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Abstract

We consider the problem of estimating the mean vector θ of a d-dimensional spherically sym-
metric distributed X based on balanced loss functions of the forms: (i) ωρ(‖δ − δ0‖2) +
(1 − ω)ρ(‖δ − θ‖2) and (ii) `

(
ω‖δ − δ0‖2 + (1− ω)‖δ − θ‖2

)
, where δ0 is a target estimator,

and where ρ and ` are increasing and concave functions. For d ≥ 4 and the target estima-
tor δ0(X) = X, we provide Baranchik-type estimators that dominate δ0(X) = X and are
minimax. The findings represent extensions of those of Marchand & Strawderman ([18]) in
two directions: (a) from scale mixture of normals to the spherical class of distributions with
Lebesgue densities and (b) from completely monotone to concave ρ′ and `′.

1. Introduction

The balanced loss function (BLF) was introduced and formulated by Zellner (1994) in order to
reflect two criteria, namely goodness of fit and precision of estimation. For estimating γ(θ) ∈ Rd

based on X ∼ fθ, consider loss incurred by estimate δ

ω ρ(||δ − δ0||2) + (1− ω) ρ(||δ − γ(θ)||2) , (1)

where δ0(X) is a target estimator of γ(θ), ρ(·) ≥ 0, and ω ∈ [0, 1). Zellner’s original BLF corresponds
to ρ(t) = t and δ0 as a least-squares estimator in a regression framework. The above loss encapsulates
a more general choice of the target estimator (e.g., [11]) and a more general choice of ρ (e.g., [9], [10]),
with the first term measuring proximity of estimate δ to the target δ0 in comparison to the second
term measuring proximity of δ to the estimand γ(θ), weighted by ω and 1−ω respectively. Decision
making under such a loss will necessarily lead to a compromise modulated by the amplitude of ω,
with the case ω = 0 corresponding to the so-called unbalanced loss (denoted L0) where decisions are
not influenced by δ0. Alternatively, one may view the first term as a penalty for estimate δ diverging
from the target δ0. An example of this arises with the choice δ0 = 0 connecting the balanced loss
with a ridge regression or Tikhonov regularization framework. For such reasons, balanced loss
functions are appealing for decision making and have interested researchers over the years.
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A natural and interesting modification of Zellner’s original balanced loss function, introduced in
[18] is given by:

`
(
ω ‖δ − δ0||2 + (1− ω) ‖δ − γ(θ)‖2

)
, (2)

where δ0 is a target estimator of γ(θ) ∈ Rd, 0 ≤ ω < 1, and l(·) ≥ 0. Such losses possess similar
attractive features as those in (1), and are also especially appealing if ` is concave or even bounded.

For the original squared error loss balanced loss function case with ρ(t) = t or `(t) = t, it is
known (e.g., [4], [11], [18]) that frequentist risk performance of estimators is directly related to the
frequentist risk performance of associated estimators under unbalanced loss. For instance, we have
the following.

Lemma 1.1. (Corollary 1 of [18]) Let X ∼ fθ and consider the problem of estimating γ(θ). Then,
for ω ∈ (0, 1), δ0(X) + (1−ω) g1(X) dominates δ0(X) + (1−ω) g2(X) under loss (1) with ρ(t) = t
if and only if δ0(X) + g1(X) dominates δ0(X) + g2(X) under loss ‖δ − γ(θ)‖2.

Marchand and Strawderman [18] considered the estimation of the mean of a multivariate normal θ or
a scale mixture of normal distribution under losses (1) and (2). They provided, for three dimensions
or more, for increasing and concave ρ and l which also satisfy a completely monotone property,
Baranchik-type estimators of θ which dominate the benchmark δ0(X) = X. Their findings apply
to a vast collections of ρ’s and `’s, and quite generally for scale mixtures of normal distributions,
but they do not cover non completely monotone ρ′ and `′, as well as other spherically symmetric
distributions.

In this paper, we provide extensions with respect to the choices of ρ and `, as well to the class of
spherically symmetric densities. More precisely, for X ∈ Rd, d ≥ 4, with spherically symmetric
Lebesgue density f(‖x − θ‖2), we obtain, for estimating θ for losses of types (1) and (2) with
target δ0(X) = X, Baranchik-type estimators ([1]) that dominate the benchmark estimator X. Our
results apply to increasing and concave ρ and ` and do not require complete monotonicity. The
Baranchik-type estimators studied are of the form:

δa,s(X) =

(
1− a(1− ω)

s(‖X‖2)

‖X‖2

)
X , (3)

with s twice differentiable a.e.,

a > 0, 0 ≤ s(·) ≤ 1 , s(·) 6= 0, s′(·) ≥ 0, and s′′(·) ≤ 0 . (4)

Such estimators include simple choices like s(t) = t
t+b

with b ≥ 0, including James-Stein estimators
for b = 0. It is worthwhile noting that the findings here can be applied to cases where a sample
X(1), . . . , X(n) is drawn from f(‖x − θ‖2) and when inference is then based on an estimator (such
as X̄) which is a spherically symmetric and translation invariant function of these data (e.g., [3]).

The paper is organized as follows. In Sections 2 and 3, we present dominance results for balanced
losses (1) and (2) respectively. Both sections include a subsection of illustrations and remarks.
Several technical results are presented in these sections, and others are relegated to an Appendix.
Finally, a detailed example is presented in Section 4, with a comparison of frequentist risks and
some details worth sharing about the calculations themselves.
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2. Risk analysis for loss ωρ(‖δ −X‖2) + (1− ω)ρ(‖δ − θ‖2)

2.1. Preliminary results and definitions

We begin with an initial observation. It follows from [13] that δ0(X) = X is minimax for estimating
θ, whenever X has density f(‖x − θ‖2), θ ∈ Rd, and loss ρ(‖δ − θ‖2) with ρ(0) = 0 and ρ′(t) > 0
for t > 0, as long as X has finite risk. Furthermore, as put forth in [10], if an estimator δ0(X)
is minimax for estimating θ under loss ρ(‖δ − θ‖2) then, it is also minimax under balanced loss
in (1) with γ(θ) = θ for all 0 < ω < 1. Therefore, the estimators of this section which dominate
the benchmark δ0(X) = X under balanced loss (1) are minimax in cases of spherically symmetric
density models and for the conditions C1 below in (5) on ρ.

For the function ρ in loss (1), we assume the following throughout

C1 : ρ(0) = 0, 0 < ρ′(0) < +∞ , and ρ is concave. (5)

Examples for which ρ satisfies condition C1, other than ρ(t) = t, include: (i) ρ(t) = 1− exp(−α t)
with α > 0, (ii) ρ(t) = log(1 + t), (iii) ρ(t) = (1 + t/γ)β with γ > 0, β ∈ (0, 1), (iv) ρ(t) =
r2t/(rt+1) with r > 0, (v) ρ(t) = arctan(t), and (vi) ρ(t) = tanh(t). Except for (v) and (vi), the
examples were presented by Marchand & Strawderman in [18] as examples of completely monotone
ρ′ (i.e., (−1)k+1 ρ(k)(t) ≥ 0 for t > 0 and k ∈ N). We do not require completely monotonicity and
condition C1 is weaker. Another class of loss functions satisfying the above conditions are given
by: (vii) ρ(t) = G(t) with G a cdf on (0,∞) with non-increasing density G′. Such a class of loss
functions arose recently in a predictive density estimation framework described in [15]. Finally, we
point out that condition C1 implies:

C2: ρ(0) = 0, 0 < ρ′(0) < +∞, ρ is concave, and ρ(t)/t is non-increasing for t ∈ R+.

The added non-increasing property of ρ(t)/t is thus superfluous, but we will use this on several
occasions, as well as the outright concavity of ρ.

We make use throughout of standard definitions and properties of spherically symmetric distribu-
tions, as well as shrinkage estimation techniques and properties of superharmonic functions. Some
key features are either collected in this subsection or in the Appendix, and further properties and
definitions can be found for instance in [8].

A well-known, useful property and characterization of spherically symmetric distributions (e.g.,
Theorem 4.1 in [8]) is the independence between the radius R = ‖X − θ‖ and X−θ

‖X−θ‖ , with the

conditional distribution of X|R = r uniformly distributed (noted Ur,θ) on the sphere Sr,θ = {x ∈
Rd | ‖x− θ‖ = r} of radius r centered at θ. Our findings capitalize on a corresponding conditional
on R risk decomposition. Moreover, the distribution of R is independent of θ and its density (called

radial) is given by h(r) = 2πd/2

Γ(d/2)
rd−1 f(r2) IR+(r) when X has Lebesgue density f(‖x− θ‖2).

Properties of superharmonic functions also play an important role. We recall that a continuous
function g : Rd −→ R is superharmonic if and only if: for all t0 ∈ Rd and r > 0, the average
of g over the surface of the sphere Sr,t0 is less or equal than g(t0). For twice-differentiable g, the
superharmonicity of g is equivalent to its Laplacian being less or equal to 0, i.e., ∆(g) ≤ 0 with

∆(g) =
d∑

k=1

(∂2g(t)/∂t2k). As stated in Lemma 6.2, superharmonicity of g can be used to obtain an
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inequality relating the conditional expected value on the ball to the conditional expected value on
the sphere. An important fact here is that if g is superharmonic, its average over the ball (“volume”)
is greater than its average over the sphere (“surface area”). We conclude this subsection with a
pivotal inequality, which appeared in [18] for scale mixtures of normals, but which holds here more
generally over the class of spherically symmetric densities.

Lemma 2.1. Suppose that X is spherically symmetric distributed about θ with density f(‖x− θ‖2),
that Eθ(‖X‖−2) < ∞, and that the function ρ satisfies C1. For d ≥ 4, and for s : Rd −→ [0, 1] a
twice-differentiable, non-decreasing and concave function then

Eθ

[
ρ

(
s(‖X‖2)

‖X‖2

)]
≤ ρ′(0)Eθ

[
s(‖X‖2)

‖X‖2

]
≤ ρ′(0)Eθ

[
s(‖Y ‖2)

‖Y ‖2

]
, (6)

where Y ∼ f ∗(||y − θ||2) with f ∗(t) = ρ′(t) f(t)
K

and K = E0(ρ′(‖X‖2)) .

Proof. The first inequality of (6) follows, on taking expectations, from the concave function
inequality

ρ(t) ≤ ρ(0) + ρ′(0)t = ρ′(0)t

given that ρ is concave with ρ(0) = 0. Denoting by h and h∗ the densities of ‖X − θ‖ and ‖Y − θ‖
respectively, E∗ the expectation with respect to h∗, and making use of the equality of the conditional
distributions X|‖X − θ‖ = r and Y |‖Y − θ‖ = r, we have

Eθ

[
s(‖X‖2)

‖X‖2

]
=

∫
R+

Eθ

(
s(‖X‖2)

‖X‖2

 ‖X − θ‖ = r

)
h(r)dr

=

∫
R+

Eθ

(
s(‖Y ‖2)

‖Y ‖2

 ‖Y − θ‖ = r

)
K

ρ′(r2)
h∗(r)dr

= E?

[
Eθ

(
s(‖Y ‖2)

‖Y ‖2

 ‖Y − θ‖ = R

)
K

ρ′(R2)

]
. (7)

Since the function s(‖t‖2)/‖t‖2 is superharmonic for d ≥ 4 as shown in Lemma 6.1, and since for
such superharmonic functions the sphere mean is non-increasing in the radius (e.g., [8], Theorem

A.4, page 304), it follows that Eθ

(
s(‖Y ‖2)
||Y ||2

 ‖Y − θ‖ = r
)

is non-increasing in r. Finally, along

with the concavity of ρ which implies that K/ρ′(r2) is non-decreasing in r, the covariance inequality
applied to (7) implies that

Eθ

[
s(‖X‖2)

‖X‖2

]
≤ E?

R

[
K

ρ′(R2)

]
E?

[
Eθ

(
s(‖Y ‖2)

‖Y ‖2

 ‖Y − θ‖ = R

)]
= Eθ

[
s (‖Y ‖2)

‖Y ‖2

]
,

due to the fact that E?
R [K/ρ′(R2)] = 1.

2.2. Dominance finding

We are now ready for the main dominance finding of this section.
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Theorem 2.1. Suppose that X is spherically symmetric distributed about θ with density f(‖x−θ‖2),
that both E0(‖X‖2) and E0(‖X‖−2) are finite, and that the function ρ satisfies C1. For d ≥ 4 and
for estimating θ under loss (1) with δ0(X) = X, the estimator δa,s(X) in (3) satisfying conditions
(4) dominates δ0 provided:

0 < a <
2K(d− 2)/d

{ωρ′(0) +K(1− ω)} E?
0 (‖Y ‖−2 )

, (8)

where E?
θ is the expectation taken with respect to Y ∼ f ∗(||y − θ||2) with f ∗(t) = ρ′(t) f(t)

K
and

K = E0(ρ′(‖X‖2)) . An equivalent condition for the above dominance condition is:

0 < a <
2K2 (d− 2)/d

{ωρ′(0) +K(1− ω)} E0

(
ρ′(‖X‖2)
‖X‖2

) . (9)

Proof. Set δg(X) = X + (1− ω)g(X) and consider the difference in risks

∆R(θ) = R(θ, δg)−R(θ, δ0) , θ ∈ Rd .

We have

∆R(θ) = Eθ
{
ωρ(‖(1− ω)g(X)‖2) + (1− ω)ρ(‖X − θ + (1− ω)g(X)‖2)

−(1− ω)ρ(‖X − θ‖2)
}

≤ Eθ
[
ωρ′(0)‖(1− ω)g(X)‖2 + (1− ω)

{
ρ(‖X − θ‖2 + 2(1− ω) g(X)>(X − θ)

+(1− ω)2‖g(X)‖2)− ρ(‖X − θ‖2)
}]

≤ Eθ

[
ωρ′(0)(1− ω)2‖g(X)‖2 + (1− ω)K × ρ′(‖X − θ‖2)

K

{
2(1− ω)g(X)>(X − θ)

+(1− ω)2‖g(X)‖2
}]

= (1− ω)2
[
Eθ
[
ωρ′(0)‖g(X)‖2

]
+KEθ

{
2g(Y )>(Y − θ) + (1− ω) ‖g(Y )‖2

}]
, (10)

where the two inequalities follow from the concave function inequality: ρ(t1)−ρ(t2) ≤ ρ′(t1)(t1−t2),
with the condition ρ(0) = 0. Now, for the Baranchik g(x) = −a (s(‖x‖2)/‖x‖2)x and a > 0, it is
easy to show that

div (g(x)) = −2as′(‖x‖2)− a(d− 2)
s(‖x‖2)

‖x‖2
≤ −a(d− 2)

s(‖x‖2)

‖x‖2
.

From (10), using the condition 0 ≤ s(·) ≤ 1 as well as Lemma 2.1 and Lemma 6.3, we obtain

∆R(θ)

(1− ω)2
≤ Eθ

[
ωρ′(0)

a2s(‖X‖2)

‖X‖2

]
+KEθ

[
2g(Y )>(Y − θ)

]
+KEθ

[
(1− ω)

a2s(‖Y ‖2)

‖Y ‖2

]
≤ Eθ

[
ωρ′(0)

a2s(‖Y ‖2)

‖Y ‖2

]
− 2Ka

d− 2

d

∫
R+

r2

∫
Br,θ

s(‖y‖2)

‖y‖2
dVr,θ(y)h∗(r) dr (11)

+K Eθ

[
(1− ω)

a2s(‖Y ‖2)

‖Y ‖2

]
,

, (12)

5



h∗ being the radial density of ‖Y − θ‖. As t −→ s(‖t‖2)/‖t‖2 is superharmonic, then according to
Lemma 6.4 expression (11) is bounded above by

Eθ

[
ωρ′(0)

a2s(‖Y ‖2)

‖Y ‖2

]
− 2Ka

d− 2

d

∫
R+

r2

∫
Sr,θ

s(‖y‖2)

‖y‖2
dVr,θ(y)h∗(r) dr

+K Eθ

[
(1− ω)

a2s(‖Y ‖2)

‖Y ‖2

]
,

= aE

{
Eθ

(
R2 s(‖Y ‖2)

‖Y ‖2

‖Y − θ‖ = R

) (
a
ωρ′(0) +K(1− ω)

R2
− 2K

d− 2

d

))
.

With Eθ

[
R2 s(‖Y ‖2)

‖Y ‖2

‖Y − θ‖ = R
]

non-decreasing inR by Lemma 6.5, and {a [ωρ′(0) +K(1− ω)] /R2}
non-increasing in R, an application of the covariance inequality leads to

∆R(θ)

(1− ω)2
≤ aE

{
Eθ

[
R2 s(‖Y ‖2)

‖Y ‖2

‖Y − θ‖ = R

]}
× E

[(
a
ωρ′(0) +K(1− ω)

R2
− 2K

d− 2

d

)]
= aEθ

(
‖Y − θ‖2 s(‖Y ‖2)

‖Y ‖2

)
×
[
a {ωρ′(0) +K(1− ω)} Eθ

(
1

‖Y − θ‖2

)
− 2K

d− 2

d

]
,

and the result follows.

2.3. Examples and discussion

The dominance finding of Section 2.2 is applicable to many choices of ρ and the underlying spheri-
cally symmetric f . The results guarantee the existence of a class of Baranchik estimators which are
minimax. For d ≥ 4, subject to finiteness of risk or the minimaxity of X, the results apply quite
generally with respect to the choice of the Baranchik estimator, the weight ω, the choice of ρ, and
the underlying model density f . Our findings do expand on existing results, namely the findings
of Marchand and Strawderman [18], with both a wider class of loss functions and underlying mod-
els. However, they do not duplicate their results when applicable as our conditions turn out to be
stronger, i.e., the cut-off points are smaller (see Section 2.3.2). Although the focus of this paper
is on the balanced case with ω > 0, Theorem 2.1 applies for the case ω = 0 nevertheless with the
cut-off point in (8) simplifying to 2(d − 2) {dE?

0 (‖Y ‖−2 ) }−1, and matching the one obtained by
Brandwein and Strawderman ([3], Theorem 2.1).

Without dwelling too much on the wealth of applicable situations or calculations of the cut-off
points, we elaborate here a little bit with some illustrations and remarks.

2.3.1. Choices of ρ and determination of the cut-off points

Cut-off point (9) of Theorem 2.1 is explicitly represented and is conveniently expressible in terms of
the expectations K = E(ρ′(W )) and E(ρ′(W )/W ), with respect to the density of W = ‖X‖2 when
θ = 0 and given by

πd/2

Γ(d/2)
wd/2−1 f(w) IR+(w). (13)

6



With ρ(t)→ ρ(t)
ρ′(0)

; which tells us that we can set ρ′(0) = 1 without loss of generality; and by setting

Ik =

∫ ∞
0

wk−1 ρ′(w) f(w) dw ,

cut-off point (9) can simply be expressed as

a0 =
2(d−2

d
) I2

d/2{
ω Γ(d/2)/πd/2 + (1− ω)Id/2

}
Id/2−1

. (14)

Marchand & Strawderman provide a similar cut-off point to (9) applicable to completely monotone
ρ′ and a scale mixture of normals model density, while the findings of Section 2.2 apply to non-
completely monotone choices of ρ′ such as those referred at the beginning of Section 2.1. As an
example, consider the ρ(t) = 2Φ(t)−1 with Φ the standard normal cdf (this is the cdf of a truncated
standard normal distribution). Then, Theorem 2.1 applies and can one simply take ρ′(t)/ρ′(0) =
e−t

2/2 for evaluating (9) or (14) numerically. Even in the normal case with X ∼ Nd(θ, Id) and
W ∼ χ2

d(0), the result is new and yields a0 evaluated with

Ik =

∫ ∞
0

wk−1 e−(w+w2)/2 dw , for k = d/2, d/2− 1.

2.3.2. Scale mixtures of normal distributions case

Theorem 2.1 applies to scale mixtures of normals admitting representation

X|V ∼ Nd(θ, V Id) , V ∼ G , (15)

where G is a c.d.f. for V , and including many familiar distributions such as normal, logistic,
Laplace, exponential power, Student, etc. For choices of ρ satisfying condition C1 such that also ρ′

is completely monotone, the cut-off point given in [18] is greater than (9) by a factor of d/(d− 2).
So, Theorem 2.1’s result is weaker. However, as reviewed above in subsection 2.3.1, Theorem 2.1
applies for more general ρ. Also, the results of Section 2.2 apply for more general models and we
pursue with such examples.

2.3.3. Uniform distribution on a ball

Theorem 2.1 applies for the case of a uniform distribution on a ball centered at θ of radius m:
Bm,θ = {x ∈ Rd : ‖x− θ‖ ≤ m}, with d ≥ 4 and densities

f(‖x− θ‖2) =
Γ(d/2 + 1)

md πd/2
I(0,m)(‖x− θ‖) . (16)

In such cases, W
m2 = ‖X−θ‖2

m2 has Beta density d
2
td/2−1 I(0,1)(t), and cut-off point (9) is readily available

by either analytical or numerical evaluations of Ik = Γ(d/2+1)

mdπd/2

∫ m2

0
wk−1 ρ′(w) dw for k = d/2 and

d/2− 1. As an illustration, the choice ρ(t) = log(1 + t), d = 4 yields:

a0 =
{m2 − log(1 +m2)}2

{ωm4/2 + (1− ω) (m2 − log(1 +m2))} log(1 +m2)

7



For the unbalanced squared error loss case with ω = 0 and ρ(t) = t, early shrinkage estimation
analysis was provided in [2] for such uniform distributions and their mixtures, the latter playing a
key role in modelling since their ensemble spans the entire class of unimodal spherically symmetric
distributions.

2.3.4. Kotz type distribution

Theorem 2.1 applies to Kotz model densities f(‖x− θ‖2) with

f(t) = cd t
sν− d

2 e−rt
s IR+(t) , (17)

with r, s, ν > 0 and cd =
sΓ( d

2
)

π
d
2 Γ(ν)

rν . 1 The distribution, originally introduced in [14] for s = 1

has generated much interested over the years (e.g. [17]), namely for its flexibility in representing
non-unimodal densities (for 2sν > d), non-scale mixture of normal densities (any choice except
0 < s ≤ 1 and 2sν = d), as well as including the normal case (s = 1, ν = d/2), scale mixtures of
normal (0 < s ≤ 1 and 2sν = d), and exponential power densities (2sν = d). Moreover, it is simple
to verify that the distribution of W s = ‖X − θ‖2s is distributed as Gamma(ν, r), which facilitates
the expression of cut-off point (9). Resulting integrals will not be available in general in closed
forms. One exception arises for s = 1 and reflected normal ρ(t) = 1 − e−α t. For ν > 1 (we need
this for finiteness of risk), an evaluation of (9) or (14) yields:

a0 =
2(ν − 1) (1− 2/d)/(r + α)

ω (1 + α/r)ν + (1− ω)
.

A numerical illustration with an underlying Kotz density is provided and commented upon in
Section 4.3.

3. Risk analysis for loss `
(
ω‖δ −X‖2 + (1− ω)‖δ − θ‖2

)
3.1. Dominance finding

For spherically symmetric model densities, we evaluate the frequentist risk performance of an esti-
mator δ(X) of θ under the balanced loss (2) which incorporates the target estimator δ0(X) = X.
For the function `, we work with the following conditions throughout this section:

C3 : `(0) = 0, `′(·) > 0 , and ` is twice-differentiable and concave. (18)

As for the choice of ρ in the previous section, the completely monotone requirement on `′ in [18] is
relaxed here. Examples of ρ that satisfy condition C1, including (i) to (vii) following (5), provide
examples of ` that satisfy above condition C3. But, we do not require finiteness of `′(0) so that
many other losses, such as Lq/2 losses with (viii) `(t) = tq , 0 < q < 1, satisfy C3 as well. Another
interesting choice comes from [15] as: (ix) `(t) = 2Q(

√
t) − 1 with Q a c.d.f. on R with even and

unimodal density Q′. This arises as an intrinsic loss in measuring the distance between estimate

1A more frequent parametrization in the literature has N = sγ + 1− d/2.
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µ̂ and location parameter µ through the L1 discrepancy between model q(‖y − µ‖2) and plug-in
densities q(‖y− µ̂‖2) (i.e.,

∫
Rd |q(‖y−µ‖

2) − q(‖y− µ̂‖2)| dy), with q unimodal and Q the common
c.d.f. of the univariate components Y1, . . . , Yd with joint density q(‖y − µ‖2).

We proceed with a preparatory lemma which exploits the concavity of `, and which relates the
difference in losses (2) between estimates δg(X) = δ0(X) + (1−ω)g(X) and δ0(X), to the balanced
squared-error loss difference. Referring to the loss in (2) as Lω,`(θ, δ), we now define:

∆ω,`(θ, δ) = Lω,`(θ, δ)− Lω,`(θ, δ0).

Lemma 3.1. (Lemma 6 in [18]) Suppose that X is spherically symmetric distributed about θ with
density f(‖x−θ‖2) . For the problem of estimating θ under (2) with twice-differentiable, increasing,
and concave `, we have

∆ω,`(θ, δ) ≤ (1− ω)2 `′
{

(1− ω) ‖δ0 − θ‖2
}

∆0,`(θ, δ).

We now have the following.

Theorem 3.1. Suppose that X is spherically symmetric distributed about θ with density f(‖x−θ‖2)
and that the function ` satisfies C3. For d ≥ 4, the estimator δa,s(X) in (3) with condition (4)
dominates δ0(X) = X under loss (2) with δ0(X) = X provided 0 < a < 2(d− 2)/

(
dE?

0

[
‖Z‖−2

])
,

where

Z ∼ f ∗(‖z − θ‖2) =
`′{(1− ω)‖z − θ‖2} f(‖z − θ‖2)∫

Rd `
′{(1− ω)‖z − θ‖2} f(‖z − θ‖2) dz

,

and provided both E0(‖X‖2) and E0(‖X‖−2) are finite.

Proof. We show that the difference in risks between δ0(X) = X and δa,s(X) is non-negative under

the given conditions. Let KZ =

∫
Rd
`′{(1− ω)‖z − θ‖2}f(‖z − θ‖2) dz, and h∗ be the radial density

for ‖Z − θ‖. Then, we have setting g(X) = −a s(‖X‖
2)

‖X‖2 X :

∆R(θ) = Eθ [∆θ,`(θ, δa,s)]

≤ Eθ
[
(1− ω)2 `′{(1− ω) ‖X − θ‖2}∆0,`(θ, δa,s)

]
= (1− ω)2Eθ

[
`′{(1− ω) ‖X − θ‖2} (‖δa,s(X)− θ‖2 − ‖X − θ‖2)

]
= (1− ω)2Eθ

[
`′{(1− ω) ‖X − θ‖2}

(
‖X + g(X)− θ‖2 − ‖X − θ‖2

)]
(19)

= KZ (1− ω)2
{
Eθ
[
‖g(Z)‖2 + 2(Z − θ)>g(Z)

]}
≤ (1− ω)2

{
Eθ

[
as(‖Z‖2)

‖Z‖2

]
− 2

d− 2

d

∫
R+

r2

∫
Br,θ

s(‖z‖2)

‖z‖2
dVr,θ(z) h∗(r) dr

}

= aKZ (1− ω)2E

{(
a

1

R2
− 2

d− 2

d

)
Eθ

[
R2 s(‖Z‖2)

‖Z‖2

‖Z − θ‖ = R

]}
, (20)

where the first inequality follows from Lemma 3.1, and the second inequality follows from a calcu-
lation using Lemma 6.3 along with the defining inequalities 0 ≤ s(·) ≤ 1 and s′(·) ≥ 0. Finally, an
application of Lemma 6.5 and the covariance inequality imply that

∆R(θ) ≤ aKZ (1− ω)3

(
aE0

[
‖Z‖−2

]
− 2

d− 2

d

)
E

{
R2Eθ

[
s(‖Z‖2)

‖Z‖2

‖Z − θ‖ = R

]}
,

establishing the result.
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Remark 3.1. A more direct proof of the above result is achieved by applying Theorem 2.1 of
[3] immediately after (19). We have given here details following (19) thus providing a more self-
contained proof. We also point out, as expected, that Theorems 3.1 and 2.1 match for `(t) = ρ(t) = t,
and that Theorem 3.1 reduces to Theorem 2.1 of [3] for the unbalanced case ω = 0, as was the case
for Theorem 2.1 in Section 2.

3.2. Examples and discussion

As in Section 2, the dominance result above applies for many choices of ` and spherically symmet-
ric densities f guaranteeing the existence of Baranchik estimators that dominate the benchmark
δ0(X) = X under balanced loss Lω,`. As in Section 2, Theorem 3.1’s cut-off point on a for scale
mixture of normals is less than that of [18] (see subsection 3.2.1), but our dominance finding here
is more generally applicable to all spherically symmetric densities subject to risk finiteness and to
non completely monotone `′.

Theorem 3.1’s cut-off point for dominance is representable in terms of W = ‖X − θ‖2 as

a0 =
2(d− 2)

d

E [ `′{(1− ω)W}]

E
[
`′{(1−ω)W )}

W

] . (21)

An interesting case arises for `(t) = tq with 0 < q < 1, with the above yielding

a0 = a0(q) =
2(d− 2)

d

{
E(W q−1)

}
/
{
E(W q−2)

}
, (22)

independently of ω as observed in [18]. As expanded on in [18], such a simple form of a0 gives rise
to simultaneous dominance with respect to both choices of ` and density f . For instance, with a0(q)
increasing for q ∈ (0, 1); which may be justified by writing a0(q) = Eq(Z) with Z having density
to zq−2 gW (z) on R+ and observing that the family of such densities with parameter q ∈ (0, 1] has
an increasing monotone likelihood ration in Z; we have that a0 ≥ a0(q0) for all q ∈ [q0, 1], so that
Theorem 3.1’s Baranchik estimators δa,s(X) dominate X for a ≤ a0(q0) simultaneously for all losses
in (2) with fixed w ∈ [0, 1) and such that `(t) = tq with q ∈ [q0, 1]. We refer to [18] for such further
examples with varying f or `.

3.2.1. Scale mixtures of normal distributions

Theorem 3.1 applies for scale mixture of normals as in (15) for both completely monotone and
non-completely monotone `′. In the former case, Theorem 3.1’s cut-off point, or equivalently (21),
on a for the Baranchik estimator δa,s(X) to dominate X is smaller by a factor of d−2

d
that the one

obtained in [18], and it thus weaker. For non-completely monotone `′, applications of Theorem 2.1
are novel however. As an illustration, with `(t) = 2Φ(t)− 1, the cut-off point reduces to:

a0 =
2(d− 2)

d

E
[
e−

(1−ω)2W2

2

]
E[W−1 e−

(1−ω)2W2

2 ]
,

for scale mixtures of normals, as well as for all spherically symmetric densities subject to the risk
finiteness conditions.
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3.2.2. Example: Uniform distribution on a ball

Theorem 3.1 applies for the uniform distribution on the ball Bm,θ (i.e., X ∼ U(Bm,θ)) with density
in (16). Hence, the cut-off point a0 can be evaluated using the density d

2md
wd/2−1 I(0,m2)(w) for W .

As an illustration for `(t) = tq with 0 < q < 1, we obtain from (22):

a0 = a0(m) =
2(d− 2)m2

d

2q + d− 4

2q + d− 2
.

Observe that the dominance finding has implications even in cases wherem is unknown, but bounded
below by a positive value m, yielding that the dominance result a ≤ a0(m), applicable for X ∼
U(Bm,θ), is robust to any discrepancy such that X ∼ U(Bm,θ) with m ≥ m. Moreover, the
argument goes over when m is random yielding a mixture of uniform distributions on balls as long
as P(M ≥ m) = 1, M being the mixing parameter.

3.2.3. Kotz type distribution

As in Section 2, Theorem 3.1 applies to Kotz densities f(‖x − θ‖2) with f given in (17). Cut-off
point a0 in (21) is conveniently represented with W = ‖X − θ‖2s ∼ Gamma(ν, r). For the case
`(t) = tq, a direct calculation of (22) yields for q−2

s
+ ν > 0

a0 =
2(d− 2)

d

Γ( q−1
s

+ ν)

Γ( q−2
s

+ ν)
r−1/s .

4. Numerical illustration

4.1. Introduction

We provide here frequentist risk evaluations illustrative of Theorem 2.1, as well as provide details
on the calculations themselves which we believe are useful for replication. The results of Section 3
can be illustrated in a similar fashion (but also see [18]).

4.2. Calculation of risk under loss (1)

The numerical evaluation of expectations with respect to a spherically symmetric density f(‖x−θ‖2)
may be expressed as a d dimensional integral, but can be reduced to a two dimensional integral in
our case of balanced risk function evaluations, and for estimators of θ that are equivariant under
orthogonal transformations. In this regard, the following lemma given in [12] will turn out to be
most useful.

Lemma 4.1. Let X ∼ f(‖x − θ‖2) with X, θ ∈ Rd, θ 6= 0, d > 1. Let λ = ‖θ‖, W = ‖X‖2, and

T = θ>X
λ‖X‖ . Then, the joint density of (T,W ) is given by:

ψ(t, w) =
π
d−1
2

Γ(d−1
2

)
w

d
2
−1 (1− t2)

d−3
2 f(w + λ2 − 2λtw1/2) , (23)
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for t ∈ (−1, 1) and w > 0.

Now, for equivariant estimators of θ, which are of the form h(‖X‖2)X (e.g., [6]), the loss in (1)
becomes

ω ρ
(
‖h(‖X‖2)X −X‖2

)
+ (1− ω) ρ

(
‖h(‖X‖2)X − θ‖2

)
= ω ρ

(
(h(W )− 1)2W

)
+ (1− ω) ρ

(
λ2 + h2(W )W − 2λT W 1/2 h(W )

)
.

Therefore, the associated frequentist risk for θ ∈ Rd reduces to a function of λ and can be evaluated
as

ω E
{
ρ
(
(h(W )− 1)2W

) }
+ (1− ω)E

{
ρ
(
λ2 + h2(W )W − 2λT W 1/2 h(W )

) }
, (24)

with the expectations taken with respect to density (23). This illustrates the dimensional reduction
to two dimensions and can be used to numerically evaluate the frequentist risk of Baranchik type
estimators with h of the form h(w) = (1− b s(w)

w
).

4.3. Illustration of Theorem 2.1

The dominance finding of Theorem 2.1 applies to Baranchik estimators (1− b s(‖X‖
2)

‖X‖2)
)X and expres-

sion (24) can serve as a numerical illustration or comparison with inputs: (i) ω ∈ [0, 1) and d ≥ 4;
(ii) a model density f ; (iii) a choice of ρ satisfying condition C2, taking ρ′(0) = 1 without loss of
generality; (iv) a choice of s(·) satisfying (4); and (v) a choice of b ≤ a0(1 − ω) with a0 given in
(14).

We pursue by setting: (i) ω = 1/2 and d = 6; (ii) a Kotz density as in (17) with r = s = 1, ν = 4
yielding the model density X ∼ f(‖x− θ‖2) with f(t) = te−t

3π3 I(0,∞)(t); (iii) ρ(t) = log(1 + t); (iv)
a choice of s(·) satisfying (4); and (v) a choice of b ≤ a0/2 with expression (14) yielding

a0

2
=

1

2

8
3
I2

3

( 2
π3 + I3)I2

≈ 0.595 ,

with Ik = 1
3π3

∫∞
0

wk−1e−w

1+w
dw, I3 ≈ 0.01509 and I2 ≈ 0.00641.

Figure 1 compares the risk of: (i) δ0(X) = X, the Baranchik estimators (ii) s(t) = t
1+t

, b = 1/2

(red in Figure 1), and (iii) s(t) = t
1+t

, b = 1 (green in Figure 1), and the James-Stein estimator (iv)
with s(t) = 1, and b = 0.5 (blue in Figure 1). The benchmark estimator δ0 is minimax (see first
paragraph of Section 2) with constant risk R(θ, δ0) = 1

2
E0(log(1 + ‖X‖2)) ≈ 0.76606, obtainable

with ‖X − θ‖2 ∼ Gamma(4, 1) (see Subsection 2.3.4). Both the first Baranchik and James-Stein
estimators are minimax with sufficiently small cut-off point b = 0.5 ≤ a0/2 as a consequence of
Theorem 2.1. The maximal gains are attained at θ = 0 and are about 8.58% and 10.43%. The
second Baranchik estimator has lower minimum risk, but its cut-off point is too large to satisfy
the dominance condition of Theorem 2.1. Furthermore, the numerical evidence suggests that it is
(barely) not minimax.

5. Concluding remarks

For spherically symmetric distributed X with densities f(‖x − θ‖2), we have provided frequentist
risk improvements on the benchmark estimator δ0(X) associated with balanced loss functions (1)
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Figure 1: Frequentist risks as functions of ‖θ‖ of δ0(X) = X (horizontal blue) and δb,c(X) =
(

1− b
‖X‖2+c

)
X for

(b, c) = (0.5, 1.0) (red), (b, c) = (1.0, 1.0) (green), and (b, c) = (0.5, 0.0) (blue); X ∼ 1
3π3 ‖x − θ‖2 e−‖x−θ‖

2

(a Kotz
density), balanced loss (1) with ρ(t) = log(1 + t), ω = 1/2.

and (2). The findings, which apply to a wide class of Baranchik-type estimators, are unified with
respect to the model f , with respect to the choices of ρ in (1) and ` in (2), as well as the weight
ω in these losses. The findings extend earlier results of Marchand and Strawderman ([18]) which
apply to scale mixtures of normals f and completely monotone ρ′ or `′, while the results here apply
to the whole class of spherically symmetric densities subject to risk finiteness, as well as to choices
of ρ and ` that are monotone increasing and concave.

The findings testify to the ubiquitous nature of the effectiveness of shrinkage procedures as seen by
the applicability of the dominance findings for a large class of densities f and choices of ρ, `, and ω.
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6. Appendix

Here are some technical results used in the paper.

Lemma 6.1. If s : Rd → R+ is a twice differentiable and concave function, then the function
x→ s(‖x‖2)/‖x‖2 is superharmonic for d ≥ 4.

Proof. Observe that s(·) must be non-decreasing. A calculation of the Laplacian yields

4
[
s(‖x‖2)/‖x‖2

]
=

2

‖x‖4

[
2‖x‖4s′′(‖x‖2) + (d− 4)

(
‖x‖2s′(‖x‖2)− s(‖x‖)2

)]
.
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Since s(0) ≥ 0 and s is concave, we have s(0) + ts′(t) ≤ s(t) and the result follows.

The next result, referred to as a covariance inequality, is quite well known (e.g., Lemma 6.6, page
370 in [16]).

Lemma 6.2. Let Y be a random variable, and g and h be functions for which E[g(Y )], E[h(Y )],
and E[g(Y )h(Y )] exist.

(a) If one of the functions g and h is non-increasing and the other is non-decreasing, then
E[g(Y )h(Y )] ≤ E[g(Y )]E[h(Y )] ;

(b) If both g and h are either non-decreasing or non-increasing, then E[g(Y )h(Y )] ≥ E[g(Y )]E[h(Y )] .

The following is taken from [8] and provides a useful decomposition for an expectation in terms of
the radial distribution and uniform measures on balls.

Lemma 6.3. Let X have a spherically symmetric density about θ, and g(X) be a weakly differen-
tiable function such that Eθ

[
|(X − θ)>g(X)|

]
<∞. Then, assuming expectations exist, we have

Eθ
[
(X − θ)>g(X)

]
=

1

d
E

[
R2

∫
BR,θ

div( g(x)) dVR,θ(x)

]
where E denotes the expectation with respect to the radial distribution, and where Vr,θ(·) is the
uniform distribution on BR,θ, the ball of radius r centered at θ.

Proof. See [8], Lemma 5.4, page 235.

Lemma 6.4. ([5], page 54) Let g be a superharmonic function, Z1 have a uniform distribution
on the sphere Sr,θ centered at θ with radius r, and Z2 have a uniform distribution on the ball Br,θ

centered at θ with radius r, then E g(Z1) ≤ E g(Z2).

Lemma 6.5. Let W be spherically symmetric Lebesgue density g(‖w − θ‖2), w, θ ∈ Rd. Let β :

R+ → R+ be a non-decreasing function. Then, E
(
R2 β(‖W‖2)

‖W‖2
∣∣ ‖W − θ‖ = R

)
is a non-decreasing

function of R > 0.

Proof. See [2], pages 394-395 within the proof of their Theorem 3.3.1.
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