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Abstract: In this article, we consider a non-parametric Bayesian approach
to multivariate quantile regression. The collection of related conditional dis-
tributions of a response vector Y given a univariate covariate X is modeled
using a Dependent Dirichlet Process (DDP) prior. The DDP is used to
introduce dependence across x. As the realizations from a Dirichlet pro-
cess prior are almost surely discrete, we need to convolve it with a kernel.
To model the error distribution as flexibly as possible, we use a countable
mixture of multidimensional normal distributions as our kernel. For poste-
rior computations, we use a truncated stick-breaking representation of the
DDP. This approximation enables us to deal with only a finitely number
of parameters. We use a Block Gibbs sampler for estimating the model pa-
rameters. We illustrate our method with simulation studies and real data
applications. Finally, we provide a theoretical justification for the proposed
method through posterior consistency. Our proposed procedure is new even
when the response is univariate.

Keywords and phrases: Bayesian Quantile Regression, Dependent Dirich-
let Process, Stick-breaking.

1. Introduction

Quantile regression is a popular alternative to the usual mean regression which
models the relationship between the predictor and a specific quantile of the
response. Univariate linear quantile regression was first proposed by Koenker
and Bassett Jr (1978) and was extensively studied in the literature since then.
Given a covariate X ∈ Rm, the αth linear quantile regression model for the
response Y ∈ R can be written as QY |x(α) = xTβ, for α ∈ (0, 1). Based on
a sample (X1, Y1), . . . , (Xn, Yn), Koenker and Bassett Jr (1978) estimated the
regression coefficient β by the estimator

β̂ = arg min
b∈Rm

n∑
i=1

ρα(Yi −XT
i b), (1.1)

with ρα(u) = u(α−1(u < 0)), where 1 is the indicator function. Fast algorithms

to compute β̂ were obtained in the literature; there is an R package called
quantreg.

Yu and Moyeed (2001) proposed a parametric Bayesian approach to quan-
tile regression by assuming an asymmetric Laplace likelihood. As Chang (2015)
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mentioned, modeling the error distribution directly by an asymmetric Laplace
distribution is too restrictive. To avoid this restrictive parametric assumption,
a number of non-parametric Bayesian approaches have been developed in the
literature. A lot of these non-parametric methods are based on Dirichlet pro-
cess mixture (DPM) models; see Chang (2015) for a comprehensive review and
references.

Univariate quantiles can be extended to the multivariate setting in a number
of ways. There is no unique definition of quantiles in higher dimension because of
the lack of a natural ordering of Euclidean space in higher dimension. Chaudhuri
(1996) introduced the notion of geometric quantiles which arises as a natural
generalization of the spatial median (see Small (1990) for a review on spatial
median). Chakraborty (2003) extended this idea to a regression framework.
There are various other ways to define a multivariate quantile (Serfling (2002)).
Hallin et al. (2010) introduced the notion of directional quantiles for multivari-
ate location and multiple-output regression problems. The Bayesian literature
on multivariate quantiles is very limited; only a few papers exist to the authors’
knowledge. Waldmann and Kneib (2015) considered bivariate quantile regres-
sion using a multivariate asymmetric Laplace likelihood; while Drovandi and
Pettitt (2011) used a copula approach. Recently, Guggisberg (2019) proposed
a Bayesian approach to the directional quantile framework developed in Hallin
et al. (2010).

Our approach here is non-parametric, i.e., we model the collection of condi-
tional distributions of the response Y ∈ Rk given a predictor X ∈ R, without
using any parametric family of distributions and then estimate the desired geo-
metric quantile of the conditional distribution. The most commonly used prior
for a probability distribution is the Dirichlet process prior. The collection of
conditional distributions are viewed as related quantities and hence are mod-
eled by a Dependent Dirichlet Process (DDP) (defined in Section 2). One major
drawback of using a Dirichlet process prior is that almost all realizations from
a Dirichlet process are discrete. This issue can be handled by convolving it
with a kernel. To model the error distribution flexibly without any particular
parametric form, we use a countable mixture of k-dimensional normal distribu-
tions as our kernel. We use a Block Gibbs sampler (see Ishwaran and James
(2001)) for our posterior computations, which is considerably fast. The illustra-
tions discussed here are focused on cases with bivariate response. It should be
noted that our proposed method is a new contribution even in the context of
univariate quantile regression.

We use geometric quantiles for our treatment of multivariate quantile regres-
sion here and hence we define it formally below. Consider the situation when the
variable Y is observed along with a univariate predictor X lying in a compact
interval X. For a given value x of X ∈ X, let PY |x stand for the conditional dis-
tribution of Y given X = x, and FY |x denote the CDF. Then the non-parametric
multivariate quantile regression function of Y is given by

QY |x(u) = arg min
q∈Rk

PY |x{Φ2(u, Y − q)− Φ2(u, Y )}, (1.2)
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with Φp(u, t) = ‖t‖p + 〈u, t〉, for u ∈ B(k)
q , with p−1 + q−1 = 1. The true condi-

tional distribution of Y given x is denoted by P ?Y |x, with the CDF being F ?Y |x.

The uth geometric quantile of the distribution P ?Y |x is denoted by Q?Y |x(u).

To estimate QY |x(u), it is sensible to assume that it changes gradually in x.
Hence for sensible inference, we should pull information across neighboring val-
ues of x by a smoothing technique. In a Bayesian setting that we follow, we
achieve the objective by putting a suitable prior on the family of distributions
{PY |x : x ∈ X}. The borrowing of information across neighboring values of x
may be introduced in the prior by using a Dependent Dirichlet Process (DDP)
(see Section 2). However, as marginal distributions of a DDP are Dirichlet pro-
cesses and hence PY |x are discrete almost surely, a smoother version of the DDP
by convolving with a kernel will be used as a prior. Then the resulting posterior
distribution can be computed and the induced posterior distribution on the mul-
tivariate quantile regression can be used to obtain Bayes estimates and credible
sets.

The rest of this paper is organized as follows. In Section 2, we give a brief
background on Dependent Dirichlet Processes. In Section 3, we describe our non-
parametric Bayesian modeling approach for multivariate quantile regression.
Section 4 gives the details of the posterior computations, and in Section 5, we
give the posterior consistency theorems. In Sections 6 and 7, we demonstrate
the performance of our method on simulated and real data. We close the paper
with the proofs in Section 8.

2. Overview on Dependent Dirichlet Process

We use the notation P ∼ DP(α) to state that the random measure P has a
Dirichlet process distribution with base measure α. We also use P ∼ DP(MG)
where M = |α| and ᾱ = α/M has a distribution function G.

Several papers have considered extending Dirichlet process models over re-
lated random distributions, for example, Cifarelli and Regazzini (1978), Tom-
linson and Escobar (1999) and Kottas and Gelfand (2001) (see De Iorio et al.
(2004) for a comprehensive review), but these models were not naturally ex-
tended to include regression on covariates. Dependent Dirichlet Processes were
introduced by MacEachern (1999), to address regression on a predictor variable.
Following the notation in Ghosal and Van der Vaart (2017), suppose that, we
have a collection of distributions Pz on a sample space Ω, indexed by a param-
eter z belonging to some covariate space Z. A useful prior distribution on Pz
should treat them as related quantities.

It is reasonable to equip each marginal measure Pz with a Dirichlet process
prior. By the stick-breaking construction of Dirichlet process, we can write Pz
as

Pz =

∞∑
i=1

Wj(z)δθj(z), (2.1)

where {Wj(z) : z ∈ Z} are called the “stick-breaking weights” and {θj(z) : z ∈
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Z} are called “locations”. The stick breaking weights are constructed as

Wj(z) = Vj(z)

j−1∏
l=1

(1− Vl(z)), (2.2)

where Vj(z)
iid∼ Be(1,Mz) for Mz > 0 with Be(a, b) being a beta distribution

with parameters a and b. The locations θj(z) are i.i.d. draws from the base
measure Gz. This representation ensures that Pz ∼ DP(MzGz) for every z ∈ Z.
A process satisfying this requirement is called a Dependent Dirichlet Process
(DDP). For more details, see Section 14.9, Ghosal and Van der Vaart (2017).

Several variations of DDP models have been proposed over the years. De Io-
rio et al. (2004) described dependence across the random distributions in an
ANOVA-type fashion; which is particularly useful for multivariate categorical
covariates. Nieto-Barajas et al. (2012) proposed a version of DDP that is suit-
able as a prior for a time series of random probability measures. Gelfand et al.
(2005) proposed a DDP for point-referenced spatial data, which was later ex-
tended by Duan et al. (2007). Sun et al. (2017) proposed location dependent
Dirichlet process (LDDP) that incorporates non-parametric Gaussian processes
in the DP modeling framework to model dependency information among data
arising from space and time.

3. Bayesian Multivariate Quantile Regression with
DDP

Consider a set of independent observations (Y n, Xn) = (Y1, X1), . . . , (Yn, Xn)
on a univariate predictor X and a k-variate response Y . Let F = {f : Rk×X→
[0,∞],∫
Rk f(y|x)dy = 1} be the space of conditional densities of Y given X, where
X ⊂ R is compact. Our goal is to infer about the collection {QY |x(u) : x ∈ X},
for some fixed u ∈ B(k)

2 . We adopt a non-parametric modeling framework in the
following way,

Yi|xi ∼ f(·|xi), {f(·|x), x ∈ X} ∼ Π, (3.1)

where Π denotes a prior for the class of conditional densities {f(·|x) : x ∈ X}.
We choose a DDP prior here, but as we have mentioned, distributions drawn
from a Dirichlet process prior are discrete. Hence, we have to use a kernel for
convolving it with. This leads us to the model

Yi = ξ(Xi) + εi, i = 1, . . . , n, (3.2)

with ξ ∼ {Gx : x ∈ X} independently, and εi are the random errors. Since we
are interested in the uth geometric quantile of {PY |x : x ∈ X}, we may choose
the kernel in such a way that the uth geometric quantile of the error distribution
is zero, that is, Qε(u) = 0.
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The collection of distributions {Gx : x ∈ X} follows a DDP prior. We use a
stick-breaking representation for Gx to introduce dependence across x as

Gx =

∞∑
l=1

Wlδξl(x), (3.3)

for any x ∈ X. We use a common set of stick-breaking weights Wl which are con-

structed from Vl
iid∼ Be(1,M1), for some M1 > 0, where the locations are drawn

from a k-dimensional Gaussian distribution with mean vector and covariance
matrix varying with x. We represent the locations ξl(x) as

ξl(x) = αl + βl(x), (3.4)

where αl
iid∼ Nk(c0,Σ0) and βl follows a Gaussian Process (GP) with mean func-

tion c1x and covariance kernel Σ(x−x′) where Σ(x) = γdiag(e−λ|x|, . . . , e−λ|x|).
Here c0 and c1 are constant k-vectors and Σ0 is a positive definite matrix of or-
der k×k. Also, γ > 0 and λ > 0 are constants. The justification behind choosing
such a prior structure is that under this prior specification, E(ξl(xi)) = c0+c1xi,
that is, under the prior, the expected value of the locations ξl(x) varies linearly
with x, and the sample paths vary smoothly.

We model the distributions of the observations by a countable location-scale
mixture of k-dimensional Gaussian distributions through the relations

Y |{ξ, X} ∼
∞∑
j=1

pjNk(ξ(X) + ηj , σ
2
j Ik), (3.5)

where Ik denotes the identity matrix of order k. This model allows for asymme-
try in the error distribution. The weights pj , j = 1, 2, . . . are again constructed

using stick-breaking, using qj
iid∼ Be(1,M2). We put independent k-dimensional

Gaussian and inverse gamma hyper-priors on ηj and σ2
j respectively. Note that

the error distribution
∑∞
j=1 pjNk(ηj , σ

2
j Ik) does not satisfy Qε(u) = 0 for any

u ∈ B(k)
2 . So for any u ∈ B(k)

2 , our quantile regression model is formulated as

QY |x(u) = ξ(x) +Qε(u). (3.6)

To reduce the computational burden, we use a truncation approximation on
both sets of stick-breaking weights. Thus the full hierarchical Bayesian model is
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given by

Yi = ξ(Xi) + εi, i = 1, . . . , n,

εi
iid∼

J∑
j=1

pjNk(ηj , σ
2
j Ik),

p1 = q1, pl = ql

l−1∏
r=1

(1− qr), l = 2, . . . , J − 1, pJ = 1−
J−1∑
l=1

ql,

ηj
iid∼ Nk(cη, s

2
ηIk), σ2

j
iid∼ IG(a, b) j = 1, 2, . . . , J,

ql
iid∼ Be(1,M2), l = 1, 2, . . . , J − 1, M2 ∼ Ga(aM2 , bM2)

ξ(Xi)
ind∼ GXi , GXi =

N∑
l=1

Wlδξl(Xi)

ξl(Xi) = αl + βl(Xi), l = 1, . . . , N,

α1, . . . , αN
iid∼ Nk(c0, Σ0),

(βl(X1), . . . , βl(Xn))
iid∼ Nkn((c1X1, . . . , c1Xn)), ((Σ(Xi −Xj)))), j = 1, . . . , N,

W1 = V1, Wl = Vl

l−1∏
r=1

(1− Vr), l = 2, . . . , N − 1, WN = 1−
N−1∑
l=1

Wl,

Vl
iid∼ Be(1,M1), l = 1, . . . , N − 1, M1 ∼ Ga(aM1

, bM1
),

where Ga(a, b) denotes a Gamma distribution with parameters a and b, and
IG(a, b) denotes an inverse-gamma distribution. The truncated stick-breaking
construction reduces the computations to finitely many terms. We use a Markov
Chain Monte Carlo (MCMC) method to compute the posterior estimates, which
we describe in detail in the next section.

4. Posterior Computation

We use a block Gibbs sampler (Ishwaran and James (2001)) for estimating
the parameters. Suppose that, we have d distinct observations X1, . . . , Xd on
the covariate X, and for each Xi, we have ni observations Yi1, . . . , Yini on the
response Y . We introduce two sets of latent variables as below for the ease of
computation.

• Define L = (L1, . . . , Ld) such that Li = l if and only if ξ(Xi) = ξl(Xi),
i = 1, . . . , d.
• Also define Z = (Z11, . . . , Zdnd) such that εim|{Zim = j} ∼ Nk(ηj , σ

2
j Ik).

We describe the posterior full conditional distributions for each parameter be-
low.

1. To update α1, . . . , αN :
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• Let d? be the number of distinct values {L?j : j = 1, . . . , d?} of the
vector L. If l /∈ {L?j , : j = 1, . . . , d?}, αl is drawn from Nk(c0,Σ0).

• If l = L?j , j = 1, . . . , d?,

p(αL?j |−) ∝ exp{−1

2
(αL?j − c0)′Σ−1

0 (αL?j − c0)}

×
∏

{i:Li=L?j }

ni∏
r=1

exp{− 1

2σ2
Zir

(Yir − αL?j − βL?j (Xi)− ηZir )′

(Yir − αL?j − βL?j (Xi)− ηZir )},

which is a k-dimensional Gaussian distribution with mean{
Σ−1

0 +
∑

i:Li=L?j

ni∑
r=1

1

σ2
Zir

Ik

}−1{
Σ−1

0 c0+
∑

i:Li=L?j

ni∑
r=1

(Yir − αL?j − βL?j (xi)− ηZir )
σ2
Zir

}

and covariance matrix

{
Σ−1

0 +
∑
i:Li=L?j

∑ni
r=1

1
σ2
Zir

Ik

}−1

.

2. To update βl(X1), . . . , βl(Xd), l = 1, . . . , N :

• If l /∈ {L?j , : j = 1, . . . , d?},

(βl(X1), . . . , βl(Xd)) ∼ Nkd(c1X1, . . . , c1Xd), ((Σ(Xi −Xj)))).

• Denote Xj = (Xi, i : Li = L?j ) and X−j = (Xi, i : Li 6= L?j ). Also,

let βL?j (Xj) = (βL?j (Xi), i : Li = L?j ) and βL?j (X−j) = (βL?j (Xi), i :

Li 6= L?j ). Let mj,−j denote the conditional prior mean for βL?j (Xj)

given βL?j (X−j). Also, let Vj,−j denote the conditional prior covari-

ance matrix for βL?j (Xj) given βL?j (X−j). Similarly, m−j,j and V−j,j

denote the conditional prior mean and covariance matrix of βL?j (X−j)

given βL?j (Xj) respectively. If l = L?j , j = 1, . . . , d?, then for i such
that Li = L?j

p(βL?j (Xj)|−) ∝ exp{−1

2
(βL?j (Xj)−mj,−j)

′V −1
j,−j(βL?j (X−j)−mj,−j)}×∏

{i:Li=L?j }

ni∏
r=1

exp{− 1

2σ2
Zir

(Yir − αL?j − βL?j (Xi)− ηZir )′

(Yir − αL?j − βL?j (Xi)− ηZir )},

which is a kUL?j -dimensional Gaussian distribution, where Ul = #{i :

Li = l}.
• Also p(βL?j (X−j)|−) is proportional to

exp{−1

2
(βL?j (X−j)−m−j,j)′V −1

−j,j(βL?j (X−j)−m−j,j)},
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which is a k(d− UL?j )-dimensional Gaussian distribution with mean
vector m−j,j and covariance matrix V−j,j .

• If our goal to estimate QY |x(u) for an arbitrary x ∈ X, for a fixed

u ∈ B(k)
2 , βl(x) has to be sampled conditional on βl(X1), . . . , βl(Xd),

for l = 1, . . . , N , which is a k-dimensional Gaussian distribution.

3. To update W1, . . . ,WN :
The posterior full conditional for W is given by

p(w|−) ∝ fW (w|M1)

N∏
l=1

wUll ,

where fW (·|M1) is the generalized Dirichlet distribution (Wong (1998))

fW (w|M1) = MN−1
1 wM1−1

N (1−w1)−1(1−(w1+w2))−1×· · ·×(1−
N−2∑
l=2

wl)
−1.

The posterior for W is a generalized Dirichlet distribution as well and can
be sampled as follows using latent Beta variables as follows.

• Generate Vl
ind∼ Be(1 + Ul,M1 +

∑N
r=l+1 Ur) for l = 2, . . . , N − 1.

• Set W1 = V1, Wl = Vl
∏l−1
r=1(1 − Vr), for l = 2, . . . , N − 1, and

WN = 1−
∑N−1
l=1 Wl.

4. To update L1, . . . , Ld:
Each Li is drawn from {1, . . . , N} with probabilities proportional to

Wl

ni∏
r=1

exp{− 1

2σ2
j

(Yir − αl − βl(Xi)− ηZir )′(Yir − αl − βl(Xi)− ηZir )},

for l = 1, . . . , N .
5. To update η1, . . . , ηJ :

Suppose there are s distinct values of Zij , i = 1, . . . , d, j = 1, . . . , ni,
and we denote them by Z?1 , . . . , Z

?
s .

• If j /∈ {Z?r : r = 1, . . . , s}, draw ηj from Nk(cη, s
2
ηIk).

• If j ∈ {Z?r : r = 1, . . . , s}, draw ηj from

p(ηZ?r |−) ∝ exp{− 1

2s2
η

(ηZ?r − cη)′(ηZ?r − cη)}∏
{(i,l):Zil=Z?r }

exp{− 1

2σ2
Z?r

(Yil − αLi − βLi(Xi)− ηZ?r )′

(Yil − αLi − βLi(Xi)− ηZ?r )},

which is a k-dimensional Gaussian distribution, with mean vector(
1

s2
η

+
1

σ2
Z?r

)−1(
1

s2
η

cη +
∑

i,l:Zil=Z?r

Yil − αLi − βLi(Xi)− ηZ?r
σ2
Z?r

)
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and covariance matrix

(
1
s2η

+ 1
σ2
Z?r

)−1

Ik.

6. To update σ2
1 , . . . , σ

2
J :

• If j /∈ {Z?r : r = 1, . . . , s}, draw σ2
j from IG(a, b).

• If j ∈ {Z?r : r = 1, . . . , s}, p(σ2
Z?r
|−) is proportional to

(σ2
Z?r

)−a−1e
−b/σ2

Z?r

∏
{(i,l):Zil=Z?r }

exp{− 1

2σ2
Z?r

(Yil − αLi − βLi(Xi)− ηZ?r )′

(Yil − αLi − βLi(Xi)− ηZ?r )}.

7. To update Zil, i = 1, . . . , d, l = 1, . . . , ni:

• Draw Zil from {1, . . . , J} with probability proportional to

qj
∏

{(i,l):Zil=j}

exp{− 1

2σ2
j

(Yil−αLi−βLi(Xi)−ηj)′(Yil−αLi−βLi(Xi)−ηj)}.

8. To update p1, . . . , pJ :
The posterior full conditional for p = (p1, . . . , pJ) is given by

p(p1, . . . , pJ |−) ∝ fp(p1, . . . , pJ |M2)

J∏
j=1

p
U?j
j ,

with U?j = #{(i, l) : Zil = j}, and fp(p1, . . . , pJ |M2) is the generalized
Dirichlet distribution

fp(p1, . . . , pJ |M2) = MJ−1
2 pM2−1

J (1−p1)−1(1−(p1+p2))−1×· · ·×(1−
J−2∑
l=2

pl)
−1.

The posterior for (p1, . . . , pJ) is a generalized Dirichlet distribution as well
and can be sampled as follows using latent Beta variables as follows.

• Generate ql
ind∼ Be(1 + U?l ,M2 +

∑J
r=l+1 U

?
r ) for l = 2, . . . , J − 1.

• Set p1 = ql, pl = ql
∏l−1
r=1(1 − ql), for l = 2, . . . , J − 1, and WJ =

1−
∑J−1
l=1 Wl.

9. To update W1, . . . ,WN :
The posterior for (W1, . . . ,WN ) is also generalized Dirichlet distribution

and can be sampled as follows using latent Beta variables as follows.

• Generate Vl
ind∼ Be(1 + Ul,M2 +

∑N
r=l+1 Ur) for l = 2, . . . , N − 1.

• Set W1 = V1, Wl = Vl
∏l−1
r=1(1 − Vr), for l = 2, . . . , N − 1, and

WN = 1−
∑N−1
l=1 Wl.

10. To update M1:
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• The posterior full conditional for M1 is given by

p(M1|−) ∝ e−(bM1
−logWN )M1M

aM1
+N−1

1 ,

which is a Ga(aM1 +N, bM1 − logWN ) distribution.

11. To update M2:

• The posterior full conditional for M2 is given by

p(M2|−) ∝ e−(bM2
−log pJ )M2M

aM2
+J−1

2 ,

which is a Ga(aM2 + J, bM2 − log pJ) distribution.

The MCMC sampling scheme is implemented using the nimble package in R,
which is a system for writing hierarchical Bayesian models highly compatible
with BUGS and JAGS. The advantage of using nimble is that it compiles the
models by generating C++ code, which makes the computation faster.

After generating the posterior samples, we need to take care of the violation
of the condition Qε(u) = 0. For each of the B many MCMC iterations of p =
(p1, . . . , pJ), η = (η1, . . . , ηJ) and σ2 = (σ2

1 , . . . , σ
2
J), we have to compute

Qbε(u) = arg min
θ∈Rk

J∑
j=1

pbj

∫
Φ2(u, x− θ)e−‖x−η

b
j‖

2/2(σ2
j )bdx, b = 1, . . . , B. (4.1)

When the response variable is two-dimensional, the integral inside (4.1) can be
reduced to a one-dimensional integral by the following trick. For k = 2, we can
do a polar transform and reduce the integral for each j in (4.1) to(

1

2π

)k/2
e−‖θ−ηj‖

2/2σ2
jσ2
j

∫ ∞
0

r2e−r
2/2

(∫ 2π

0

e−r(θ1−ηj1) cosu−r(θ2−ηj2) sinudu

)
dr

+ u1(ηj1 − θ1) + u2(ηj2 − θ2).
(4.2)

Then, (4.2) reduces to(
1

2π

)k/2
e−‖θ−η‖

2/2σ2
jσ2
j

∫ ∞
0

r2e−r
2/22πI0

(
r
√

(θ1 − η1)2 + (θ2 − η2)2

)
dr

u1(η1 − θ1) + u2(η2 − θ2),
(4.3)

where I0 is the modified Bessel function of first kind (Ifantis and Siafarikas
(1990)). We can take a rectangular grid for θ and for each θ in that grid, we
compute the integral in (4.3) and the minimizer gives us an approximation for

Qbε(u). We then calculate B−1
∑B
b=1Q

b
ε(u) and add this to the posterior mean

of ξ(Xi) for each i = 1, . . . , d, which gives us the uth geometric quantile for Y
given Xi, i = 1, . . . , d.

There is another way of numerically computing Qbε(u), by Monte Carlo in-
tegration. This method extends to dimensions higher than 2. For each b ∈
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{1, . . . , B}, we generate a large number of samples tb1, . . . , t
b
R from the mixture

of k-dimensional Gaussian distributions
∑J
j=1 pjNk(ηj , σ

2
j Ik). We again take a

grid for θ and for each θ in the grid and for each b ∈ {1, . . . , B}. We compute

the Monte Carlo average R−1
∑R
r=1 Φ2(u, tbr − θ). We look at the minimizer of

this Monte Carlo average which approximates Qbε(u).

5. Posterior Consistency

In this section, we prove the weak posterior consistency for any fixed uth geo-
metric quantile of the collection of true conditional densities {f?(·|x) : x ∈ X}.
The model described in Section 3 can be alternatively written as

f(y|x) =

∫
1

σk
φk

(
y − ξ(x)− η

σ

)
dG(ξ)dQ(η, σ), (5.1)

where φk(·) denotes a k-dimesnional standard normal kernel, and G×Q is the
mixing distribution. The measures G and Q are of the form

G =

∞∑
h=1

Whδξh ,

Q =

∞∑
j=1

pjδ(ηj ,σj).

For every x ∈ X = [0, 1], Gx is the induced measure of G through the evaluation
map ξ 7→ ξ(x), which can be written as

Gx =

∞∑
h=1

Whδξh(x).

The mixing distribution G × Q is given the prior P on M(C(X) × Rk × R+),
where M(Θ) is the space of probability distributions on Θ, and C(X) is the
space of continuous functions on X. The prior P on M(C(X)×Rk×R+) induces
a prior Π on the space of conditional densities F through the map G × Q 7→∫
φk

(
y − ξ(x)− η

σ

)
dG(ξ)dQ(η, σ). We put priors on G and Q through stick-

breaking weights, as described in Section 3. The true density f? ∈ F is assumed
to be of the form

f?(y|x) =

∫
1

σk
φk

(
y − ξ(x)− η

σ

)
dG?(ξ)dQ?(η, σ), (5.2)

where G? and Q? are compactly supported probability measures on C(X) and
Rk × R+ respectively. Just like before, G?x is the induced measure from G?

through the evaluation map ξ 7→ ξ(x), with G? being compactly supported on
Rk. To prove the posterior consistency of the conditional geometric quantiles
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QY |x(u), we need to show the posterior consistency of the conditional distri-
bution FY |x around a neighborhood of the true distribution F ?Y |x. It appears
not possible to derive the posterior consistency of the conditional distribution
at a value of x from the weak posterior consistency of the joint distribution of
X and Y . However, we can derive the posterior consistency of a δ-smoothed
conditional distribution of Y given x, defined below. Let PX,Y denote the joint
distribution of X and Y , and let FX,Y denote the CDF. for a chosen δ > 0, the
δ-smoothed posterior distribution function of Y given X is defined as

Fδ;Y |x(y) =
PX,Y (|X − x| ≤ δ, Y ≤ y)

PX(|X − x| ≤ δ)
. (5.3)

For u ∈ B(k)
2 , the uth geometric quantile of the δ-smoothed conditional distri-

bution is defined as

Qδ;Y |x(u) = arg min
θ∈Rk

∫
{Φ2(u, Y − θ)− Φ2(u, Y )}dFδ;Y |x(y). (5.4)

Our main theorem, which gives the posterior consistency for {Qδ;Y |x(u) : x ∈ X}
for a fixed u ∈ B(k)

2 is stated below.

Theorem 1. Assume that, for every x ∈ X and u ∈ B(k)
2 ,

inf
θ:‖θ−θ?‖2≥ε

∫
{Φ2(u, y−θ)−Φ2(u, y)}dF ?Y |x(y) >

∫
{Φ2(u, y−θ?)−Φ2(u, y)}dF ?Y |x(y).

Then for δn → 0 sufficiently slowly and for every x ∈ X, Π{|Qδn;Y |x(u) −
Q?Y |x(u)| < ε|(Y n, Xn)} → 1 a.s., for every ε > 0.

We first need to introduce some notions and establish some auxiliary results.
The first result guarantees that our chosen prior is sensible in the non-parametric
setting, i.e., it has a large topological support. We consider support properties
for weak neighborhoods of the type{

f : sup
x

∣∣∣ ∫ {g(y)f(y|x)dy − g(y)f?(y|x)}dy
∣∣∣ < ε

}
, (5.5)

for every bounded and continuous function g : Rk → R.

Lemma 1. For every bounded and continuous g : Rk → [0, 1],

Π

{
f : sup

x

∣∣∣ ∫ {g(y)f(y|x)dy − g(y)f?(y|x)}dy
∣∣∣ < ε

}
> 0. (5.6)

The proof of Lemma in Section 8. We will need one more auxiliary result for
proving the weak consistency, and for that we will need a bit more notation here.
We define the joint density of X and Y by h(x, y) = f(y|x)q(x), where q(x) is
the fixed marginal density of X, assumed to be bounded away from 0 on X.
Similarly, the true joint density of X and Y is given by h?(x, y) = f?(y|x)q(x).
Next, we define the notion of a weak neighborhood for the true conditional
density f? ∈ F .
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Definition 1. A sub-base of a weak-neighborhood for a collection of conditional
densities {f?(·|x) : x ∈ X} is defined as

Wε,g(f
?) =

{
f :
∣∣ ∫

X×Rk
gh−

∫
X×Rk

gh?
∣∣ < ε

}
, (5.7)

for a bounded and continuous function g : X×Rk. A weak neighborhood base is
formed by finite intersection of neighborhoods of the type (5.7).

Definition 2. The posterior Π{·|(Y n, Xn)} is weakly consistent at f? ∈ F if
for any bounded and continuous function g, Π{Wε,g(f

?)|(Y n, Xn)} → 1 a.s.

However, the large topological support of the prior is not sufficient for proving
the weak posterior consistency, The weak posterior consistency at h? holds if
the prior Π puts positive probability on Kullback-Leibler neighborhoods of f?,
which is defined below.

Definition 3. For any ε > 0, an ε-sized Kullback-Leibler (KL) neighborhood
around f? is defined as

Kε(f
?) = {f : KL(h?, h) < ε, h(x, y) = f(y|x)q(x), x ∈ X, y ∈ Rk},

where KL(h?, h) =
∫
h? log(h?/h). Then if Π{Kε(f

?)} > 0 for every ε > 0, we
say f? ∈ KL(Π).

Lemma 2. For f? ∈ F of the form in (5.2), f? ∈ KL(Π).

The proof of Lemma 2 is presented in Section 8, which ensures the weak
consistency of the posterior at h?.

6. Simulation Study

In this section, we demonstrate Bayesian median regression with a bivariate
response Y and a univariate predictor X on simulated data, which is a special
case of the method illustrated above. We compare our method with a couple of
frequentist methods.

It would be interesting to investigate the cases where the error distribution
is something other than Gaussian, so here we choose a bivariate t-distribution
with degree of freedom 1, non-centrality parameter (0, 0) and scale matrix I2 (a
symmetric heavy-tailed distribution) and a bivariate gamma distribution with
shape and rate parameter 1 and correlation matrix

V =

(
1 0.7

0.7 1

)
,

which is a skewed distribution. We draw 100 samples ε = (ε1, . . . , ε100) from the
above mentioned error distributions, and the predictors X = (X1, . . . , X100) are
drawn from a N(0, 1) distribution. We form the response vector Y = (Y1, Y2) as
follows. (

Y1

Y2

)
=

(
1 2
0 1

)(
1
X2

)
+ ε. (6.1)
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We are interested in the (0, 0)-th geometric quantile, that is, the spatial median
of y given x. Next, we describe our chosen prior specifications. We have two
sets of stick-breaking weights, (p1, p2, . . . , ) and (W1,W2, . . . , ). Both sets of
stick-breaking weights are truncated at 20, i.e., we have chosen both N and J
to be 20. Both set of stick-breaking weights are generated from the variables

Vl
iid∼ Be(1,M1) and qj

iid∼ Be(1,M2), l = 1, . . . , 20, j = 1, . . . , 20, where M1

and M2 are drawn from Gamma(1, 1) prior. Next, (η1, . . . , η20) is drawn from
a N2((0, 0)T , 10I2) prior, and (σ2

1 , . . . , σ
2
20) is drawn from a IG(1, 1) prior. We

choose c0 to be (1, 1)T and c1 to be (2, 1/2). Also, S0 is chosen to be 10I2. For
the matrix ((Σ(Xi −Xj))), γ is chosen to be 10 and λ is chosen to be 1/2.

Since we could only prove a weak consistency theorem for quantiles of δ-
smoothed posterior distributions, we here demonstrate quantile regression for
δ-smoothed posterior distribution of Y given X, for some chosen δ. The weak
posterior consistency ensures that, for some ε > 0

Π{sup
x,y
|FX,Y (x, y)− F ?X,Y (x, y)| < ε|(Y n, Xn)} → 1, (6.2)

It will be shown in Section 8 that δ should be bigger than ε for Theorem 1 to
hold. We did not prove a convergence rate theorem here, but intuitively the
rate of convergence should be n−1/2. Hence we choose δ = δn to be bigger then
n−1/2, say n−1/3.

To compute the spatial median for the δ-smoothed posterior for the condi-
tional distribution of Y given X, for each value x of X, we draw a sample x̃
from N(0, 1) truncated in [x− δ, x+ δ], and we draw samples from the posterior
distribution of Y given x̃ following the steps in Section 4. Note that the spatial
median of the true error distribution is equal to its center of symmetry, 0. We
generate 5000 samples from the posterior distribution with a burn-in of 500. We
report a mean square error (MSE) for the conditional spatial median ξ, which
is given by

MSE =
1

100

100∑
i=1

‖ξ?(Xi)− ξ̄(Xi)‖22,

where ξ̄(x) is the posterior mean of the δ-smoothed spatial median of Y given
x and ξ?(x) is the true conditional spatial median of y given x. One well-known
competing method is the frequentist linear multivariate median regression pro-
posed by Bai et al. (1990), where the regression estimates are obtained by min-
imizing

∑n
i=1 ‖Yi − α − βXi‖2 with respect to α and β. Another method is

a non-parametric version of bivariate median regression method. For every x,
we estimate the conditional median ξ(x) by minimizing arg minθ∈Rk

∑100
i=1 ‖yi−

θ‖2pi(x), where

pj(x) =
K((x−Xj)/h)∑100
i=1K((x−Xi)/h)

.

The bandwith h has been chosen using cross-validation, and K here is a standard
normal kernel. The mean square errors for all three methods are shown in Table
1. Our method gives a lower MSE than the other two methods, thus achieving
a gain.
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Error distribution NP-Bayes Frequentist linear NP-frequentist
Bivariate t 9.40 17.43 14.52

Bivariate gamma 7.29 18.02 14.98
Table 1

MSE’s for conditional spatial medians for our method (NP-Bayes), the frequentist linear
median regression and the non-parametric median regression (NP-frequentist).

7. Application to Blood Pressure data

We do Bayesian bivariate median regression using our method on a data that
appeared in Chakraborty (1999). This data (shown in Table 2) was collected by
the Biological Sciences Division of the Indian Statistical Institute, Kolkata. This
data contains systolic and diastolic blood pressures of 40 Marwari (an Indian
ethnic group) females living in the Burrabazar area of Kolkata. Our objective

Serial Age Systolic Diastolic Serial Age Systolic Diastolic
No. Pressure Pressure No. Pressure Pressure

2 21 120 88 22 76 160 90
3 60 180 100 23 37 110 80
4 38 110 90 24 48 130 90
5 19 100 70 25 40 160 112
6 50 170 100 26 36 150 90
7 32 130 84 27 39 140 100
8 41 120 80 28 38 110 74
9 36 140 84 29 16 110 70

10 57 170 106 30 48 130 100
11 52 110 80 31 22 120 80
12 19 120 80 32 30 110 70
13 17 110 70 33 19 120 80
14 16 120 80 34 39 124 84
15 67 160 90 35 38 130 94
16 42 130 90 36 45 120 84
17 44 140 90 37 22 130 80
18 56 170 100 38 20 120 86
19 32 150 94 39 18 120 80
20 21 140 94 40 31 112 80

Table 2
Systolic and Diastolic Blood Pressure of Marwari females in Kolkata

is to model the relationship between the systolic and diastolic blood pressures
and age for a normal Marwari female living in Kolkata. As demonstrated by
Chakraborty (1999) (Also in Figure 1, which shows the scatterplot of the blood
pressure values against age), the data has very high spread and a few outliers.
Hence the mean regression is not very efficient, because the mean is sensitive to
outliers. Thus a median regression would be appropriate in this situation.

We again model the conditional spatial median of Y=(Systolic Pressure (Y1),
Diastolic Pressure (Y2)) against X=age. For computing the δ-smoothed poste-
rior for the conditional distribution of Y given X, we need to sample from the
distribution of X truncated in the interval [x− δ, x+ δ] for every value x of X.
To choose c0 and c1, we run linear regressions Y1 on X and Y2 on X separately.
Of course, the distribution of X is also unknown, so we estimate the density
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of X using a Gaussian kernel. Based on the regression coefficients, we choose
c0 = (100, 73) and c1 = (0.8, 0.35). We draw 20000 samples from the poste-
rior distribution with a burn-in of 1000, and in Table 3, we show the estimated
spatial medians for selected age values along with their coordinate-wise 95%
credible intervals, constructed from the posterior samples. In Figure 2, we plot
the conditional quantiles as a function of X, and it shows that both functions
increase with X, which is expected. In Figure 3, we plot the two components
of the spatial median against each other, with X=age as labels. This plot also
shows an upward trend as well, i.e., diastolic pressure increases as the systolic
pressure increases. It also shows that both pressures increase with age, which
supports our conclusion from Figure 2.

Serial No. Age Spatial Median (Y1) Spatial Median (Y2)
2 21 120.18 (118.95, 121.39) 90.50 (89.41, 91.66)
3 26 130.42 (128.91, 131.80) 100.79 (99.44, 102.01)
4 31 116.92 (115.86, 118.32) 89.48 (86.07, 88.65)
5 36 116.85 (115.91, 117.74) 87.25 (85.84, 88.73)
6 41 115.66 (114.55, 116.84) 85.95 (84.76, 87.04)
7 46 132.10 (131.08, 133.39) 85.24 (84.65, 85.92)
8 51 140.62 (139.60, 141.91) 90.05 (89.46, 90.74)
9 56 117.79 (116.56, 118.97) 87.22 (86.02, 88.31)

10 61 152.30 (151.28, 153.59) 96.19 (95.59, 96.87)
11 66 153.89 (152.87, 155.18) 93.76 (93.17, 94.44)
12 71 160.91 (159.89, 162.20) 96.45 (95.86, 97.13)
13 76 163.19 (162.18, 164.49) 95.57 (94.97, 96.25)

Table 3
Spatial medians for Systolic (Y1) and Diastolic (Y2) pressure along with their

coordinate-wise 95% credible intervals (in parenthesis) against selected x age values of
Marwari females in Kolkata.

Remark. Here we have considered Bayesian non-parametric quantile regression
of a k-dimensional response on a univariate predictor, but the method can be
extended to a general m-dimensional covariate as well. A DDP prior can be
constructed in the same way, and a block Gibbs sampler algorithm can be used,
but it would be a lot more computationally extensive.

Remark. Here we have considered multivariate quantile regression for geomet-
ric quantiles which are obtained by minimizing PY |x{Φ2(u, Y − θ) − Φ2(u, Y )}
with u ∈ B(k)

2 . The method can be extended to a more general version of geo-
metric quantiles with general `p-norm for p > 1.

8. Proofs

Proof of Lemma 1. The neighborhood in (5.5) can be written as{
G×Q : sup

x

∣∣∣∣ ∫ γ(ξ, η, σ)(x)dG(ξ)dQ(η, σ)−
∫
γ(ξ, η, σ)(x)dG?(ξ)dQ?(η, σ)

∣∣∣∣ < ε

}
,

(8.1)
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where γ(ξ, η, σ)(x) =

∫
g(y)σ−kφk

(y − ξ(x)− η
σ

)
dy. Note that

∫
γ(ξ, η, σ)(x)dG(ξ)dQ(η, σ) = G(D1)Q(D2)

∫
γ(ξ, η, σ)(x)dGD1

(ξ)dQD2
(η, σ)

+

∫
(D1×D2)c

γ(ξ, η, σ)(x)dG(ξ)dQ(η, σ),

(8.2)

where GD1 denotes the measure G restricted and normalized to a compact set
D1 ⊂ C(X), and QD2 denotes the measure Q restricted and normalized to the
compact set D2 ⊂ Rk×R+. For every x ∈ X, the second term on the right hand
side of (8.2) can be bounded above by (G×Q)(D1 ×D2)c. Then

sup
x

∣∣∣∣ ∫ γ(ξ, η, σ)(x)dG(ξ)dQ(η, σ)−
∫
γ(ξ, η, σ)dG?(ξ)dQ?(η, σ)

∣∣∣∣
≤ sup

x

∣∣∣∣ ∫ γ(ξ, η, σ)(x)dGD1
(ξ)dQD2

(η, σ)−
∫
γ(ξ, η, σ)(x)dG?(ξ)dQ?(η, σ)

∣∣∣∣
+

∣∣∣∣ 1

G(D1)Q(D2)
− 1

∣∣∣∣ sup
x

∣∣∣∣ ∫ γ(ξ, η, σ)(x)dG(ξ)dQ(η, σ)

∣∣∣∣+ (G×Q)(D1 ×D2)c

≤ sup
x

∣∣∣∣ ∫ γ(ξ, η, σ)(x)dGD1
(ξ)dQD2

(η, σ)−
∫
γ(ξ, η, σ)(x)dG?(ξ)dQ?(η, σ)

∣∣∣∣
+ 2

(G×Q)(D1 ×D2)c

(G×Q)(D1 ×D2)
.

(8.3)

The following lemma (Lemma 3) says that the family of functions (ξ, η, σ) 7→
{γ(ξ, η, σ)(x) : x ∈ X} is uniformly bounded and equicontinuous. Hence by the
Arzela-Ascoli theorem, the family is pre-compact, and hence totally bounded.
Hence for any ε > 0, there exist x1, . . . , xs ∈ X, such that for every x ∈ X, there
exist i = 1, . . . , s such that

|γ(ξ, η, σ)(x)− γ(ξ, η, σ)(xi)| < ε, (8.4)

for every (ξ, η, σ) ∈ D. Hence for every x ∈ X∣∣∣∣ ∫ γ(ξ, η, σ)(x)dGD1(ξ)dQD2(η, σ)−
∫
γ(ξ, η, σ)(x)dG?(ξ)dQ?(η, σ)

∣∣∣∣
≤
∣∣∣∣ ∫ γ(ξ, η, σ)(x)dGD1

(ξ)dQD2
(η, σ)−

∫
γ(ξ, η, σ)(xi)dGD1

(ξ)dQD2
(η, σ)

∣∣∣∣
+

∣∣∣∣ ∫ γ(ξ, η, σ)(xi)dGD1
(ξ)dQD2

(η, σ)−
∫
γ(ξ, η, σ)(xi)dG

?(ξ)Q?(η, σ)

∣∣∣∣
+

∣∣∣∣ ∫ γ(ξ, η, σ)(xi)dG
?(ξ)dQ?(η, σ)−

∫
γ(ξ, η, σ)(x)dG?(ξ)Q?(η, σ)

∣∣∣∣.
(8.5)
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The first and third terms in the right hand side of (8.4) are bounded above by
ε, using (8.3). For the second term, note that, since G?(D1) = Q?(D2) = 1,
for every ε > 0, there exists a weak neighborhood W?

1 of G? and W?
2 of Q?

respectively in M(C(X)) and M(Rk × R+) such that for every G ∈ W?
1 and

Q ∈ W?
2 , G(D1) > 1− ε, and Q(D2) > 1− ε, and for all i = 1, . . . , s,∣∣∣∣ ∫ γ(ξ, η, σ)(xi)dG(ξ)dQ(η, σ)−

∫
γ(ξ, η, σ)(xi)dG

?(ξ)dQ?(η, σ)

∣∣∣∣ < ε. (8.6)

Then for G ∈ W?
1 , and Q ∈ W?

2 ,∣∣∣∣ ∫ γ(ξ, η, σ)(xi)dGD1(ξ)dQD2(η, σ)−
∫
γ(ξ, η, σ)(xi)dG

?(ξ)dQ?(η, σ)

∣∣∣∣
≤
∣∣∣∣ 1

G(D1)Q(D2)
− 1

∣∣∣∣+ ε ≤ ε+
1− (1− ε)2

(1− ε)2
≤ 4ε,

if ε < 1−
√

3/2. Therefore, the right hand side in (8.3) is less than 6ε. Plugging
everything in (8.3), the right hand side of it can be bounded above by 10ε. Thus,
to show that the left hand side of (8.3) has positive prior probability, all we need
to show is any weak neighborhood W?

1 of G? and W?
2 of Q? have positive prior

probability. The measure G has a DP(M1G0) prior with G0 being a Gaussian
process, having full support on C(X). Similarly, Q has a DP(M2Q0) prior, where
Q0 is the product measure of a k-dimensional Gaussian and an inverse gamma
distribution, which also has a full support on Rk ×R+. Thus, by Lemma 3.6 in
Ghosal and Van der Vaart (2017), the weak neighborhoods have positive prior
probability.

Lemma 3. Define γ(ξ, η, σ)(x) =

∫
g(y)σ−kφk

(y − ξ(x)− η
σ

)
dy, where g :

Rk → [0, 1] is bounded and continuous. Then the family of maps (ξ, η, σ) 7→
{γ(ξ, η, σ)(x) : x ∈ X} is uniformly equicontinuous as a family of functions of
(ξ, η, σ) on the compact metric space D = D1 ×D2, i.e., for all x ∈ X, and all
‖(ξ, η, σ)− (ξ′, η′, σ′)‖ < δ, we have

|γ(ξ, η, σ)(x)− γ(ξ′, η′, σ′)(x)| < ε. (8.7)

Proof. For this proof, we borrow some ideas from the proof of Theorem 3 in
Ghosal et al. (1999). Using the fact that 0 ≤ g(·) ≤ 1, for each x ∈ X, the left
hand side of (8.7) can be bounded as∣∣∣∣ ∫ g(y)σ−kφk

(
y − ξ(x)− η

σ

)
dy −

∫
g(y)σ′

−k
φk

(
y − ξ′(x)− η′

σ′

)
dy

∣∣∣∣
≤ ‖ξ(x) + η − ξ′(x)− η′‖+ |σ − σ′|
≤ ‖ξ − ξ′‖∞ + ‖η − η′‖2 + |σ − σ′|.

(8.8)

The last inequality follows from the Lipschitz continuity of φk(·) as a function
of (ξ, η, σ), which gives us the conclusion.
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Proof of Lemma 2. Note that KL(h?, h) can be decomposed as

KL(h?, h) =

∫
X

∫
K
f?(y|x) log

f?(y|x)

f(y|x)
dyq(x)dx+

∫
X

∫
Kc
f?(y|x) log

f?(y|x)

f(y|x)
dyq(x)dx,

(8.9)
where K = {y : ‖y‖2 ≤ K}, for some K > 0. First, we show that the second
term in the RHS of (8.9) is sufficiently small. Note that∫
X

∫
Kc
f?(y|x) log

f?(y|x)

f(y|x)
dyq(x)dx

≤
∫
X

∫
Kc
f?(y|x) log

sup
(ξ,η,σ)∈D

1
σk
φk
(y−ξ(x)−η

σ

)
inf

(ξ,η,σ)∈D
1
σk
φk(y−ξ(x)−η

σ )G?(D1)Q?(D2)
dyq(x)dx,

where D1 and D2 are compact metric spaces. For ξ ∈ D1, sup
x
‖ξ(x)‖ < b? for

some b? > 0. Also, for (η, σ) ∈ D2, ‖η‖2 < a?, and σ < σ < σ̄, for a?, σ, σ̄ > 0.
For ‖y‖2 > K > a? + b?,

log inf
(ξ,η,σ)∈D

1

σk
φk

(
y − ξ(x)− η

σ

)
= log

{
1

σk
φk

(
y + (a? + b?) y

‖y‖

σk

)}
.

Let V = {G × Q : (G × Q)(D) > σk/σ̄k}. Since (G? × Q?)(D) = 1, and D is
an open set, V contains a neighborhood of G? ×Q? of the form (5.5). Thus for
every G×Q ∈ V ,

∫
X

∫
KC

f?(y|x) log
f?(y|x)

f(y|x)
dyq(x)dx

≤
∫
X

∫
Kc
f?(y|x) log

sup
(ξ,η,σ)∈D

φk
(y−ξ(x)−η

σ

)
inf

(ξ,η,σ)∈D
φk
(y−ξ(x)−η

σ

)dyq(x)dx

=

∫
X

∫
Kc
f?(y|x) log

φk
(y+(a?+b?) y

‖y‖2
σ̄

)
φk
(y−(a?+b?) y

‖y‖2
σ

)dyq(x)dx

=

∫
X

∫
Kc

{
− 1

2σ̄k

∥∥∥y + (a? + b?)
y

‖y‖2

∥∥∥2

2
+

1

2σ̄k

∥∥∥y − (a? + b?)
y

‖y‖2

∥∥∥2

2
}f?(y|x)dyq(x)dx

=

∫
X

∫
Kc
{− 1

2σ̄k

∥∥∥‖y‖2 + (a? + b?)
∥∥2

2
+

1

2σ̄k
∥∥‖y‖2 − (a? + b?)

∥∥∥2

2
}f?(y|x)dyq(x)dx.

Since f? is of the form (5.2), with ξ being uniformly bounded on D1, and (η, σ)
being bounded on D2, for every ε > 0, we can find a compact set K such that∫

X

∫
KC

f?(y|x) log
f?(y|x)

f(y|x)
dyq(x)dx <

ε

2
. (8.10)
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Next, we show that,∫
X

∫
K
f?(y|x) log

f?(y|x)

f(y|x)
dyq(x)dx <

ε

2
. (8.11)

Following the arguments in Lemma 3, it can be shown that the family of maps

(ξ, η, σ) 7→
{

1
σk
φk
(y−ξ(x)−η

σ

)
: y ∈ K, x ∈ X)

}
is uniformly equicontinuous on

D. Thus, the family is uniformly bounded on D, and pre-compact by Arzela-
Ascoli theorem. Hence there exist xi, yi, i = 1, . . . ,m such that, for any y ∈ K,
x ∈ X,

sup
(ξ,η,σ)∈D

∣∣σ−kφk(
y − ξ(x)− η

σ
)− σ−kφk(

yi − ξ(xi)− η
σ

)
∣∣ < c?δ, (8.12)

where c? = sup
x∈X,y∈K

sup
(ξ,η,σ)∈D

∣∣σ−kφk(yi − ξ(xi)− η
σ

)∣∣. Define

U = {G×Q : |
∫
D

σ−kφk
(y − ξ(x)− η

σ
)dG?(ξ

)
dQ?(η, σ)−∫

D

σ−kφk
(yi − ξ(xi)− η

σ

)
dG(ξ)dQ(η, σ)| < c?δ, i = 1, . . . ,m}.

(8.13)

Then U is a finite intersection of neighborhoods of G? ×Q? of the form (5.5).
Since supp(G×Q) ⊂ D,∫

X

∫
K
f?(y|x) log

f?(y|x)

f(y|x)
dyq(x)dx <∫

X

∫
K
f?(y|x) log

∫
D
φk(y−ξ(x)−η

σ )dG?(ξ)dQ?(µ, σ)∫
D
φk(y−ξ(x)−η

σ )dG(ξ)dQ(µ, σ)
dyq(x)dx.

Without loss of generality, we assume (G? × Q?)(∂D) = 0, where ∂X denotes
the boundary of the set X. For any (G ×Q) ∈ U , y ∈ K and x ∈ X, denoting

g1(y, x, ξ, η, σ) = σ−kφk

(
y − ξ(x)− η

σ

)
,

∣∣∣∣ ∫
D

g1(y, x, ξ, η, σ)dG?(ξ)dQ?(η, σ)−
∫
D

g1(y, x, ξ, η, σ)dG(ξ)dQ(η, σ)

∣∣∣∣
≤
∣∣∣∣ ∫
D

g1(y, x, ξ, η, σ)dQ?(η, σ)−
∫
D

g1(yi, xi, ξ, η, σ)dG?(ξ)dQ?(η, σ)

∣∣∣∣
+

∣∣∣∣ ∫
D

g1(yi, xi, ξ, η, σ)dG?(ξ)dQ?(η, σ)−
∫
D

g1(yi, xi, ξ, η, σ)dG(ξ)dQ(η, σ)

∣∣∣∣
+

∣∣∣∣ ∫
D

g1(yi, xi, ξ, η, σ)dG(ξ)dQ(η, σ)−
∫
D

g1(y, x, ξ, η, σ)dG(ξ)dQ(η, σ)

∣∣∣∣
(8.14)
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The first and third terms on the right hand side of (8.14) are each less than c?δ
by (8.12). The second term is also less than c?δ, since (G×Q) ∈ U . Thus,∣∣∣∣ ∫

D

1

σk
φk

(
y − ξ(x)− η

σ

)
dG?(ξ)dQ?(η, σ)−

∫
D

1

σk
φk

(
y − ξ(x)− η

σ

)
dG(ξ)dQ(η, σ)

∣∣∣∣
< 3c?δ.

(8.15)
Therefore, for (G×Q) ∈ U ,∣∣∣∣

∫
D

1
σk
φk
(y−ξ(x)−η

σ

)
dG?(ξ)dQ?(η, σ)∫

D
1
σk
φk
(y−ξ(x)−η

σ

)
dG(ξ)dQ(η, σ)

− 1

∣∣∣∣ < 3δ

1− 3δ
, (8.16)

for δ < 1
3 . Thus, by choosing δ small enough∫

X

∫
K
f?(y|x) log

f?(y|x)

f(y|x)
dyq(x)dx ≤

sup
x∈X,y∈K

∣∣∣∣
∫
D

1
σk
φk
(y−ξ(x)−η

σ

)
dG?(ξ)dQ?(η, σ)∫

D
1
σk
φk
(y−ξ(x)−η

σ

)
dG(ξ)dQ(η, σ)

− 1

∣∣∣∣ < ε

2
,

for G×Q ∈ U . Thus for any ε > 0 and G×Q ∈ V ∩U ,∫
X

∫
Rk
f?(y|x) log

f?(y|x)

f(y|x)
dyq(x)dx < ε. (8.17)

Thus Lemma 2 is proved.

Proof of Theorem 1. Using Example 6.20 in Ghosal and Van der Vaart (2017),
Theorem 1 implies that the posterior is weakly consistent at f?, i.e., for any
Wε,g(f

?)
Π{Wε,g(f

?)|(Y n, Xn)} → 1. (8.18)

The above fact further implies that, for any ε > 0

Π{sup
x,y
|FX,Y (x, y)− F ?X,Y (x, y)| < ε|(Y n, Xn)} → 1, (8.19)

Thus there exists εn ↓ 0 such that (8.19) holds with εn replacing ε. Note that
for any ε > 0, δ > 0 and F such that supx,y |FX,Y (x, y) − F ?X,Y (x, y)| < ε, we
have

sup
x,y

∣∣∣∣PX,Y (|X − x| ≤ δ, Y ≤ y)

PX(|X − x| ≤ δ)
−
P ?X,Y (|X − x| ≤ δ, Y ≤ y)

PX(|X − x| ≤ δ)

∣∣∣∣ < ε

PX(|X − x| ≤ δ)
,

Note that PX(|X − x| ≤ δ) =
∫ x+δ

x−δ q(x)dx ≥ 2δa, with a = min
x

q(x). Choosing

a fixed sequence δn ↓ 0 at a rate slower than εn,

sup
x,y

∣∣∣∣PX,Y (|X − x| ≤ δn, Y ≤ y)

PX(|X − x| ≤ δn)
−
P ?X,Y (|X − x| ≤ δn, Y ≤ y)

PX(|X − x| ≤ δn)

∣∣∣∣ < εn,
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for every n. Notice that lim
δn→0

P ?X,Y (|X − x| ≤ δn, Y ≤ y)

PX(|X − x| ≤ δn)
→ F ?Y |x(y). For a fixed

u ∈ B(k)
2 , note thatQδ;Y |x(u) can be written asQδ;Y |x(u) = arg max

θ

∫
g(u; y, θ)dFδ;Y |x(y),

where g(u; y, θ) is defined as

g(u; y, θ) = −{‖y − θ‖2 + 〈u, y − θ〉 − ‖y‖2 + 〈u, y〉}. (8.20)

Since g(u; y, θ) is a bounded and continuous function in y for every fixed θ ∈ Rk,
and x ∈ X,

Π

{
|
∫
g(u; y, θ)dFδn;Y |x(y)−

∫
g(u; y, θ)dF ?Y |x(y)| < ε|(Y n, Xn)

}
→ 1 a.s.,

(8.21)

for every ε > 0. We use the argmax theorem (Theorem 5.7 in Van der Vaart
(2000)) to achieve the assertion in Theorem 1. We need the following two con-
ditions:

1. For every ε > 0 and fixed u ∈ B(k)
2 , and for all x ∈ X,

Π

{
sup
θ
|
∫
g(u; y, θ)dFδn;Y |x(y)−

∫
g(u; y, θ)dF ?Y |x(y)| < ε|(Y n, Xn)

}
→ 1.

(8.22)

2. sup
θ:‖θ−θ?‖2≥ε

∫
g(u; y, θ)dF ?Y |x(y) <

∫
g(u; y,Q?Y |X(u|x))dF ?Y |x(y), which is

also known as the “well-separatedness” condition.

To prove the above conditions, we need to restrict the parameter space to a
compact subset of Rk, which leads us to the following lemma, which says that
the parameter space can be taken to be a compact set with high probability.

Lemma 4. For every x ∈ X, and for every fixed u ∈ B(k)
2 , for every 0 < ε <

c−1/(c−1 + ‖u‖2 + 1) and Kx > 0 such that P ?Y |x(‖Y ‖2 ≤ Kx) > 1 − ε, the

posterior probability of QY |x(u) ≤ cKx given (Y n, Xn) tends to 1, a.s. n→∞,
where c = 3/(1− ‖u‖2).

Proof of Lemma 4 is given at the end of this proof. Using Lemma 4, the pa-
rameter space can be taken to be Θ, which is a compact subset of Rk. Condition
1 is proved using Example (A.2) in Bickel and Millar (1992). We have to show

that, for every θ ∈ Θ with Θ compact, and u ∈ B(k)
2 ,

• sup
y
|g(u; y, θ)| ≤ k0

• sup
y
{|g(u; y, θ)− g(u; y′, θ)|/‖y − y′‖2} ≤ k0.

The first condition follows from

|g(u; y, θ)| ≤ ‖θ‖2 + 〈u, θ〉 ≤ 2‖θ‖2 ≤ 2cKx,

imsart-generic ver. 2014/10/16 file: ba-template.tex date: July 3, 2020



Bhattacharya and Ghosal/Bayesian Multiple-Output Quantile Regression 23

The second condition follows from the Lipschitz continuity of the functions
g(u; y, θ),

|g(u; y, θ)− g(u; y′, θ)| =|‖y − θ‖2 − ‖y′ − θ‖2 − ‖y‖2 + ‖y′‖2| ≤ 2‖y − y′‖2.

Then supy{|g(u; y, θ)− g(u; y′, θ)|/‖y− y′‖2} ≤ 2. Condition 2 follows from our
assumption, which proves Lemma 2.

Proof of Lemma 4. DefineM(F ?Y |x, θ) = F ?Y |x{Φ2(u, Y−θ)−Φ2(u, Y )} = F ?Y |x(‖Y−
θ‖2 − ‖Y ‖2 − 〈u, θ〉). We show that for 0 < ε < c−1/(c−1 + ‖u‖2 + 1), there
exists Kx > 0 such that ‖θ‖2 ≥ cKx implies M(F ?Y |x, θ) > 0. If ‖Y ‖2 ≤ Kx and

‖θ‖2 ≥ cKx, then

‖Y − θ‖2 ≥ ‖θ‖2 − ‖Y ‖2 ≥
(c− 1)‖θ‖2

c
+K − ‖Y ‖2 ≥

‖θ‖2
c

,

Hence as ‖Y ‖2 ≤ Kx ≤ ‖θ‖2/c,

‖Y − θ‖2 − ‖Y ‖2 − 〈u, θ〉 ≥
(c− 1)‖θ‖2

c
− ‖θ‖2

c
− ‖u‖2‖θ‖2.

Using the relation c = 3/(1− ‖u‖2)

‖Y − θ‖2 − ‖Y ‖2 − 〈u, θ〉 ≥
‖θ‖2
c

.

Now since always
∣∣‖Y − θ‖2 − ‖Y ‖2 − 〈u, θ〉∣∣ ≤ (1 + ‖u‖2)‖θ‖2, we can write

M(F ?Y |x, θ) =

∫
‖Y ‖2≤Kx

(‖Y − θ‖2 − ‖Y ‖2 − 〈u, θ〉)dF ?Y |x+∫
‖Y ‖2>Kx

(‖Y − θ‖2 − ‖Y ‖2 − 〈u, θ〉)dF ?Y |x

≥ ‖θ‖2(
1

c
F ?Y |x(‖Y ‖2 ≤ Kx)− (1 + ‖u‖2)F ?Y |x(‖Y ‖2 > Kx)

)
= ‖θ‖2

(1

c
− (1 + ‖u‖2 +

1

c
)F ?Y |x(‖Y ‖2 > Kx)

)
≥ ‖θ‖2

{1

c
−
(
1 + ‖u‖2 +

1

c

)
ε
}
> 0.

Thus, for u ∈ B(k)
2 , and every x ∈ X, Q?Y |x(u) ≤ cKx, where Kx is chosen such

that P ?Y |x(‖Y ‖2 ≤ Kx) > 1− ε, where 0 < ε < c−1/(c−1 + ‖u‖2 + 1). Since the
δn-smoothed conditional distribution Fδn;Y |x is weakly consistent at F ?Y |x, the

posterior probability QY |x(u) ≤ cKx tends to 1 almost surely.
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Fig 1. The Systolic and Diastolic Blood Pressure Against Age of 40 Marwari Females in
Kolkata, India.
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Fig 2. Conditional spatial median for Systolic pressure (Y1) and Diastolic pressure (Y2) as a
function of age (X).
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