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Abstract

We show that the set of d-variate symmetric stable tail dependence functions,
uniquely associated with exchangeable d-dimensional extreme-value copulas, is a
simplex and determine its extremal boundary. The subset of elements which arises
as d-margins of the set of (d+k)-variate symmetric stable tail dependence functions
is shown to be proper for arbitrary k ≥ 1. Finally, we derive an intuitive and useful
necessary condition for a bivariate extreme-value copula to arise as bi-margin of an
exchangeable extreme-value copula of arbitrarily large dimension, and thus to be
conditionally iid.

Keywords: extreme-value copula; stable tail dependence function; extendibility; ex-
changeability; conditionally iid.

1 Introduction

The problem of determining whether a given exchangeable probability law on Rd can
arise as a d-dimensional margin of some exchangeable probability law on Rd+k, k ≥ 1,
is known as the extendibility problem in the literature. If there is a solution to the
extendibility problem for arbitrary k ≥ 1, one calls the probability law (infinitely) ex-
tendible. In the general case, that is without postulating any additional conditions on
the involved probability distributions, [Konstantopoulos, Yuan (2019)] derive an ana-
lytical criterion to check for extendibility, although this criterion is difficult to apply
in concrete cases. Analytical solutions of the infinite extendibility problem have nat-
ural connections with Harmonic Analysis, rendering the topic interesting for theorists.
But the problem is also interesting for applied probabilists, since infinitely extendible
models can be used as flexible dependence models that are still very convenient to
work with in large dimensions. The most famous solutions to the infinite extendibility
problem for specific families of distributions comprise `2-norm symmetric laws (Schoen-
berg’s Theorem), `1-norm symmetric laws associated with Archimedean copulas (see
[McNeil, Nešlehová (2009)]), and `∞-norm symmetric laws (see [Gnedin (1995)]), see
also [Rachev, Rüschendorf (1991)] for a nice wrapping of these three popular cases and
a generalization to `p-norm symmetric laws for arbitrary p ∈ (0,∞]. More recently, the

1Technical University of Munich, Department of Mathematics, Chair of Mathematical Finance,
Parkring 11, 85748 Garching–Hochbrück, email: mai@tum.de and scherer@tum.de

1

ar
X

iv
:1

90
9.

09
43

8v
1 

 [
m

at
h.

ST
] 

 2
0 

Se
p 

20
19



1 Introduction

infinite extendibility problem has also been solved for popular families of multivariate
exponential and geometric distributions, see [Mai et al. (2013), Mai, Scherer (2013)],
and has also been dealt with for extreme-value distributions in [Mai, Scherer (2014),
Mai (2019)]. Recall further that the seminal De Finetti Theorem implies that the no-
tions “infinitely extendible” and “conditionally iid” coincide for exchangeable probability
laws, see [De Finetti (1937)].

The present article may be seen as a continuation of the work in [Mai, Scherer (2014),
Mai (2019)] and deals with the extendibility problem for exchangeable extreme-value
copulas. More specifically, we investigate which exchangeable d-variate extreme-value
copulas arise as d-margins of some (d + k)-variate exchangeable extreme-value copula,
and which do not. Recall that an extreme-value copula C : [0, 1]d → [0, 1] is (the restric-
tion to [0, 1]d of) a distribution function with one-dimensional margins that are uniform
on [0, 1], and which satisfies the extreme-value property C(ut1, . . . , u

t
d) = C(u1, . . . , ud)

t

for all u1, . . . , ud ∈ [0, 1] and t ≥ 0. The extreme-value property analytically char-
acterizes multivariate distribution functions that can arise as limits of appropriately
normalized componentwise maxima/minima of independent and identically distributed
random vectors, see [Resnick (1987)] for a textbook account on multivariate extreme-
value theory. The restriction to uniform one-dimensional margins, i.e. to copulas, in-
stead of arbitrary extreme-value distribution functions is without loss of generality,
since by virtue of Sklar’s Theorem we can write an arbitrary distribution function of
a d-variate extreme-value distribution as F (x1, . . . , xd) := C

(
F1(x1), . . . , F (xd)

)
, where

C : [0, 1]d → [0, 1] is an extreme-value copula and F1, . . . , Fd denote the one-dimensional
margins, which are necessarily one-dimensional extreme-value distribution functions. We
refer to [Durante, Sempi (2015), Joe (2014)] for general background on copulas, and to
[Joe (1997)] for a book on copulas with a specific emphasis on extreme-value copulas.

Regarding the important special case of infinite extendibility, we say that a d-variate
exchangeable extreme-value copula C is infinitely extendible if it arises as d-margin
of some (d + k)-dimensional exchangeable extreme-value copula for arbitrary k ≥ 1.
[Mai, Scherer (2014)] show that this is the case if and only if there is a right-continuous,
non-decreasing stochastic process H = {Ht}t≥0 satisfying H0 = 0, limt→∞Ht =∞, and
− log(E[exp(−H1)]) = 1, which is strongly infinitely divisible with respect to time, such
that C(~u) = P(U1 ≤ u1, . . . , Ud ≤ ud) for ~u = (u1, . . . , ud) ∈ [0, 1]d, where

Uk := exp(−Xk), Xk := inf{t > 0 : Ht > εk}, k = 1, . . . , d, (1)

and ε1, . . . , εd are independent and identically distributed with standard exponential
distribution, independent of H. Infinite divisibility with respect to time means that for
arbitrary n ∈ N the stochastic process H is identical in law with the stochastic process

H
(1)
./n + . . .+H

(n)
./n for independent copies H(1), . . . ,H(n) of H. Making use of this result,

[Mai (2019)] further shows that C is infinitely extendible if and only if there is a pair
(b, λ) comprising a constant b ∈ [0, 1] and a probability measure λ on the set F1 of
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1.1 How could Moby Dick escape us for so long?

distribution functions of non-negative random variables with unit mean such that

C(~u) =
( d∏
k=1

uk

)b
exp

{
− (1− b)

∫
F1

∫ ∞
0

1−
d∏

k=1

F
( s

− log(uk)

)
ds λ(dF )

}
. (2)

The pair (b, λ) can be used to specify the process H in (1) as

Ht = b t+ (1− b)
∑
k≥1

− log
{
Gk

(η1 + . . .+ ηk
t

−
)}
, t ≥ 0,

where G1, G2, . . . is a sequence of independent and identically distributed random distri-
bution functions drawn from γ and η1, η2, . . . is an independent sequence of independent
and identically distributed standard exponential variates. The stochastic model (1)
for infinitely extendible extreme-value copulas is very convenient for applications due
to the fact that U1, . . . , Ud are independent and identically distributed conditioned on
the σ-algebra generated by H. Unfortunately, it is in general unclear whether a given
exchangeable extreme-value copula is of the form (2) and thus admits the convenient
stochastic representation (1).

With this background in mind, the present article finally provides the answer to a natural
question about which the authors were pondering for almost a decade. It has served
as a fruitful source of inspiration, since we have been able to discover plenty of related
results in the meantime while chasing our ‘Moby Dick’, which is:

Is an exchangeable extreme-value copula always of the form (2), and thus
admits a stochastic representation as in (1)?

We are going to answer this question with ‘no’ in this article, for arbitrary dimension
d ≥ 2. Whereas for d = 3 (and from this easily also for d ≥ 3) already the remark after
Example 1 of [Mai (2019)] shows that not every exchangeable extreme-value copula is of
the form (2), for d = 2 this question has been open until now. Our strategy of proof pro-
vides a structural result of independent interest for exchangeable extreme-value copulas
in arbitrary dimension d ≥ 2: the set of symmetric stable tail dependence functions is a
simplex. We determine its extremal boundary and show that extremal elements cannot
arise as margins of a higher-dimensional symmetric stable tail dependence function.

1.1 How could Moby Dick escape us for so long?

It is well known that infinitely extendible random vectors are necessarily positively
associated in some sense. In fact, [Shaked (1977)] even calls such random vectors positive
dependent by mixture (PDM), which is a third synonym that is found in the literature
for “conditionally iid” or “infinitely extendible”. Thus, a popular strategy to prove that
a random vector is not infinitely extendible is to show that its components exhibit some
sort of negative association, which is successful for many popular families of distributions
for which exchangeable but not infinitely extendible examples are known. What makes
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1.2 Why is our Moby Dick relevant?

the investigation of extreme-value copulas more delicate in this regard is the fact that
extreme-value copulas always induce non-negative association, see [Joe (1997), Theorem
6.7, p. 177], which disqualifies the aforementioned strategy of proof. Furthermore, well-
known parametric families of exchangeable bivariate extreme-value copulas, like the
Gumbel copula, the Galambos copula, or the Cuadras–Augé copula2, are indeed of the
form (2).

1.2 Why is our Moby Dick relevant?

The property of being infinitely extendible has far-reaching consequences in applications.
If a model is not infinitely extendible, it is difficult, or even impossible, to add more
components to the existing model while preserving its structure. There are many prac-
tical applications where it is natural and required to let the dimension d vary. Consider,
for example, an insurance company (resp. a bank) that has d insured objects under
contract (resp. has issued d loans). Here, the quantity d changes frequently in a natural
way and it would be inconvenient or impracticable to use a model that is limited to an
upper bound for d. Moreover, as already mentioned, a conditionally iid structure allows
to apply classical limit theorems like the law of large numbers or Glivenko–Cantelli in
a conditional version, which can be a valuable tool in applications.

From a theoretical perspective the extendibility problem is interesting and challenging,
as the canonical stochastic model of the random vector in concern might not at all
be related to the concept of conditional independence. The stochastic model (1) is by
definition based on a two-step Bayesian simulation: first simulate the latent factor H,
second simulate an iid sequence drawn from the distribution function 1− exp(−H). In
contrast, the canonical stochastic model for arbitrary (not necessarily exchangeable or
even infinitely extendible) extreme-value copulas, based on limits of component-wise
minima/maxima, does a priori not have any connection to conditional independence.

1.3 Organization of the article and notations

Section 2 is concerned with the algebraic structure of exchangeable d-variate extreme-
value copulas. The main contribution of Sections 2.1 and 2.2 is the observation that
the associated family of symmetric stable tail dependence functions forms a simplex. In
Section 2.3 it is shown that certain extremal stable tail dependence functions cannot arise
as lower-dimensional margins of higher-dimensional symmetric stable tail dependence
functions, thus proving that the notion “infinitely extendible” and “exchangeable” are
not synonyms in the realm of extreme-value copulas. Section 3 provides a non-trivial
and intuitive necessary condition for a bivariate extreme-value copula to be infinitely
extendible.

2Which equals the exchangeable, bivariate Marshall–Olkin copula, see also Example 3.1.
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2 Exchangeable extreme-value models

Throughout, we denote equality in distribution by
d
=, the symbol∼means “is distributed

according to,” and the acronym iid means independent and identically distributed. We
say that a probability measure µ on Rd is conditionally iid if there is a random vector
X = (X1, . . . , Xd) ∼ µ on some probability space (Ω,F ,P) such that X1, . . . , Xd are
iid conditioned on some σ-algebra T ⊂ F . In this case, we also say that X itself
and also its distribution function are conditionally iid. Conditioned on T , and thus
also unconditioned, the limiting process d→∞ is clearly viable by the natural product
space extension, and thus we may view (X1, . . . , Xd) as the first d members of an infinite
sequence {Xk}k∈N whose components are iid conditioned on T . For this reason, the
notion “conditionally iid” is sometimes also referred to as “(infinitely) extendible” in
the literature on exchangeable probability laws, for instance in [Spizzichino (1982)].

2 Exchangeable extreme-value models

We analyze the anatomy of exchangeable extreme-value copulas. We shall find that the
family of symmetric stable tail dependence functions, associated with the exchangeable
subfamily of extreme-value copulas, forms a simplex. This is an interesting finding,
as the full class of (not necessarily symmetric) stable tail dependence functions does
not share this property. Regarding the organization, in Section 2.1 we first present the
simpler bivariate case separately, as the terminologies in the literature for the bivariate
and multivariate treatment differ, and also because we pick up some of the specific
two-dimensional notations in Section 3 below.

2.1 Bivariate extreme-value copulas: Characterization and geometry

A convenient analytical description of a bivariate extreme-value copula is available in
terms of its so-called (Pickands) dependence function A : [0, 1]→ [1/2, 1], which satisfies
1 ≥ A(x) ≥ max{1 − x, x}, A(0) = A(1) = 1, and is convex. We denote the set of all
such functions by A. To wit, A ∈ A if and only if the function

C(u1, u2) = (u1 u2)
A
(

log(u1)
log(u1 u2)

)
, u1, u2 ∈ [0, 1],

is a bivariate extreme-value copula. Furthermore, C is exchangeable if and only if
A(x) = A(1−x) for all x ∈ [0, 1], and we denote the respective subset of A by AX in the
sequel. Clearly, 2-margins of some exchangeable d-variate extreme-value copula for d ≥ 3
are exchangeable bivariate extreme-value copulas. The subset of those A corresponding
to bivariate extreme-value copulas which arise as 2-margins of an exchangeable d-variate
extreme-value copula for arbitrarily large d ≥ 2 will be denoted A∗. Notice that elements
in A∗ are in particular conditionally iid, and in this article we establish that the inclusion
A∗ ( AX is proper.
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2.1 Bivariate extreme-value copulas: Characterization and geometry

Elements in A can furthermore be associated uniquely with random variables Q on [0, 1]
with E[Q] = 1/2. To wit, for such Q the function

A(x) = 2E
[

max{xQ, (1− x) (1−Q)}
]
, x ∈ [0, 1], (3)

lies in A, every A ∈ A can be represented by such Q, and the law of Q is unique, see
[De Haan (1984), Ressel (2013)]. Clearly, A ∈ AX if and only if the associated random

variable Q satisfies Q
d
= 1−Q. For historical reasons, the finite measure 2P

(
(Q, 1−Q) ∈

d~q
)

on the two-dimensional unit simplex S2 := {~q = (q1, q2) ∈ [0, 1]2 : q1 + q2 = 1}
is called Pickands dependence measure of C, see [Pickands (1981)]. It is educational to
recall that

A(x) = 1 +

∫ x

0
1− 2P(Q ≤ 1− y) dy,

which follows from straightforward computations, using integration by parts and E[Q] =
1/2. This shows in particular that A is convex with derivative from the right being given
by x 7→ 1− 2P(Q ≤ 1− x), so that studying properties of A is tantamount to studying
properties of Q (which is tantamount to studying properties of C).

Example 2.1 (The family BC2)
For 0 ≤ a ≤ 1/2 ≤ b ≤ 1 we consider a random variable Q = Qa,b with P(Qa,b = a) =
(b − 1/2)/(b − a) = 1 − P(Qa,b = b), with the convention 0/0 = 1 in case a = b = 1/2,
and observe that the associated Pickands dependence function is given by

Aa,b(x) = max{a x, b (1− x)}+ max{(1− a)x, (1− b) (1− x)}.

This forms the extreme-value copula family BC2, introduced in [Mai, Scherer (2011)].

Remark 2.2 (A is not a simplex)
It has been shown in [Mai, Scherer (2011)], and later also in [Trutschnig et al. (2016)]
with an alternative proof, that A equals the convex hull of its extremal boundary ∂eA =
{Aa,b : 0 ≤ a ≤ 1/2 ≤ b ≤ 1}. Combined with the fact that the law Qa,b associated
with Aa,b via (3) has at most two atoms, the nomenclature BC2 is the abbreviation of
building components with at most 2 atoms. However, [Beran, Mainik (2014)] provide
an example showing that A is not a simplex, i.e. a representation of A ∈ A as convex
combination of elements in ∂eA is not necessarily unique. They point out that

A(x) =
1

4
A0,1(x) +

3

4
A 1

3
, 2
3
(x) =

1

2
A0, 2

3
(x) +

1

2
A 1

3
,1(x),

as can readily be checked. The situation changes when restricting one’s attention to the
symmetric subfamily, as we will see.

Obviously, Aa,b in Example 2.1 is symmetric if and only if b = 1−a, and for a ∈ (1/2, 1]
we introduce the auxiliary notation Aa,1−a := A1−a,a for the sake of convenience in the

6



2.2 Multivariate extreme-value copulas: Characterization and geometry

upcoming computation. If A ∈ AX is symmetric, the associated random variable Q

satisfies Q
d
= 1−Q, which implies that

A(x) = 2E[max{xQ, (1− x) (1−Q)}]
= E[max{xQ, (1− x) (1−Q)}+ max{x (1−Q), (1− x)Q}]

= E[AQ,1−Q(x)] =

∫[
0, 1

2

]Aq,1−q(x) ν(dq),

where the measure ν is defined and uniquely determined by the law of Q via ν([0, q)) :=
2P(Q < q) for q ∈ [0, 1/2), or more precisely by

ν
({1

2

})
= P

(
Q =

1

2

)
, ν(B) := 2P(Q ∈ B), ∀B ⊂ [0, 1/2) Borel sets.

This shows that the set AX of symmetric dependence functions equals the convex hull
of ∂eA

X = {Aa,1−a : 0 ≤ a ≤ 1/2}. Furthermore, since the representing measure ν is
unique (since the law of Q is known to be unique), AX is a simplex, indicating that the
algebraic structure in the exchangeable case is a lot nicer than in the non-exchangeable
case. We label this remarkable observation a lemma.

Lemma 2.3 (Bivariate case: AX is a simplex)
AX is a simplex with extremal boundary ∂eA

X = {Aa,1−a : 0 ≤ a ≤ 1/2}.

2.2 Multivariate extreme-value copulas: Characterization and geometry

We generalize Lemma 2.3 to the multivariate case. For an extreme-value copula C, the
function

`(~x) := − log
(
C
(
e−x1 , . . . , e−xd

))
, ~x = (x1, . . . , xd) ∈ [0,∞)d,

is called stable tail dependence function. The extreme-value property of C implies that
` is homogeneous of order one, i.e. `(t ~x) = t `(~x). Clearly, the function ` uniquely
determines its associated extreme-value copula C. In fact, due to the homogeneity
already the restriction of ` to the d-dimensional unit simplex Sd := {~x ∈ [0, 1]d : x1 +
. . .+xd = 1} determines C. As a generalization of the bivariate case the classical result
of [Pickands (1981)] in the multivariate case states that ` is the stable tail dependence
function of some d-variate extreme-value copula if and only if there exists a random
vector ~Q = (Q1, . . . , Qd), taking values in Sd and satisfying E[Qk] = 1/d for each
component k, such that

`(~x) = dE[max{x1Q1, . . . , xdQd}]. (4)

This random vector ~Q is further uniquely determined in distribution, see [De Haan (1984),
Ressel (2013)]. In the bivariate case d = 2 we recall that the (Pickands) dependence
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2.2 Multivariate extreme-value copulas: Characterization and geometry

function is obtained from the stable tail dependence function as A(x) = `(x, 1−x). A d-
dimensional extreme-value copula is exchangeable if and only if ` is symmetric, meaning
that ` is invariant with respect to permutations of its arguments.

The (convex) set of all stable tail dependence functions is not a simplex, as already
highlighted in the bivariate case. But like in the bivariate case we are going to show
that the (convex) subset of all symmetric stable tail dependence functions, denoted by
LXd henceforth, is a simplex. To this end, we denote by Pd the set of permutations on
{1, . . . , d} and introduce an equivalence relation on Sd:

~q ∼ ~r, if there exists a σ ∈ Pd such that ~q = (rσ(1), . . . , rσ(d)).

The equivalence class of ~q is denoted by [~q], and we denote the set of equivalence classes

by Sd�∼. Since Sd is compact Hausdorff, and since each equivalence class is a set of
at most d! elements, the quotient space Sd�∼ is also compact Hausdorff. Thus, Radon
probability measures on Sd�∼ are well-defined. In fact, if q : Sd → Sd�∼ denotes the
quotient map, then we may define a probability measure on Sd�∼ from a probability
measure µ on Sd by [µ](B) := µ(q−1(B)), where q−1(B) is the pre-image of an open set

B ⊂ Sd�∼. Intuitively, if ~Q ∼ µ then [ ~Q] ∼ [µ]. Conversely, every probability measure

on Sd�∼ is obtained in such way.

Lemma 2.4 (Multivariate case: LX
d is a simplex)

For each ~q ∈ Sd the function

`
(d)
~q (~x) :=

1

(d− 1)!

∑
σ∈Pd

max{x1 qσ(1), . . . , xd qσ(d)}

is in LXd and depends on ~q only through its equivalence class [~q], thus we may write

`
(d)
~q = `

(d)
[~q] . Further, LXd is a simplex with extreme points {`(d)

[~q] }[~q]∈Sd�∼
.

Proof
First, it is easy to see that `

(d)
~q is the stable tail dependence function associated with the

random vector ~Q = (qΣ(1), . . . , qΣ(d)), where Σ is a random variable uniformly distributed
on Pd, i.e. with P(Σ = σ) = 1/d! for each σ ∈ Pd. Notice that E[Qk] = 1/d for each

k = 1, . . . , d. Since ~Q is obviously exchangeable, `
(d)
~q is symmetric. By definition, ~q

depends on ~q only through [~q].

Next, we observe that ` ∈ LXd if and only if the random vector ~Q associated with its
unique Pickands measure is exchangeable. While sufficiency is obvious, to see necessity
we let σ ∈ Pd be arbitrary and consider ~R := (Qσ(1), . . . , Qσ(d)). We have to show that

~R
d
= ~Q. To this end, we observe that ~R is also a Pickands measure of some stable tail

dependence function `R. Using the symmetry of `, however, we see that

`(xσ(1), . . . , xσ(d)) = `(~x) = dE[ max
i=1,...,d

{xiQi}]

= dE[ max
i=1,...,d

{xσ(i)Qσ(i)}] = `R(xσ(1), . . . , xσ(d)).

8



2.3 Impossibility of embedding the boundary into a higher dimension

Thus, `R = `, which implies ~R
d
= ~Q, as the law of ~Q is uniquely determined by `.

Finally, let ` ∈ LXd be arbitrary. We have just seen that its associated random vector ~Q is
exchangeable. Its probability law, denoted µ, is a law on Sd. We consider the associated
probability law [µ] on Sd�∼, which is the law of [ ~Q], and see, using exchangeability of
~Q in (∗) below,

`(~x) =
1

(d− 1)!
d!E[ max

i=1,...,d
{xiQi}]

(∗)
=

1

(d− 1)!

∑
σ∈Pd

E[ max
i=1,...,d

{xiQσ(i)}]

= E
[
`
(d)
~Q

(~x)
]

= E
[
`
(d)

[ ~Q]
(~x)
]

=

∫
Sd�∼

`
(d)
[~q] (~x) [µ](d[~q]).

Since ~Q is exchangeable and the law of ~Q on Sd is unique, the law of [ ~Q] on Sd�∼ is
unique as well, finishing the argument. �

2.3 Impossibility of embedding the boundary into a higher dimension

We fix d ≥ n + 1 ≥ 3 in this paragraph. We show that `
(n)
[~q] ∈ LXn cannot be the

n-margin of any ` ∈ LXd for ~q ∈ Sn with 0 < q1 < . . . < qn < 1. This, in turn,
shows that not all n-variate exchangeable extreme-value copulas arise as n-margins of
higher-dimensional exchangeable extreme-value copulas. In particular, not all n-variate
exchangeable extreme-value copulas are conditionally iid.

Lemma 2.5 (Impossibility of embedding the boundary)
Let 0 < q1 < . . . < qn < 1, n ≥ 2. We claim that `

(n)
[~q] ∈ LXn cannot be an n-margin of

any ` ∈ LXd for d ≥ n+ 1.

Proof
We compute the n-margin of an arbitrary ` ∈ LXd and denote by ~Q the random vector
associated with ` via (4). In this computation, we abbreviate S :=

∑n
j=1Qj , noticing

that P(S > 0) > 0 by exchangeability of ~Q and the fact that Q1 + . . .+Qd = 1 almost
surely.

`(x1, . . . , xn, 0, . . . , 0) = dE
[

max{x1Q1, . . . , xnQn}
]

= dE
[
I{S>0} S max{x1

Q1

S
, . . . , xn

Qn
S
}
]

(a)
= dP(S > 0)EP̃

[
S max{x1

Q1

S
, . . . , xn

Qn
S
}
]

(b)
= nEQ

[
max{x1

Q1

S
, . . . , xn

Qn
S
}
]
.

Above, in (a) we introduce the new probability measure P̃(B) := P(B|S > 0) s.t.
E[I{S>0}X] = E[X|S > 0]P(S > 0) = EP̃[X]P(S > 0) for arbitrary random variables

X, and in (b) we introduce the probability measure Q defined by dQ := dP(S>0)S
n dP̃.

9



2.3 Impossibility of embedding the boundary into a higher dimension

Notice that Q has the same null sets as P̃, since P̃(S > 0) = 1 and Q is indeed a
probability measure, since

Q(Ω) = EP̃
[dP(S > 0)S

n

]
=
dP(S > 0)

n
EP̃[S] =

d

n
E[S I{S>0}] =

d

n
E[S] = 1.

Hence, the Pickands measure of an n-margin of ` is given by nQ
((Q1

S , . . . ,
Qn

S

)
∈ d~x

)
on Sn. We denote by S the support of this measure, i.e. S ⊂ Sn is a closed subset

and ~s := (s1, . . . , sn) ∈ S if and only if Q
((Q1

S , . . . ,
Qn

S

)
∈ U

)
> 0 for an arbitrary

neighbourhood U of ~s, ~s ∈ U ⊂ Sn. We know that the support of `[~q] equals [~q] ⊂ Sn
and we claim that S 6= [~q], which implies the main claim. So, we (falsely) assume that
S = [~q] and show that this implies a contradiction.

We denote by R the support on Sd of the Pickands measure of `, which equals the
support of ~Q under P. Note that by construction, the support of ~Q under P and Q
can at most differ at values of Sd with at least one component equal to zero, which is
irrelevant for us in the following. Let ~r ∈ R be arbitrary. By exchangeability of ~Q,
[~r] ⊂ R. If some component ri of ~r is zero, this contradicts mini{qi} ≥ q1 > 0, so all
components of ~r are positive. If ri = rj for some i 6= j then

Q
((Q1

S
, . . . ,

Qn
S

)
has two identical components

)
> 0

which contradicts q1 < . . . < qn and the assumption S = [~q]. Thus, we may assume
without loss of generality that 0 < r1 < . . . < rd < 1 and observe

S ⊃
{( rσ(1)∑n

j=1 rσ(j)
, . . . ,

rσ(n)∑n
j=1 rσ(j)

)
: σ ∈ Pd

}
=: M.

Further, we have

N :=
{( rσ(1)∑n

j=1 rσ(j)
, . . . ,

rσ(n)∑n
j=1 rσ(j)

)
: σ ∈ Pn

}
⊂M

and N has cardinality |N | = n!. Since x 7→ x
x+c is strictly increasing in x > 0 for

arbitrary but fixed c > 0, we see that

rn+1

(
∑n−1

j=1 rj) + rn+1

>
rn

(
∑n−1

j=1 rj) + rn
,

which shows that( r1

(
∑n−1

j=1 rj) + rn+1

, . . . ,
rn−1

(
∑n−1

j=1 rj) + rn+1

,
rn+1

(
∑n−1

j=1 rj) + rn+1

)
∈M\N,

and, consequently, |S| ≥ |M | > |N | = n!, contradicting the assumption S = [~q]. �
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3 Infinite extendibility of bivariate extreme-value copulas

If we write LXn,d for the subset of those stable tail dependence functions in LXn which

arise as n-margin of some element in LXd , Lemma 2.5 shows for arbitrary k ∈ N that⋂
d≥n

LXn,d ( LXn,n+k ( LXn .

Finally, recall that for n = 2 the set
⋂
d≥2 L

X
2,d is essentially equal to A∗, since A ∈ A∗

is defined from ` ∈
⋂
d≥2 L

X
2,d via A(x) = `(x, 1− x), x ∈ [0, 1].
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Fig. 1 Left: Scatter plot of 2, 500 simulated points (U1, U2, U3) from the extreme-value

copula associated with `
(3)
[(1/6,1/3,1/2)]. Right: Scatter plot of 2, 500 simulated

points of the first two coordinates (U1, U2) of the three-dimensional points in
the left plot. Notice the singular component which is concentrated on six one-
dimensional paths from (0, 0) to (1, 1).

Figure 1 depicts a scatter plot for the extreme-value copula associated with the extremal

element `
(3)
[(1/6,1/3,1/2)] ∈ LX3 , as well as a scatter plot of a bivariate margin thereof.

We know from [Mai, Scherer (2011)] that extremal elements of LX2 induce extreme-
value copulas with singular component which is concentrated on (at most) two one-
dimensional paths from (0, 0) to (1, 1). In contrast, the scatter plot on the right-hand side
apparently exhibits singular support on six such paths. This confirms our finding that
bivariate exchangeable extreme-value copulas which are extendible to a three-variate
exchangeable extreme-value copula cannot have Pickands measure concentrated on at
most two atoms.

3 Infinite extendibility of bivariate extreme-value copulas

Whereas Lemma 2.5 resolves our ‘Moby Dick’ in the negative, this raises the next natural
question: Given some A ∈ AX , can we find a useful analytical criterion to solve the

11



3 Infinite extendibility of bivariate extreme-value copulas

membership testing problem A ∈ A∗? In this section, we work towards a solution by
deriving a useful necessary condition.

From (2) we know that A∗ equals the convex hull of {A0,1} ∪ {AF : F ∈ F1}, where

F1 := {F : [0,∞)→ [0, 1] : F is d.f. of a r.v. X ≥ 0 with E[X] = 1}

and

AF (x) :=

∫ ∞
0

1− F
( s
x

)
F
( s

1− x

)
ds.

The constant Pickands dependence function A0,1 represents independence and lies in the
closure3 of {AF : F ∈ F1}, which can be seen with the help of Example 3.1 below in the
case θ → 0. Thus, the set A∗ is the closed convex hull of {AF : F ∈ F1}. Consequently,
it is of fundamental importance to understand properties of AF for F ∈ F1.

Denoting by Q = QF the random variable associated with AF via (3), we know from
[Mai (2019)] that

QF
d
=

MF

XF + YF
, MF =

{
XF , if B = 1

YF , if B = 0
,

where the three random variables B ∼ Bernoulli(1/2), XF ∼ F , and YF ∼ x dF (x) are
independent. One readily verifies for 0 < q < 1/2 that

P(QF ≤ q) =
1

2
P

(
XF

YF
∈
( q

1− q
,
1− q
q

)c)
, (5)

noticing that YF > 0 almost surely, even though XF might be zero (so the denominator
is well-defined). Notice in particular that (5) implies that

P
(
QF =

1

2

)
= 1− 2P

(
QF <

1

2

)
= 1− P

(XF

YF
∈ {1}c

)
= P

(XF

YF
= 1
)
.

Furthermore, the random variable 1/YF is easily seen to have unit expectation, which
implies that E[XF /YF ] = 1.

Example 3.1 (An extendible example: The Cuadras–Augé copula)
For θ ∈ (0, 1] we consider A(x) = (1 − θ) + θ (1 − x), x ≤ 1/2, i.e. a convex mix-
ture of independence (A(x) ≡ 1) and co-monotonicity (A(x) = 1 − x, x ≤ 1/2).
We have that A ∈ A∗, since both independence and co-monotonicity are condition-
ally iid. Alternatively, we have that A = AF for F (x) = 1 − θ + θ I{x≥1/θ} ∈ F1,
as will be explained briefly. Using the notation XF , YF from above we observe that
P(XF = 0) = 1 − θ = 1 − P(XF = 1/θ) and YF ≡ 1. Consequently, we observe

3With respect to the topology of pointwise convergence.

12



3 Infinite extendibility of bivariate extreme-value copulas

P(XF /YF = 0) = P(XF = 0) = 1 − θ and P(XF /YF = 1/θ) = P(XF = 1/θ) = θ. In
particular, Formula (5) implies that

P(QF ≤ q) =
1− θ

2
, 0 < q <

1

2
.

This implies that

QF =


0 , with probability 1−θ

2
1
2 , with probability θ

1 , with probability 1−θ
2

.

Indeed, it is verified that

2E[max{xQF , (1− x) (1−QF )}] = 1− θ + θ (1− x) = A(x), x ≤ 1

2
,

as claimed.

The following result gives a non-trivial necessary condition for a symmetric random
variable Q on [0, 1] to define via (3) a Pickands dependence function in A∗.

Lemma 3.2 (Necessary condition for extendibility)
LetQ be a random variable on [0, 1] withQ

d
= 1−Q, and denote byA(x) := 2E[max{xQ, (1−

x) (1−Q)}] its associated Pickands dependence function in AX . We assume furthermore
that A ∈ A∗.

(a) Discrete case: If the support of Q consists of finitely many values,

P(Q = q) ≤ P(Q = 1/2)

2
√
q (1− q)

, q ∈ [0, 1].

(b) Absolutely continuous case: If Q is absolutely continuous with continuous
density fQ,

fQ(q) ≤
fQ(1/2)

8
√
q3 (1− q)3

, q ∈ (0, 1).

Remark 3.3 (Intuition of the necessary conditions)
Intuitively, belonging to A∗ requires the probability law of Q to allocate mass near the
three values 0, 1/2, 1.

• The (discrete or continuous) density is bounded from above by a symmetric func-
tion, which takes its minimum at 1/2 and increases monotonically to infinity for
q → 0 and q → 1. In particular, the less mass one has at q = 1/2, the more
restrictive becomes the bound.

13



3 Infinite extendibility of bivariate extreme-value copulas

• Conversely, Lemma 3.2 gives a lower bound on the (discrete or continuous) density
value at q = 1/2, to wit

P(Q = 1/2) ≥ 2 sup
q∈[0,1]

{
P(Q = q)

√
q (1− q)

}
≥ 0,

fQF
(1/2) ≥ 8 sup

0<q<1

{
fQF

(q)
√
q3 (1− q)3

}
> 0.

In intuitive terms, this lower bound only becomes trivial (zero or very small), if
all probability mass is pushed near the boundaries zero and one, meaning that
A ≈ A0,1. If one wishes to put mass away from these boundaries, necessarily one
has to put mass at 1/2.

Proof (of Lemma 3.2)
Since A∗ is the closed convex hull of the AF , F ∈ F1, it is sufficient to prove both
statements in the special case Q = QF for some arbitrary F ∈ F1, as the claimed
inequalities remain valid under convex mixtures. We first consider the discrete case.
The support of QF is finite if and only if XF ∼ F takes values 0 ≤ x1 < x2 < . . . < xn
with respective probabilities p1, . . . , pn. The condition F ∈ F1 implies

∑n
i=1 pi = 1 =∑n

i=1 pi xi. Furthermore, it is not difficult to verify from Equation (5) that

P
(
QF =

xi
xi + xj

)
=
xi + xj

2
pi pj , 1 ≤ i, j ≤ n.

By symmetry it suffices to study the probability mass of QF on [0, 1/2]. Aggregating the
cases i = j implies that QF takes the value 1/2 with non-zero probability

∑n
i=1 p

2
i xi.

Furthermore, the potential values of QF in [0, 1/2) are xi/(xi + xj) with i < j, but
some of these values might coincide. Fixing one particular 0 ≤ q < 1/2, we denote by
(i, j)  q the set of all index pairs (i, j) satisfying xi/(xi + xj) = q (notice that i < j
since q < 1/2), and observe

P(QF = q) =
∑

(i,j) q

xi + xj
2

pi pj =

∑
(i,j) q

√
xi pi

√
xj pj

2
√
q (1− q)

,

where the last equality uses the fact that xi = (xi + xj) q if and only if (xi + xj)
2 =

xi xj/(q (1 − q)). Using the Cauchy–Schwarz inequality, the sum in the last expression
can be estimated from above by

∑n
i=1 p

2
i xi = P(QF = 1/2), so that we obtain

P(QF = q) ≤ P(QF = 1/2)

2
√
q (1− q)

, q ∈ [0, 1/2).

By symmetry, this inequality clearly also holds for q ∈ (1/2, 1] and for q = 1/2 it is an
equality.

Next, we consider the continuous case. Clearly, QF has a continuous density if and only
if F ∈ F1 has a continuous density f . The random variable XF /YF has density

fXF
YF

(z) =

∫ ∞
0

x2 f(x z) f(x) dx, z ∈ (0,∞), (6)
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4 Conclusion

and it follows from Equation (5) that QF has (symmetric) density

fQF
(q) =

1

2

{
fXF

YF

( q

1− q

) 1

(1− q)2
+ fXF

YF

(1− q
q

) 1

q2

}
, q ∈ (0, 1).

It is not difficult to observe from Equation (6) for q ∈ (0, 1/2) that

fXF
YF

( q
1−q
)

(1− q)3
=

fXF
YF

(1−q
q

)
q3

,

which implies that

fQF
(q) =

1

2 q3
fXF

YF

(1− q
q

)
=

1

2

∫ ∞
0

x2 f(q x) f((1− q)x) dx, q ∈ (0, 1).

Applying the Cauchy–Schwarz-inequality and substitution, we observe a non-trivial re-
striction on fQF

, to wit

fQF
(q) ≤ 1

2

√∫ ∞
0

x2
(
f(q x)

)2
dx

∫ ∞
0

x2
(
f((1− q)x)

)2
dx

=
fQF

(1/2)

8
√
q3 (1− q)3

, 0 < q < 1,

as claimed. �

Example 3.4 (Alternative proof for Aq,1−q /∈ A∗)
Fix 0 < q < 1/2 and consider the Pickands dependence function Aq,1−q from Exam-
ple 2.1. Recall that Lemma 2.5 in the case n = 2 shows that Aq,1−q /∈ A∗, since
Aq,1−q(x) = `[(q,1−q)](x, 1− x). An alternative proof can be retrieved immediately from
the necessary condition in Lemma 3.2(a). Recall from Example 2.1 that the random
vector Q = Qq,1−q associated with Aq,1−q has finite support, to wit

P(Q = q) =
1
2 − q

1− 2 q
= 1− P(Q = 1− q).

Apparently, P(Q = 1/2) = 0 and the necessary condition of Lemma 3.2(a) is violated.

4 Conclusion

We have shown that d-variate, symmetric stable tail dependence functions form a sim-
plex. Furthermore, it was shown that there are d-variate, symmetric stable tail depen-
dence functions which do not arise as d-margins of some higher-dimensional symmetric
stable tail dependence function. In particular, not every exchangeable extreme-value
copula is infinitely extendible, not even in the bivariate case. Moreover, we have pro-
vided a useful and intuitive necessary criterion for a bivariate extreme-value copula to
be infinitely extendible.
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