf given in (4), we write Y ∼ MNa×b(M, U, V).

Definition 3. The matrix O ∈ Ra×b denotes the a × b matrix with all zero entries.

2.2. MBSP Model

Our multivariate Bayesian model formulation for model (1) with shrinkage priors (henceforth referred to as MBSP)
is as follows:

Y|X,B,Σ ∼ MNn×q(XB, In,Σ),
B|ξ1, . . . , ξp,Σ ∼ MN p×q(O, τ diag(ξ1, . . . , ξp),Σ),

ξi
ind
∼ π(ξi), i = 1, . . . , p,

(5)

where π(ξi) is a polynomial-tailed prior density of the form (3).
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2.3. Handling Sparsity

In this section, we illustrate how the MBSP model induces sparsity. First note that in (5), an alternative way of
writing the density Y|X,B,Σ is

Y|X,B,Σ ∝ |Σ|−nq/2 exp

−1
2

n∑
i=1

yi −

p∑
j=1

xi jb j

> Σ−1

yi −

p∑
j=1

xi jb j


 , (6)

where b j denotes the jth row of B.
Following from (6), we see that under (5) and known Σ, the joint prior density π(B, ξ1, . . . , ξp) is

π(B, ξ1, . . . , ξp) ∝
p∏

j=1

ξ
−q/2
j e

− 1
2ξ j
||b j(τΣ)−1/2 ||22π(ξ j), (7)

where || · ||2 denotes the `2 vector norm. Since the p rows of B are independent, we see from (7) that this choice of
prior induces sparsity on the rows of B, while also accounting for the covariance structure of the q responses. This
ultimately facilitates sparse estimation of B as a whole and variable selection from the p regressors.

For example, if π(ξ j)
ind
∼ IG(α j,

γ j

2 ) (where IG denotes the inverse-gamma density), then the marginal density for
B (after integrating out the ξ j’s) is proportional to

p∏
j=1

(
||b j(τΣ)−1/2||22 + γ j

)−(α j+
q
2 )
, (8)

which corresponds to a multivariate Student’s t density.
On the other hand, if π(ξ j) ∝ ξ

q/2−1
j (1 + ξ j)−1, then the joint density in is proportional to

p∏
j=1

ξ−1
j (1 + ξ j)−1e

− 1
2ξ j
||b j(τΣ)−1/2 ||22 , (9)

and integrating out the ξ j’s gives a multivariate horseshoe density function.
As examples (8) and (9) demonstrate, our model allows us to obtain sparse estimates of B by inducing row-wise

sparsity in B with a matrix-normal scale mixture using global-local shrinkage priors. This row-wise sparsity also
facilitates variable selection from the p variables.

3. Posterior Consistency of MBSP

3.1. Notation

We first introduce some notation that will be used throughout the paper. For any two sequences of positive real
numbers {an} and {bn} with bn , 0, we write an = O(bn) if |an/bn| ≤ M for all n, for some positive real number M
independent of n, and an = o(bn) to denote limn→∞ an/bn = 0. Therefore, an = o(1) if limn→∞ an = 0.

For a vector v ∈ Rn, ||v||2 :=
√∑n

i=1 v2
i denote the `2 norm. For a matrix A ∈ Ra×b with entries ai j, ||A||F :=√

tr(AT A) =
√∑a

i=1
∑b

j=1 a2
i j denotes the Frobenius norm of A. For a symmetric matrix A, we denote its minimum and

maximum eigenvalues by λmin(A) and λmax(A) respectively. Finally, for an arbitrary set A, we denote its cardinality
by |A|.
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3.2. Definition of Posterior Consistency

For this section, we denote the number of predictors by pn to emphasize that p depends on n and is allowed to
grow with n. Suppose that the true model is

Yn = XnB0n + En, (10)

where Yn := (Yn,1, ...,Yn,q) and En ∼ MNn×q(O, In,Σ). For convenience, we denote B0n as B0 going forward, noting
B0 depends on pn (and therefore on n).

Let {B0}n≥1 be the sequence of true coefficient matrices, and let P0 denote the distribution of {Yn}n≥1 under (10).
Let {πn(Bn)}n≥1 and {πn(Bn|Yn)}n≥1 denote the sequences of prior and posterior densities for coefficients matrix Bn.
Analogously, let {Πn(Bn)}n≥1 and {Πn(Bn|Yn)}n≥1 denote the sequences of prior and posterior distributions. In order
to achieve consistent estimation of B0(≡ B0n), the posterior probability that Bn lies in a ε-neighborhood of B0 should
converge to 1 almost surely with respect to P0 measure as n → ∞. We therefore define strong posterior consistency
as follows:

Definition 4. (posterior consistency) Let Bn = {Bn : ||Bn − B0||F > ε}, where ε > 0. The sequence of posterior
distributions of Bn under prior πn(Bn) is said to be strongly consistent under (10) if, for any ε > 0,

Πn(Bn|Yn) = Πn(||Bn − B0||F > ε|Yn)→ 0 a.s. P0 as n→ ∞.

Using Definition 4, we now state two general theorems and a corollary that provide general conditions under
which priors on B (not just the MBSP model) may achieve strong posterior consistency in both low-dimensional and
ultrahigh-dimensional settings.

3.3. Sufficient Conditions for Posterior Consistency

For our theoretical investigation, we assume Σ to be fixed and known and dimension of the response variables q
to be fixed. In practice, Σ is typically unknown, and one can estimate it from the data. In Section 4, we present a fully
Bayesian implementation of MBSP by placing an appropriate inverse-Wishart prior on Σ.

Theorem 1 applies to the case where the number of predictors pn diverges to ∞ at a rate slower than n as n → ∞,
while Theorem 2 applies to the case where pn grows to ∞ at a faster rate than n as n → ∞. To handle these two
cases, we require different sets of regularity assumptions. Proofs for both theorems are shown in Section 1 of the
supplementary materials (see Appendix A).

3.3.1. Low-Dimensional Case
We first impose the following regularity conditions which are all standard ones used in the literature and relatively

mild (see, for example, Armagan et al. [1]). In particular, Assumption (A2) ensures that the design matrix XT
n Xn is

positive definite for all n and that B0 is estimable.

Regularity Conditions
(A1) pn = o(n) and pn ≤ n for all n ≥ 1.

(A2) There exist constants c1, c2 so that

0 < c1 < lim inf
n→∞

λmin

(
X>n Xn

n

)
≤ lim sup

n→∞
λmax

(
X>n Xn

n

)
< c2 < ∞.

(A3) There exist constants d1 and d2 so that

0 < d1 < λmin(Σ) ≤ λmax(Σ) < d2 < ∞.

Using these conditions, we are able to attain a very simple sufficient condition for strong posterior consistency under
(10), as defined in Definition 4, which we state in the next theorem.
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Theorem 1. Assume that conditions (A1)-(A3) hold. Then the posterior of Bn under any prior πn(Bn) is strongly
consistent under (10), i.e. for Bn = {Bn : ||Bn − B0||F > ε} and any arbitrary ε > 0,

Πn(Bn|Yn)→ 0 a.s. P0 as n→ ∞

if

Πn

(
Bn : ||Bn − B0||F <

∆

nρ/2

)
> exp(−kn) (11)

for all 0 < ∆ <
ε2c1d1/2

1

48c1/2
2 d2

and 0 < k < ε2c1
32d2
−

3∆c1/2
2

2d1/2
1

, where ρ > 0.

Condition in (11) in Theorem 1 states that as long as the prior distribution for Bn captures B0 inside a ball of radius
∆/nρ/2 with sufficiently high probability for large n, the posterior of Bn will be strongly consistent.

3.3.2. Ultrahigh Dimensional Case
To achieve posterior consistency when pn � n and pn ≥ O(n), we require additional restrictions on the eigen-

structure of Xn and an additional assumption on the size of the true model. Working under the assumption of sparsity,
we assume that the true model (10) contains only a few nonzero predictors. That is, most of the rows of B0 should
contain only zero entries.We denote S ∗ ⊂ {1, 2, ..., pn} as the set of indices of the rows of B0 with at least one nonzero
entry and let s∗ = |S ∗| be the size of S ∗. We need the following regularity conditions.

Regularity Conditions
(B1) pn > n for all n ≥ 1, and ln(pn) = O(nd) for some 0 < d < 1.

(B2) The rank of Xn is n.

(B3) Let J denote a set of indices, where J ⊂ {1, ..., pn} such that |J| ≤ n. Let XJ denote the submatrix of X that
contains the columns with indices in J . For any such set J , there exists a finite constant c̃1(> 0) so that

lim inf
n→∞

λmin

X>
J

XJ
n

 ≥ c̃1.

(B4) There is finite constant c̃2(> 0) so that

lim sup
n→∞

λmax

(
X>n Xn

n

)
< c̃2.

(B5) There exist constants d1 and d2 so that

0 < d1 < λmin(Σ) ≤ λmax(Σ) < d2 < ∞.

(B6) S ∗ is nonempty for all n ≥ 1, and s∗ = o(n/ ln(pn)).

Condition (B1) allows the number of predictors pn to grow at nearly exponential rate. In particular, pn may grow
at a rate of end

, where 0 < d < 1. In the high-dimensional literature, it is a standard assumption that ln(pn) = o(n).
Condition (B3) assumes that for any submatrix of Xn that is full rank, its minimum singular value is bounded below by
ñc1. This condition is needed to overcome potential identifiability issues, since trivially, the smallest singular value of
Xn is zero. (B4) imposes a supremum on the maximum singular value of Xn, which poses no issue. Finally, Condition
(B6) allows the true model size to grow with n but at a rate slower than n/ ln(pn). (B6) is a standard condition that has
been used to establish estimation consistency when pn grows at nearly exponential rate with n for frequentist point
estimators, such as the Dantzig estimator [11], the scaled LASSO [38], and the LASSO [40]. In ultrahigh-dimensional
problems, it is generally agreed that s∗ must be small relative to both p and n in order to attain estimation consistency
and minimax convergence rates, and hence, this restriction on the growth rate of s∗.

Under these regularity conditions, we are able to attain a simple sufficient condition for posterior consistency
under (10) even when pn grows faster than n. Theorem 2 gives the sufficient condition for strong consistency.
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Theorem 2. Assume that conditions (B1)-(B6) hold. Then the posterior of Bn under any prior πn(Bn) is strongly
consistent under (10), i.e. for Bn = {Bn : ||Bn − B0||F > ε} and any arbitrary ε > 0,

Πn(Bn|Yn)→ 0 a.s. P0 as n→ ∞

if

Πn

Bn : ||Bn − B0||F <
∆̃

nρ/2

 > exp(−kn) (12)

for all 0 < ∆̃ <
ε2 c̃1d1/2

1

48̃c1/2
2 d2

and 0 < k < ε2 c̃1
32d2
−

3∆̃c̃1/2
2

2d1/2
1

, where ρ > 0.

Similar to (11) in Theorem 1, condition (12) in Theorem 2 states that as long as the prior distribution for Bn

captures B0 inside a ball of radius ∆̃/nρ/2 with sufficiently high probability for large n, the posterior of Bn will be
strongly consistent. To our knowledge, our paper is the first one in the literature to address the issue of ultra high-
dimensional consistency in Bayesian multivariate linear regression. There has been very little theoretical investigation
done in the framework of Bayesian multivariate regression, and our paper takes a step towards narrowing this gap.

Now that we have provided simple sufficient conditions for posterior consistency in Theorems 1 and 2, we are
ready to state our main theorems which demonstrate the power of the MBSP model (5) under polynomial-tailed
hyperpriors (3).

3.4. Sufficient Conditions for Posterior Consistency of MBSP

We now establish posterior consistency under the MBSP model (5), assuming that Σ is fixed and known, q is fixed,
and that τ = τn is a tuning parameter that depends on n.

As in Section 3.3, we assume that most of the rows of B0 are zero, i.e. that the true model S ⊂ {1, ..., pn} is small
relative to the total number of predictors. As before, we consider the cases where pn = o(n) and pn ≥ O(n) separately.
We also require the following regularity assumptions which turn out to be sufficient for both the low-dimensional and
ultra high-dimensional cases. Here, b0

jk denotes an entry in B0.

Regularity Conditions
(C1) For the slowly varying function L(t) in the priors for ξi, 1 ≤ i ≤ p, in (3), limt→∞ L(t) ∈ (0,∞). That is, there

exists c0(> 0) such that L(t) ≥ c0 for all t ≥ t0, for some t0 which depends on both L and c0.

(C2) There exists M > 0 so that sup j,k |b
0
jk | ≤ M < ∞ for all n, i.e. the maximum entry in B0 is uniformly bounded

above in absolute value.

(C3) 0 < τn < 1 for all n, and τn = o(p−1
n n−ρ) for ρ > 0.

Remark 1. Condition (C1) is a very mild condition which ensures that L(·) is slow-varying. Ghosh et al. [22] estab-
lished that (C1) holds for L(·) in the TPBN priors (L(ξi) = (1+ξi)−(α+β)) and the GDP priors (L(ξi) = 2−

α
2 −1

∫ ∞
0 e−β

√
2u/ξi

e−u u( α2 +1)−1du). The TPBN family in particular includes many well-known one-group shrinkage priors, such as the
horseshoe prior (α = 0.5, β = 0.5), the Strawderman-Berger prior (α = 1, β = 0.5), and the normal-exponential-
gamma prior (α = 1, β > 0). As remarked by Ghosh and Chakrabarti [21], one easily verifies that Assumption (C1)
also holds for the inverse-gamma priors (π(ξi) ∝ ξ−α−1

i e−b/ξi ) and the half-t priors (π(ξi) ∝ (1 + ξ/ν)−(ν+1)/2).

Remark 2. Condition (C2) is a mild condition that bounds the entries of B0 in absolute value for all n, while (C3)
specifies an appropriate rate of decay for τn. It is possible that the upper bound on the rate for τn can be loosened for
individual GL priors. However, since we wish to encompass all possible priors of the form (3), we provide a general
rate that works for all the polynomial-tailed priors considered in this paper.

We are now ready to state our main theorem for posterior consistency of the MBSP model. The proof for Theorem
3 can be found in Section 2 of the supplementary materials (see Appendix A).
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Theorem 3 (low-dimensional case). Suppose that we have the MBSP model (5) with hyperpriors (3). Provided that
Assumptions (A1)-(A3) and (C1)-(C3) hold, our model achieves strong posterior consistency. That is, for any ε > 0,

Πn(Bn : ||Bn − B0||F > ε|Yn)→ 0 a.s. P0 as n→ ∞.

Theorem 3 establishes posterior consistency for the MBSP model only when pn = o(n). We also note that in the
low-dimensional setting where pn = o(n), we place no restrictions on the growth on the number of nonzero predictors
in the true model relative to sample size n. This contrasts with a previous result by Armagan et al. [1], who required
that the number of true nonzero covariates grow slower than n/ ln(n).

In the ultra high-dimensional case where pn ≥ O(n), we can still achieve posterior consistency under the MBSP
model, with additional mild restrictions on the design matrix Xn and on the size of the true model. Theorem 4 deals
with the ultra high-dimensional scenario. The proof for Theorem 4 can be found in Section 2 of the supplementary
materials (see Appendix A).

Theorem 4 (ultra high-dimensional case). Suppose that we have the MBSP model (5) with hyperpriors (3). Provided
that Assumptions (B1)-(B6) and (C1)-(C3) hold, our model achieves strong posterior consistency. That is, for any
ε > 0,

Πn(Bn : ||Bn − B0||F > ε|Yn)→ 0 a.s. P0 as n→ ∞.

Interestingly enough, to ensure posterior consistency in the ultrahigh-dimensional setting, the only thing that needs
to be controlled is the tuning parameter τn, provided that our hyperpriors in (5) have the form (3). However, in the
high-dimensional regime, pn is allowed to grow at nearly exponential rate, and therefore, the rate of decay for τn from
Condition (C3) necessarily needs to be much faster. Intuitively, this makes sense because we must sum over pnq terms
in order to compute the Frobenius normed difference in Theorem 4.

Taken together, Theorems 3 and 4 both provide theoretical justification for the use of global-local shrinkage priors
for multivariate linear regression. Even when we allow the number of predictors to grow at nearly exponential rate,
the posterior distribution under MBSP (5) is able to consistently estimate B0 in (10). Our result is also very general in
that a wide class of shrinkage priors, as indicated in Table 1, can be used for the hyperpriors ξi’s in (5).

4. Implementation of the MBSP Model

In this section, we demonstrate how to implement the MBSP model using the three parameter beta normal (TPBN)
mixture family [2, 27]. We choose the TPBN family because it is rich enough to generalize several well-known
polynomial-tailed priors. Although we focus on the TPBN family, our model can easily be implemented for other
global-local shrinkage priors (such as the Student’s t prior or the generalized double Pareto prior) using similar tech-
niques as the ones we describe below.

4.1. TPBN Family

A random variable y said to follow the three parameter beta density, denoted as TPB(u, a, τ), if

π(y) =
Γ(u + a)
Γ(u)Γ(a)

τaya−1(1 − y)u−1 {1 − (1 − τ)y}−(u+a) .

In univariate regression, a global-local shrinkage prior of the form

βi|τ, ξi ∼ N(0, τξi), i = 1, . . . , p,
π(ξi) =

Γ(u+a)
Γ(u)Γ(a)ξ

u−1
i (1 + ξi)−(u+a), i = 1, . . . , p, (13)

may therefore be represented alternatively as

βi|νi ∼ N(0, ν−1
i − 1),

νi ∼ TPB(u, a, τ). (14)
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After integrating out νi in (14), the marginal prior for βi is said to belong to the TPBN family. Special cases of (14)
include the horseshoe prior (u = 0.5, a = 0.5), the Strawderman-Berger prior (u = 1, a = 0.5), and the normal-
exponential-gamma (NEG) prior (u = 1, a > 0). By Proposition 1 of Armagan et al. [2], (13) and (14) can also be
written as a hierarchical mixture of two Gamma distributions,

βi|ψi ∼ N(0, ψi), ψi|ζi ∼ G(u, ζi), ζi ∼ G(a, τ), (15)

where ψi = ξiτ.

4.2. The MBSP-TPBN Model

Taking our MBSP model (5) with the TPBN family as our chosen prior and placing an inverse-Wishart conjugate
prior on Σ, we can construct a specific variant of the MBSP model which we term the MBSP-TPBN model. For
our theoretical study of MBSP, we assumed Σ to be known and the dimension of the responses q to be fixed (and
thus, q < n for large n). However, in order for our model to be implemented in finite samples, q can be of any size
(including q � n), provided that the posterior distribution is proper. The use of an inverse-Wishart prior ensures
posterior propriety.

Reparametrizing the variance terms τξi, 1 ≤ i ≤ p, in terms of the ψi’s from (15), the MBSP-TPBN model is as
follows:

Y|X,B,Σ ∼ MNn×q(XB, In,Σ),
B|ψ1, ..., ψp,Σ ∼ MN p×q(O, diag(ψ1, . . . , ψp),Σ),

ψi|ζi
ind
∼ G(u, ζi), i = 1, . . . , p,

ζi
i.i.d.
∼ G(a, τ), i = 1, . . . , p,
Σ ∼IW(d, kIq),

(16)

where u, a, d, k, and τ are appropriately chosen hyperparameters. The MBSP-TPBN model can be implemented using
the R package MBSP, which is available on the Comprehensive R Archive Network (CRAN).

4.2.1. Computational Details
The full conditional densities under model (16) are available in closed form, and hence, can be implemented

straightforwardly using Gibbs sampling. Moreover, by suitably modifying an algorithm introduced by Bhattacharya
et al. [7] for drawing from the matrix-normal density (4), we can significantly reduce the computational complexity of
sampling from the full conditional density for B from O(p3) to O(n2 p) when p � n. We provide technical details for
our Gibbs sampling algorithm and our algorithm for sampling efficiently from the conditional density for B in Section
3 of the supplemental materials (see Appendix A).

In our experience, with good initial estimates for B and Σ, (B(init),Σ(init)), the Gibbs sampler converges quite
quickly, usually within 5000 iterations. In Section 3 of the supplementary materials (see Appendix A), we describe
how to initialize (B(init),Σ(init)). In the supplementary materials, we also provide history plots of the draws from
the Gibbs sampler for individual coefficients of B from experiment 5 (n = 100, p = 500, q = 3) and experiment 6
(n = 150, p = 1000, q = 4) of our simulation studies in Section 5.1, which illustrate rapid convergence.

Although our algorithm is efficient, Gibbs sampling can still be prohibitive if p is extremely large (say, on the
order of millions). In this case, we recommend first screening the p covariates based on the magnitude of their
marginal correlations with the responses (y1, . . . , yq) and then implementing the MBSP model on the reduced subset
of covariates. This marginal screening technique for dimension reduction has long been advocated for ultrahigh-
dimensional problems, even for non-Bayesian approaches (e.g., [17, 18]). Faster alternatives to MCMC to handle
extremely large p are also worth exploring in the future.

4.2.2. Specification of Hyperparameters τ, d, and k
Just as in (5), the τ in (16) continues to act as a global shrinkage parameter. A natural question is how to specify an

appropriate value for τ. Armagan et al. [2] recommend setting τ to the expected level of sparsity. Given our theoretical
results in Theorems 3 and 4, we set τ ≡ τn = 1/(p

√
n ln n). This choice of τ satisfies the sufficient conditions for

posterior consistency in both the low-dimensional and the high-dimensional settings when Σ is fixed and known.
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In order to specify the hyperparameters d and k in the IW(d, kIq) prior for Σ, we appeal to the arguments made
by Brown et al. [9]. As noted by Brown et al. [9], if we set d = 3, then Σ has a finite first moment, with E(Σ) =

k/(d − 2)Iq = kIq. Additionally, as argued in Bhadra and Mallick [5] and Brown et al. [9], k should a priori be
comparable in size with the likely variances of Y given X. Accordingly, we take our initial estimate of B from the
Gibbs sampler, B(init) (specified in Section 4.2.1), and take k as the variance of the residuals, Y − XB(init).

4.3. Variable Selection
Although the MBSP model (5) and the MBSP-TPBN model (16) produce robust estimates for B, they do not

produce exact zeros. In order to use model (16) for variable selection, we recommend looking at the 95% credible
intervals for each entry bi j in row i and column j. If the credible intervals for every single entry in row i, 1 ≤ i ≤ p,
contain zero, then we classify predictor i as an irrelevant predictor. If at least one credible interval in row i, 1 ≤ i ≤ p
does not contain zero, then we classify i as an active predictor. The empirical performance of this variable selection
method seems to work well, as shown in Section 5.

5. Simulations and Data Analysis

5.1. Simulation Studies
For our simulation studies, we implement model (16) using our R package MBSP. We specify u = 0.5, a = 0.5

so that the polynomial-tailed prior that we utilize is the horseshoe prior. The horseshoe is known to perform well in
simulations [12, 41]. We set τ = 1/(p

√
n ln n), d = 3, and k comparable to the size of likely variance of Y given X.

In all of our simulations, we generate data from the multivariate linear regression model (1) as follows. The rows
of the design matrix X are independently generated from Np(0,Γ), where Γ = (Γi j)p×p with Γi j = 0.5|i− j|. The sparse
p × q matrix B is generated by first randomly selecting an active set of predictors, A ⊂ {1, 2, ..., p}. For rows with
indices in the set A, we independently draw every row element from Unif([−5,−0.5] ∪ [0.5, 5]). All the other rows
in B, i.e. AC , are then set equal to zero. Finally, the rows of the noise matrix E are independently generated from
Nq(0,Σ), where Σ = (Σi j)q×q with Σi j = σ2(0.5)|i− j|, σ2 = 2. We consider six different simulation settings with varying
levels of sparsity.

• Experiment 1 (p < n): n = 60, p = 30, q = 3, 5 active predictors (sparse model).

• Experiment 2 (p < n): n = 80, p = 60, q = 6, 40 active predictors (dense model).

• Experiment 3 (p > n): n = 50, p = 200, q = 5, 20 active predictors (sparse model).

• Experiment 4 (p > n): n = 60, p = 100, q = 6, 40 active predictors (dense model).

• Experiment 5 (p � n): n = 100, p = 500, q = 3, 10 active predictors (ultra-sparse model).

• Experiment 6 (p � n): n = 150, p = 1000, q = 4, 50 active predictors (sparse model).

The Gibbs sampler described in Section 4.2.1 is efficient in handling the two p � n setups in experiments 5 and
6. Running on an Intel Xeon E5-2698 v3 processor, the Gibbs sampler runs about 761 iterations per minute for
Experiment 5 and about 134 iterations per minute for Experiment 6. In all our experiments, we run Gibbs sampling
for 15,000 iterations, discarding the first 5000 iterations as burn-in.

As our point estimate for B, we take the posterior median B̂ = (̂bi j)p×q. To perform variable selection, we inspect
the 95% individual credible interval for every entry and classify predictors as irrelevant if all of the q intervals in that
row contain 0, as described in Section 4.3. We compute mean squared errors (MSEs) rescaled by a factor of 100, as
well as the false discovery rate (FDR), false negative rate (FNR), and overall misclassification probability (MP) as
follows:

MSEest = 100 × ||B̂ − B||2F/(pq),
MSEpred = 100 × ||XB̂ − XB||2F/(nq),

FDR = FP / (TP + FP),
FNR = FN / (TN + FN),
MP = (FP + FN)/(pq),
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where FP, TP, FN, and TN denote the number of false positives, true positives, false negatives, and true negatives
respectively.

We compare the performance of the MBSP-TPBN estimator with that of four other row-sparse estimators of
B. An alternative Bayesian approach based on the spike-and-slab formulation is studied. Namely, we consider the
multivariate Bayesian group lasso posterior median estimator with a spike-and-slab prior (MBGL-SS), introduced by
Liquet et al. [28], which applies a spike-and-slab prior with a point mass 0mgq for the gth group of covariates, which
corresponds to mg rows of B. When the grouping structure of the covariates is not available, we can still utilize the
MBGL-SS method by applying the spike-and-slab prior to each individual row of B. In our study, we consider each
predictor as its own “group” (i.e., mg = 1, g = 1, . . . , p) so that individual rows are shrunk to 0>q . This method can be
implemented in R using the MBSGS package.

In addition, we compare the performance of MBSP-TPBN to three different frequentist point estimators obtained
through regularization penalties on the rows of B. In the R package glmnet [19], there is an option to fit the following
model to multivariate data, which we call the multivariate lasso (MLASSO) method:

B̂MLASSO = arg min
B∈Rp×q

||Y − XB||2F + λ

p∑
j=1

||b j||2

 .
The MLASSO model applies an `1 penalty to each of the rows of B to shrink entire row estimates to be 0>q . We also
compare the MBSP-TPBN estimator to the row-sparse reduced-rank regression (SRRR) estimator, introduced by Chen
and Huang [14], which uses an adaptive group lasso penalty on the rows of B, but which further constrains the solution
to be rank-deficient. Finally, we compare our method to the sparse partial least squares estimator (SPLS), introduced
by Chun and Keleş [15]. SPLS combines partial least squares (PLS) regression with a regularization penalty on the
rows of B in order to obtain a row-sparse PLS estimate of B. The SRRR and SPLS methods are available in the R
packages rrpack and spls.

Table 2 shows the results averaged across 100 replications for the MBSP-TPBN model (16), compared with
MBGL-SS, LSGL, and SRRR. As the results illustrate, the Bayesian methods tend to outperform the frequentist ones
in the low-dimensional case where p < n. In the two low-dimensional experiments (experiments 1 and 2), the MBGL-
SS estimator performs the best across all of our performance metrics, with the MBSP-TPBN model following closely
behind.

However, in all the high-dimensional (p > n) settings, MBSP-TPBN significantly outperforms all of its competi-
tors. Table 2 shows that the MBSP-TPBN model has a lower MSEest than the other four methods in experiments
3 through 6. In experiments 5 and 6 (the p � n scenarios), the MSEest and MSEpred are both much lower for the
MBSP-TPBN model than for the other methods.

Additionally, using the 95% credible interval technique in Section 4.3 to perform variable selection, the FDR and
the overall MP are also consistently low for the MBSP-TPBN model. Even when the true underlying model is not
sparse, as in experiments 2 and 4, MBSP performs very well and correctly identifies most of the signals. In both the
ultrahigh-dimensional settings we considered in experiments 5 and 6, the other four methods all seem to report high
FDR, while the MBSP’s FDR remains very small.

In short, our experimental results show that the MBSP model (2) has excellent finite sample performance for
both estimation and selection, is robust to non-sparse situations, and scales very well to large p compared to the other
methods. In addition to its strong empirical performance, the MBSP model (as well as the MBGL-SS model) provides
a vehicle for uncertainty quantification through the posterior credible intervals.

5.2. Yeast cell cycle data analysis
We illustrate the MBSP methodology on a yeast cell cycle data set. This data set was first analyzed by Chun and

Keleş [15] and is available in the spls package in R. Transcription factors (TFs) are sequence-specific DNA binding
proteins which regulate the transcription of genes from DNA to mRNA by binding specific DNA sequences. In order
to understand their role as a regulatory mechanism, one often wishes to study the relationship between TFs and their
target genes at different time points. In this yeast cell cycle data set, mRNA levels are measured at 18 time points
seven minutes apart (every 7 minutes for a duration of 119 minutes). The 542 × 18 response matrix Y consists of 542
cell-cycle-regulated genes from an α factor arrested method, with columns corresponding to the mRNA levels at the
18 distinct time points. The 542 × 106 design matrix X consists of the binding information of a total of 106 TFs.
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Experiment 1: n = 60, p = 30, q = 3. 5 active predictors (sparse model).

Method MSEest MSEpred FDR FNR MP

MBSP 1.146 24.842 0.015 0 0.003
MBGL-SS 0.718 17.074 0.005 0 0.001
MLASSO 2.181 41.424 0.6412 0 0.335
SRRR 1.646 29.256 0.3270 0 0.128
SPLS 2.428 43.879 0.1093 0.0019 0.028

Experiment 2: n = 80, p = 60, q = 6, 40 active predictors (dense model).

Method MSEest MSEpred FDR FNR MP

MBSP 5.617 104.88 0.0034 0 0.0023
MBGL-SS 5.202 101.40 0.0007 0 0.0005
MLASSO 10.478 130.90 0.3307 0 0.330
SRRR 5.695 104.67 0.0491 0 0.038
SPLS 244.136 3633.77 0.2071 0 0.223

Experiment 3: n = 50, p = 200, q = 5, 20 active predictors (sparse model).

Method MSEest MSEpred FDR FNR MP

MBSP 1.357 117.52 0.0117 0 0.0013
MBGL-SS 57.25 694.81 0.858 0.02 0.619
MLASSO 8.400 169.026 0.7758 0 0.349
SRRR 17.46 161.70 0.698 0 0.307
SPLS 48.551 2006.03 0.422 0.033 0.103

Experiment 4: n = 60, p = 100, q = 6, 40 active predictors (dense model).

Method MSEest MSEpred FDR FNR MP

MBSP 11.030 172.89 0.0266 0 0.0114
MBGL-SS 204.33 318.80 0.505 0.1265 0.415
LSGL 44.635 188.81 0.544 0 0.479
SRRR 242.67 193.64 0.594 0 0.587
SPLS 213.19 3909.07 0.135 0.0005 0.005

Experiment 5: n = 100, p = 500, q = 3, 10 active predictors (ultra-sparse model).

Method MSEest MSEpred FDR FNR MP

MBSP 0.0374 12.888 0.064 0 0.0015
MBGL-SS 1.327 155.51 0.483 0.0005 0.092
MLASSO 0.2357 75.961 0.837 0 0.115
SRRR 0.9841 49.428 0.688 0 0.104
SPLS 0.3886 138.62 0.1355 0.0005 0.005

Experiment 6: n = 150, p = 1000, q = 4, 50 active predictors (sparse model).

Method MSEest MSEpred FDR FNR MP

MBSP 0.0155 8.934 0.0025 0.00003 0.00016
MBGL-SS 1.327 155.51 0.483 0.0005 0.092
MLASSO 1.982 181.95 0.810 0 0.214
SRRR 0.9841 49.428 0.688 0 0.104
SPLS 25.560 8631.92 0.420 0.021 0.051

Table 2: Simulation results for MBSP-TPBN, compared with MBGL-SS, MLASSO, SRRR, and SPLS, averaged across 100 replications.
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Method Number of Proteins Selected MSPE
MBSP 12 18.673
MBGL-SS 7 20.093
MLASSO 78 17.912
SRRR 44 18.204
SPLS 44 18.904

Table 3: Results for analysis of the yeast cell cycle data set. The MSPE has been scaled by a factor of 100. In particular, all fives models selected
the three TFs, ACE2, SWI5, and SWI6 as significant.

In practice, many of the TFs are not actually related to the genes, so our aim is to recover a parsimonious model
with only a tiny number of the truly statistically significant TFs. To perform variable selection, we fit the MBSP-TPBN
model (16) and then use the 95% credible interval method described in Section 4.3. Beyond identifying significant
TFs, we assess the predictive performance of the MBSP-TPBN model (16) by performing five-fold cross validation,
using 80 percent of the data as our training set to obtain an estimate of B, B̂train. We take the posterior median as
B̂train = (̂bi j)train and use it to compute the mean squared error of the residuals on the remaining 20 percent of the
left-out data. We repeat this five times, using different training and test sets each time, and take the average MSE as
our mean squared predictor error (MSPE). To make our analysis more clear, we scale the MSPE by a factor of 100.

Table 3 shows our results compared with the MBGL-SS, MLASSO, SRRR, and SPLS methods. MBSP-TPBN
selects 12 of the 106 TFs as significant, so we do recover a parsimonious model. All five methods selected the TFs,
ACE2, SWI5, and SWI6. The two Bayesian methods seem to recover a much more sparse model than the frequentist
methods. In particular, the MLASSO method has lowest MSPE, but it selects 78 of the 106 TFs as significant,
suggesting that there may be overfitting in spite of the regularization penalty on the rows of B. Our results suggest
that the frequentist methods may have good predictive performance on this particular data set, but at the expense of
parsimony. In practice, sparse models are preferred for the sake of interpretability, and our numerical results illustrate
that the MBSP model recovers a sparse model with competitive predictive performance.

Finally, Figure 1 illustrates the posterior median estimates and the 95% credible bands for four of the 10 TFs
that were selected as significant by the MBSP-TPBN model. These plots illustrate that the standard errors under the
MBSP-TPBN model are not too large. One of the potential drawbacks of using credible intervals for selection is that
these intervals may be too conservative, but we see that it is not the case here. This plot, combined with our earlier
simulation results and our data analysis results, provide empirical evidence for using the MBSP model for estimation
and variable selection. However, further theoretical investigation is warranted in order to justify the use of marginal
credible intervals for variable selection. In particular, van der Pas et al. [43] showed that marginal credible intervals
may provide overconfident uncertainty statements for certain large signal values when applied to estimating normal
mean vectors, and the same issue could be present here.

6. Conclusion and Future Work

In this paper, we have introduced a method for sparse multivariate Bayesian estimation with shrinkage priors
(MBSP). Previously, global-local shrinkage priors have mainly been used in univariate regression or in the estimation
of normal mean vectors. Our paper extends their use to the multivariate linear regression framework.

Our paper makes several important contributions to methodology and theory. First, our model may be used
for sparse multivariate estimation for p, n, and q of any size. To motivate the MBSP model, we have shown that
the posterior distribution can consistently estimate B in (1) in both the low-dimensional and ultrahigh-dimensional
settings where p is allowed to grow nearly exponentially with n (with the response dimension q fixed). This appears
to be the first paper to provide sufficient conditions for ultrahigh-dimensional posterior consistency under model (1) in
the statistical literature. Moreover, our method is general enough to encompass a large family of heavy-tailed priors,
including the Student’s-t prior, the horseshoe prior, the generalized double Pareto prior, and others.

The MBSP model (5) can be implemented using straightforward Gibbs sampling. We implemented a fully
Bayesian version of it with an appropriate prior on Σ and with polynomial-tailed priors belonging to the TPBN
family, using the horseshoe prior as a special case. By examining the 95% posterior credible intervals for every ele-
ment in each row of the posterior conditional distribution of B, we also showed how one could use the MBSP model
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Figure 1: Plots of the estimates and 95% credible bands for four of the 10 TFs that were deemed as significant by the MBSP-TPBN model. The
x-axis indicates time (minutes) and the y-axis indicates the estimated coefficients.

for variable selection. Through simulations and data analysis on a real data set, we have illustrated that our model has
excellent performance in finite samples for both estimation and variable selection.

6.1. Future Work
Although our paper addresses a long-standing gap between theory and application for Bayesian multivariate linear

regression, much still remains unknown. In this paper, we demonstrated that the MBSP model (5) could achieve
posterior consistency in both low-dimensional (p = o(n)) and ultrahigh-dimensional (ln p = o(n)) settings. The next
step is to quantify the posterior contraction rate. In the present context of multivariate linear regression, we say that
the posterior distribution contracts at the rate rn if

Πn(||Bn − B0||F > Mnrn|Yn)→ 0 a.s. P0 as n→ ∞,

for every Mn → ∞ as n → ∞. In the context of high-dimensional univariate regression, several authors (e.g., [13],
[34]) have attained optimal posterior contraction rates of O(

√
s ln(p)/n) with respect to the `1 and `2 norms (where s

denotes the number of active predictors). It is worth noting that
√

s ln(p)/n is the familiar minimax rate of convergence
under squared error loss for a number of frequentist point estimators, including the Dantzig selector [11], the scaled
lasso [38], and the LASSO [40]. We conjecture that under suitable regularity conditions and compatibility conditions
on the design matrix, the MBSP model can attain a similarly optimal posterior rate of contraction.

Additionally, we could investigate if posterior consistency and optimal posterior contraction rates can be achieved
if we allow the number of response variables q to diverge to infinity in the MBSP model. From an implementation
standpoint, q can be of any size, but for our theoretical investigation of the MBSP model, we assumed q to be fixed. If
q is allowed to grow as sample size grows, then some sort of sparsity assumption for the response variables may need
to be imposed. We surmise that novel techniques would also be needed to prove posterior consistency in this scenario,
since the distributional theory we used to prove our consistency results may not apply if q is no longer fixed.
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Extension of our posterior consistency results to the case where Σ is unknown and endowed with a prior also
remains an open problem. In this case, we need to integrate out Σ in order to work with the marginal density of the
prior on B. If we assume the standard inverse-Wishart prior on Σ, this gives rise to a matrix-variate t distribution.
Handling this density is very nontrivial and would require significantly different techniques than the ones we used to
establish posterior consistency in Section 3.4. Nevertheless, this warrants future investigation.

For variable selection with the MBSP model, we relied on the post hoc method of examining the 95% credible
intervals for each entry of the estimated coefficients matrix for B. Further theoretical justification for this selection
method is needed. Other possible thresholding rules should also be investigated. Because scale-mixture shrinkage
priors place zero probability at exactly zero, we must necessarily use thresholding to perform variable selection. How
to optimally choose this threshold (or thresholds) in high-dimensional settings remains an active area of research.

All the aforementioned are very important open problems in Bayesian multivariate linear regression, and we hope
that the methodology and theory introduced in this paper can serve as the foundation for further developments in this
area.
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