
FAST NONASYMPTOTIC TESTING AND SUPPORT RECOVERY FOR
LARGE SPARSE TOEPLITZ COVARIANCE MATRICES

A PREPRINT

Nayel Bettache1, *, Cristina Butucea1, and Marianne Sorba 1

1CREST, ENSAE Paris, 5 Avenue Le Chatelier, 91120 Palaiseau, FRANCE
{nayel.bettache, cristina.butucea}@ensae.fr , marianne.sorba@gmail.com

*Corresponding author

February 16, 2021

ABSTRACT

We consider n independent p-dimensional Gaussian vectors with covariance matrix having Toeplitz
structure. We test that these vectors have independent components against a stationary distribution
with sparse Toeplitz covariance matrix, and also select the support of non-zero entries. We assume
that the non-zero values can occur in the recent past (time-lag less than p/2). We build test proce-
dures that combine a sum and a scan-type procedures, but are computationally fast, and show their
non-asymptotic behaviour in both one-sided (only positive correlations) and two-sided alternatives,
respectively. We also exhibit a selector of significant lags and bound the Hamming-loss risk of the
estimated support. These results can be extended to the case of nearly Toeplitz covariance struc-
ture and to sub-Gaussian vectors. Numerical results illustrate the excellent behaviour of both test
procedures and support selectors - larger the dimension p, faster are the rates.

Keywords Covariance matrix, High-dimensional vectors, Hypothesis testing, Sparsity, Support recovery, Time Series

1 Introduction

Covariance matrices of high-dimensional vectors appear in machine learning, signal processing and statistical proce-
dures. In these fields, e.g. in the test-phase of an algorithm or in the validation step of a statistical model, the quality
of the residuals (the difference between the observed and the predicted values) is a good indicator of the good perfor-
mance of the procedure. More precisely, the closer the residuals are to a white noise distribution, the less information
was lost by the predictor or the model at hand. It is therefore natural to look for very weak, sparse information in the
covariance matrix of such residuals.

Goodness-of-fit tests are designed to assess whether the underlying (unknown) covariance matrix of high-dimensional
vectors is the identity (which defines the null hypothesis), or it is far from it with respect to some distance (the
alternative hypothesis). The separation radius is a measure of how far the covariance matrix needs to be from the
identity matrix in order to be able to distinguish it given the observations. Another important information is to recover
the support of the covariance matrix, i.e. the set where the non-null values can be found. As in high-dimensional
regression, this support is used to reduce dimension of the problem, produce unbiased estimators of the non-null
entries and so on. A selector is a vector with coordinates taking value 1 when the covariance value is non-null,
respectively 0 when it is null. We appreciate the quality of a selector in Hamming loss, which counts the number of
miss-classified coordinates. Our main interests are both testing the covariance matrix and recovering the support of
significant covariance elements under the alternative hypothesis of weak sparse covariance values.

We consider the p-dimensional observationsX1, ..., Xn independent, with Gaussian probability distributionNp(0,Σ),
where Σ = [σij ]1≤i,j,p belongs to the set S++

p of positive definite symmetric matrices. Let us denote by X a generic
vector with the same Gaussian Np(0,Σ) distribution.
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More particularly, when the vector X is issued from a stationary process, its covariance matrix Σ has a Toeplitz
structure, that is its diagonal elements are all constant and we denote by σi,j = Cov(Xi, Xj) = σ|i−j| for all i, j
from 1 to p. As mentionned in [10], stationary time series are used as approximations of geometrically ergodic time
series (whose transition probabilities converge exponentially fast to the stationary distribution). The information on
the Toeplitz matrix is fully contained in the vector (σ0, σ1, ..., σp−1) of its diagonal values. More generally, we may
study similarly any covariance matrix by looking at the energy of each diagonal of the covariance matrix, that is its
euclidean norm σk = ‖(σ1,k+1, ..., σp−k,p)‖2. Here, we devote our efforts to quantifying the benefits of the Toeplitz
structure in terms of rates for testing and for support recovery.

Contributions In this paper, we first give a new variant of concentration inequality for quadratic forms of large
Gaussian vectors and specify these bounds for covariance matrices that are Toeplitz with few non-null diagonals. We
show non-asymptotic separation rates for testing large sparse Toeplitz covariance matrices which are remarkably fast
due to the structure of the matrix. We test here whether the covariance matrix is the identity matrix Ip or there exists a
number s of covariance elements among σ1, ..., σp−1 that are significantly positive (one-sided alternative), respectively
significantly different from zero (two-sided alternative). The test procedure combines a sum and a scan procedure in
order to detect small (relatively) numerous non-null entries and very few but sufficiently large entries, respectively.
This is analogous to but more general than the detection of sparse Gaussian means ([14, 15], [11]) where observations
have the same variance, whereas our model is heteroscedastic.

Moreover, we propose a selector of the diagonals with non-null entries - a lag selector, which is constructed by
universal thresholding of some linear estimators. We provide fast non asymptotic bounds for the expected value of its
loss.

Experimental results show the excellent behaviour of these procedures with small values of n (non-asymptotic char-
acter of our results) and large values of p. Indeed, by exploiting the Toeplitz structure, the matrix size p does not act
as a nuisance parameter anymore, but diminishes the convergence rates. All test procedures and the lag-selector are
computationally trivial to implement. Note that the scan procedure is performed on a vector as well and it is therefore
computationally fast, in contrast with the scan procedure of matrices, see e.g. [4] or [1].

Bibliography Previously, Cai and Ma [9] considered the same goodness-of-fit test with alternative characterized by
covariance values that belong to an L2 ball of fixed radius. Tests for sparse covariance matrices were given by Arias-
Castro, Bubeck and Lugosi [2] and [1]. They considered alternative covariance matrices having at most s significant
values and also the structured alternative of a clique of size s producing a small submatrix of significant values. Our
testing rates are faster, but they are difficult to compare as the Toeplitz structure does not allow for the block or the
clique sparsity structure in their paper. Butucea and Zgheib [6] and [5] considered the test problem with alternatives
that generalize the L2-ball in [9] to dense ellipsoids for both Toeplitz and not necessarily Toeplitz covariance matrices,
respectively. More precisely, it was assumed that σk decreased slowly as a polynomial (Sobolev ellipsoids) or faster,
as an exponential of k. The test procedure involved an optimal banding parameter - specific for testing and different
from the optimal parameter for estimation of the matrix. It was thus noticed that the minimax rates for goodness-of-fit
testing of large covariance matrices are faster for Toeplitz matrices than for non Toeplitz ones, and that they are faster
for testing than for estimation of the covariance matrix. In this paper, we consider an alternative class where at most s
significant values appear sparsely.

Cai and Liu [7] and Cai, Liu and Xia [8] considered the problem of support recovery in the sense that the estimated
set Ŝn is different from the true set S with probability tending to 0. To the best of our knowledge, no quantitative rates
were given for support recovery in the covariance matrix setup. In the context of Toeplitz covariance matrices, we call
this problem lag-selection.

Our bounds for testing and lag selection are non-asymptotic, thus n can be equal to 1 when we cannot observe repeated
measurements. However, an important remark is that the rates are faster when the significant covariance values have
lags in the recent past: k ≤ S, for some S < p. Indeed, the rates depend on p − S. From an asymptotic point of
view, s can tend to infinity as p tends to infinity, thus we allow a nonparametric model (in the sense that the number of
parameters increases). Such models have only been considered in nonparametric estimation of the spectral density of
stationary time series, see Kreiss, Paparoditis and Politis [16] who uses thresholded empirical covariance coefficients.

2 Linear functionals of the covariance matrix

We define ϕA the linear functional of the covariance matrix Σ associated to the matrix A belonging to Sp (the set of
symmetric p × p matrices) as ϕA(Σ) = Tr(AΣ). Recall that Tr(A2) is also denoted by ||A||2F , the Frobenius norm
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squared, for any A in Sp. We denote by ‖A‖∞ the largest eigenvalue of the matrix A. We recall that a centered
real-valued random variable Z is sub-exponential with positive parameters (ν2, b) if

E[exp(tZ)] ≤ exp

(
ν2t2

2

)
, for all |t| ≤ 1

b
. (1)

The sample covariance matrix is denoted

Σn =
1

n

n∑
k=1

XkX
T
k .

The next theorem states that for X1, ..., Xn independent multivariate Gaussian Np(0,Σ) vectors, the random variable
Z = ϕA(Σn − Σ), for A in Sp, is sub-exponential with explicit values for the parameters (ν2, b). We recall the
Bernstein inequality that holds for sub-exponential random variables [19].
Proposition 2.1. If Z is a sub-exponential random variables with parameters (ν2, b), then

P[Z ≥ t] ≤

{
exp

(
− t2

2ν2

)
if 0 ≤ t ≤ ν2

b

exp
(
− t

2b

)
if t > ν2

b

Equivalently, Z verifies :
P[Z ≥ tu] ≤ exp

(
−u

2

)
, for all u > 0,

where tu = max(ν
√
u, bu).

Thus, the concentration inequality for the plug-in estimator ϕA(Σn) of ϕA(Σ) follows immediately.
Theorem 2.2. The random variable ϕA(Σn − Σ) (respectively ϕA(Σ − Σn)) is centered and sub-exponential with

parameters
(
ν2 =

2||AΣ||2F
n(1−K) , b = 2||AΣ||∞

nK

)
, for some arbitrary K in ]0, 1[. Therefore, we have :

P[ϕA (Σn − Σ) ≥ tu] ≤ exp
(
−u

4

)
, for all u > 0, (2)

where tu = max

{
√
u ||AΣ||F√

n(1−K)
, u ||AΣ||∞

nK

}
.

Previous concentration inequalities were given for such functionals. The closest to our case is the chi-square type con-
centration inequality in Spokoiny and Zhilova [18] for standardized Gaussian vectors and generalized to sub-Gaussian
vectors. They generalized Hsu, Kakade and Zhang [13] who assumed finite exponential moments of any order for the
vector X . Let us also mention Giurcanu and Spokoiny [12] who gave a Bernstein inequality for the empirical covari-
ance element of a stationary centered Gaussian process and generalized it to locally stationary Gaussian processes.

Let us also mention the Hanson-Wright inequality which is stated for more general sub-Gaussian vectors but having
independent components i.e. a diagonal covariance matrix (see Rudelson and Vershynin [17] and its improvement
under Bernstein condition on moments by Bellec [3]).

The concentration inequality (2) is the main tool in the applications that we consider hereafter to study stationary time
series. In this context, we assume that X1, .., Xn are repeated, independent observations of length p of an underlying
stationary process X = {X1, ..., Xp, ...}. Note that our results are non-asymptotic, thus n can be equal to 1. Without
loss of generality, we assume that the process is centered. The covariance matrix of a stationary process is a Toeplitz
covariance matrix, and we denote by σ|i−j| = Cov(Xi, Xj). Let us denote by Tp the set of p × p Toeplitz matrices
and by |S| the cardinal of a set S.
Definition 1. We define F+(s, S, σ), for σ > 0 real number and s ≤ S integer numbers between 1 and p− 1, the set
of sparse Toeplitz covariance matrices Σ such that there are s significantly positive covariance elements with lags no
larger than S :

F+(s, S, σ) =
{

Σ ∈ S++
p ∩ Tp and there exists S ⊆ {1, ..., S} such that |S| = s,

σj is
{
≥ σ > 0, for all j ∈ S
= 0, for all j ∈ {1, p− 1}\S

}}
.

Similarly, we define the two-sided set F(s, S, σ) :

F(s, S, σ) =
{

Σ ∈ S++
p ∩ Tp and there exists S ⊆ {1, ..., S} such that |S| = s,

|σj | is
{
≥ σ > 0, for all j ∈ S
= 0, for all j ∈ {1, p− 1}\S

}}
.

3
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Let us apply Theorem 2.2 to several choices of the matrices A. First, the covariance element σj , j ≥ 1, can be written
as σj = E[XTAjX] = Tr(AjΣ), with [Aj ]k` = 1

2(p−j)I(|k − `| = j) - a matrix that has 0 elements except on jth
upper and lower diagonals. Note that we use notationAj instead ofA{j}. The empirical estimator of σj can be written
as

σ̂j =
1

n

n∑
k=1

XT
k AjXk = Tr(AjΣn).

Remark. It is useful to note that our results can be generalized to time series that are "nearly" stationary, by considering
:

σ̃j = Tr(AjΣn) =
1

2(p− j)

p∑
i,k=1,|i−k|=j

σi,k.

In that case, we consider slightly different sets of sparse covariance matrices: F̃+(s, S, σ) and F̃(s, S, σ) of not neces-
sarily Toeplitz matrices with s diagonal average values σ̃j of the first S being significant. By taking into consideration
that all methods that we study in the sequel for testing and lag selection are exclusively based on the concentration of
the mean empirical correlations around their expected values σ̃j , the following results remain valid provided that we
control ||AΣ||F and ||AΣ||∞.

Let W ⊆ {1, ..., S} be a set of w values between 1 and S. We estimate∑
j∈W

σj = Tr(AWΣ), where AW =
∑
j∈W

Aj

by Tr(AWΣn).
Proposition 2.3. Let W ⊆ {1, ..., S} contain w elements and AW =

∑
j∈W Aj . We have :

1. ||AW ||∞ ≤ w
p−S and ||AW ||2F ≤ w

2(p−S)

2. For any covariance matrix Σ belonging to F(s, S, σ),

||AWΣ||∞ ≤ σ0
w(2s+1)
p−S and ||AWΣ||2F ≤ σ2

0 ·

{ K(2s+1)
(p−S) , if w = 1

w(2s+1)2

2(p−S) , if w > 1

where K =

{
1, if W ⊆ {1, ..., p2 − 1}
p
2 , if W ⊆ {p2 , ..., p− 1}.

The next Corollary specifies the concentration inequality in Theorem 2.2 using the bounds in the Proposition 2.3
above.
Corollary 2.4. Let X1, .., Xn be i.i.d, Np(0p,Σ), Σ belonging to F+(s, S, σ) or F(s, S, σ) and W ⊆ {1, ..., S} with
S < p

2 having w elements. Then, for some arbitrary K in ]0, 1[,

PIp [ϕAW (Σn − Ip) ≥ σ0 · t] ≤ exp
(
−u

4

)
, for all u > 0, (3)

where

t = max

{√
u

2(1−K)

√
w

n(p− S)
,
u

K

w

n(p− S)

}
.

Moreover, for any Σ in F(s, S, σ),

PΣ[ϕAW (Σn − Σ) ≥ σ0 · t̃] ≤ exp
(
−u

4

)
, for all u > 0, (4)

where

t̃ = max

{√
u

(1−K)

√
2s+ 1

n(p− S)
,
u

K

2s+ 1

n(p− S)

}
if w = 1

and t̃ = (2s+ 1)t if w > 1.

4
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Similar inequalities hold for |ϕAW (Σn − Ip) | and |ϕAW (Σn − Σ) | multiplies the exponential term by a factor two
in (3) and (4).

If W = {1, ..., S}, it is enough to replace w by S in the previous results. However, if W = {j} for some j ≤ S, the
previous results are still true with w replaced by 1.

From now on, we assume that S < p
2 such that K = 1 in the previous Proposition. Indeed, in the context of time

series, it is natural to look for significant correlations in the recent past.

3 Non-parametric testing for stationary time series

From now on, we assume for simplicity that σ0 = 1, thus dealing with correlation matrices only. The one-sided test
problem is

H0 : Σ = Ip, vs. H1 : Σ ∈ F+(s, S, σ).

The following two-sided test problem will also be discussed as a generalization

H0 : Σ = Ip vs. H1 : Σ ∈ F(s, S, σ).

Recall that a test procedure ∆n is a binary valued random variable ∆n : (Rp)⊗n → {0, 1}. It separates the set of
possible outcomes of some random event in two contiguous sets, we decide to reject H0 whenever ∆n = 1 and to
accept H0 whenever ∆n = 0. The maximal testing risk is defined as

R(∆n,F+) = PIp(∆n = 1) + sup
Σ∈F+

PΣ(∆n = 0),

that is the sum of the type I and the maximal type II error probabilities over the set in the alternative hypothesis. A
separation rate is the least possible value for σ > 0 such that the maximal testing risk stays below some prescribed
value.

We proceed by considering successively two measures of the separation between Ip and Σ under the alternative hy-
pothesis H1. We choose successively the sets W = {1, ..., S} and W = S, and arbitrary subset of {1, ..., S} with s
elements. For testing over F+(s, S, σ), we consider

Tr(A1:S) and max
S⊆{1,...,S},#S=s

Tr(ASΣ).

Correspondingly, over F(s, S, σ) we consider

S∑
j=1

|σj | =
S∑
j=1

|Tr(AjΣ)| and max
S⊆{1,...,S},#S=s

S∑
j∈S

|Tr(AjΣ)|.

By analogy to the vector case, we distinguish moderately sparse and highly sparse covariance structure. In the first
case, the sum of all S values will allow to test, whereas in the latter a search over subsets of size s will be necessary.
This is called a scan procedure and it is computationally fast for vectors. Note that, if the sparsity s is unknown a
second search over different possible values of s will produce an aggregated procedure, free of s.

3.1 Moderately sparse covariance structure

When the alternative hypothesis is F+(s, S, σ), we consider for some tMS+
n,p the test procedure

∆MS+
n = I

(
ϕA1:S

(Σn − Ip) ≥ tMS+
n,p

)
. (5)

Theorem 3.1. The test ∆MS+
n defined in (5), with

tMS+
n,p = max

{√
u · S

n(p− S)
,

2u · S
n(p− S)

}
for u > 0 is such that

R(∆MS+
n ,F+) ≤ 2 exp

(
−u

4

)
provided that σ ≥ 2(s+1)

s tMS+
n,p .

5
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When the alternative hypothesis is F(s, S, σ), we consider for some tMS
n,p the test procedure

∆MS
n = I

(
S∑
i=1

|ϕAi(Σn − Ip)| ≥ tMS
n,p

)
. (6)

Theorem 3.2. The test ∆MS
n defined in (6), with

tMS
n,p = Smax

{√
4u log(S)

n(p− S)
,

8u log(S)

n(p− S)

}
for u > 1 is such that

R(∆MS
n ,F) ≤ 4 exp (−(u− 1) log(S))

provided that σ ≥ tMS
n,p + max

{√
4(u−1)(2s+1) log(S)

n(p−S) , 8(u−1)(2s+1) log(S)
n(p−S)

}
.

3.2 Highly sparse covariance structure

Let us consider now for some threshold tHS+
n,p the test procedure

∆HS+
n = max

S⊆{1,...,S},#S=s
I
(
ϕAS

(Σn − Ip) ≥ tHS+
n,p

)
. (7)

The test ∆HS+
n successively tries all possible sets S of s diagonals among the first S diagonal values. If any of these

tests decides to reject H0, then ∆HS+
n also rejects H0, otherwise ∆HS+

n accepts the null hypothesis H0.
Theorem 3.3. The test ∆HS+

n defined in (7), with

tHS+
n,p = max


√

4u · s log
(
S
s

)
n(p− S)

,
8u · s log

(
S
s

)
n(p− S)


for u > 1 is such that

R(∆HS+
n ,F+) ≤ exp

(
−(u− 1) log

(
S

s

))
+ exp

(
−u

4

)
provided that σ ≥ 1

s

(
tHS+
n,p + (2s+ 1) max

{√
u·s

n(p−S) ,
2u·s

n(p−S)

})
When the alternative set of hypotheses is F(s, S, σ), consider for some threshold tHSn,p > 0

∆HS
n = max

S⊆{1,...,S},#S=s
I

∑
j∈S

|ϕAj (Σn − Ip)| ≥ tHSn,p

 . (8)

Theorem 3.4. The test ∆HS
n defined in (8), with

tHSn,p = smax


√√√√4u log

(
s
(
S
s

))
n(p− S)

,
8u log

(
s
(
S
s

))
n(p− S)


for u > 1 is such that

R(∆HS
n ,F) ≤ 4 exp

[
−(u− 1) log

(
s

(
S

s

))]
provided that σ ≥ tHSn,p + max

{√
4(u−1) log(s(2s+1)(Ss))

n(p−S) ,
8(u−1) log(s(2s+1)(Ss))

n(p−S)

}
.

Remark. When the separation is measured by maxS

∑
j∈S σj , its estimator is known as the scan statistic. Note that

the computations are not very involved. Indeed, after computing ξ1 = ϕA1(Σn− Ip), ..., ξS = ϕAS (Σn− Ip), we sort
these values in decreasing order : ξ(1) ≥ ξ(2) ≥ ... ≥ ξ(S), and then

max
S⊆{1,...,S},#S=s

∑
j∈S

ϕAj (Σn − Ip) = ξ(1) + ...+ ξ(s)

Similar calculations hold for maxS

∑
j∈S |σj | and |ξ|(1) ≥ |ξ|(2) ≥ ... ≥ |ξ|(S). We thus exploit the Toeplitz structure

that reduces the matrix structure to a vector and makes the scan statistic computationally efficient.

6
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Remark. Note that the previous tests must be agregated over a set of possibel values for s in order to be free of the
sparsity s: ∆̃HS

n = maxs ∆HS
n will reject whever at least one test rejects.

Discussion a) If S � log(p), giving p − S � p, the series has short memory. We get tMS+
np �

√
log(p)/(np) giving

a test rate smaller than
√

log(p)/(np), and with Stirling’s approximation, tHS+
np � s

√
log
(

log(p)
s

)
/(np) giving the

following bound for the testing rate
√

log(log(p)/s)
np +

√
s
np .

We see that ∆HS+
n detects smaller values of σ than ∆MS+

n when s ≤ log(p), hence our choice to name the procedures
MS and HS respectively.

b) If the stationary time series has longer memory, for example S = p/2−1, this gives p−S = p/2+1 and S
p−S � 1.

In this case, tMS+
np � 1/

√
n and σ ≥ 1/

√
n, while tHS+

np � s
√

log(p/s)
np +

√
s
np .

Again, if s/p→ 0, the test ∆HS+
n detects smaller values of σ then ∆MS+

n . However, if s = S � p
2 , it is sufficient to

use only ∆MS+
n .

Table 1 summarizes our results where C1, C2, C
∗
1 and C∗2 denote constants depending only on u.

Table 1: Thresholds t and separation rates for moderately and highly sparse tests

One sided test
MS+ HS+

t = max
{
C1

√
S

n(p−S)}, C2
S

n(p−S)

}
max

{
C1

√
s log (Ss)
n(p−S) , C2

s log (Ss)
n(p−S)

}
σ ≥ 2(s+1)

s t t
s + 2s+1

s max

{
C1

√
s

n(p−S) , C2
s

n(p−S)

}

Two sided test
MS HS

t = C max
{
C1

√
log(S)
n(p−S)}, C2

log(S)
n(p−S)

}
smax

{
C1

√
log(s(Ss))
n(p−S) , C2

log(s(Ss))
n(p−S)

}
σ ≥ t+ max

{
C∗1

√
(2s+1) log(S)
n(p−S) , C∗2

(2s+1) log(S)
n(p−S)

}
t+ max

{
C∗1

√
log(s(2s+1)(Ss))

n(p−S) , C∗2
log(s(2s+1)(Ss))

n(p−S)

}

Experimental results A more detailed numerical study is included in the Section 5 Simulation results, including an
example of a sparse MA(bp/4c) series with increasing p. We want to give a fast glimpse of the graphs of the power
function, EΣ(∆n = 1), for the tests ∆MS

n and ∆HS
n , for different values of Σ. Here S =

√
p and s = (S − 1)/2.

Figures1 1 and 2 show the power for different values of p and n as function of
∑S
j=1 |σj | and

∑
j∈S |σj | - in a

logarithmic scale that allow to better read this graphics. The plots show very steep power functions, that indicate a
narrow band where the decision is hard to make. The power goes from small values near α = 10% to high values
close to 1 in a fast increasing way. There are little differences in the behaviour of moderately and highly sparse tests.

We note an improvement as p grows (the tests detect matrices closer to the identity), in agreement with theoretical
rates that first indicated that p is not a nuisance parameter here.

1All figures should be printed in color
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(a) n = 100 (b) n = 500 (c) n = 1000

Figure 1: Power of the ∆MS
n test

(a) n = 100 (b) n = 500 (c) n = 1000

Figure 2: Power of the ∆HS
n test

4 Lag-selection for stationary time-series

The objective here is to properly select non-null correlation coefficients. We define a (two-sided) lag-selection
problem as estimation of η, a vector with entries ηj = 1(|ϕAj (Σ) | > 0). We want to find a selector η̂ with
η̂j = 1(|ϕAj (Σn) | > τn) that is consistent in the sense that the risk

RLS(η̂,F) =
S∑
j=1

EΣ[|η̂j − ηj |]

stays bounded (is small). The Hamming loss counts the number of miss-classified elements.

Theorem 4.1. If Σ belongs to F(s, S, σ), with σ ≥ 2τn, the selector η̂ with

τn = max

{(√
log(s) +

√
log(S − s)

)√
u

2s+ 1

n(p− S)
, 2u log(s(S − s)) 2s+ 1

n(p− S)

}
for u > 1 is such that

RLS(η̂,F) ≤ 2 exp

(
−(u− 1)

log(s)

4

)
+ 2 exp

(
−(u− 1)

log(S − s)
4

)
.

Remark. If we only consider the class F+, with σ > 2τn, we define a one-sided selection by η+
j = 1(ϕAj (Σ) > 0)

and consider η̂j+ = 1(ϕAj (Σn) > τn). Then

RLS(η̂+,F) ≤ exp

(
−(u− 1)

log(s)

4

)
+ exp

(
−(u− 1)

log(S − s)
4

)
.

8
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Take for example S = p
2 − 1, and assume that s/p = p−β for some β in (0,1). This implies that log(S − s) ∼

(1− β) log(p) and the asymptotic value of τn as p tends to infinity is

τn ∼ (1 +
√

1− β)

√
2u

log(p)

npβ
, u > 1.

Figure 3 shows the good behaviour of our lag selector under Σ ∈ F(s, S, σ) hypothesis. We plot the Hamming loss
between η and η̂, averaged over 1000 repetitions, as a function of n, for numerous values of p and taking S =

√
p.

We note the fast decrease to 0 of the Hamming loss for both for s = S − 1 and for s = (S − 1)/2, despite the small
values of σ � τn to detect.

(a) s = S − 1 (b) s = S−1
2

Figure 3: Hamming-loss of the lag selector

5 Simulation results

5.1 Power curves of our test procedures

We include several examples to illustrate the numerical behavior of our test procedures. First, we highlight that the
plots will be drawn with a logarithmic scale. We estimate the power of the four test procedures: ∆MS+

n , ∆MS
n , ∆HS+

n ,
∆HS
n to test the null hypothesis Σ = I .

We choose the numbers of non-null entries s and the non-null entries support S ⊂ J1;SK with

s = (S − 1)/2, and S =
√
p.

The location of the non zero entries is randomly chosen. We define the common value of non-null entries as growing
fractions of σ. The threshold of the test procedure is defined as t = tn,p,α the empirical (1 − α)-quantile of the test
statistic under the null hypothesis. In order to determine its value empirically, we generate 5000 repeated samples
under the null hypothesis. The plots represent the power of the tests by the measure of separation, namely:

S∑
j=1

σj , for the one sided tests, and
S∑
j=1

|σj |, for the two-sided tests.

To generate the plots, we sample 5000 times under the alternative hypothesis and plot the mean value of the power of
the tests. The α value will always be 0.1.

9



A PREPRINT - FEBRUARY 16, 2021

(a) Logarithmic scale (b) Identity scale

Figure 4: Impact of the x-axis scale (∆MS+
n test)

Figure 4 shows that the logarithmic scale should be preferred as it helps to better understand the behaviour of the test
procedure when the measure of separation increases.

We represent now the power of the ∆MS+
n test procedure as a function of the measure of separation for numerous

values of n and p. The best power function goes the fastest from low values above α = 0.1 to high values close to 1.
The change happens around the theoretical value of the separation rate.

(a) n = 100 (b) n = 500 (c) n = 1000

Figure 5: Power of the ∆MS+
n test

Figure 5 shows that for p smaller than, equal to or bigger than n, the ∆MS+
n test presents similar behaviour as the

measure of separation increases. However, it can be noticed that the performances are better in high dimension, that
is the power curves are shifted to the left. This is in agreement with our theoretical rates and indicates that p is not a
nuisance parameter. The ∆MS+

n test is not only robust but also more efficient in high dimension.

Let us consider the two-sided ∆MS
n test and plot its estimated power curve.

10
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(a) n = 100 (b) n = 500 (c) n = 1000

Figure 6: Power of the ∆MS
n test

Figure 6 shows that the ∆MS
n test shows a similar behaviour as the ∆MS+

n test. However, the two-sided test efficiency
benefits more from the high-dimension p than the one-sided version, in the sense that the curves shift more to the left,
towards the small values of the measure of separation when p is large.

Let us consider the ∆HS+
n test.

(a) n = 100 (b) n = 500 (c) n = 1000

Figure 7: Power of the ∆HS+
n test

Figure 7 shows that the ∆HS+
n test behaves similarly to the ∆MS+

n and ∆MS
n tests.

Finally, we consider the two-sided HS test.

(a) n = 100 (b) n = 500 (c) n = 1000

Figure 8: Power of the ∆HS
n test

11
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Figure 8 shows that the ∆HS
n tests also behaves as the previous ones. The high dimension improves the efficiency

of the tests. We can also notice that the power of the tests increase rapidly around -3 on the logarithmic scale of the
measure of separation.

5.2 Effect of non null entries

In the previous Section, we have plotted numerical simulations of the four tests presented in the paper. However we
want to understand in more details the impact of the different choices that can be made in this procedures namely: the
impact of the number of non null entries s, the impact of the location of non-null entries (close to the main diagonal
or far from it).

In this sub-section we focus our study on the ∆MS+
n test as we can extrapolate its behaviour to the other three tests.

The underlying covariance matrix belongs to the class F+(s, S, σ), for some s ∈ J1;SK.

First, we study the impact of the number of non null entries. For all the previous graphs s was fixed and set to
(S − 1)/2. The objective is to observe how the value of s impacts the behaviour of the test. For this purpose we plot
side by side the ∆MS+

n test with s = S − 1 and s = (S − 1)/2 for n = 100 and different values of p (10, 20 and 50).

(a) s = S − 1 (b) s =
S − 1

2

Figure 9: Impact of the number of non null entries on ∆MS+
n

Figure 9 shows that the number of non null entries has no major impact on the power of the test procedure ∆MS+
n .

Second, we look at the impact of the randomness in the location of the non null entries. In all previous graphs the
non null entries were randomly located. The objective is to observe how the location of the non null entries impacts
the behaviour of the test. To this end we plot the power function of ∆MS+

n test with s = (S − 1)/2 for n = 100 and
different values of p. The non null entries are: (a) randomly located, (b) located next to the main diagonal. The plot (c)
shows simultaneously the power functions of ∆MS+

n test for p = 10 and n = 100, but with non null entries randomly
chosen i.e S ⊂ J1;SK with |S| = s (red), fixed next to the main diagonal i.e S = J1, sK (blue) and fixed on the last
values of the support i.e S = JS − s;SK (magenta).

12



A PREPRINT - FEBRUARY 16, 2021

(a) Randomly chosen (b) Next to the main diagonal (c) On the same graph

Figure 10: Impact of the position of the non null entries on ∆MS+
n

Figure 10 shows that the location of the non null entries has no impact on the ∆MS+
n test performances. In conclusion,

the tests are sensitive neither to the number of non null entries nor to their location.

5.3 Comparison between ∆MS
n and ∆HS

n

The four test procedures ∆MS+
n , ∆MS

n , ∆HS+
n and ∆HS

n present very similar behaviour of their power curves. How-
ever, for high sparsity levels of the covariance matrix ∆HS+

n and ∆HS
n were designed to be more efficient than

respectively ∆MS+
n and ∆MS

n . The objective is to observe the difference in their behaviours under such high sparsity
levels assumption. In this sub-section we illustrate our study on the two-sided ∆MS

n and ∆HS
n tests only, as they are

analogous to their one-sided versions.

In order to observe the difference in the impact of sparsity on these two tests we plot their power curves by the number
of non null entries s. The parameters are set as follows n = 100, p = 100 and S =

√
p = 10. The plot is repeated for

the non null entries common value to be σ = tn,p,α/100 ≈ 0.01473 and σ = tn,p,α/50 ≈ 0.02945. As the ∆HS
n test

requires a value for s the true value is given in Figure 11.

(a) σ =
tn,p,α
100

(b) σ =
tn,p,α

50

Figure 11: ∆MS
n vs ∆HS

n with s known

Figure 11 shows that indeed the ∆HS
n test procedure with known sparsity s has better detection power than ∆MS

n
for higher sparsity, as it was expected. It can also be noticed that larger significant values of the non-null correlations
improve even more the power ∆HS

n over ∆MS
n .

We build now a new ∆HS
n procedure that is free of knowledge of s by aggregating several procedures ∆HS

n (s) for
different values of s. Then we compare it to ∆MS

n . Consider a grid of plausible values of s from 1 to S, build all
∆HS
n (s) and decide according to

∆HS
n = max

s
∆HS
n ,

that is reject whenever at least one of the tests rejected and accept otherwise.

13
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Let us confront the aggregated high-sparsity test and the moderate-sparsity test procedures. The two test procedures
have been run in the same setup n = 100, p = 100 and S =

√
p = 10. The true values of s are being set to s = 4 and

s = 7, respectively. We plot the power curves of the two procedures by the measure of separation on a log-scale. The
latter is rising because of growing values of σ.

In both cases, the grid of plausible sparsity levels has been fixed to two values: 2 and 10, which means that

∆HS
n = max{∆HS

n (2),∆HS
n (10)}

even though the true underlying sparsity value is not on the grid. This does not seem to be a drawback.

(a) s = 4 (b) s = 7

Figure 12: ∆MS
n vs ∆HS

n with s unknown

In Figure 12 it appears that even with unknown value of s the ∆HS
n test procedure performs better than ∆MS

n . It can
be noticed that the curves show larger differences for lower values of the measure of separation.

In conclusion, the theoretical improvements of highly-sparse over moderately sparse procedures show up in the very
extreme cases where the underlying signal is very close to white noise either because of very weak correlations or of
very few non-null values.

5.4 A high-dimensional MA series

Let us construct a stationary process belonging to our set of sparse covariance matrices. Consider the stationary
process Xt defined by the following moving average (MA) model :

Xt =

b p4 c∑
i=0

φiεt−2i

with {εt}t∈N a Gaussian white noise and |φ| < 1. The auto-covariance function of this series is

Cov(Xt+h, Xt) =


0, if h odd, or h ≥ p

4 ,

φ−
h
2

(
φh−φ2(b p

4
+1c)

1−φ2

)
, otherwise.

In this example, the p-dimensional Gaussian vectorX = (Xt, ..., Xt+p) has a covariance matrix belonging to the class
F(s, S, σ) with s ≥ p

4 − 1 tending to infinity with p, S ≤ p
2 and

σ = φ−
1
2 b

p
4 c

(
φb

p
4 c − φ2(b p4 +1c)

1− φ2

)
.

We plot the power of the ∆MS
n test on the y-axis and the value of φ < 1 on the x-axis.
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(a) n = 500 (b) n = 50

Figure 13: Power of ∆MS
n test for the MA(bp/4c)

Figure 13 shows the power of the ∆MS
n test for this example for various values of p. It can be seen that the ∆MS

n
test performs better when the value of p increases. We point out that for p < 8 the MA(bp/4c) is a white noise. It
explains why the power of the ∆MS

n test stays constantly low when p < 8 .

6 Proofs

6.1 Proof of Theorem 2.2

The following lemma is useful to prove the theorem. We prove a more general statement involving an arbitrary constant
K in (0,1). It is sufficient to take K = 1/2 to deduce the theorem.
Lemma 6.1. Let Σ ∈ S++

p and Σ1/2 be its square root. Let A ∈ Sp and M = Σ1/2AΣ1/2. Then, for an arbitrary
K ∈]0, 1[, the matrix Ip − tM is invertible and

det ((Ip − tM))
−1 ≤ exp

(
tTr(AΣ) +

t2||AΣ||2F
2(1−K)

)
, for all |t| < K

||AΣ||∞
.

Proof. Let λ1, ..., λp be the real eigenvalues of the symmetric matrixM associated to the eigenvectors x1, ..., xp. Then
for an arbitrary K ∈]0, 1[, for all |t| < K

||AΣ||∞ , 1− tλ1, ..., 1− tλp are the strictly positive eigenvalues of the matrix
Ip − tM associated to the eigenvectors x1, .., xp We have

det (Ip − tM)
−1

= exp

(
−

p∑
k=1

log(1− tλk)

)
= exp

(
p∑
k=1

∞∑
i=1

1

i
(tλk)

i

)

= exp

(
tTr(AΣ) +

p∑
k=1

t2λ2
k

( ∞∑
i=0

ti

i+ 2
λik

))

det (Ip − tM)
−1 ≤ exp

(
tTr(AΣ) +

p∑
k=1

t2λ2
k

2

( ∞∑
i=0

tiλik

))

= exp

(
tTr(AΣ) +

t2

2

p∑
k=1

λ2
k

1− tλk

)
.

By using the fact that ||AΣ||2F = ||M ||2F =
∑p
k=1 λ

2
k and that ||AΣ||∞ = ||M ||∞ = maxk |λk|, we have :

det (Ip − tM)
−1 ≤ exp

(
tTr(AΣ) +

t2||AΣ||2F
2(1−K)

)
which ends the proof.
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Let us note that if X ∼ N (0p,Σ), then Y = Σ−1/2X ∼ N (0p, Ip).
For all |t| < nK

2||AΣ||∞ , we have :

E [exp (tϕA (Σn − Σ))] = E
[
exp

(
t

n

(
XTAX

))]n
exp(−tTr(AΣ))

= E
[
exp

(
t

n

(
Y TΣT1/2AΣ1/2Y

))]n
exp(−tTr(AΣ))

= E
[
exp

(
t

n

(
Y TMY

))]n
exp(−tTr(AΣ)) =: T, say.

Now, we use the probability density of Y and calculate explicitly

T := exp(−tTr(AΣ))

((
1

2π

)p/2 ∫
...

∫
exp

(
t

n
Y TMY − 1

2
Y TY

)
dy1...dyp

)n

= exp(−tTr(AΣ))

((
1

2π

)p/2 ∫
...

∫
exp

(
−1

2
Y T (Ip −

2t

n
)M)Y

)
dy1...dyp

)n

= exp(−tTr(AΣ))

(
det

(
Ip − t

2

n
M

))−n/2

By applying Lemma 6.1, we have

E [exp (tϕA (Σn − Σ))] ≤ exp(−tTr(AΣ)) exp

(
tTr(AΣ) +

t2||AΣ||2F
n(1−K)

)
= exp

(
t2||AΣ||2F
n(1−K)

)
= exp

(
ν2t2

2

)
with ν2 =

2||AΣ||2F
n(1−K)

.

6.2 Proof of Proposition 2.3

1. To bound the operator norm of the matrix AW , we use Gershgorin’s circle theorem. Let M = (mi,j)1≤i,j≤p be a
p×pmatrix. Then, all eigenvalues of the matrixM lie within at least one of the Gershgorin discsD(mii,

∑
j 6=i |mij |).

Gershgorin’s circle theorem applied to the matrix AW gives us :

||AW ||∞ = max
k
|λk| ∈ D

0, 2
∑
j∈W

1

2(p− j)

⇒ ||AW ||∞ ≤ w

p− S

To bound the squared Frobenius norm, we sum all the squared elements of AW , which gives us :

||AW ||2F = 2
∑
j∈W

p− j
4(p− j)2

=
∑
j∈W

1

2(p− j)
≤ w

2(p− S)

2. To bound the operator norm of the matrix AWΣ for some Σ in F(s, S, σ), we use Cauchy-Schwarz inequality
together with Gershgorin’s circle theorem :

||AWΣ||∞ ≤ ||AW ||∞||Σ||∞ ≤ σ0
(2s+ 1)w

p− S

To bound the squared Frobenius norm of the matrix AWΣ we will use the following lemma.

Lemma 6.2. Let Mand N be two p× p symmetric matrices. Then ||MN ||2F = Tr(M2N2) and

||MN ||2F ≤ max
1≤k≤p

|λk|2||N ||2F = ||M ||2∞||N ||2F
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Proof. We have ||MN ||2F = Tr(MNNTMT ) = Tr(M2N2), with M2 and N2 symmetric and positive semi-definite
matrices (M2 ≥ 0, N2 ≥ 0).
Recall that, if A ≤ B (in the sense that B −A ≥ 0), then Tr(AC) ≤ Tr(BC), for any C ≥ 0.
Here, M2 ≤ λmax(M2)Ip ≤ λ2

max(M)Ip and this gives

Tr(M2N2) ≤ λ2
max(M)Tr(N2)

If w > 1, using Lemma 6.2 on M = Σ and N = AW , we have

||AWΣ||2F ≤ ||AW ||2F ||Σ||2∞ ≤ σ2
0

w(2s+ 1)2

2(p− S)

If w = 1 and W = {j}, using Lemma 6.2 on M2 = Σ and N2 = Σ1/2A2
jΣ

1/2, we have

||AjΣ||2F = Tr(A2
jΣ

2) ≤ ||AjΣ1/2||2F ||Σ1/2||2∞ ≤ σ0(2s+ 1)||AjΣ1/2||2F

It suffices to prove that ||AjΣ1/2||2F = Tr(A2
jΣ) ≤ σ0

K
(p−S) so that we conclude the proof that ||AjΣ||2F ≤

σ2
0
K(2s+1)
p−S . Let Bj = A2

j = (bjk,l)1≤k,l≤p. For every 1 ≤ k, l ≤ p, we have

bjk,l =

p∑
i=1

ajk,ia
j
i,l =

p∑
i=1

aj|k−i|a
j
|l−i| =

p∑
i=1

δ|k−i|=jδ|l−i|=j

4(p− j)2

• If k = l, bjk,k =


1

2(p−j)2 if j < p
2 and j < k ≤ p− j

0 if j ≥ p
2 and p− j ≤ k < j
1

4(p−j)2 otherwise

• If k 6= l, for δ|k−i|=jδ|l−i|=j to be non-null, we need :{
k − i = j and l − i = −j

or
l − i = j and k − i = −j

⇔

 k − l = 2j and i = k+l
2

or
l − k = 2j and i = k+l

2

⇔

 |k − l| = 2j
and

i = k+l
2

Therefore, bjk,l =

{
1

4(p−j)2 if j < p
2 and |k − l| = 2j

0 otherwise

Summing up the results gives us

||AjΣ1/2||2F = Tr(A2
jΣ) =

p∑
m=1

(
p∑
i=1

bm,iσi,m

)

≤ σ0

p∑
m=1

(
p∑
i=1

bm,i

)
= σ0

p∑
m=1

bm,m + σ0

∑
m6=i

bm,i

≤ σ0

{
2(p−j)+2(p−2j)

4(p−j)2 if j < p
2

2(p−j)
4(p−j)2 otherwise

≤ σ0

{
1

(p−j) if j < p
2

1
2(p−j) otherwise

This means that

||AjΣ||2F ≤ σ0(2s+ 1)||AjΣ1/2||2F ≤ σ2
0

K(2s+ 1)

(p− S)

where K =

{
1, if W ⊆ {1, ..., p2 − 1}
p
2 , if W ⊆ {p2 , ..., p}
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6.3 Proof of Theorem 3.1

We know from Corollary 2.4 that the type I error probability is such that

PIp
[
ϕA1:S

(Σn − Ip) ≥ tMS+
n,p

]
≤ exp

(
−u

4

)
and that, for any Σ in F+(s, S, σ), we have

PΣ[ϕA1:S
(Σn − Σ) ≥ (1 + 2s)tMS+

n,p ] ≤ exp
(
−u

4

)
, for all u > 0.

We can bound the type II error probability under the assumption that σ ≥ 2(s+1)
s tMS+

n,p :

PΣ

[
ϕA1:S

(Σn − Ip) ≤ tMS+
n,p

]
= PΣ

[
ϕA1:S

(Σn − Σ) ≤ tMS+
n,p − ϕA1:S

(Σ)
]

= PΣ

[
ϕA1:S

(Σ− Σn) ≥ ϕA1:S
(Σ)− tMS+

n,p

]
≤ PΣ

[
ϕA1:S

(Σ− Σn) ≥ sσ − tMS+
n,p

]
≤ PΣ

[
ϕA1:S

(Σ− Σn) ≥ (2s+ 1)tMS+
n,p

]
≤ exp

(
−u

4

)
, for all u > 0.

Finally :

R(∆MS+
n ,F+) = PIp(ϕA1:S

(Σn − Ip) ≥ tMS+
n,p ) + sup

Σ∈F+

PΣ(ϕA1:S
(Σn − Ip) ≤ tMS+

n,p ) ≤ 2 exp
(
−u

4

)
6.4 Proof of Theorem 3.2

Similarly to the proof of Theorem 3.1, we use Corollary 2.4 to bound the type I error probability

PIp

[
S∑
i=1

|ϕAi(Σn − Ip)| ≥ tMS
n,p

]
≤ PIp

[
S⋃
i=1

{
|ϕAi(Σn − Ip)| ≥

tMS
n,p

S

}]

≤
S∑
i=1

PIp

[
|ϕAi(Σn − Ip)| ≥

tMS
n,p

S

]

=

S∑
i=1

PIp

[
|ϕAi(Σn − Ip)| ≥ max

{√
u

2(1−K)

√
4 log(S)

n(p− S)
,
u

K

4 log(S)

n(p− S)

}]

≤
S∑
i=1

2 exp (−u logS)

= 2 exp (−(u− 1) logS)

To bound the type II error probability, we use the condition on σ :

PΣ

[
S∑
i=1

|ϕAi(Σn − Id)| ≤ tMS
n,p

]
≤ PΣ

[
S⋂
i=1

{
|ϕAi(Σn − Id)| ≤ tMS

n,p

}]
≤ sup

1≤i≤S
PΣ

[
|ϕAi(Σn − Ip)| ≤ tMS

n,p

]
≤ sup

1≤i≤S
PΣ

[
|ϕAi(Σn − Σ)| ≥ |ϕAi(Σ− Ip)| − tMS

n,p

]
≤ sup

1≤i≤S
PΣ

[
|ϕAi(Σn − Σ)| ≥ σ − tMS

n,p

]
≤ sup

1≤i≤S
PΣ

[
|ϕAi(Σn − Σ)| ≥ max

{√
u− 1

2(1−K)

√
4 logS(2s+ 1)

n(p− S)
,

(u− 1)

K

4 logS(2s+ 1)

n(p− c)

}]
≤ 2 exp (−(u− 1) logS)

This gives us finally :
R(∆MS

n ,F) ≤ 4 exp (−(u− 1) logS)
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6.5 Proof of Theorem 3.3

The type I error probability is bounded by

PIp [∆HS+
n = 1] ≤

∑
S⊆{1,...,S},#S=s

PIp
[
ϕAS

(Σn − Ip) ≥ tHS+
n,p

]
≤

∑
S⊆{1,...,S},#S=s

exp

(
−u log

(
S

s

))

= exp

(
−(u− 1) log

(
S

s

))
while the type II error probability is bounded by

PΣ[∆HS+
n = 0] = sup

Σ∈F+(s,S,p,σ)

PΣ

 ⋂
S⊆{1,...,S},#S=s

{|ϕAS
(Σn − Ip)| ≤ tHS+

n,p }


≤ sup

Σ∈F+(s,S,p,σ)

PΣ

[
ϕAS

(Σn − Σ) + ϕAS
(Σ− Ip) ≤ tHS+

n,p

]
= sup

Σ∈F+(s,S,p,σ)

PΣ

[
ϕAS

(Σ− Σn) ≥ ϕAS
(Σ)− tHS+

n,p

]
≤ sup

Σ∈F+(s,S,p,σ)

PΣ

[
ϕAS

(Σ− Σn) ≥ sσ − tHS+
n,p

]
for an arbitrary set S in {1, ..., S} containing s values.

Under the condition sσ − tHS+
n,p ≥ (2s+ 1) max

{√
u

2(1−K)

√
s

n(p−S) ,
u
K

s
n(p−S)

}
and Corollary 2.4, we have :

PΣ[∆HS+
n = 0] ≤ sup

Σ∈F+(s,S,p,σ)

PΣ

[
ϕAS

(Σ− Σn) ≥ t̃
]
≤ exp

(
−u

4

)
6.6 Proof of Theorem 3.4

The proof is similar to the proof of Theorem 3.2. The type I probability error is bounded by

PIp [∆HS
n = 1] ≤

∑
S⊆{1,...,S},#S=s

PIp

[∑
i∈S

|ϕAi(Σn − Ip)| ≥ tHSn,p

]

≤
∑

S⊆{1,...,S},#S=s

∑
i∈S

PIp

[
|ϕAi(Σn − Ip)| ≥

tHSn,p
s

]

≤
∑

S⊆{1,...,S},#S=s

∑
i∈S

2 exp

[
−u log

(
s

(
S

s

))]

= 2 exp

[
−(u− 1) log

(
s

(
S

s

))]
The type II probability is bounded by

PΣ[∆HS
n = 0] = PΣ

[
max

S⊆{1,...,S},#S=s

∑
i∈S

|ϕAi(Σn − Id)| ≤ tHSn,p

]

≤ PΣ

 ⋂
S⊆{1,...,S},#S=s

⋂
i∈S

{
|ϕAi(Σn − Id)| ≤ tHSn,p

}
≤ sup

S⊆{1,...,S},#S=s

sup
i∈S

PΣ

[
|ϕAi(Σn − Σ)| ≥ σ − tHSn,p

]
≤ 2 exp

[
−(u− 1) log

(
s

(
S

s

))]
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6.7 Proof of Theorem 4.1

Using Theorem 2.2 and Proposition 2.3, we have :

RLS(η̂,F+) =

S∑
j=1

EΣ[|η̂j − ηj |] =
∑
j∈S

EΣ[|η̂j − ηj |] +
∑

j /∈S,j≤S

EΣ[|η̂j − ηj |]

=
∑
j∈S

EΣ[|η̂j − 1|] +
∑

j /∈S,j≤S

EΣ[|η̂j |]

=
∑
j∈S

PΣ[|ϕAj (Σn) | < τn] +
∑

j /∈S,j≤S

PΣ[|ϕAj (Σn) | > τn]

≤
∑
j∈S

PΣ[|ϕAj (Σn − Σ) | > ϕAj (Σ)− τn] +
∑

j /∈S,j≤S

PΣ[|ϕAj (Σn − Σ) | > τn]

≤
∑
j∈S

PΣ[|ϕAj (Σn − Σ) | > σ − τn] +
∑

j /∈S,j≤S

PΣ[|ϕAj (Σn − Σ) | > τn]

≤
∑
j∈S

PΣ

[
|ϕAj (Σn − Σ) | > max

{√
2u log(s)

||AjΣ||F√
n

, 2u log(s)
||AjΣ||∞

n

}]

+
∑

j /∈S,j≤S

PΣ

[
|ϕAj (Σn − Σ) | > max

{√
2u log(S − s) ||AjΣ||F√

n
, 2u log(S − s) ||AjΣ||∞

n

}]

≤
∑
j∈S

2 exp

(
−u log(s)

4

)
+

∑
j /∈S,j≤S

2 exp

(
−u log(S − s)

4

)

≤2 exp

(
−(u− 1)

log(s)

4

)
+ 2 exp

(
−(u− 1)

log(S − s)
4

)
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