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Abstract

A new test of independence between random elements is presented in this article.
The test is based on a functional of the Cramér-von Mises type, which is applied to
a U -process that is defined from the recurrence rates. Theorems of asymptotic dis-
tribution under H0, and consistency under a wide class of alternatives are obtained.
The results under contiguous alternatives are also shown. The test has a very good
behaviour under several alternatives, which shows that in many cases there is clearly
larger power when compared to other tests that are widely used in literature. In
addition, the new test could be used for discrete or continuous time series.
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1 Introduction

Let (X1, Y1) , (X2, Y2) , ..., (Xn, Yn) i.i.d. sample of (X,Y ) , X ∈ SX and Y ∈ SY , where
SX and SY are metric spaces. When we have the following hypothesis test: H0 : X
and Y are independent random elements, we are under the so called independent tests.
The independence tests have been developed in the first instance for the SX = SY = R
case, based on the pioneering work of Galton [10] and Pearson [23] (this is the famous
correlation test, which is widely used today). The limitations of this hypothesis test are
well known and they have motivated several different proposals in this topic, such as the
classical rank test (e.g. Spearman,[24], Kendall, [19] or Blomqvist, [6]). Another classic
and intuitive result can be found in Hoeffding [15], where the test statistic is defined by∫ ∫

(FX,Y (x, y)− FX(x)FY (y))2 dFX,Y (x, y), although it is not widely used. Indepen-
dence between random vectors is addressed for the first time in Wilks [27]. Genest and
Rémillard [16] propose a test based on copulas for continuous random variables. Ko-
jadinovic and Holmes [18], generalize this result for random vectors using a Cramér-von
Mises type statistic. Bilodeau and Lafaye de Micheaux [5], propose a test of independence
between random vectors, each of which has a normal marginal distribution. Continuing
in some sense this work, Beran et al. [4] propose a universally consistent test for random
vectors, from empirical multidimensional distributions. Gretton et al. [12] propose a
universally consistent test based on Hilbert-Schmidt norms. Another consistent test is
proposed by Székely et al. [25, 26], which defines the concept of distance covariance.
This test has its origin in [3] and it has since become very popular. It has been used and
has had a considerable impact from the moment that it was proposed. More recently,
Heller et al. [13] propose a test that in many cases has much more powerfull than the
distance covariance test. In his monograph, Boglioni [7] compares several alternatives of
these tests by means of intense work of power calculations. Because the tests proposed
in Beran et al. [4] and Heller et al. [13] have very good performance under several
alternatives, in Section 4 we will compare them with the test that we propose in our
work.

Starting from another point of view, Eckman et al. [9] introduce the recurrence
plot (RP). This is a very important graphical tool to understand the dynamics of a
time series in high dimension. Eckman et al.’s [9] generated an appreciable amount of
work and is currently applied in many different areas in which mathematical models are
used, whether probabilistic or deterministic. The RP is a graphical tool that shows the
recurrence in a time series (X) and it is constructed using the recurrence matrix RM (X)
as defined by RMij (X) = 1{‖Xi−Xj‖<r}, where r is an appropriate parameter. The
objective of this tool is to determine the patterns in a time series. The choice of r is a key
point to detect patterns and several suggestions have been made on how to appropriately
find it. Marwan [21] gives a historical review of recurrence plots techniques, together
with everything developed from them. However, the potential of these techniques has
not yet been studied in depth from the point of view of mathematical statistics.

The main objective of this article is to propose a hypothesis test to detect depen-
dence between two random elements, X and Y , based on recurrence rates by using the
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information of 1{d(Xi,Xj)<r} and 1{d(Yi,Yj)<s} for any values of r and s. One advantage of
our test is that instead of choosing appropriate values of r and s, we use the information
generated by both samples for all of the possible values of r and s. In our test, X and
Y can take values in any metric space. Therefore, our test can be used to test if X and
Y are independent in the case where X and Y are random variables, random vectors or
time series. We can then replace the norms by distances.

The rest of this paper is organized as follows. In Section 2, we give the definitions of
recurrence rates for X, for Y and for joint (X,Y ) and we propose the statistical procedure
to make the decision between H0 vs H1. The statistics are based on a functional of the
Cramér von-Mises type applied to a U -process defined from the recurrence rates of X, Y
and (X,Y ) . We also give the theoretical results, which are the asymptotic distribution
and consistency of the test statistic (Subsection 2.1), and the behavior under contiguous
alternatives (Subsection 2.2). In Section 3, we describe how the test can be implemented,
including a formula to obtain the statistic for the test. In Section 4, we use simulations
to show the performance of the test against others by power comparison in the cases
where X and Y are random variables or random vectors. We also compute power in
the case where X and Y are discrete and continuous time series. Like Heller et al.’s
[13] test, our test is based on distances between the elements of the sample. Likewise,
our test had very good performance under several alternatives. Our concluding remarks
are given in Section 5. Appendix gives the proofs of the results that are established in
Section 2.

2 Test approach and theoretical results

Given (X1, Y1) , (X2, Y2) , ..., (Xn, Yn) i.i.d. sample of (X,Y ) where X ∈ SX , Y ∈ SY
where SX and SY are metric spaces, and given r, s > 0. To simplify the notation and
without risk of confusion, we will use the same letter d for the distance function in both
metric spaces SX and SY .

We define the recurrence rate for the sample of X and Y as

RRXn (r) :=
1

n2 − n
∑
i 6=j

1{d(Xi,Xj)<r}

RRYn (s) :=
1

n2 − n
∑
i 6=j

1{d(Yi,Yj)<s}

respectively, and the joint recurrence rate for (X,Y ) as

RRX,Yn (r, s) :=
1

n2 − n
∑
i 6=j

1{d(Xi,Xj)<r , d(Yi,Yj)<s}.

We define pX(r) := P (d (X1, X2) < r) the probability that the distance between any
two elements of the sample X is less than r. Similarly, we define the probability between
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three points as p
(3)
X (r) := P (d (X1, X2) < r, d (X1, X3) < r) and analogously pY and

p
(3)
Y .

We also need to define pX,Y (r, s) := P (d (X1, X2) < r, d (Y1, Y2) < s) .
The strong law of large numbers for U -statistics ([14]) allows us to affirm that for

any r, s > 0,

RRXn (r)
a.s.→ pX(r), RRYn (s)

a.s.→ pY (s) and RRX,Yn (r, s)
a.s.→ pX,Y (r, s). (1)

We want to test H0 : X and Y are independent, against H1 : H0 does not hold.
If H0 is true, then pX,Y (r, s) = pX(r)pY (s) for all r, s > 0, and we expect that if n

is large, RRX,Yn (r, s) ∼= RRXn (r)RRYn (s) for any r, s > 0. Then, we propose to build the
test statistic, to work with the process {En(r, s)}r,s>0 where

En(r, s) :=
√
n
(
RRX,Yn (r, s)−RRXn (r)RRYn (s)

)
. (2)

Therefore, it is natural to reject H0 when Tn > c where

Tn := n

∫ +∞

0

∫ +∞

0

(
RRX,Yn (r, s)−RRXn (r)RRYn (s)

)2
dG(r, s) (3)

where c is a constant and G is a distribution function.
Throughout this work, we use the notation φ and ϕ for distribution and density

function of N(0, 1) random variable respectively, and for each m, the set

Inm := {(i1, ..., im) : ij 6= ik for all j 6= k, and ij ∈ {1, ..., n} for all j = 1, ...,m} .

Now we will formulate the asymptotic results of our test statistic. First, we will
show a result that guarantees the asymptotic distribution of Tn under H0. We will
also present a result that establishes a consistency of our test under a wide class of
alternatives. Second, we will analyze the asymptotic bias when we consider contiguous
alternatives.

2.1 Asymptotic results under H0 and consistency

We start with the next lemma, in which we obtain the formula for the asymptotic
autocovariance function of the process {En(r, s)}r,s>0 under H0.

Lemma 1. Given r, r′, s, s′ > 0, and (X1, Y1) , (X2, Y2) , ..., (Xn, Yn) i.i.d. in SX × SY
where X and Y are independent, then

lim
n→+∞

COV
(
En(r, s), En(r′, s′)

)
=

4
(
p
(3)
X (r ∧ r′)− pX(r)pX(r′)

)(
p
(3)
Y (s ∧ s′)− pY (s)pY (s′)

)
. (4)
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The following lemma will be useful to reduce asymptotic convergence of the pro-
cess {En(r, s)}r,s>0 to the convergence of an approximate U− process that we will call
{E′n(r, s)}r,s>0 and is defined as follows

E′n(r, s) :=

√
n

n(n− 1)(n− 2)(n− 3)
×

∑
(i,j,k,h)∈In4

(
1{d(Xi,Xj)<r, d(Yi,Yj)<s} − 1{d(Xi,Xj)<r, d(Yh,Yk)<s}

)
. (5)

Lemma 2. Given (X1, Y1) , (X2, Y2) , ..., (Xn, Yn) i.i.d. in SX × SY , then

En(r, s) =
√
n
(
RRX,Yn (r, s)−RRXn (r)RRYn (s)

)
= E′n(r, s)−Hn(r, s)

where

0 ≤ Hn (r, s) ≤ 4√
n

for all r, s > 0.

To obtain the weak convergence of the process {En(r, s) − E(En(r, s))}r,s>0 to a
centered Gaussian process (therefore the asymptotic distribution of the statistics Tn
defined in (3) is determined), we will use Theorem 4.10 obtained by Arcones & Giné [1]:

Let (S, S, P ) be a probability space, and for all i ∈ N, Xi : S → S are i.i.d. sequence
with L (Xi) = P. Given m, let F be a class of measurable functions on Sm, the U -process
based on P and indexed by F is

Unm (f) =
(n−m)!

m!

∑
(i1,...,im)∈Inm

f (Xi1,Xi2 , ..., Xim)

where f ∈ F.
Given ε > 0, assume that exists L = {l1, l2, ..., lv}, U = {u1, u2, ..., uυ} such that

L,U ⊂ L2 and for all

f ∈ F, exists lf ∈ L and uf ∈ U where lf ≤ f ≤ uf a.s. and E (uf − lf )2 < ε2. (6)

N
(2)
[ ] (ε,F, Pm) = min {υ : (6) holds} . (7)

Theorem (Arcones & Giné 1993)

If ∫ +∞

0

(
logN

(2)
[ ] (ε,F, Pm)

)1/2
dε < +∞ (8)

then
L
(√
n (Unm − Pm) f

) w→ L
(
mGp ◦ Pm−1f

)
in l∞ (F) (9)

where GP is the Brownian bridge associated with P.
Convergence in the space l∞ (F), is in the sense of Hoffmann-Jørgensen, see ([11]).
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Theorem 3. Given (X1, Y1) , (X2, Y2) , ..., (Xn, Yn) i.i.d. in SX ×SY . If the distribution
functions of d(X1, X2) and d(Y1, Y2) are continuous, then

{En(r, s)− E(En(r, s))}r,s>0
w−→ {E(r, s)}r,s>0 (10)

where {E(r, s)}r,s>0 is a centered Gaussian process.

Remark 1. Observe that our process {En(r, s)}r,s>0 lies in L2(dG) (because G is a prob-
ability measure). Therefore, our test statistic Tn is ||{E(r, s)}r,s>0| |, thus, the functional
is continuous.

Remark 2. Given r, s > 0 and (X1, Y1) , (X2, Y2) , ..., (Xn, Yn) ∈ R2 i.i.d. sample of
(X,Y ) where the marginals X,Y are N (0, 1) independent. Then

√
n
(
RRX,Y )

n (r, s)−RRn(r)RRYn (s)
)

w→ N
(
0, σ2X,Y (r, s)

)
where

σ2X,Y (r, s) = 4

(∫ +∞

−∞
(φ (x+ r)− φ (x− r))2 ϕ (x) dx−

(
2φ
(
r/
√

2
)
− 1
)2)
×

(∫ +∞

−∞
(φ (x+ s)− φ (x− s))2 ϕ (x) dx−

(
2φ
(
s/
√

2
)
− 1
)2)

. (11)

If d(X1, X2) and d(Y1, Y2) are not independent, then our test is consistent.

Theorem 4. Given (X1, Y1) , (X2, Y2) , ..., (Xn, Yn) i.i.d. in SX × SY . If dG(r, s) =
g(r, s)drds, g(r, s) > 0 for all r, s > 0, and d (X1, X2), d (Y1, Y2) are continuous and not

independent random variables, then Tn
P→ +∞ as n→ +∞.

The next corollary follows from Theorem 4.

Corollary 1. If (X,Y ) ∼ N (0,Σ), where X and Y are not independent, and dG(r, s) =

g(r, s)drds, g(r, s) > 0 for all r, s > 0, then Tn
P→ +∞ as n→ +∞.

Remark 3. Consider (X1, Y1), (X2, Y2) in R2 i.i.d. with joint density fX,Y and joint
distribution F such that |X1 −X2| and |Y1 − Y2| are independent.

Then
α (r, s) := P (|X1 −X2| ≤ r, |Y1 − Y2| ≤ s) =∫∫

R2

fX,Y (x1, y1)dx1dy1

∫ x1+r

x1−r
dx2

∫ y1+s

y1−s
fX,Y (x2, y2)dy2 =∫∫

R2

P (x1 − r ≤ X1 ≤ x1 + r, y1 − s ≤ Y2 ≤ y1 + s) fX,Y (x1, y1)dx1dy1 =

E (F (X + r, Y + s)− F (X + r, Y − s)− F (X − r, Y + s) + F (X − r, Y − s)) .

Similarly,
β (r, s) := P (|X1 −X2| ≤ r)P ( |Y1 − Y2| ≤ s) =
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E (FX (X + r)− FX (X − r))E (FY (Y + r)− FY (Y − r)) .
Then, α (r, s) = β (r, s) for all r, s > 0.

Of course, it could happen that condition α (r, s) = β (r, s) for all r, s > 0 is fulfilled,
and nevertheless X and Y are not independent. This is the restricted type of distributions
that do not satisfy the conditions of our consistency theorem.

2.2 Contiguous alternatives

In this subsection we will analyze the behavior of this test under contiguous alternatives.
More explicitly, given (X1, Y1) , (X2, Y2) , ..., (Xn, Yn) i.i.d. in Rp × Rq, consider

H0 : fX,Y (x, y) = fX(x)fY (y) for all (x, y)

(i.e. X and Y are independent), vs

Hn : fX,Y (x, y) = f
(n)
X,Y (x, y) for all (x, y)

where f
(n)
X,Y (x, y) = cn (δ) fX(x)fY (y)

(
1 + δ

2
√
n
kn(x, y)

)2
, δ > 0, cn (δ) is a constant

such that f
(n)
X,Y (x, y) be a density, and the functions kn verify the conditions (i) and (ii)

that are given below:
Define L2

0 = L2 (dF0) for dF0(x, y) = fX(x)fY (y)dxdy, the distribution function of
(X,Y ) under H0, analogously define L1

0.

(i) Exists a function K ∈ L1
0 such that kn ≤ K for all n

(ii) Exists k ∈ L2
0 such that kn

L2
0→ k, ‖k‖ = 1.

It can be proven that conditions (i) and (ii) imply contiguity (Cabaña [8]).
The δ coefficient is introduced so that ‖k‖ = 1. The function δk is called asymptotic

drift.
We will show in the following lines that under Hn, the process {En(r, s)}r,s>0 has

the same asymptotic limit as under H0 plus a deterministic drift.
We use the notation E(n) (T ) and P (n) ((X,Y ) ∈ A) for the expectation value of T ,

and the probability of the set {(X,Y ) ∈ A} under Hn respectively. Analogously we use
E(0) (T ) and P (0) ((X,Y ) ∈ A) under H0.

Proposition 1.

Under Hn

E(n) (En(r, s))→ δµ(r, s) as n→ +∞ for all r, s > 0.

where µ(r, s) =∫∫∫∫
Ar,s

(k(x1, y1) + k(x2, y2)) fX(x1)fY (y1)fX(x2)fY (y2)dx1dx2dy1dy2, (12)

and Ar,s :=
{

(x1, y1, x2, y2) ∈ R2p+2q : d(x1, x2) < r, d(y1, y2) < s
}
.
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With a little more work, using the Le Cam third lemma (Le Cam & Yang, [20] and
Oosterhoff & Van Zwet, [22]) it is possible to prove that under Hn,

{En(r, s)}r,s>0
w→ {E(r, s) + δµ (r, s)}r,s>0

where {E(r, s)}r,s>0 is the limit process under H0 and µ (r, s) =∫∫∫∫
Ar,s

(k(x1, y1) + k(x2, y2)) fX(x1)fY (y1)fX(x2)fY (y2)dx1dx2dy1dy2.

Therefore, under Hn

Tn
w→
∫ +∞

0

∫ +∞

0
(E(r, s) + δµ (r, s))2 dG(r, s).

3 Implementation of the test

3.1 X and Y are random variables

In the case whereX and Y are continuous random variables, we observe thatX and Y are
independent; it is equivalent to say that X ′ = φ−1 (FX (X)) and Y ′ = φ−1 (FY (Y )) are
independent, where FX and FY are the distribution functions of X and Y , respectively.
If we apply the test procedure to X ′ and Y ′, then we have the advantage that now
the variables are on the same scale and each has a normal centered distribution that
approximates to the hypotheses of Remark 2. In addition, in this case the formula (11)
for σ2X′,Y ′(r, s) is completely determined. Another additional advantage is that under
H0 (X ′ and Y ′ are independent and N (0, 1)), for small values of n, we can calculate
the critical values at 5% or another level because we will know the distribution of Tn
under H0. Where X and Y are random vectors, the same transformation can be applied
in each coordinate. To give an idea of the variability of the process {En(r, s)}r,s>0, in
Figure 1 we show the values of σ2X′,Y ′(r, r) for different values of r. The maximum is
0.06409 and is reached in r = 1.3488.

3.2 General case

As happens in many statistical applications, we are able to have a moderately small
sample size. However, an erroneous decision can be made if the researcher uses the
p-value (or the critical value) obtained through the asymptotic distribution to make
the decision in the hypothesis test. Therefore, when we have a sample of size n, it is
preferable to estimate the p-value (or the critical value) by estimating the distribution of
the Tn for this value of n. Moreover, in our test, the asymptotic distribution is difficult to
obtain because we need to conduct several simulations of a centered continuous Gaussian
processes indexed in D = (0,+∞)× (0,+∞). We then need to calculate the integral in
D.

To calculate the p-value or the critical value of the test for fixed n we can proceed as
explained in the following lines. Fixed n, if H0 is true, we do not know the distribution of
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Figure 1: σ2X,Y (r, r) in function of r, in the case X and Y are independent and N(0, 1).

Tn, but given the observed value from our sample that we call tobs, we could generate, by a
permutation procedure, a large sample of Tn with which we can estimate P (Tn ≥ tobs).
Given (X1, Y1) , (X2, Y2) , ..., (Xn, Yn) i.i.d. sample of (X,Y ) . Observe that the distri-
bution of Tn depends of the joint distribution of (X1, Y1) , (X2, Y2) , ..., (Xn, Yn) . If H0

is true, and if we consider any σ : {1, 2, 3, ..., n} → {1, 2, 3, ..., n} permutation of the
index set, then the joint distribution of (X1, Y1) , (X2, Y2) , ..., (Xn, Yn) and the joint
distribution of

(
Xσ(1), Y1

)
,
(
Xσ(2), Y2

)
, ...,

(
Xσ(n), Yn

)
are the same. Consider S (n) =

{σ1, σ2, ..., σn!} the set of all the permutation σ : {1, 2, ..., n} → {1, 2, ..., n} . Sup-
pose that the sample (X1, Y1) , ..., (Xn, Yn) is fixed and consider Z defined by Z =
Tn
((
Xσi(1), Y1

)
, ...,

(
Xσi(n), Yn

))
with probability 1/n! for each i = 1, 2, ..., n!. If we

take Z1, Z2, ..., Zm i.i.d. sample of Z, we can estimate the value of pn = P (Tn ≥ tobs)
simply by using p̂

(m)
n = 1

m

∑m
i=1 1{Zi≥tobs} for m large enough. Define the random vari-

ables Bi =
∑m

j=1 1{Zj=Tn((Xσi(1),Y1),...,(Xσi(n),Yn))}. for i = 1, 2, , ..., n!. Observe that Bi

is distributed as Bin(m, 1/n!) for each i = 1, 2, ..., n!. Then

p̂(m)
n =

1

m

m∑
j=1

1{Zj≥tobs} =
1

m

n!∑
i=1

Bi1{Tn((Xσi(1),Y1),...,(Xσi(n),Yn))≥tobs}

9



converges as m→ +∞ to 1
n!

∑n!
i=1 1{Tn((Xσi(1),Y1),...,(Xσi(n),Yn))≥tobs} a.s. If we now con-

sider that (X1, Y1) , ..., (Xn, Yn) are random elements that can take an expected value,

and we obtain (using dominated convergence) E
(
p̂
(m)
n

)
→

m→+∞
pn, then p̂

(m)
n is an asymp-

totically unbiased estimator of pn.

3.3 A simple method to choose the weight function

The performance of our test depends on the choice of the weight function. The weight
function can be chosen by the researcher in each particular case. According to Theorem
4, we can use any function G such that dG(r, s) = g(r, s)drds where g(r, s) > 0 for any
r, s > 0. It would be interesting to study some kind of optimality in the choice of the G
function, under certain kind of alternatives. Consequently, we propose a simple method
to chose the G function. As will be seen in the next section, this simple choice of G, has
very good performance under the alternatives studied in this work.

Define dG(r, s) = g1(r)g2(s)drds, where g1 and g2 are Gaussian densities. In the case
of g1 we can use µ1 = E (d(X1, X2)) and σ21 = V (d(X1, X2)). The values of µ1 and σ1 can
easily be estimated by the sample d (Xi, Xj) with (i, j) ∈ In2 . We can proceed similarly
with the election of µ2 and σ2 for the density g2. In this way, we give more weight
in the neighbourhoods of the average distance between two independent observations
X1 and X2 for g1, and analogously for g2. Meanwhile, observe that we can avoid the

problem of choosing G, if we use T ′n =
√
n supr,s>0

∣∣∣RRX,Yn (r, s)−RRXn (r)RRYn (s)
∣∣∣ to

test independence because all of the theoretical results obtained in this work for Tn are
still valid for T ′n.

3.4 Computing the statistic

In this subsection we will see how to calculate the statistic Tn. We will consider the case
in which dG(r, s) = g1(r)g2(s)drds where g1 and g2 are density functions with G1 and
G2 their respective distribution functions.∫ +∞

0

∫ +∞

0

(
RRX,Yn (r, s)−RRXn (r)RRYn (s)

)2
g1 (r) g2 (s) drds =∫ +∞

0

∫ +∞

0

[
RRX,Yn (r, s)

]2
g1 (r) g2 (s) drds+∫ +∞

0

[
RRXn (r)

]2
g1 (r) dr

∫ +∞

0

[
RRYn (s)

]2
g2 (s) ds

− 2

∫ +∞

0

∫ +∞

0
RRX,Yn (r, s)RRXn (r)RRYn (s) g1 (r) g2 (s) drds := An +Bn− 2Cn. (13)

To simplify the notation and for the rest of this section, we will call N = n(n − 1).
We will also index d (Xi, Xj) with (i, j) ∈ In2 in the form Z1, Z2, ..., ZN . Analogously,
we use the same indexes as Z ′s, T1, T2, ..., TN to the values d (Yi, Yj). We will also call
Z∗1 , Z

∗
2 , ..., Z

∗
N to the order statistics of Z ′s, and analogously T ∗1 , T

∗
2 , ..., T

∗
N .
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∫ +∞

0

[
RRXn (r)

]2
g1 (r) dr =

1

N2

∑
i 6=j

∑
k 6=h

∫ +∞

0
1{d(Xi,Xj)<r, d(Xh,Xk)<r}g1 (r) dr =

1

N2

N∑
i=1

N∑
j=1

∫ +∞

0
1{Zi<r, Zj<r}g1 (r) dr =

1

N2

N∑
i=1

N∑
j=1

(1−G1 (max {Zi, Zj})) =

1

N2

N∑
i=1

N∑
j=1

(
1−G1

(
max

{
Z∗i , Z

∗
j

}))
= 1− 1

N2

N∑
i=1

2
i−1∑
j=1

G1 (Z∗i ) +G1 (Z∗i )

 =

1− 1

N2

N∑
i=1

(2 (i− 1)G1 (Z∗i ) +G1 (Z∗i )) = 1− 1

N2

N∑
i=1

(2i− 1)G1 (Z∗i ) .

Analogously∫ +∞

0

[
RRYn (s)

]2
g2 (s) ds = 1− 1

N2

N∑
i=1

(2i− 1)G2 (T ∗i ) .

Then

Bn =

(
1− 1

N2

N∑
i=1

(2i− 1)G1 (Z∗i ) .

)(
1− 1

N2

N∑
i=1

(2i− 1)G2 (T ∗i ) .

)
(14)

An =

∫ +∞

0

∫ +∞

0

[
RRX,Yn (r, s)

]2
g1 (r) g2 (s) drds =

1

N2

N∑
i=1

N∑
j=1

∫ +∞

0
1{Zi<r, Zj<r}g1 (r) dr

∫ +∞

0
1{Ti<s, Tj<s}g2 (s) ds =

1

N2

N∑
i=1

N∑
j=1

(1−G1 (max {Zi, Zj})) (1−G2 (max {Ti, Tj})) . (15)

Cn =

∫ +∞

0

∫ +∞

0
RRX,Yn (r, s)RRXn (r)RRYn (s) g1 (r) g2 (s) drds =

1

N3

∑
i 6=j

∑
k 6=h

∑
l 6=m

∫ +∞

0

∫ +∞

0
1{d(Xi,Xj)<r, d(Yi,Yj)<s, d(Xh,Xk)<r, d(Yl,Ym)<s}g1 (r) g2 (s) drds =

1

N3

N∑
i=1

N∑
j=1

N∑
k=1

(1−G1 (max {Zi, Zj})) (1−G2 (max {Ti, Tk})) . (16)

Then

Tn = n(An +Bn − 2Cn) (17)

where An, Bn and Cn are given in the formulas (15), (14) and (16) respectively.
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4 A simulation study

In this section we will compare the performance of our test with respect to other recently
proposed tests that have good performance. Tables 1 to 6 show the power of our test
for different functions G and also for other tests, for n = 30, n = 50 and n = 80
sample sizes. All power calculations that we have considered have been calculated at
the significance level of 5%. The calculations were made using (17) and taking as a
function of weights dG(r, s) = g1(r)g2(s)drds where g1 = g2 = g is the density function
of a N(µ, σ2) random variable for some values of µ and σ2, except for the last column,
where we take the functions g1 and g2 suggested in Subsection 3.3. We will compare the
power of our test with respect to the test proposed in Heller et al. [13] (which we will
call HHG), the test of covariance distance proposed in Székely et al. [25] (which we will
call DCOV) and the test proposed in Gretton et al. [12] (which we will call HSIC). In
Subsection 4.1 we will consider the case in which X and Y are random variables; that is,
(X,Y ) ∈ R2. Meanwhile, in Subsection 4.2 we consider examples in dimensions greater
than two. Lastly, in Subsection 4.3 we simulate discrete and continuous time series for
certain alternatives and representspower as a function of sample size. In this case, we
take the functions g1 and g2 suggested in Subsection 3.3.

4.1 X and Y are random variables

Table 3 considers Heller et al.’s [13] tests, which are called “Parabola”, “Two parabolas”,
“Circle”, “Diamond”, “W-shape” and “Four independent clouds” and which are defined
as follows:
Parabola: X ∼ U (−1, 1) , Y =

(
X2 + U (0, 1)

)
/2.

Two parabolas: X ∼ U (−1, 1) , Y =
(
X2 + U (0, 1) /2

)
with probability 1/2 and

Y = −
(
X2 + U (0, 1) /2

)
with probability 1/2.

Circle: U ∼ U (−1, 1), X = sin (πU) +N (0, 1) /8, Y = cos (πU) +N (0, 1) /8.
Diamond: U1, U2 ∼ U (−1, 1) independent, X = sin (θ)U1+cos (θ)U2, Y = − sin (θ)U1+
cos (θ)U2 for θ = π/4.
W-shape: U ∼ U(−1, 1), U1, U2 ∼ U(0, 1) independent. X = U + U1/3 and Y =

4
(
U2 − 1/2

)2
+ U2/n.

Four independent clouds: X = 1 + Z1/3 with probability 1/2, X = −1 + Z2/3 with
probability 1/2 and Y = 1 +Z3/3 with probability 1/2, Y = −1 +Z4/3 with probability
1/2, where Z1, Z2, Z3, Z4 ∼ N(0, 1) are independent.
Observe that in “Four independent clouds”, H0 is true, and the power in all the cases
should be around 0.05. In all cases, the critical values of our test were calculated through
50000 replications and the power of all of the tests considered from 10000 replications.
The first three columns of Table 1 give the power of the HHG, DCV and HSIC tests.
Column 4 gives the maximum power among the classic correlation test: Pearson, Spear-
man and Kendall, which we call PSK. Columns 5, 6 and 7 give the power of our test for
different g = g1 = g2 function considered in the weight function G. In column 8, we use
the function g1 and g2 proposed in Subsection 3.3, analogously in Table 2 and Table 3.
Figure 2 give us n = 1000 simulations of the alternatives considered in this subsection.
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Table 1: Power comparison for the different test for sample size of n = 30.
Test HHG DCOV HSIC PSK N(1,1) N(0,1) N(1,4) g1, g2

Parabola 0.791 0.522 0.733 0.103 0.824 0.831 0.814 0.817

2 parabolas 0.962 0.204 0.849 0.194 1.000 1.000 1.000 1.000

Circle 0.646 0.051 0.488 0.096 0.923 0.716 0.947 0.823

Diamond 0.283 0.030 0.262 0.016 0.422 0.139 0.477 0.395

W-shape 0.908 0.569 0.856 0.179 0.788 0.887 0.782 0.874

4 clouds 0.052 0.053 0.053 0.046 0.052 0.052 0.051 0.051

Table 2: Power comparison for the different test for sample size of n = 50.
Test HHG DCOV HSIC PSK N(1,1) N(0,1) N(1,4) g1, g2

Parabola 0.983 0.854 0.957 0.114 0.979 0.983 1.000 0.975

2 parabolas 1.000 0.354 0.997 0.198 1.000 1.000 1.000 1.000

Circle 0.985 0.075 0.914 0.008 0.999 0.997 1.000 0.995

Diamond 0.664 0.048 0.545 0.013 0.836 0.630 0.884 0.761

W-shape 0.999 0.935 0.988 0.077 0.989 0.998 0.987 0.979

4 clouds 0.050 0.047 0.048 0.046 0.512 0.055 0.054 0.051

4.2 X and Y are random vectors

In our test, the distance considered for the calculations of recurrences measures is given
for the Euclidean norm. Because the Euclidean distance increases with the dimension,
the densities of N(0, 4) and N(2, 4) were aggregated in the columns 6 and 7. In this
subsection, we consider the last two alternatives in Table 3, and in Table 4 of Heller et
al. [13], which we will call “Logarithmic”, “Epsilon” and “Quadratic” tests and which
are defined as follows:
Logarithmic: X,Y ∈ R5 where Xi ∼ N (0, 1) are independent, Yi = log

(
X2
i

)
for

i = 1, 2, 3, 4, 5.
Epsilon: X,Y, ε ∈ R5 where Xi, εi ∼ N (0, 1) are independent, Yi = εiXi for i =
1, 2, 3, 4, 5.
Quadratic: X,Y, ε ∈ R5 where Xi, εi are independent, Xi ∼ N (0, 1) , εi ∼ N (0, 3) ,
Yi = Xi + 4X2

i + εi i = 1, 2, Yi = εi for all i = 3, 4, 5.
We also add the alternatives considered in Boglioni, which are called “2D-pairwise inde-
pendent” and are defined as follows:
2D-pairwise independent: X,Z0, Y1 ∼ N (0, 1) independent, Y = (Y1, Y2) where Y2 =
|Z0| sign (XY1) .
In all cases, the critical values of our test were calculated through 50000 replications and
the power of all of the tests were considered from 10000 replications.

To have an idea of the size of the test for random vectors, we have simulated X,Y ∈
R5 using g1 and g2 proposed in Subsection 3.3. The power of the test were 0.051, 0.048
and 0.052 for sample sizes of 30, 50 and 80, respectively.
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Table 3: Power comparison for the different test for sample size of n = 80.
Test HHG DCOV HSIC PSK N(1,1) N(0,1) N(1,4) g1, g2

Parabola 1.000 0.994 1.000 0.105 1.000 1.000 1.000 1.000

2 parabolas 1.000 0.700 1.000 0.201 1.000 1.000 1.000 1.000

Circle 1.000 0.196 0.999 0.004 0.999 1.000 1.000 1.000

Diamond 0.948 0.096 0.853 0.003 0.836 0.953 1.000 0.999

W-shape 1.000 0.999 1.000 0.085 0.988 1.000 1.000 1.000

4 clouds 0.047 0.047 0.047 0.049 0.051 0.049 0.055 0.057

Table 4: Power comparison for the different test for sample size of n = 30.
Test HHG DCOV HSIC N(1,1) N(1,4) N(0,4) N(2,4) g1, g2
Log 0.594 0.154 0.610 0.710 0.759 0.321 0.885 0.813

Epsilon 0.784 0.226 0.484 0.470 0.576 0.194 0.749 0.858

Quadratic 0.687 0.302 0.530 0.197 0.155 0.170 0.147 0.144

2D-indep 0.161 0.175 0.403 0.177 0.264 0.106 0.263 0.112

4.3 X and Y are time series

In this subsection, we consider the case in which X and Y are time series. In all cases X
and Y are time series of length 100 and the power (due to the computational cost) were
calculated by a permutation method for m = 1.000 replications (Table 7 and Table 8) and
m = 100 replications (Table 9). All the power were calculated using g1 and g2 proposed in
Subsection 4.3. The power for different alternatives and sample sizes in the discrete case
are given in Table 7. The AR(0.1) and AR(0.9) means that the time series X is an AR(1)
with parameter 0.1 and 0.9, respectively. The case called ARMA(2, 1), is an ARMA(2, 1)
model with parameters φ = (0.2, 0.5) and θ = 0.2. In column 4 of Table 7, Z represents
a white noise where σ is the standard deviation of

√
|X|. In Table 7 and Table 8, ε and

ε′ are independent white noises with σ = 1. In Table 8 are given the power for different
alternatives and sample sizes in the continuous case. In this table, Bm represents that X
is a Brownian motion with σ = 1 observed in [0, 1] (at times 0, 1/100, 2/100, ..., 99/100)
and fBm is a fractional Brownian motion with Hurst parameter H = 0.7. Finally,
Table 9 shows the power for cases in which the dependency between X and Y is more
difficult to detect. In these cases, Y is a fractional Ornstein-Uhlenbeck process driven
by a fBm (X) for H = 0.5 and H = 0.7, which we call OU and FOU , respectively. A
particular linear combination of FOU , which we call FOU(2), and whose definition and
theoretical developed is found in [17], is a particular case of the models proposed in [2].
Table 9 considers the parameters σ = 1, λ = 0.3 (column 3) and σ = 1, λ1 = 0.3, λ2 = 0.8
(column 4). More explicitly, Yt = σ

∫ t
−∞ e

−λ(t−s)dXs in column 3 (where X = {Xt} is

a fBm), and Yt =
λ1

λ1 − λ2
σ
∫ t
−∞ e

−λ1(t−s)dXs +
λ2

λ2 − λ1
σ
∫ t
−∞ e

−λ2(t−s)dXs in column 4

(where X = {Xt} is a fBm). To give an idea of the size of the test, in column 5 Y is a
Bm independent of X.
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Table 5: Power comparison for the different test for sample size of n = 50.
Test HHG DCOV HSIC N(1,1) N(1,4) N(0,4) N(2,4) g1, g2
Log 0.936 0.386 0.958 0.998 0.999 1.000 1.000 0.995

Epsilon 0.969 0.298 0.689 0.895 0.967 0.968 0.999 0.984

Quadratic 0.934 0.485 0.904 0.362 0.293 0.315 0.733 0.236

2D-indep 0.27 0.359 0.798 0.281 0.219 0.261 0.198 0.172

Table 6: Power comparison for the different test for sample size of n = 80.
Test HHG DCOV HSIC N(1,1) N(1,4) N(0,4) N(2,4) g1, g2
Log 1.000 0.793 1.000 1.000 1.000 1.000 1.000 1.000

Epsilon 0.999 0.382 0.896 0.998 1.000 1.000 1.000 1.000

Quadratic 0.996 0.725 0.971 0.595 0.545 0.535 0.480 0.416

2D-indep 0.544 0.751 0.993 0.489 0.348 0.466 0.263 0.284

5 Conclusions

In this work we have presented a new test of independence between two random elements
lying in metric spaces. Our test is based on percentages of recurrences for which we
need, for each sample, only the information obtained by the distance between points.
We have obtained the asymptotic distribution of our statistic and we have shown that
the limit distribution under contiguous alternatives has a bias. We have also proven the
consistency of the test for a wide class of alternatives, which include the particular case
in which (X,Y ) follows a multivariate normal distribution. The performance of the test
measured through the calculation of power through several alternatives has shown very
good results, clearly improving on others in many cases for different dimensions of the
spaces. In future work, we think that the result can be generalized to the case in which
there is some kind of dependence between the observation of the sample. In addition,
the work of the simulations should be expanded and deepened.
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6 Proofs

Proof of Lemma 1.
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Table 7: Power for the case of discrete time series and different sample sizes.

n X Y = X2 + 3ε Y =
√
|X|+ Z Y = εX Y = ε

30 AR(0, 1) 0.350 0.214 0.772 0.051

50 AR(0, 1) 0.592 0.402 0.962 0.050

100 AR(0, 1) 0.999 0.698 1.000 0.046

30 AR(0, 9) 1.000 0.903 1.000 0.035

50 AR(0, 9) 1.000 0.998 1.000 0.053

100 AR(0, 9) 1.000 1.000 1.000 0.039

30 ARMA(2, 1) 0.817 0.323 0.925 0.057

50 ARMA(2, 1) 0.986 0.566 0.996 0.047

100 ARMA(2, 1) 1.000 0.921 1.000 0.051

Table 8: Power for the case of continuous time series and different sample sizes.

n X Y = X2 + 3ε Y =
√
|X|+ ε Y = εX + 3ε′ Y = ε

30 Bm 0.770 0.519 0.402 0.060

50 Bm 0.924 0.752 0.656 0.052

80 Bm 0.994 0.923 0.839 0.040

30 fBm 0.732 0.550 0.366 0.039

50 fBm 0.883 0.805 0.586 0.040

80 fBm 0.987 0.930 0.804 0.051

Observe that as (X1, Y1) , (X2, Y2) , ..., (Xn, Yn) i.i.d, then

P (d (Xi, Xj) < r , d (Yi, Yj) < s) = pX,Y (r, s)

for all i, j such that i 6= j. Therefore

E
(
RRX,Yn (r, s)

)
= E

 1

n2 − n
∑
i 6=j

1{d(Xi,Xj)<r , d(Yi,Yj)<s}

 =

1

n2 − n
∑
i 6=j

P (d (Xi, Xj) < r , d (Yi, Yj) < s) = pX,Y (r, s).

Analogously, E
(
RRXn (r)

)
= pX(r) and E

(
RRYn (s)

)
= pY (s). Given that X and Y are

independent, then
E
(
RRX,Yn (r, s)−RRXn (r)RRYn (s)

)
= 0.

Thus,
COV

(
En(r, s), En(r′, s′)

)
=

E
[(
RRX,Yn (r, s)−RRXn (r)RRYn (s)

) (
RRX,Yn (r′, s′)−RRXn (r′)RRYn (s′)

)]
=

E
[(
RRX,Yn (r, s)

) (
RRX,Yn (r′, s′)

)]
− E

(
RRX,Yn (r, s)RRXn (r′)RRYn (s′)

)
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Table 9: Power where the dependence is between a fractional Brownian motion and its
associated FOU and FOU(2), for the cases H = 0.5 (Bm) and H = 0.7 (fBm).

n X Y =FOU Y =FOU(2) Y = Bm

30 Bm 0.775 0.183 0.053

50 Bm 0.906 0.541 0.046

80 Bm 0.986 0.880 0.056

30 fBm 0.380 0.106 0.045

50 fBm 0.516 0.282 0.039

80 fBm 0.707 0.542 0.042

− E
(
RRX,Yn (r′, s′)RRXn (r)RRYn (s)

)
+ E

[
RRXn (r)RRXn (r′)

]
E
[
RRYn (s)RRYn (s′)

]
. (18)

E
(
RRXn (r)RRXn (r′)

)
= E

 1

n2(n− 1)2

∑
i 6=j

∑
h6=k

1{d(Xi,Xj)<r, d(Xh,Xk)<r′}

 =

1

n2(n− 1)2

∑
i 6=j

∑
h6=k

P
(
d (Xi, Xj) < r, d (Xh, Xk) < r′

)
. (19)

Decomposing (19) in the terms in which i, j, k, h are pairwise different, {i, j} = {h, k}
and {i, j, h, k} has three elements, and using that the X−random vectors are i.i.d, we
obtain that (19) is equal to

n(n− 1)(n− 2)(n− 3)pX(r)pX(r′) + 2n(n− 1)pX(r) + 4n(n− 1)(n− 2)p
(3)
X (r ∧ r′)

n2(n− 1)2
=

n− 2

n(n− 1)

[
(n− 3)pX(r)pX(r′) + 4p

(3)
X (r ∧ r′)

]
+ o

(
1

n

)
. (20)

Analogously

E
[(
RRYn (s)

)
RRYn (s′)

]
=

n− 2

n(n− 1)

(
(n− 3)pY (s)pY (s′) + 4p

(3)
Y (s ∧ s′)

)
+o

(
1

n

)
. (21)

Similarly, using that the (X,Y )−random vectors are i.i.d. and also that X and Y are
independent,

E
[
RRX,Yn (r, s)RRX,Yn (r′, s′)

]
=

(n− 2)(n− 3)pX(r)pX(r′)pY (s)pY (s′) + 2pX(r)pY (s) + 4(n− 2)p
(3)
X (r ∧ r′)p(3)Y (s ∧ s′)

n(n− 1)
=

n− 2

n(n− 1)

[
(n− 3)pX(r)pX(r′)pY (s)pY (s′) + 4p

(3)
X (r ∧ r′)p(3)Y (s ∧ s′)

]
+ o

(
1

n

)
. (22)
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With the same technique as in (20) and (21), we obtain E
[
RRX,Yn (r, s)RRXn (r′)RRYn (s′)

]
=

E

 1

n3(n− 1)3

∑
i 6=j

∑
h6=k

∑
l 6=m

1{d(Xi,Xj)<r,d(Yi,Yj)<s, d(Xh,Xk)<r′,d(Yl,Ym)<s′}

 =

1

n3(n− 1)3

∑
i 6=j

∑
h6=k

∑
l 6=m

P
(
d (Xi, Xj) < r, d (Yi, Yj) < s, d (Xh, Xk) < r′, d (Yl, Ym) < s′

)
=

1

n3(n− 1)3

∑
i 6=j

∑
h6=k

∑
l 6=m

P
(
d (Xi, Xj) < r, d (Xh, Xk) < r′

)
P
(
d (Yi, Yj) < s, d (Yl, Ym) < s′

)
=

1

n3(n− 1)3
[
n(n− 1)(n− 2)2(n− 3)2pX(r)pX(r′)pY (s)pY (s′)

]
+

1

n3(n− 1)3

[
4n(n− 1)(n− 2)2(n− 3)pX(r)pX(r′)p

(3)
Y (s ∧ s′)

]
+

1

n3(n− 1)3

[
4n(n− 1)(n− 2)2(n− 3)p

(3)
X (r ∧ r′)pY (s)pY (s′) + 8n(n− 1)(n− 2)pX(r)p

(3)
Y (s ∧ s′)

]
+

1

n3(n− 1)3

[
8n(n− 1)(n− 2)p

(3)
X (r ∧ r′)pY (s) + 2n(n− 1)(n− 2)(n− 3)pX(r)pX(r′)pY (s)

]
+

1

n3(n− 1)3

[
2n(n− 1)(n− 2)(n− 3)pX(r)pY (s)pY (s′) + 16n(n− 1)(n− 2)2p

(3)
X (r ∧ r′)p(3)Y (s ∧ s′)

]
+

1

n3(n− 1)3
4n(n− 1)pX(r)pY (s).

Therefore
E
[
RRX,Yn (r, s)RRXn (r′)RRYn (s′)

]
=

1

n2(n− 1)2

[
(n− 2)2(n− 3)2pX(r)pX(r′)pY (s)pY (s′) + 4(n− 2)2(n− 3)pX(r)pX(r′)p

(3)
Y (s)

]
+

1

n2(n− 1)2

[
4(n− 2)2(n− 3)p

(3)
X (r ∧ r′)pY (s)pY (s′) + 8(n− 2)pX(r)p

(3)
Y (s ∧ s′) + 8(n− 2)p

(3)
X (r)pY (s)

]
+

1

n2(n− 1)2
[
2(n− 2)(n− 3)pX(r)pX(r′)pY (s) + 2(n− 2)(n− 3)pX(r)pY (s)pY (s′)

]
+

1

n2(n− 1)2

[
16(n− 2)2p

(3)
X (r ∧ r′)p(3)Y (s ∧ s′) + 4pX(r)pY (s)

]
=

(n− 2)2(n− 3)

n2(n− 1)2

[
(n− 3)pX(r)pX(r′)pY (s)pY (s′) + 4

(
p
(3)
X (r ∧ r′)pY (s)pY (s′) + pX(r ∧ r′)p(3)Y (s)

)]
+o

(
1

n

)
.
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Putting (20), (21) and (22) in (18), we obtain that (18) is equal to

1

n2(n− 1)2
[
(n− 2)(n− 3)(4n− 6)pX(r)pX(r′)pY (s)pY (s′)

]
+

1

n2(n− 1)2

[
4(n− 2)(n2 + 3n− 8)p

(3)
X (r ∧ r′)p(3)Y (s ∧ s′)

]
+

−4(n− 2)2(n− 3)

n2(n− 1)2

(
pX(r)pX(r′)p

(3)
Y (s ∧ s′) + p

(3)
X (r ∧ r′)p2Y (s)

)
+ o

(
1

n

)
.

Then
lim

n→+∞
COV

(
En(r, s), En(r′, s′)

)
=

4
(
p
(3)
X (r ∧ r′)− pX(r)pX(r′)

)(
p
(3)
Y (s ∧ s′)− pY (s)pY (s′)

)
.

Proof of Lemma 2.

√
n
(
RRX,Yn (r, s)−RRXn (r)RRYn (s)

)
=

√
n

n(n− 1)

∑
(i,j)∈In2

1{d(Xi,Xj)<r, d(Yi,Yj)<s} −
√
nRRXn (r)RRYn (s) =

√
n

n(n− 1)(n− 2)(n− 3)

∑
(i,j,h,k)∈In4

1{d(Xi,Xj)<r, d(Yi,Yj)<s} −
√
nRRXn (r)RRYn (s) =

E′n(r, s)−Hn(r, s)

where Hn(r, s) =

√
n

RRXn (r)RRYn (s)− 1

n(n− 1)(n− 2)(n− 3)

∑
(i,j,k,h)∈In4

1{d(Xi,Xj)<r, d(Yh,Yk)<s}

 .

Then, Hn(r, s) is equal to

√
n

n2(n− 1)2

∑
(i,j)∈In2

1{d(Xi,Xj)<r}
∑

(h,k)∈In2

1{d(Yh,Yk)<s}

−
√
n

n(n− 1)(n− 2)(n− 3)

∑
(i,j,k,h)∈In4

1{d(Xi,Xj)<r, d(Yh,Yk)<s} =

√
n

n2(n− 1)2
1

n(n− 1)

∑
(i,j)∈In2

∑
(h,k)∈In2

1{d(Xi,Xj)<r, d(Yh,Yk)<s}
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−
√
n

n(n− 1)(n− 2)(n− 3)

∑
(i,j,k,h)∈In4

1{d(Xi,Xj)<r, d(Yh,Yk)<s}. (23)

Now, we decompose ∑
(i,j)∈In2

∑
(h,k)∈In2

1{d(Xi,Xj)<r, d(Yh,Yk)<s} =

∑
(i,j,k,h)∈In4

1{d(Xi,Xj)<r, d(Yh,Yk)<s} + 4
∑

(i,j,k)∈In3

1{d(Xi,Xj)<r, d(Yi,Yk)<s}+

2
∑

(i,j)∈In2

1{d(Xi,Xj)<r, d(Yi,Yj)<s}

and substituting in (23) we obtain that (23) is equal to

√
n

n(n− 1)

( 1

n(n− 1)
− 1

(n− 2)(n− 3)

) ∑
(i,j,k,h)∈In4

1{d(Xi,Xj)<r, d(Yh,Yk)<s}

+

√
n

n2(n− 1)2

4
∑

(i,j,k)∈In3

1{d(Xi,Xj)<r, d(Yi,Yk)<s} + 2
∑

(i,j)∈In2

1{d(Xi,Xj)<r, d(Yi,Yj)<s}

 =

√
n

n2(n− 1)2(n− 2)(n− 3)

∑
(i,j,k,h)∈In4

1{d(Xi,Xj)<r, d(Yh,Yk)<s}+

√
n

n2(n− 1)2

4
∑

(i,j,k)∈In3

1{d(Xi,Xj)<r, d(Yi,Yk)<s} + 2
∑

(i,j)∈In2

1{d(Xi,Xj)<r, d(Yi,Yj)<s}

 (24)

Observe that (24) it is bounded between 0 and

√
n

n2(n− 1)2
(4n(n− 1)(n− 2) + 2n(n− 1)) =

1√
n

4n− 6

n− 1
<

4√
n
.

Proof of Theorem 3.

Every continuous function h : R → R with finit limits as x → ±∞ is uniformly con-
tinuous. Therefore given ε > 0, exist δ > 0 such that |F (x) − F (y)| ≤ ε2/8 and
|G(x)−G(y)| ≤ ε2/8 for all (x, y) such that |x− y| < δ, where F and G are the distri-
bution functions of d(X1, X2) and d(Y1, Y2) respectively. If H0 is true, consider for each
r, s > 0 the functions fr,s : (SX × SY )4 → R defined by

fr,s
(
x, y, x′, y′, x′′, y′′, x′′′, y′′′

)
= 1{d(x,x′)<r, d(y,y′)<s} − 1{d(x,x′)<r, d(y′′,y′′′)<s}
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where x, x′, x′′, x′′′ ∈ SX and y, y′, y′′, y′′′ ∈ SY . and consider the family F = {fr,s}r,s>0.
To simplify the notation, we call z = (x, y, x′, y′, x′′, y′′, x′′′, y′′′) throughout the demon-
stration.

Observe that

E′n(r, s) =

√
n

n(n− 1)(n− 2)(n− 3)

∑
(i,j,k,h)∈In4

fr,s (Xi, Yi, Xj , Yj , Xh, Yh, Xk, Yk)

then the process {E′n(r, s)}r,s>0 is an U−process of order 4.
To obtain the convergence, according to Arcones & Giné’s Theorem 4.10, it is enough

to prove that ∫ +∞

0

(
logN

(2)
[ ]

(
ε,F, P 4

))1/2
dε < +∞.

If ε ≥ 2, then −1 ≤ fr,s(z) ≤ 1 for all z ∈ (SX × SY )4 and r, s > 0. Then L = {−1},

U = {1} satisfied (6) Thus, N
(2)
[ ]

(
ε,F, P 4

)
= 1, therefore

∫ +∞
0

(
logN

(2)
[ ]

(
ε,F, P 4

))1/2
dε =∫ 2

0

(
logN

(2)
[ ]

(
ε,F, P 4

))1/2
dε.

If ε < 2, we take T > 0 such that max {1− F (T ), 1−G(T )} < ε2/8, then we

partition [0,+∞) into m + 1 subintervals of the form
[
iT
m ,

(i+1)T
m

)
such that T

m < δ,

where (m+1)T
m is interpreted as +∞. Define the following functions

gi,j(z) =

{
1{d(x,x′)< iT

m
, d(y,y′)< jT

m } for i, j = 1, 2, ...,m

0 for i = 0 or j = 0

and

hi,j(z) =


1{d(x,x′)< iT

m
, d(y′′,y′′′)< jT

m } for i, j = 1, 2, ...,m

1{d(x,x′)< iT
m } for i = 1, 2, ...,m, j = m+ 1

1{d(y′′,y′′′)< jT
m } for j = 1, 2, ...,m, i = m+ 1

1 for i = j = m+ 1

.

Observe that for each r, s > 0 there exists i, j ∈ {0, 1, 2, ...,m} such that iT
m ≤ r <

(i+1)T
m

and jT
m ≤ s <

(j+1)T
m .

Then

gi,j(z)− hi+1,j+1(z) ≤ fr,s(z) ≤ gi+1,j+1(z)− hi,j(z) for all z ∈ (SX × SY )4,

Thus L = {li,j} and U = {ui,j} where li,j(z) = gi,j(z) − hi+1,j+1(z) and ui,j(z) =
gi+1,j+1(z)− hi,j(z) for i, j = 0, 1, 2, ...,m. Also

E (ui,j(Z)− li,j(Z))2 ≤ 2
(
E (gi+1,j+1(Z)− gi,j(Z))2 + E (hi+1,j+1(Z)− hi,j(Z))2

)
.

(25)
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Define the sets Ai,j :=
[
0, (i+1)T

m

)
×
[
0, (j+1)T

m

)
−
[
0, iTm

)
×
[
0, jTm

)
, then

E (gi+1,j+1(Z)− gi,j(Z))2 = E
(
1Ai,j (Z)

)
≤ P

(
iT

m
≤ d (X1, X2) <

(i+ 1)T

m

)
+ P

(
jT

m
≤ d (Y1, Y2) <

(j + 1)T

m

)
≤

F

(
(i+ 1)T

m

)
− F

(
iT

m

)
+G

(
(j + 1)T

m

)
−G

(
jT

m

)
≤ ε2/4. (26)

Analogously,
E (hi+1,j+1(Z)− hi,j(Z))2 ≤ ε2/4. (27)

putting (27) and (26) in (25) we obtain that E (ui,j(Z)− li,j(Z))2 ≤ ε2.
Lastly, observe that the cardinal of L and U is (m+ 1)2, then

N
(2)
[ ]

(
ε,F, P 4

)
≤ cte

ε4
, thus

∫ 2

0

(
logN

(2)
[ ]

(
ε,F, P 4

))1/2
dε < +∞.

Proof of Theorem 4.

Define µ (r, s) = P (d(X1, X2) < r, d(Y1, Y2) < s)−P (d(X1, X2) < r)P (d(Y1, Y2) < s) .
Then, r0, s0 > 0 exist, such that µ2 (r0, s0) > 0, thus ε > 0 exist and A ⊂ [0,+∞)2 such
that (r0, s0) ∈ A and µ2 (r, s) > ε for all (r, s) ∈ A. Then, as n→ +∞,

n

∫ +∞

0

∫ +∞

0
µ2 (r, s) g(r, s)drds ≥ nε

∫∫
A
g(r, s)drds→ +∞.

Now, using that (a+ b)2 ≤ 2
(
a2 + b2

)
we obtain that n

∫ +∞
0

∫ +∞
0 µ2 (r, s) g(r, s)drds ≤

2n

∫ +∞

0

∫ +∞

0

(
RRX,Yn (r, s)−RRXn (r)RRYn (s)− µ (r, s)

)2
g(r, s)drds+

2n

∫ +∞

0

∫ +∞

0

(
RRX,Yn (r, s)−RRXn (r)RRYn (s)

)2
g(r, s)drds

Thus

Tn = n

∫ +∞

0

∫ +∞

0

(
RRX,Yn (r, s)−RRXn (r)RRYn (s)

)2
g(r, s)drds

P→ +∞ as n→ +∞.
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Proof of Corollary 1.

Because all of the norms in Rp and Rq are equivalent, it is enough to give the proof for the
Euclidean norm case. We use that if (Z, T ) has centered normal bivariate distribution,
then COV

(
Z2, T 2

)
= 2 (COV (Z, T ))2 .

Let us call X =
(
X(1), X(2), ..., X(p)

)
and Y =

(
Y(1), Y(2), ..., Y(q)

)
. Then

COV
(
‖X‖2 , ‖Y ‖2

)
= COV

 p∑
i=1

X2
(i),

q∑
j=1

Y 2
(j)

 = 2

p∑
i=1

q∑
j=1

(
COV

(
X(i), Y(j)

))2
.

If X and Y are not independent, then i and j exist such that COV
(
X(i), Y(j)

)
6= 0,

then COV
(
‖X‖2 , ‖Y ‖2

)
> 0, then ‖X‖2 and ‖Y ‖2 are not independent, therefore

‖X‖ and ‖Y ‖ are not independent, and then exist r and s positive numbers such that
P (‖X‖ < r, ‖Y ‖ < s) 6= P (‖X‖ < r)P (‖Y ‖ < s) . If we apply this argument for X1−
X2 and Y1 − Y2 instead X and Y , then we obtain that

P (‖X1 −X2‖ < r, d ‖Y1 − Y2‖ < s) 6= P (‖X1 −X2‖ < r)P (‖Y1 − Y2‖ < s) .

Lastly, the result follows from Theorem 2.

Proof of Proposition 1.

E(n)
(
RRX,Yn (r, s)

)
= E(n)

 1

N

∑
(i,j)∈I2

1{d(Xi,Xj)<r, d(Yi,Yj)<s}

 =

P (n) (d(Xi, Xj) < r, d(Yi, Yj) < s) . (28)

DefineAr,s :=
{

(x1, y1, x2, y2) ∈ R2p+2q : d(x1, x2) < r, d(y1, y2) < s
}
, then (28) is equal

to

c2n (δ)

∫∫∫∫
Ar,s

f
(n)
X,Y (x1, y1)f

(n)
X,Y (x2, y2)dx1dx2dy1dy2 =

c2n (δ)

∫∫∫∫
Ar,s

fX(x1)fY (y1)fX(x2)fY (y2)×(
1 +

δ

2
√
n
kn(x1, y1)

)2(
1 +

δ

2
√
n
kn(x2, y2)

)2

dx1dx2dy1dy2 =

c2n (δ) p
(0)
X (r)p

(0)
Y (s) + c2n

δ√
n
×∫∫∫∫

Ar,s

(kn(x1, y1) + kn(x2, y2)) fX(x1)fY (y1)fX(x2)fY (y2)dx1dx2dy1dy2

+εn (r, s)
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where |εn (r, s)| ≤ c√
n

for all r, s > 0 and c is a constant.

E(n)
(
RRXn (r)RRYn (s)

)
=

1

N2
E(n)

 ∑
(i,j)∈I2, (h,k)∈I2

1{d(Xi,Xj)<r, d(Yh,Yk)<s}

 =

c2n (δ)
(n− 2) (n− 3)

N
p
(0)
X (r)p

(0)
Y (s) +

2

N
P (n) (Ar,s) +

4(n− 2)

N
P (n) (d(X1, X2) < r, d(Y1, Y3) < s) .

Therefore

E(n) (En(r, s)) =
√
nE(n)

(
RRXn (r)RRYn (s)−RRXn (r)RRYn (s)

)
=

√
nc2n (δ)

4n− 6

N
p
(0)
X (r)p

(0)
Y (s) + δc2n (δ)×∫∫∫∫

Ar,s

(kn(x1, y1) + kn(x2, y2)) fX(x1)fY (y1)fX(x2)fY (y2)dx1dx2dy1dy2 + εn (r, s) .

Then E(n) (En(r, s))→

δ

∫∫∫∫
Ar,s

(k(x1, y1) + k(x2, y2)) fX(x1)fY (y1)fX(x2)fY (y2)dx1dx2dy1dy2

as n→ +∞.
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formados. Décima escuela venezolana de Matemáticas.

[9] Eckmann, J. P, Oliffson Kamphorst, S, Ruelle, D. (1987). Recurrence plots of dy-
namical systems. Europhys. Lett. 4, 973-977.

[10] Galton, F. (1888). Co-relations and their measurement, chiefly from anthropometric
data. Proceedings of the Royal Society of London. 45(273-279):135–145.
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[25] Székely, G. J., Rizzo, M. L., Bakirov, N. K., et al. (2007). Measuring and testing
dependence by correlation of distances. The Annals of Statistics. 35(6):2769– 2794.
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Figure 2: Parabola, Two parabolas, circle, diamond, wshape and four independent
clouds.
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