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Abstract

To quantify the dependence between two random vectors of possibly different dimensions, we propose to rely on

the properties of the 2-Wasserstein distance. We first propose two coefficients that are based on the Wasserstein

distance between the actual distribution and a reference distribution with independent components. The coefficients

are normalized to take values between 0 and 1, where 1 represents the maximal amount of dependence possible given

the two multivariate margins. We then make a quasi-Gaussian assumption that yields two additional coefficients

rooted in the same ideas as the first two. These different coefficients are more amenable for distributional results and

admit attractive formulas in terms of the joint covariance or correlation matrix. Furthermore, maximal dependence is

proved to occur at the covariance matrix with minimal von Neumann entropy given the covariance matrices of the two

multivariate margins. This result also helps us revisit the RV coefficient by proposing a sharper normalisation. The two

coefficients based on the quasi-Gaussian approach can be estimated easily via the empirical covariance matrix. The

estimators are asymptotically normal and their asymptotic variances are explicit functions of the covariance matrix,

which can thus be estimated consistently too. The results extend to the Gaussian copula case, in which case the

estimators are rank-based. The results are illustrated through theoretical examples. Monte Carlo simulations and a

case study involving electroencephalography data are proposed in the supplementary material.

Keywords: Bures-Wasserstein distance, Copula, Delta method, Normal scores rank correlation, RV coefficient,

1. Introduction

Measuring dependence is a fundamental problem in statistics that has applications in nearly all other domains of

science. Because of this importance, it is not surprising that early in their careers, most students learn about the Pear-

son correlation coefficient, quantifying linear association between two univariate random variables. In modern days,

the abundance of data makes it possible to consider groups of variables and the question of measuring dependence

between two random vectors appears naturally.

Hotelling [19] proposed to address the matter by finding the linear combinations of both groups of variables that

maximise the correlation coefficient. Canonical correlation analysis was born. Not much attention was devoted to the

problem for decades and the next development we are aware of is the RV coefficient proposed by Escoufier [11]. For

a partitioned d × d covariance matrix

Σ =

[

Σ1 Ψ

Ψ
⊤
Σ2

]

, (1)

with d = p + q and with diagonal blocks Σ1 and Σ2 of dimensions p × p and q × q, respectively, the RV coefficient

[11, 36] is

RV(Σ) =
tr(ΨΨ⊤)

(

tr(Σ2
1
) tr(Σ2

2
)
)1/2

, (2)
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where tr( · ) is the trace operator and ( · )⊤ denotes matrix transposition. The coefficient is based on the scalar product

between certain linear operators associated to the random vectors and is the first extension of the correlation coefficient

that is multivariate in nature. Still, for given diagonal blocks Σ1 and Σ2 the maximal value attainable is in general

smaller than one. In the course of our developments, we will propose another scaling that repairs this minor deficiency

(Remark 3.13).

The following milestone is the work by Székely, Rizzo and Bakirov [38], where a weighted L2 distance between

characteristic functions is used to construct a dependence measure. Since then, a renewed interest for the question of

quantifying dependence between random vectors has grown. The measure proposed by Zhu, Xu, Li and Zhong [44]

is of the same nature, involving a weighted integral of the squared covariances between indicators associated to linear

combinations with varying coefficient vectors.

To test for independence between several random vectors, Quessy [34] studies a Cramér–von Mises statistic com-

paring the joint empirical copula with the product of the empirical copulas of the vectors separately. In Medovikov

and Prokhorov [26], the population version of this quantity lies at the basis of a copula-based dependence measure

between several random vectors.

Another line of research considered measuring dependence relying on an aggregation of vectors into variables, an

approach which can be seen as extending canonical correlation analysis. The multivariate generalisations of Spear-

man’s ρ and Kendall’s τ in Grothe et al. [14] fall into this framework. In the same vein, Hofert, Oldford, Prasad and

Zhu [18] proposed to compute the correlation between collapsing functions of groups of variables.

Recently, Puccetti [33] proposed a dependence coefficient based on optimal transportation theory. Alike the RV-

coefficient, it is based on traces of covariance matrices but the scaling accommodates for those that are attainable

given the ones of both vectors of interest. The coefficient cannot be used for vectors with different dimensions and is

not invariant with respect to permutations of variables within a group.

Still, as we shall see, the (2-)Wasserstein distance is a particularly convenient metric on the space of probability

distributions with finite (second) moments and it can be leveraged to construct new dependence coefficients. The

interest of this distance for statistical inference is not new but blossomed recently. We refer to Panaretos and Zemel

[30, 31] for background and surveys.

Recent developments regarding dependence coefficients include Chatterjee [4] and Azadkia and Chatterjee [2] as

well. The latter are however not directly relevant for our work. After posting the first version of the manuscript, we

became aware of the works by Móri and Székely [27], Nies et al. [28] and Wiesel [42] also measuring association

based on the Wasserstein distance. The coefficient defined in the latter reference is elegant at the population level but

the proposed estimator appears impractical for statistical inference.

In this paper, we propose new dependence coefficients based on the 2-Wasserstein distance. As the asymptotic

theory of the empirical Wasserstein distance is currently not yet sufficiently developed to derive the results needed

for statistical inference for these coefficients, we also propose quasi-Gaussian counterparts in terms of a partitioned

covariance or correlation matrix. Our approach thus shares common points with both Escoufier’s RV and Puccetti’s

coefficients. The proper normalisation of the coefficients involves the interesting side-problem of characterising,

among all partitioned covariance matrices Σ of the form (1) with fixed diagonal blocks Σ1 and Σ2, the p × q cross-

covariance matrix Ψ that yields the strongest dependence.

We then propose plug-in estimators and prove their asymptotic normality by means of the delta method. The

asymptotic variances admit analytic formulas and can therefore be estimated by a plug-in approach too, avoiding

the need for resampling procedures. The Fréchet differentiability of the maps that send a covariance or correlation

matrix to the coefficients means that the asymptotic distributions of plug-in estimators can be studied in a wide variety

of settings, including time series, graphical models, and rank-based estimators. The approach is akin to the one of

estimating the Wasserstein distance between Gaussian distributions in Rippl et al. [35]. In passing, our calculations

shed new light on the Fréchet differentiability of the Wasserstein distance derived in that article.

Rescaling the univariate margins to the standard Gaussian distribution prior to computing the correlation matrix

has two advantages: first, no moment conditions are required and second, the coefficients become invariant under

component-wise increasing transformations. The proposed standardisation is particularly natural in the Gaussian

copula case, a model assumption which has been gaining popularity since Liu et al. [23], for instance for graphical

models. We illustrate the coefficients on electroencephalogram (EEG) data modelled in this way in Solea and Li

[37] in the supplementary material. The estimates relies on the matrix of normal scores rank correlation coefficients,

asymptotic expansions of which were established in Klaassen and Wellner [20].
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The outline of this paper is the following. In Section 2, we propose new dependence coefficients between random

vectors exploiting the properties of the Wasserstein distance. In Section 3, we introduce a quasi-Gaussian version

of the coefficients based on the Bures–Wasserstein distance [3] between certain covariance matrices. Plug-in esti-

mators and their limiting distributions are treated in Section 4. Section 5 concludes and paves the way for further

developments. In the supplementary material, we study the performance of the proposed estimator via Monte Carlo

simulations in Appendix A and propose an application to the already mentioned EEG data in Appendix B.

2. Wasserstein dependence coefficients

Let P(Rd) be the set of Borel probability measures on R
d and let P2(Rd) ⊂ P(Rd) be the set of such measures

with finite second moments. For (π, π′) ∈ P2(Rd)2, let Γ(π, π′) be the set of couplings γ ∈ P2(R2d) of π and π′, that is,

probability measures γ such that γ(B × R
d) = π(B) and γ(Rd × B) = π′(B) for Borel sets B ⊆ R

d. Let W2 denote the

2-Wasserstein distance on P2(Rd): its square is

W2
2 (π, π′) = inf

γ∈Γ(π,π′)

∫

R2d

‖v − v′‖2 dγ(v, v′), π, π′ ∈ P2(Rd).

This defines a metric on P2(Rd), the origins of which go back to Kantorovich; see Panaretos and Zemel [30] for a

survey and historical notes. The infimum is attained and the corresponding γ is called an optimal coupling between π

and π′.

For a random vector (X, Y) of dimension d = p + q and with joint law π ∈ P2(Rd), we seek to quantify the

dependence between the subvectors X and Y. Let µ ∈ P2(Rp) and ν ∈ P2(Rq) denote the distributions of X and Y,

respectively. Note that π belongs to Γ(µ, ν), the set of couplings of µ and ν. The assumption that π has finite second

moments is not a real restriction since we can first transform its univariate margins to a suitable distribution, see

Remark 2.4.

To quantify the dependence between X and Y, we compare π to µ ⊗ ν, where ⊗ denotes product measure—the

distribution of an independent coupling. Let P2,0(Rr) be the subset of P2(Rr) of all non-degenerate distributions.

Choose reference laws υ1 ∈ P2,0(Rp) and υ2 ∈ P2,0(Rq) and put

Tp,q(π; υ1, υ2) = W2
2 (π, υ1 ⊗ υ2) −W2

2 (µ ⊗ ν, υ1 ⊗ υ2) = W2
2 (π, υ1 ⊗ υ2) −W2

2 (µ, υ1) −W2
2 (ν, υ2). (3)

For the second identity, see for instance the beginning of Section 2 in Panaretos and Zemel [30].

Lemma 2.1. For π, µ, ν, υ1, υ2 as above, Tp,q in (3) satisfies the following properties:

(i) Tp,q(π; υ1, υ2) ≥ 0.

(ii) Tp,q(µ ⊗ ν; υ1, υ2) = 0.

(iii) If either υ1 = µ and υ2 = ν or if both υ1 and υ2 are absolutely continuous, then Tp,q(π; υ1, υ2) = 0 implies

π = µ ⊗ ν.

Proof of Lemma 2.1. (i) Let V = (V1,V2) be a random vector with law υ1 ⊗ υ2 and let ((X, Y),V) be a coupling of

(X, Y) and V . Then (X,V1) and (Y,V2) are couplings of µ and υ1 and of ν and υ2, respectively, and thus

E[‖(X, Y) − V‖2] = E[‖X − V1‖2] + E[‖Y − V2‖2] ≥ W2
2 (µ, υ1) +W2

2 (ν, υ2). (4)

Take the infimum over all couplings ((X, Y),V).

(ii) Trivial.

(iii) If µ = υ1 and ν = υ2, then Tp,q(π; υ1, υ2) = W2
2
(π, µ⊗ν) and the statement is trivial. Suppose that υ1 and υ2 are

absolutely continuous. Equality to zero means that there exists an optimal coupling ((X, Y),V) of π and υ1 ⊗ υ2 such

that the inequality in Eq. (4) is an equality and thus that (X,V1) and (Y,V2) are optimal couplings of µ ⊗ υ1 and ν ⊗ υ2

respectively. As υ1 and υ2 are absolutely continuous, then, by Brenier’s theorem [41, Theorem 2.12], there exist two

convex functions ϕ1 : Rp → R ∪ {∞} and ϕ2 : Rq → R ∪ {∞} such that X = ∇ϕ1(V1) and Y = ∇ϕ2(V2) almost surely.

Hence, X and Y are independent and their distribution is π = µ ⊗ ν.
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For υ1 and υ2 as in Lemma 2.1(iii), we have Tp,q(π; υ1, υ2) ≥ 0 with equality if and only if π = µ ⊗ ν. This fact

motivates the use of Tp,q to quantify dependence between the subvectors X and Y of a random vector X = (X, Y) with

law π. To obtain a coefficient between 0 and 1, we propose to rescale Tp,q(π; υ1, υ2) by the largest possible value over

all couplings π̃ of µ and ν, provided these are both non-degenerate:

D̃(π; υ1, υ2) =
Tp,q(π; υ1, υ2)

supπ̃∈Γ(µ,ν) Tp,q(π̃; υ1, υ2)
. (5)

The coefficient is indicated with a tilde to indicate the link and difference with the covariance-matrix-based coefficients

defined in Section 3. Under the conditions of Lemma 2.1(iii) and as µ and ν are non-degenerate, the supremum in the

denominator in (5) is positive. In that case, D̃(π; υ1, υ2) ∈ [0, 1], while D̃(π; υ1, υ2) = 0 if and only if π = µ ⊗ ν. The

supremum in the denominator is attained since Tp,q( · ; υ1, υ2) is W2-continuous on P2(Rd) and Γ(µ, ν) is W2-compact

in P2(Rd), as W2-convergence implies convergence in distribution and the margins are fixed.

From Eq. (5), we can define two dependence measures that are theoretically particularly appealing. For integer

m ≥ 1, let γm = Nm(0, Im) denote the m-variate centred and isotropic Gaussian distribution, with Im the m×m identity

matrix.

Definition 2.2 (Wasserstein dependence coefficients). For positive integer d = p + q and for π ∈ Γ(µ, ν) with µ ∈
P2,0(Rp) and ν ∈ P2,0(Rq), define

D̃1(π; p, q) = D̃(π; γp, γq) =
W2

2
(π, γd) −W2

2
(µ, γp) −W2

2
(ν, γq)

supπ̃∈Γ(µ,ν) W2
2
(π̃, γd) −W2

2
(µ, γp) −W2

2
(ν, γq)

and

D̃2(π; p, q) = D̃(π; µ, ν) =
W2

2
(π, µ ⊗ ν)

supπ̃∈Γ(µ,ν) W2
2
(π̃, µ ⊗ ν)

.

If the dimensions p and q are clear from the context, we just write D̃r(π) for r ∈ {1, 2}.

These measures enjoy the following properties. Recall that an orthogonal transformation of Euclidean space is a

linear transformation induced by an orthogonal matrix.

Proposition 2.3. Let d = p + q, let µ ∈ P2,0(Rp) and ν ∈ P2,0(Rq) and let π ∈ Γ(µ, ν). The dependence coefficients

D̃r = D̃r( · ; p, q) for r ∈ {1, 2} satisfy the following properties:

(i) D̃r(π) ∈ [0, 1], while D̃r(π) = 0 if and only if π = µ ⊗ ν.

(ii) There exists π(r) ∈ Γ(µ, ν) such that D̃r(π
(r)) = 1.

(iii) D̃r is invariant w.r.t. orthogonal linear transformations within the first p and the last q coordinates.

Proof of Proposition 2.3. Assertions (i) and (ii) follow in a straightforward way from Lemma 2.1.

Assertion (iii) follows from the invariance of the 2-Wasserstein distance and the multivariate standard Gaussian

distribution with respect to orthogonal transformations. For instance, for any orthogonal transformation O of Rp we

have W2
2
(µ ◦ O−1, γp) = W2

2
(µ ◦O−1, γp ◦ O−1) = W2

2
(µ, γp).

Remark 2.4. If the univariate margins of π are continuous, then one can apply the dependence coefficients not to π

but rather to a measure sharing the same copula and with margins admitting a finite second moment. The resulting

coefficient would then be invariant with respect to permutations within the first p and last q coordinates and also to

monotone increasing and decreasing transformations of the d univariate margins.

The two dependence measures are illustrated in Figure 1. Up to scaling, D̃2 is the (squared) distance between π

and µ ⊗ ν, whereas D̃1 is the excess squared distance from π to γd compared to the one between µ ⊗ ν and γd.

4



·
γd

·
π

·
µ ⊗ ν

∝ D̃1

∝ D̃
2

P2
(R

d )

Figure 1: Representation of the proposed dependence coefficients

3. A quasi-Gaussian approach

Although theoretically appealing, the actual computation of the two Wasserstein dependence coefficients in Defini-

tion 2.2 is involved, not in the least because of the suprema in the denominators. Moreover, statistical inference on the

coefficients is hampered by a lack of a comprehensive large-sample theory for the Wasserstein distance involving em-

pirical measures. We refer to Panaretos and Zemel [30] for a recent review of the known results. Further contributions

by Tameling et al. [39], Lei [22], Manole and Niles-Weed [24] or del Barrio et al. [5] improve the understanding of the

empirical Wasserstein distance. The latter constitutes a concrete step towards statistical inference for the coefficients

of Definition 2.2. Additional theory is still needed, however.

Despite these drawbacks, the story does not end here. We instead propose a quasi-Gaussian approach based

on covariance matrices. We start in Section 3.1 by defining the modified coefficients. The calculation of the two

coefficients relies on an interesting optimisation problem yielding an elegant solution in terms of the minimum-entropy

covariance matrix with given diagonal blocks in Section 3.2. The same matrix also realises the maximum value of

the RV coefficient for fixed diagonal blocks, motivating the definition of an adjusted RV coefficient with range [0, 1].

The coefficients are illustrated for various families of structured covariance matrices in Section 3.3. We conclude in

Section 3.4 with some thoughts on the application of the coefficients to distributions with standard Gaussian margins,

which we call G-copulas.

3.1. Definition and basic properties

The Wasserstein distance between centred Gaussian distributions is given by the so-called Bures–Wasserstein

distance between their covariance matrices. We refer to Bhatia et al. [3] for an introduction to this distance between

positive semi-definite matrices and to Dowson and Landau [8], Olkin and Pukelsheim [29] for a proof that this distance

coincides with the Wasserstein distance for two (centred) measures belonging to the same elliptical family. Let

S
d
= {A ∈ Rd×d : A⊤ = A} be the set of real symmetric d × d matrices, Sd

≥ ⊂ S
d the set of positive semi-definite ones

and S
d
> ⊂ S

d
≥ the set of positive definite ones.

Definition 3.1. The squared Bures–Wasserstein distance between Σ,Ξ ∈ Sd
≥ is

d2
W(Σ,Ξ) := W2

2

(

Nd(0,Σ), Nd(0,Ξ)
)

= tr(Σ) + tr(Ξ) − 2 tr
(

(Σ1/2
ΞΣ

1/2)1/2). (6)

The right-hand side of (6) is symmetric in Σ and Ξ, a fact which follows from the identity with the Wasserstein dis-

tance, but which can also be proven algebraically from (44) below together with the cyclic permutation property of the

trace operator. To introduce the quasi-Gaussian version of the Wasserstein dependence coefficients in Definition 2.2,

let d = p + q be integer, let Σ1 ∈ Sp

≥ and Σ2 ∈ Sq

≥, and introduce the set

Γ(Σ1,Σ2) =

{

Σ ∈ Sd
≥ : Σ =

[

Σ1 Ψ

Ψ
⊤
Σ2

]

for some Ψ ∈ Rp×q

}

. (7)

If (X, Y) is a random vector of dimension d such that X and Y have covariance matrices Σ1 and Σ2, respectively, then

its joint covariance matrix Σ belongs to Γ(Σ1,Σ2). Put

Σ0 :=

[

Σ1 0

0 Σ2

]

, (8)

5



the covariance matrix of an independent coupling of X and Y. To avoid division by zero in the next definition, we

need to exclude the zero matrix: let Sd
≥,0 = S

d
≥ \ {0}. Recall dW in Definition 3.1.

Definition 3.2 (Quasi-Gaussian Wasserstein dependence coefficients). For Σ ∈ Γ(Σ1,Σ2) with Σ1 ∈ Sp

≥,0 and Σ2 ∈ Sq

≥,0,

define

D1(Σ; p, q) =
d2

W
(Σ, Id) − d2

W
(Σ1, Ip) − d2

W
(Σ2, Iq)

sup
Σ̃∈Γ(Σ1 ,Σ2) d2

W
(Σ̃, Id) − d2

W
(Σ1, Ip) − d2

W
(Σ2, Iq)

,

and

D2(Σ; p, q) =
d2

W
(Σ,Σ0)

sup
Σ̃∈Γ(Σ1 ,Σ2) d2

W
(Σ̃,Σ0)

.

If the random vector (X, Y) in dimension d = p + q has law π ∈ P2(Rd) and covariance matrix Σ, then we also put

Dr(X, Y) = Dr(π; p, q) = Dr(Σ; p, q) for r ∈ {1, 2}.

These coefficients are to be compared with those in Definition 2.2. The Wasserstein distances in the latter have now

been replaced by those between the centred Gaussian distributions with the same covariance matrices. Furthermore,

in the denominator, the supremum is now with respect to all Gaussian couplings rather than between all couplings,

Gaussian or not. Even when X and Y are themselves Gaussian, it is, to the best of our knowledge, an open question

whether the supremum over all Gaussian couplings is equal to the supremum over all couplings.

Definition 3.2 leaves open the question of the calculation of the suprema in the denominators of D1 and D2. Ac-

cording to Proposition 3.3, the suprema are attained, but the matrices where this occurs and the values of the suprema

remain unspecified. The problem turns out to have an elegant and explicit solution described in Section 3.2. Proposi-

tion 3.10 leverages this fact to provide a computationally-friendly version of the proposed dependence coefficients.

Proposition 3.3. Let d = p + q and let Σ ∈ Γ(Σ1,Σ2) with Σ1 ∈ S
p

≥,0 and Σ2 ∈ S
q

≥,0. The dependence coefficients

Dr = Dr( · ; p, q) for r ∈ {1, 2} satisfy the following properties:

(i) Dr(Σ) ∈ [0, 1], while Dr(Σ) = 0 if and only if Σ = Σ0 in (8).

(ii) There exists Σ(r) ∈ Γ(Σ1,Σ2) such that Dr(Σ
(r)) = 1.

(iii) Dr is invariant w.r.t. orthogonal transformations within the first p and the last q coordinates: for orthogonal

matrices O1 and O2 of dimensions p × p and q × q, respectively, we have

Dr(OΣO⊤) = Dr(Σ) with O =

[

O1 0

0 O2

]

.

Proof of Proposition 3.3. Assertion (i) follows from Assertion (i) in Proposition 2.3 upon identifying d2
W

with the

squared Wasserstein distance between centered Gaussian distributions as in (6). Assertion (ii) is a consequence of

continuity of dW and the fact that the set Γ(Σ1,Σ2) is compact. Assertion (iii), finally, follows from the invariance of

dW with respect to orthogonal transformations.

As the coefficientsDr in Definition 3.2 are defined in terms of covariance matrices—including correlation matrices—

they can be applied whenever such matrices show up and inference on them is feasible. A case we have in mind is

when the copula of (X, Y) is Gaussian and Σ is the correlation matrix of the random vector obtained from (X, Y) by

transforming the univariate margins to the standard normal distribution (Section 3.4). Plugging in an estimate of the

covariance or correlation matrix produces estimates of the coefficients the asymptotic distributions of which can be

obtained by the delta method (Section 4). This approach is akin to the one in Rippl et al. [35], who propose inference

on the Wasserstein distance between Gaussian distributions based on estimated means and covariance matrices.

As one may expect, the simplification to covariance matrices comes at a price: in Proposition 3.3, a vanishing

coefficient is no longer a guarantee for independence as it was in Proposition 2.3 but only implies that all cross-

covariances are zero. This fact property is shared with the RV coefficient and the one in Puccetti [33].

6



Assume all diagonal elements of Σ are positive and let R = D
−1/2

Σ
ΣD
−1/2

Σ
be the correlation matrix associated to Σ,

where DΣ is the diagonal matrix having the same diagonal as Σ. ThenDr(Σ) andDr(R) are different in general. Hence,

as in principal component analysis, it may be a good idea to scale variables to have unit variance prior to the use of

the coefficients.

3.2. Majorisation of vectors of eigenvalues

To explain the intuition, let R be a d × d correlation matrix with eigenvalues λ1 ≥ . . . ≥ λd ≥ 0. Since it holds

that λ1 + · · · + λd = tr(R) = d, the proportion of the total variance explained by the first k principal components is

(λ1 + · · · + λk)/d. The larger this proportion, the better the quality of representation of the d standardised variables

on the linear subspace spanned by the first k principal components. Intuitively, the dimension reduction is more

successful as the eigenvalues are more spread out. The worst case in this respect occurs when tr(R) is the identity

matrix and all eigenvalues are equal to 1. The idea also applies in general for covariance matrices and underlies many

inequalities in mathematics. It goes back to Hardy, Littlewood and Pólya [16] and even earlier to the works of I. Schur.

This theory will be key to derive the maxima in D1 and D2.

We rely on the monograph by Marshall et al. [25], from which the next definition and proposition are taken: see

Definition 1.A.1 on page 8 and Proposition 3.C.1 on page 92, as well as the historical remarks on pages 93–95.

Definition 3.4 (Majorization). For two vectors x, y ∈ Rd, we say that y majorizes x, notation x ≺ y, if















∑k
i=1 x[i] ≤

∑k
i=1 y[i], k = 1, . . . , d − 1,

∑d
i=1 x[i] =

∑d
i=1 y[i],

where x[1] ≥ . . . ≥ x[d] denote the elements of x in decreasing order, and similarly for y.

When applied to the vectors of eigenvalues λ and µ of two d × d covariance matrices Σ and Ξ, respectively, the

relation λ ≺ µ states that, for any k = 1, . . . , d − 1, the reduction to the first k principal components is more successful

for Ξ than for Σ in terms of proportion of variance explained. The link between majorisation and the computation of

the suprema in the denominators of D1 and D2 stems from the following property [25, Proposition 3.C.1].

Proposition 3.5 (Majorisation and convexity). If I ⊆ R is an interval and if g : I → R is convex, then for all x, y ∈ Id,

we have

x ≺ y =⇒
d

∑

i=1

g(xi) ≤
d

∑

i=1

g(y j).

For fixed diagonal blocks Σ1 ∈ S
p
≥ and Σ2 ∈ S

q

≥, does there exist Σm ∈ Γ(Σ1,Σ2) in (7) whose vector of ordered

eigenvalues majorises those of all other covariance matrices of that form? The answer is positive and this matrix turns

out to attain the suprema in the definitions of D1 and D2 in Definition 3.2. The eigendecompositions of Σ1 and Σ2 are

Σ j = U jΛ jU
⊤
j , j ∈ {1, 2}, (9)

where Λ1 = diag(λ1,1, . . . , λp,1) is the p× p diagonal matrix containing the p ordered eigenvalues λ1,1 ≥ . . . ≥ λp,1 ≥ 0

of Σ1, counting multiplicities, and where the columns of the p × p orthogonal matrix U1 contain the corresponding

eigenvectors. We set similar notation for the elements arising from the eigenvalue decomposition of Σ2.

Theorem 3.6 (Eigenvalue majorisation given diagonal blocks). Let Σ1 ∈ S
p
≥ and Σ2 ∈ S

q

≥ have eigendecomposi-

tions (9). Let d = p + q and define the d × d matrix

Σm =

[

Σ1 Ψm

Ψ
⊤
m Σ2

]

(10)

with p × q off-diagonal block

Ψm = U1Λ
1/2

1
ΠΛ

1/2

2
U⊤2 , (11)

where Π ∈ Rp×q is the p × q upper left block of Id. The eigenvalues of Σm are

λ(Σm) = (λ j,1 + λ j,2)d
j=1 (12)

7



where λ j,1 = 0 if j ≥ p + 1 and λ j,2 = 0 if j ≥ q + 1. For any Σ ∈ Γ(Σ1,Σ2) with eigenvalues λ(Σ) = (λ j)
d
j=1

, we have

λ(Σ) ≺ λ(Σm).

The matrix Σm in (10) can be interpreted as the joint covariance matrix of two random vectors having common

principal components, yielding cross-covariance matrix Ψm in (11); see Remark 3.11. The matrix Σm also possesses

various extremal properties (Proposition 3.9 and Remark 3.12). Interchanging Σ1 and Σ2 leads to a matrix Σm of the

same form, with obvious changes, and with the same eigenvalues in (12).

Proof of Theorem 3.6. We need to show two things: first, the eigenvalues of Σm are as in Eq. (12) (which implies that

Σm is positive semi-definite) and second, the eigenvalues of any other Σ of the form (7) are majorized by those of Σm.

For ease of writing, we assume that p ≤ q; otherwise, switch the roles of the two parts in the partition. The matrix Π

then becomes

Π =

[

Ip 0p×(q−p)

]

∈ Rp×q.

First, since

[

U1 0

0 U2

]

is orthogonal, the eigenvalues of Σm are the same as those ofΛm =

[

Λ1 Λ
1/2

1
ΠΛ

1/2

2

Λ
1/2

2
Π
⊤
Λ

1/2

1
Λ2

]

.

The eigenvalues and eigenvectors of Λm can be found explicitly. For integer 1 ≤ r ≤ s, let er,s be the r-th canonical

unit vector in R
s. Then:

• For j = 1, . . . , p, the vector (λ
1/2

j,1
e⊤

j,p
, λ

1/2

j,2
e⊤

j,q
)⊤ is an eigenvector of Λm with eigenvalue λ j,1 + λ j,2.

• For j = 1, . . . , p, the vector (λ
1/2

j,2
e⊤

j,p
,−λ1/2

j,1
e⊤

j,q
)⊤ is an eigenvector of Λm with eigenvalue 0.

• For j = p + 1, . . . , q, the vector (0⊤, e⊤
j,q

)⊤ is an eigenvector of Λm with eigenvalue λ j,2.

Second, let λ1 ≥ . . . ≥ λd ≥ 0 be the eigenvalues of Σ. We need to show that

k
∑

j=1

λ j ≤
k

∑

j=1

(λ j,1 + λ j,2), k = 1, . . . , p,

k
∑

j=1

λ j ≤ p +

k
∑

j=1

λ j,2, k = p + 1, . . . , q.

By Theorem 1 in Thompson and Therianos [40], we have, for any choice of integers

1 ≤ i1 < . . . < iµ ≤ p, 1 ≤ j1 < . . . < jν ≤ q

that
µ+ν
∑

s=1

λis+ js−s ≤
µ

∑

s=1

λis ,1 +

ν
∑

s=1

λ js,2,

where is = p − µ + s for s > µ and js = q − ν + s for s > ν. Now:

• For k = 1, . . . , p, set µ = ν = k and is = js = s to find the first inequality to be proved.

• For k = p + 1, . . . , q, set µ = p with is = s for s = 1, . . . , p and set ν = k with js = s for s = 1, . . . , q to find the

second inequality to be proved.

Example 3.7 (d = 2). If p = q = 1 and Σ j = σ2
j

for j ∈ {1, 2}, the matrix in (10) is Σm =

[

σ2
1

σ1σ2

σ1σ2 σ2
2

]

with

eigenvalues σ2
1
+ σ2

2
and 0.
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Example 3.8 (d = 3). If p = 1 with Σ1 = 1 and q = 2 with Σ2 =

[

1 ρ

ρ 1

]

and ρ ∈ [−1, 1], then

Σm =























1
√

(1 + |ρ|)/2
√

(1 + |ρ|)/2
√

(1 + |ρ|)/2 1 ρ
√

(1 + |ρ|)/2 ρ 1























,

the correlation matrix of (Z1, X2, X3), with Z1 = (X2 + sign(ρ)X3)/
√

2 the first principal component of the couple

(X2, X3) ∼ N2(0,Σ2). The ordered eigenvalues of Σ2 are 1 + |ρ| and 1 − |ρ| and those of Σm are 2 + |ρ|, 1 − |ρ| and 0.

Among all members of Γ(Σ1,Σ2), the matrix Σm occupies a special place. According to the following proposition, it

maximises the RV coefficient as well as the 2-Wasserstein distance with respect to bothNd(0, Id) andNd(0,Σ0) for Σ0

in (8). Given the constraints on the margins, we think ofNd(0,Σm) as the Gaussian distribution that is “least random”,

“most structured”, or “farthest away from independence”. These claims can be made precise if, as in Remark 3.12, the

amount of structure is quantified by the von Neumann entropy.

Proposition 3.9 (Extremal properties of Σm). Let d = p + q be integer and let Σ1 ∈ S
p
≥ and Σ2 ∈ S

q

≥. Among all

Σ ∈ Γ(Σ1,Σ2) in (7), the matrix Σm in (10):

(i) maximizes dW(Σ, Id);

(ii) maximizes dW(Σ,Σ0) with Σ0 as in 8;

(iii) maximizes tr(ΨΨ⊤) and therefore maximizes the RV coefficient.

As a consequence, the dependence coefficients D1(Σ) and D2(Σ) are maximal, i.e., equal to 1, if Σ is equal to Σm.

See Remark 3.11 for a statistical interpretation of this form of dependence in terms of principal components.

Proof of Proposition 3.9. (i) Recall that λ1 ≥ . . . ≥ λd ≥ 0 are the eigenvalues of Σ. By Eq. (6), we have

W2
2

(

Nd(0,Σ), Nd(0, Id)
)

= d + tr(Σ) − 2 tr(Σ1/2) = d +

d
∑

j=1

λ j − 2

d
∑

j=1

λ
1/2

j
.

Since the function λ 7→ λ − 2λ1/2 is convex on λ ∈ R≥, the claim of maximality follows from Proposition 3.5 and

Theorem 3.6.

(ii) We have

Σ
1/2

0
ΣΣ

1/2

0
=

[

Σ
1/2

1
0

0 Σ
1/2

2

] [

Σ1 Ψ

Ψ
⊤
Σ2

] [

Σ
1/2

1
0

0 Σ
1/2

2

]

=

[

Σ
2
1

Σ
1/2

1
ΨΣ

1/2

2

Σ
1/2

2
Ψ
⊤
Σ

1/2

1
Σ

2
2

]

.

Recall the eigendecomposition (9) of Σ j. For r ∈ {1, 2} and for α > 0, the eigendecomposition of Σa
r is UrΛ

α
r Ur,

i.e., the eigenvectors are the same as those of Σr while the eigenvalues are raised to the exponent α. For Ψm as in

Eq. (11), we get

Σ
1/2

1
ΨmΣ

1/2

2
=

(

U1Λ
1/2

1
U⊤1

) (

U1Λ
1/2

1
ΠΛ

1/2

2
U⊤2

) (

U2Λ
1/2

2
U⊤2

)

= U1Λ1ΠΛ2U2.

The latter matrix is of the same form as Ψm in Eq. (11) but with Λr replaced by Λ2
r . By Theorem 3.6 with Σr replaced

by Σ2
r for r ∈ {1, 2}, it follows that of all positive semidefinite d × d matrices with diagonal blocks Σ2

1
and Σ2

2
, the

eigenvalues are majorised by those of the matrix Σ
1/2

0
ΣmΣ

1/2

0
. In view of Eq. (6), we have

W2
2

(

Nd(0,Σ), Nd(0,Σ0)
)

= 2 trΣ − 2 tr
{

(Σ
1/2

0
ΣΣ

1/2

0
)1/2}
= 2 trΣ − 2

d
∑

j=1

κ
1/2

j

with κ1, . . . , κd the eigenvalues of Σ
1/2

0
ΣΣ

1/2

0
, counting multiplicities. The function κ 7→ −κ1/2 being convex on κ ∈ R≥,

the maximality follows from Proposition 3.5 and Theorem 3.6.

(iii) For any rectangular matrix A, we have tr(AA⊤) =
∑

i

∑

j A2
i j

. It follows that tr(Σ2) = tr(Σ2
1
)+ tr(Σ2

2
)+2 tr(ΨΨ⊤).

Given the diagonal blocks Σ1 and Σ2, maximising tr(ΨΨ⊤) is thus equivalent to maximising tr(Σ2). As the function

λ 7→ λ2 is convex, Proposition 3.5 and Theorem 3.6 imply that tr(Σ2) =
∑d

j=1 λ
2
j

is maximal for Σ equal to Σm.
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In view of Proposition 3.9, we can now work out the dependence coefficients D1 and D2 in Definition 3.2. Let

Σ1 ∈ Sp

≥ and Σ2 ∈ Sq

≥ and let Σ ∈ Γ(Σ1,Σ2). Let λ1 ≥ . . . ≥ λd ≥ 0 denote the eigenvalues of Σ, let λ1,1 ≥ . . . ≥ λp,1 ≥ 0

denote those of Σ1 and λ1,2 ≥ . . . ≥ λq,2 ≥ 0 those of Σ2.

Proposition 3.10 (Quasi-Gaussian Wasserstein dependence coefficients: computation). Let Σ1,Σ2,Σ be as above, with

Σ1 and Σ2 non-zero. For Σ0 and Σm as in (8) and (10), respectively, we have

D1(Σ) =
tr(Σ

1/2

1
) + tr(Σ

1/2

2
) − tr(Σ1/2)

tr(Σ
1/2

1
) + tr(Σ

1/2

2
) − tr(Σ

1/2
m )
=

∑p

j=1
λ

1/2

j,1
+

∑q

j=1
λ

1/2

j,2
−

∑d
j=1 λ

1/2

j

∑p

j=1
λ

1/2

j,1
+

∑q

j=1
λ

1/2

j,2
−

∑p∨q

j=1
(λ j,1 + λ j,2)1/2

,

and

D2(Σ) =
tr(Σ) − tr{(Σ1/2

0
ΣΣ

1/2

0
)1/2}

tr(Σ) − tr{(Σ1/2

0
ΣmΣ

1/2

0
)1/2}

=

∑d
j=1 λ j −

∑d
j=1 κ

1/2

j
∑d

j=1 λ j −
∑p∨q

j=1
(λ2

j,1
+ λ2

j,2
)1/2

where κ1 ≥ . . . ≥ κd ≥ 0 denote the eigenvalues of Σ
1/2

0
ΣΣ

1/2

0
.

Proof of Proposition 3.10. First we calculate D1(Σ). By Eq. (6), we have W2
2

(

Nd(0,Σ),Nd(0, Id)
)

= d + tr(Σ) −
2 tr(Σ1/2). Apply this result to the three terms in the numerator of D1(Σ) and use the content of Theorem 3.6 for the

denominator. The claim aboutD1(Σ) follows from direct simplifications, using d = p+q and tr(Σ) = tr(Σm) = tr(Σ0) =

tr(Σ1) + tr(Σ2).

The value of D2(Σ) is obtained in a similar way.

The coefficient D1(Σ) depends on Σ only through the eigenvalues of Σ1, Σ2 and Σ itself. The coefficient D2(Σ),

instead, requires the eigenvalues of Σ1, Σ2 and Σ
1/2

0
ΣΣ

1/2

0
. We will see in the examples and the case study that the values

of D1(Σ) and D2(Σ) are often rather close. The interpretation of D2(Σ) may be more straightforward, comparing Σ

directly with Σ0, but in terms of computations, coefficientD1(Σ) is the simpler one.

Remark 3.11 (Perfectly correlated principal components). The matrix Σm in Eq. (10) is the covariance matrix of the

random vector














U1Λ
1/2

1
Z1

U2Λ
1/2

2
Z2















where Z1 = (Z1,1, . . . , Z1,p)⊤ ∼ Np(0, Ip) and Z2 = (Z2,1, . . . , Z2,q)⊤ ∼ Nq(0, Iq) and where Zk,1 = Zk,2 for k belonging

to the set {1, . . . , p ∧ q}, i.e., Z1 and Z2 have the first p ∧ q components in common. If the random vector (X, Y) of

dimension d = p + q has covariance matrix Σm, then for k ∈ {1, . . . , p ∧ q}, the k-th principal components of X and Y

are perfectly correlated. Moreover, if q ≤ p and if the first q eigenvalues ofΛ1 are positive, we then have Y = HX with

H = U2Λ
1/2

2
Π
′
Λ
−1/2

1
U ′

1
, with Π as in Theorem 3.6 and where Λ1 and U1 can be limited to their first q columns. Note

that in the singular value decomposition of H, the first q right-singular vectors are equal to the first q eigenvectors

of Σ1. For general q × p matrices A, however, the equality Y = AX does not imply that our dependence coefficients

are equal to one. Given the two diagonal blocks, the joint covariance matrix of two such random vectors does not

necessarily maximize the Bures–Wasserstein distance to the joint covariance matrix with zero cross-correlations.

Remark 3.12 (von Neumann entropy). Among all matrices Σ of the form (7), the matrix Σm in Eq. (10) also minimises

the von Neumann entropy [32, see Eq. (11)]

− tr(Σ lnΣ) = −
d

∑

j=1

λ j ln λ j

with λ ln λ to be interpreted as 0 for λ = 0, and where the sum is over all d eigenvalues of Σ, counting multiplic-

ities. The property follows from Proposition 3.5 and Theorem 3.6 since the function λ 7→ −λ ln λ is convex. The

von Neumann entropy is a generalisation of the concept of entropy that turned useful in quantum physics in which

the operators of interest are density matrices. The definition strongly resembles the one of the Shannon entropy in

information theory where the eigenvalues in the above display are replaced by the probabilities associated to a finite

number of events.
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Figure 2: Dependence coefficients in various families of correlation matrices. (From left to right) Bivariate correlation matrix,

trivariate equicorrelated matrix, trivariate autoregressive model and trivariate moving average model.

Remark 3.13 (Adjusted RV coefficient). ForΨm as in Eq. (11), we have tr(ΨmΨ
⊤
m) = tr(Λ1ΠΛ2) =

∑p

j=1
λ j,1λ j,2. Given

the diagonal blocks Σ1 and Σ2, this is the maximal value of the numerator in the RV coefficient in Eq. (2). We therefore

propose to adjust the RV coefficient by

RV(Σ) =
RV(Σ)

RV(Σm)
=

tr(ΨΨ⊤)

tr(ΨmΨ
⊤
m)
. (13)

We have 0 ≤ RV ≤ RV ≤ 1, and in contrast to RV, given Σ1 and Σ2, the adjusted version RV can take on all values

between 0 and 1.

3.3. Examples

We compute the dependence coefficientsD1(Σ) andD2(Σ) forΣ in some parametric families of correlation matrices.

For comparison, we also show the RV coefficient and its adjusted version RV in (13). In these low-dimensional

examples, the difference between the RV and the adjusted coefficient remains small. The difference however clearly

materializes in higher-dimensional examples as in Figure B.8 (Top row) of the supplementary material, for instance.

Example 3.14 (Bivariate correlation matrix). Let p = q = 1 and for ρ ∈ [−1, 1] put

Σ =

[

1 ρ

ρ 1

]

.

From Proposition 3.9, we find

D1(Σ) = D2(Σ) =
2 −

√

1 + ρ −
√

1 − ρ
2 −
√

2
.

The RV coefficient and the adjusted version RV in (13) are both equal to ρ2 while the coefficient in Puccetti [33] is

equal to ρ itself. In this case, the square of the distance correlation by Székely et al. [38] is given in their Theorem 7

and reads {ρ arcsin(ρ) + (1 − ρ2)1/2 − ρ arcsin(ρ/2) − (4 − ρ2)1/2
+ 1}/{1 + π/3 − 31/2}. These different coefficients are

shown in Figure 2 on the left.

Example 3.15 (Trivariate equicorrelated matrix). Let p = 1 and q = 2 and for ρ ∈ [−1/2, 1] put

Σ =





















1 ρ ρ

ρ 1 ρ

ρ ρ 1





















.

The matrix Σm was calculated in Example 3.8. Even though D1(Σ) , D2(Σ) in general, both functions are extremely

close in this case for ρ positive, with sup0≤ρ≤1 |D1(Σ) − D2(Σ)| < 0.005. The various coefficients are shown in Fig-

ure 2 b). Some closed-form formulas used to produce the graphs exist and are deferred to Appendix C. for space

considerations.
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Example 3.16 (Model comparison). In this example, we measure the dependence between a univariate random vari-

able and a bivariate vector when the joint structure is either moving average or auto-regressive. The result for the

various dependence coefficients is shown in Figure 2. The graph c) pertains to the auto-regressive structure while the

graph d) corresponds to moving averages structure, that is, to the matrices





















1 ρ ρ2

ρ 1 ρ

ρ2 ρ 1





















for −1 ≤ ρ ≤ 1 and





















1 ρ 0

ρ 1 ρ

0 ρ 1





















for − 1
√

2
≤ ρ ≤ 1

√
2
, (14)

respectively. The corresponding formulas are again deferred to the supplementary material, Appendix C.

3.4. G-copulas

For a random vector (X, Y) in dimension d = p + q, the dependence coefficients D1 and D2 were defined in

terms of its joint covariance matrix Σ. As already mentioned, one may first want to rescale the variables and define

the coefficients in terms of the joint correlation matrix instead. A more radical standardisation is to transform the

univariate margins to a common distribution with finite second moment. This can be achieved by a combination of

the probability and quantile transforms, provided the margins are continuous, i.e., do not have atoms. The advantage

of such an approach is that the dependence coefficients become invariant with respect to component-wise monotone

increasing or decreasing transformations. Also, on the original scale, the distribution is no longer subject to any

moment conditions.

In view of the coefficients’ origin in the Wasserstein distance between Gaussian distributions, a natural choice

for the standardisation target is the standard normal distribution. We call the resulting multivariate distribution a G-

copula, as an alternative to classical copulas, whose margins are uniform on the unit interval. The idea is not new: in

the context of copula density estimation, Geenens et al. [12] also prefer the standard normal distribution as pivot.

Let Φ denote the standard normal cumulative distribution function (cdf) and let Φ−1 : [0, 1] → [−∞,∞] denote

its inverse. A G-copula is simply a multivariate cdf with standard normal margins. By a trivial extension of Sklar’s

theorem, every multivariate cdf F with univariate margins F(1), . . . , F(d), admits a G-copula G such that

F(z) = G
(

Φ
−1 ◦ F(1)(z(1)), . . . ,Φ−1 ◦ F(d)(z(d))

)

, z = (z(1), . . . , z(d)) ∈ Rd.

If the margins F(1), . . . , F(d) are continuous, the G-copula G in the above identity is unique and is equal to the cdf of

ZG =
(

Φ
−1 ◦ F(1)(Z(1)), . . . ,Φ−1 ◦ F(d)(Z(d))

)

,

where the random vector Z has cdf F. The entries of the correlation matrix ΣG of ZG are called normal correlation

coefficients in Klaassen and Wellner [20]. They are the population versions of the normal scores rank correlation

coefficients. The (ordinary) copula of Z is equal to the one of a Gaussian distribution with correlation matrix ΣG if

and only if the G-copula of Z is equal to Nd(0,ΣG).

Given a random vector Z = (X, Y) of dimension d = p + q with continuous margins, we can now apply the

dependence coefficientsD1 andD2 to the random vector ZG = (XG, YG) with standard normal margins obtained by the

above operation. We obtain

DG,r(X, Y) = Dr(XG, YG) = Dr(ΣG; p, q),

where ΣG is the correlation matrix of the random vector (XG, YG). Estimating ΣG by the matrix of normal scores

rank correlation coefficients yields a non-parametric rank-based estimator of DG,r(X, Y). In Section 4, we study the

asymptotic distribution of this estimator in case the copula of (X, Y) is Gaussian.

4. Estimation of quasi-Gaussian Wasserstein dependence coefficients

In this section, we propose plug-in estimators for the Wasserstein-based dependence coefficients (Section 4.1)

and establish their limiting distributions, which is paramount for inferential purposes (Section 4.3). Before obtaining

the latter results, we establish in Section 4.2 the Fréchet differentiability of the maps Σ 7→ Dr(Σ; p, q) for r ∈ {1, 2}
in Definition 3.2, where Σ must satisfy some conditions. The latter result opens the door to the application of our

coefficients in many contexts.
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4.1. Estimators

The dependence coefficients Dr(Σ; p, q) for r ∈ {1, 2} can be studied in any setting where a covariance or corre-

lation matrix Σ shows up. The coefficient is zero if and only if Σ = Σ0 in (8). This identity implies independence

provided Σ is the covariance or correlation matrix of a Gaussian distribution. The latter may be the distribution of

the observations themselves or, as in Section 3.4, it may be their G-copula. Still, the coefficients can be used in

non-Gaussian settings too, in the same way as a principal component analysis can be applied to any covariance or

correlation matrix.

Recalling that Dr for r ∈ {1, 2} is a function from a subset of the d × d symmetric positive semi-definite matrices

to [0, 1], a natural way to estimate the coefficients is to consider a plug-in estimator. If Σ̂n is an estimator of the

covariance or correlation matrix Σ of interest, we set

D̂n,r = Dr(Σ̂n). (15)

An important point to highlight at this stage is the generality of the approach. The matrix Σ̂n could be the empirical

covariance or correlation matrix or, in case of a G-copula, the one of normal scores rank correlation coefficients.

Constrained covariance matrices could be used for factor models, graphical models etc. In higher dimensions and

depending on the context, one could employ a variety of regularization techniques, such as enforcing sparsity of the

precision matrix or shrinking the eigenvalues. The impact of the latter will be investigated numerically in Appendix A.

Before stating the results, let us give an overview of how estimation of and inference on the dependence coefficients

can be carried out in practice.

1. Estimate a covariance matrix and calculate the plug-in point estimate in Equation (15).

2. Compute the quantities appearing in Theorems 4.1 and 4.2 for coefficientsD1 andD2 respectively, based on the

estimated covariance matrix.

3. Insert the latter quantities in Equation (37) to estimate the asymptotic variances in the Gaussian (copula) case.

4. Construct confidence intervals and perform hypotheses tests based on the the normal approximation (Theo-

rem 4.6) using the estimated variances.

4.2. Fréchet differentiability

First, we will prove the Fréchet differentiability of the maps Σ 7→ Dr(Σ; p, q) with r ∈ {1, 2} for Σ a positive definite

symmetric matrix. To this end, we will need an assumption on the diagonal blocks Σ1 and Σ2: we require that Σ1 has

p distinct non-zero eigenvalues and that Σ2 has q distinct non-zero eigenvalues. Otherwise, the functionals are still

compactly (Hadamard) differentiable, but the derivatives are no longer linear and the asymptotic distribution of the

plug-in estimator (15) is no longer Gaussian. The phenomenon is caused by the denominator in the definition of the

coefficients, which relies on the ordering of the eigenvalues. The issue is visible in Example 3.15 at ρ = 0.

As Sd, the space of symmetric real d×d matrices, is isomorph to a linear subspace of Rd2

, any linear map S
d → R

can be written as a trace inner product of the form

H 7→ tr(MH) =

d
∑

i=1

d
∑

j=1

Mi jHi j (16)

for some M ∈ Sd. Fréchet derivatives being linear maps, we will write them in the above form. The main challenge

will thus be to identify the matrices Mr in the limits

lim
t↓0

t−1(
Dr(Σ + tHt) −Dr(Σ)

)

= tr(MrH) (17)

for r ∈ {1, 2}, where Ht,H ∈ S
d and Ht → H element-wise as t ↓ 0. We will assume that Σ is positive definite, and

then Σ + tHt will be so too for t sufficiently close to zero.

We introduce some notation. Recall that Sm
> denotes the set of symmetric positive definite real m × m matrices.

Fix positive integer d = p + q. Let Σ1 ∈ S
p
> and Σ2 ∈ S

q
> and let Σ ∈ Γ(Σ1,Σ2) as in (7) and Σ0 as in (8). The

eigendecompositions Σr = UrΛrU
⊤
r for r ∈ {1, 2} in (9) allow us to define the matrix Σm in (10). Let Π1 be the

projection matrix onto the first p coordinates and Π2 the one onto the last q coordinates, that is,

Π1 =

[

Ip 0
]

∈ Rp×d, Π2 =

[

0 Iq

]

∈ Rq×d. (18)
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Note that Σ j = Π jΣΠ
⊤
j

for j ∈ {1, 2}. Assume q ≥ p (otherwise, switch the roles of p and q) and partition the second

eigenvalue matrix Λ2 ∈ Sq
> as

Λ2 =

[

Λ2,1 0

0 Λ2,2

]

(19)

with Λ2,1 ∈ S
p
> containing the first p eigenvalues and Λ2,2 ∈ S

q−p
> the remaining q − p ones, the second block being

empty if q = p. Finally, define

∆1 = (Λ1 + Λ2,1)−1/2, ∆2 =

[

∆1 0

0 Λ
−1/2

2,2

]

. (20)

We can now state the differentiability of D1 and D2 with derivatives in the form (17). The meaning of the constants

and matrices in the formulas is explained in Remark 4.3.

Theorem 4.1 (Differentiability of D1). Consider the set-up in the previous paragraph. Assume that Σ ∈ S
d
>, that Σ1

has p distinct eigenvalues and Σ2 has q distinct eigenvalues. Let Ht ∈ Sd for t > 0 and H ∈ Sd be such that Ht → H

element-wise as t ↓ 0. Then

lim
t→0

t−1(
D1(Σ + tHt) −D1(Σ)

)

= tr(M1H)

with

M1 =
1

2c1

(

−Σ−1/2
+

(

1 −D1(Σ)
)

Σ
−1/2

0
+D1(Σ)Υ1

)

,

c1 = tr(Σ
1/2

1
) + tr(Σ

1/2

2
) − tr(Σ1/2

m ),

Υ1 =

[

U1∆1U⊤
1

0

0 U2∆2U⊤
2

]

. (21)

Proof of Theorem 4.1. Note that for t close enough to zero, Σ+tHt is positive definite since Σ is so and since Σ+tHt →
Σ element-wise as t ↓ 0. Consider the function

f (x̄, ȳ, z̄, w̄) =
ȳ + z̄ − x̄

ȳ + z̄ − w̄
.

We have D1(Σ) = f (x, y, z,w) and D1(Σ + tHt) = f (xt, yt, zt,wt) where

x = tr(Σ1/2), y = tr(Σ
1/2

1
), z = tr(Σ

1/2

2
), w = tr(Σ1/2

m ),

and similarly

xt = tr
(

(Σ + tHt)
1/2), yt = tr

(

(Σ + tHt)
1/2

1

)

, zt = tr
(

(Σ + tHt)
1/2

2

)

, wt = tr
(

(Σ + tHt)
1/2
m

)

.

Here, (Σ + tHt)1 and (Σ + tHt)2 are the upper p × p and lower q × q diagonal blocks of Σ + tHt, respectively, while

(Σ + tHt)m is the matrix in (10) with Σ replaced by Σ + tHt.

Provided the quantities (xt − x)/t and so on converge, we have

D1(Σ + tHt) −D1(Σ)

t
= ḟx

xt − x

t
+ ḟy

yt − y

t
+ ḟz

zt − z

t
+ ḟw

wt − w

t
+ o(1), t ↓ 0,

where ḟx and so on are the partial derivatives of f evaluated at (x, y, z,w). Using the notation c1 = y + z − w,

straightforward computation gives

ḟx = −
1

c1

, ḟy = ḟz =
1 −D1(Σ)

c1

, ḟw =
D1(Σ)

c1

.

14



It follows that, as t ↓ 0 and provided (xt − x)/t and so on converge,

D1(Σ + tHt) − D1(Σ)

t
=

1

c1

(

− xt − x

t
+ (1 − D1(Σ))

yt − y + zt − z

t
+D1(Σ)

wt − w

t

)

+ o(1). (22)

Let H11 and H22 be the upper p × p and lower q × q diagonal blocks of H. By (39),

lim
t↓0

xt − x

t
=

1

2
tr(Σ−1/2H), (23)

as well as

lim
t↓0

yt − y + zt − z

t
=

1

2
tr(Σ

−1/2

1
H11) +

1

2
tr(Σ

−1/2

2
H22) =

1

2
tr(Σ

−1/2

0
H). (24)

Lemma 4.12 further yields

lim
t↓0

zt − z

t
=

1

2
tr(Υ1H). (25)

Combine equations (22), (23), (24) and (25) to see that

lim
t↓0

D1(Σ + tHt) − D1(Σ)

t
=

1

2c1

(

− tr(Σ−1/2H) + (1 − D1(Σ)) tr(Σ
−1/2

0
H) +D1(Σ) tr(Υ1H)

)

.

The claim follows by the linearity of the trace operator followed by isolating H.

To state the Fréchet differentiability of D2, we need some additional notation. Recall the eigendecompositions (9)

of Σ1 and Σ2 and recall the partitioning of Λ2 in (19). Similar to (20), define

∆
′
1 = (Λ2

1 + Λ
2
2,1)−1/2

Λ1, ∆
′
2 =

[

(Λ2
1
+ Λ

2
2,1

)−1/2
Λ2,1 0

0 Iq−p

]

,

the second diagonal block of ∆′
2

being empty if q = p. Consider the d × d matrices

J = Σ
−1/2

0

(

Σ
1/2

0
ΣΣ

1/2

0

)1/2
Σ
−1/2

0
=

[

J11 J12

J21 J22

]

, (26)

J0 =

[

J11 0

0 J22

]

, (27)

the dimensions of the two diagonal blocks J11 and J22 being p × p and q × q, respectively.

Theorem 4.2 (Differentiability of D2). Under the same assumptions as in Theorem 4.1, we have

lim
t→0

t−1(
D2(Σ + tHt) −D2(Σ)

)

= tr(M2H)

where

M2 =
1

c2

(

−1

2
(J0 + J−1) + (1 − D2(Σ))Id + D2(Σ)Υ2

)

,

c2 = tr(Σ) − tr
(

(

Σ
1/2

0
ΣmΣ

1/2

0

)1/2
)

,

Υ2 =

[

U1∆
′
1
U⊤

1
0

0 U2∆
′
2
U⊤

2

]

. (28)

Proof of Theorem 4.2. The proof is similar to the one of Theorem 4.1. Writing f (x̄, ȳ, z̄) = (z̄ − x̄)/(z̄ − ȳ), we have

D2(Σ) = f (x, y, z), D2(Σ + tHt) = f (xt, yt, zt)
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where

x = tr
(

(

Σ
1/2

0
ΣΣ

1/2

0

)1/2
)

, y = tr
(

(

Σ
1/2

0
ΣmΣ

1/2

0

)1/2
)

, z = tr(Σ),

and similarly for xt, yt, zt, with Σ replaced by Σ + tHt. If we can show that the three expressions (xt − x)/t, (yt − y)/t

and (zt − z)/t converge as t ↓ 0, the chain rule yields

D(Σ + tHt) −D2(Σ)

t
= ḟx

xt − x

t
+ ḟy

yt − y

t
+ ḟz

zt − z

t
+ o(1), t ↓ 0,

with partial derivatives

ḟx = −
1

z − y
, ḟy =

z − x

(z − y)2
=
D2(Σ)

z − y
, ḟz =

1 −D2(Σ)

z − y
.

By Corollary 4.14 and Lemma 4.15, we have, respectively

lim
t↓0

xt − x

t
=

1

2
tr
(

(J0 + J−1)H
)

, lim
t↓0

yt − y

t
= tr(Υ2H).

Further, (zt − z)/t = tr(Ht)→ tr(H) as t ↓ 0. It follows that

D(Σ + tHt) −D2(Σ)

t
=

1

z − y

(

− xt − x

t
+D2(Σ)

yt − y

t
+ (1 −D2(Σ))

zt − z

t

)

+ o(1)

→ 1

z − y

(

−1

2
tr
(

(J0 + J−1)H
)

+D2(Σ) tr(Υ2H) + (1 − D2(Σ)) tr(H)

)

as t ↓ 0. Isolating H yields the stated limit.

Remark 4.3 (Matrices and constants in Theorems 4.1 and 4.2.). The constants c1 and c2 are just the denominators

of D1(Σ) and D2(Σ), respectively. The matrices Υ1 and Υ2 determine the Fréchet derivatives at Σ of tr(Σ
1/2
m ) and

tr((Σ
1/2

0
ΣmΣ

1/2

0
)1/2), appearing in the denominators of D1(Σ) and D2(Σ), see Lemmas 4.12 and 4.15, respectively. The

matrix J is the unique solution in S
d
> to the equation JΣ0 J = Σ and the associated linear operator constitutes the

optimal transport with respect to the squared Euclidean distance fromNd(0,Σ0) to Nd(0,Σ) [29].

Remark 4.4 (Fréchet derivative of Bures–Wasserstein distance). The proof of Theorem 4.2 requires the Fréchet deriva-

tive of the squared Bures–Wasserstein distance d2
W

in (6). The latter is stated in Lemma 2.4 in Rippl et al. [35], but

the formula is incorrect in case of repeated eigenvalues: the final double sum in their Eq. (21) should extend over all

pairs (i,m) ∈ {1, . . . , d}2 such that i , m, even those with λi = λm. Their expression is derived from Corollary 2.3 in

Gilliam et al. [13], but the projection matrix P j in there is the one on the eigenspace of the eigenvalue λ j, which, in

case of repeated eigenvalues, has dimension larger than one. A formula for the Fréchet derivative of d2
W

in the trace

form (16) and not requiring eigendecompositions is given in Lemma 4.13.

The matrix estimate used as input of the plug-in estimator in (15) could be a correlation matrix obtained from an

estimated covariance matrix by rescaling the d variables by their estimated standard deviations. To find the asymptotic

distribution of the resulting plug-in estimator, it is useful to know the Fréchet derivative of the composite map

Σ 7→ ϕ(Σ) 7→ Dr

(

ϕ(Σ)
)

(29)

for r ∈ {1, 2}, where, for Σ ∈ Sd
≥ with positive diagonal elements, we put

ϕ(Σ) = D
−1/2

Σ
ΣD
−1/2

Σ
(30)

with DA the diagonal matrix having the same dimension and diagonal as the square matrix A. The map ϕ is scale

invariant in the sense that ϕ(∆Σ∆) = ϕ(Σ) for any diagonal matrix ∆ ∈ Sd
>. It will therefore be sufficient to calculate

the Fréchet derivative of the map (29) at a d × d correlation matrix R. Note that DR = Id and thus ϕ(R) = R for such a

matrix.
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Corollary 4.5 (Differentiability of dependence coefficients after rescaling). Let R ∈ S
d
> be a correlation matrix

(DR = Id). Under the assumptions and notation of Theorems 4.1 and 4.2 with Σ replaced by R, we have, for r ∈ {1, 2},

lim
t↓0

t−1(
Dr(ϕ(R + tHt)) −Dr(R)

)

= tr
(

(MR,r − DMR,rR)H
)

,

where MR,r is the matrix Mr with Σ replaced by R.

Proof of Corollary 4.5. Write Ht = (ht, jk)
d
j,k=1

and H = (h jk)d
j,k=1

. For any j ∈ {1, . . . , d}, we have

[R + tHt]
−1/2

j j
= (1 + tht, j j)

−1/2
= 1 − 1

2
th j j + o(t), t ↓ 0.

Write R = (ρ jk)d
j,k=1

. It follows that, for j, k ∈ {1, . . . , d},

[ϕ(R + tHt)] jk =

(

1 − 1
2
th j j + o(t)

)−1/2 (

ρ jk + th jk + o(t)
)

(

1 − 1
2
thkk + o(t)

)−1/2

= ρ jk + t
(

h jk − 1
2
(h j jρ jk + ρ jkhkk)

)

+ o(t), t ↓ 0.

In matrix form, we find

lim
t↓0

t−1(ϕ(R + tHt) − R
)

= H − 1
2
(DHR + RDH) =: ϕ̇R(H). (31)

Note that the operator ϕ̇R : Sd → S
d is indeed linear. By the chain rule, we have

lim
t↓0

t−1 (

Dr

(

ϕ(R + tHt)) −Dr(R)
)

= tr
(

MR,rϕ̇R(H)
)

.

By the cyclic permutation property of the trace operator, the identity tr(A diag(B)) = tr(diag(A)B) for square matrices

A and B, and the fact that R and MR,r are symmetric and thus RMR,r and MR,rR share the same diagonal, we get

tr
(

MR,rϕ̇R(H)
)

= tr
(

MR,r

(

H − 1
2
(DHR + RDH)

)

)

= tr(MR,rH) − tr(DMR,rRH) = tr
(

(MR,r − DMR,r R)H
)

.

4.3. Asymptotic distributions

Suppose that Σ̂n is an estimator sequence of a covariance matrix Σ such that, for some deterministic sequence

0 < an → ∞, we have

an

(

Σ̂n − Σ
)

 H, n→ ∞, (32)

where H is a random symmetric matrix and the arrow denotes convergence in distribution. The delta method in

combination with Theorems 4.1 and 4.2 then yields

an

(

Dr(Σ̂n) −D(Σ)
)

 tr(MrH), n→ ∞, r ∈ {1, 2}. (33)

Next, suppose Σ has correlation matrix ϕ(Σ) = R as in (30) and we wish to estimate the dependence coefficient based

on the estimated correlation matrix ϕ(Σ̂n). The continuous mapping theorem and (32) imply

an

(

D
−1/2

Σ
Σ̂nD

−1/2

Σ
− R

)

 D
−1/2

Σ
HD

−1/2

Σ
, n→ ∞.

By scale invariance of ϕ, Corollary 4.5 and the delta method, it follows that, for r ∈ {1, 2},

an

(

Dr(ϕ(Σ̂n)) − Dr(R)
)

 tr
(

(MR,r − DMR,rR)D
−1/2

Σ
HD

−1/2

Σ

)

, n→ ∞. (34)

Often, the joint distribution of the elements of the random matrix H in (32) is Gaussian. By linearity, the weak lim-

its in (33) and (34) are then Gaussian too. This includes for instance the sample covariance matrix of an independent

random sample from a distribution with finite fourth moments [21, Thm 3.1.4] or the matrix of pairwise Spearman’s

rank correlation coefficients of an independent random sample from a continuous distribution [10, Thm 2.2].

Here, we work out the limit distributions of the plug-in estimators in two settings:

(GD) the sample correlation matrix from an independent random sample from a Gaussian distribution;
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(GC) the matrix of normal scores rank correlation coefficients of an independent random sample from a continuous

distribution with a Gaussian copula (see Section 3.4).

The common limit distribution in the two cases is centered normal. The asymptotic variance is an explicit and con-

tinuous function of the underlying correlation matrix. The latter can therefore be estimated consistently by a plug-in

estimator too, permitting the construction of asymptotic confidence intervals.

For setting (GD), let ξ1, . . . , ξn be an independent random sample from the d-variate normal distribution Nd(µ,Σ)

with mean vector µ ∈ R
d and covariance matrix Σ ∈ S

d. We want to estimate the dependence coefficients Dr(R) for

r ∈ {1, 2} associated to the correlation matrix R = ϕ(Σ). The plug-in estimator is D̂n,r = Dr(R̂n) where

R̂n = ϕ(Σ̂n) with Σ̂n =
1

n − 1

n
∑

i=1

(ξi − ξ̄n)(ξi − ξ̄n)⊤ (35)

is the empirical correlation matrix, based on the empirical covariance matrix Σ̂n and with ξ̄n = n−1
∑n

i=1 ξi the sample

mean vector.

For setting (GC), let ξ1, . . . , ξn be an independent random sample from a d-variate cdf F with continuous univariate

margins F1, . . . , Fd and G-copula equal to the cdf ofNd(0,R) with correlation matrix R. The plug-in estimator is now

Ďn,r = Dr(Řn) where

Řn = (ρ̌n, jk)d
j,k=1 with ρ̌n, jk =

1

n

n
∑

i=1

Ẑi jẐik

/

1

n

n
∑

i=1

(

Φ
−1( i

n+1
)
)2
, (36)

is the matrix of normal scores rank correlation coefficients [15, p. 113], defined in terms of the normal scores

Ẑi j = Φ
−1( n

n+1
F̂n j(ξi j)

)

and the marginal empirical cdf x j 7→ F̂n j(x j) = n−1 ∑n
i=1 1{ξi j ≤ x j}.

Surprisingly, the estimators R̂n and Řn in settings (GD) and (GC), respectively, share the same asymptotic expan-

sions: see Lemma 4.17, which repackages Theorem 3.1 in Klaassen and Wellner [20]. This explains why the limit

distributions of the plug-in estimators in both settings coincide. The form of the limit variance is a consequence of

a particular property of the limit distribution of the empirical covariance matrix of a sample from the multivariate

standard Gaussian distribution (Lemma 4.16).

Theorem 4.6 (Asymptotic normality of plug-in estimators: Gaussian (copula) case). Let R ∈ S
d
> be a correlation

matrix (DR = Id) such that the conditions of Theorem 4.1 are satisfied with Σ replaced by R. In settings (GD)

and (GC) above, we have, for Dn,r ∈ {D̂n,r, Ďn,r} and r ∈ {1, 2},
√

n
(

Dn,r −Dr(R)
)

 N(0, ζ2
r ), n→ ∞,

with asymptotic variance

ζ2
r = 2 tr

(

(

R(MR,r − DMR,rR)
)2
)

(37)

and MR,r the matrix Mr in Theorems 4.1 and 4.2 with Σ replaced by R.

Proof of Theorem 4.6. We have Dn,r = Dr(Rn) with Rn equal to either R̂n in (35) in the Gaussian distribution set-

ting (GD) or Řn in (36) in the Gaussian copula setting (GC). In both cases, we have the expansion (49) and thus

√
n(Rn − R) =

√
n
(

ϕ
(

1
n

∑n
i=1 ZiZ

⊤
i

)

− R
)

+ op(1), n→ ∞.

Let the eigendecomposition of R be R = UΛU⊤, where the diagonal matrix Λ contains the eigenvalues of R on the

diagonal and the columns of the orthogonal matrix U contain the associated eigenvectors. Then Zi = UΛ1/2ǫi for

i ∈ {1, . . . , n} where ǫ1, . . . , ǫn is an independent random sample fromNd(0, Id). For Wn as in (46), we find

1
√

n















1

n

n
∑

i=1

ZiZ
⊤
i − R















= UΛ1/2WnΛ
1/2U⊤.
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Combining the previous expansions with the delta method and Corollary 4.5, we get

√
n
(

Dn,r −Dr(R)
)

= tr
(

(MR,r − DMR,r R)UΛ1/2WnΛ
1/2U⊤

)

+ op(1)

= tr
(

Λ
1/2U⊤(MR,r − DMR,r R)UΛ1/2Wn

)

+ op(1)

 tr
(

Λ
1/2U⊤(MR,r − DMR,r R)UΛ1/2W

)

, n→ ∞,

with W the random matrix in Lemma 4.16. By the covariance formula (47) in the same lemma, the limit is centered

Gaussian with asymptotic variance

2 tr
(

(

Λ
1/2U⊤(MR,r − DMR,r R)UΛ1/2)2

)

= 2 tr
(

(

R(MR,r − DMR,r R)
)2
)

for r ∈ {1, 2}, using the cyclical property of the trace.

For r ∈ {1, 2}, let ζ2
n,r be the plug-in estimator of ζ2

r given by replacing R in (37) by R̂n and Řn in settings (GD)

and (GC), respectively.

Corollary 4.7 (Asymptotic normality of studentized plug-in estimators). In the set-up of Theorem 4.6, we have ζ2
n,r  

ζ2
r as n→ ∞ for r ∈ {1, 2}. If ζ2

r > 0, then also

√
n
(

Dn,r −Dr(R)
)

/ζn,r  N(0, 1), n→ ∞.

Proof of Corollary 4.7. Since R̂n in setting (GD) and Řn in setting (GC) are consistent estimators of R, it suffices

to check that MR,r is a continuous function of R. To do so, we need to inspect the formulas for M1 and M2 in

Theorems 4.1 and 4.2. The crucial point is that the eigenvalues and eigenvectors of the upper and lower diagonal

blocks R1 (dimension p × p) and R2 (dimension q × q) depend continuously on R, since by assumption these two

blocks have p and q distinct eigenvalues, respectively.

Corollary 4.7 permits a standard construction of asymptotic confidence intervals for Dr(R). An alternative would

be to employ the bootstrap as in Rippl et al. [35]. We do not develop this here in view of the satisfactory finite-sample

performance (Appendix A.4) of the confidence intervals based on the normal approximation.

Remark 4.8 (Zero coefficient and testing independence). If Dr(R) = 0, then necessarily ζ2
r = 0 in Theorem 4.6:√

n(Dn,r − Dr(R)) is non-negative and its limit distribution is centered normal, so the asymptotic variance must be

zero. This means that Theorem 4.6 and Corollary 4.7 cannot be used to construct tests for independence. Instead, a

higher-order result would be needed, stating weak convergence of nDn,r to a non-degenerate limit distribution, as in

Rippl et al. [35, Theorem 2.3]. Since Dr(R) = 0 does not imply independence anyway, we do not pursue this idea

further.

Remark 4.9 (d = 2). For bivariate correlation matrices, the dependence coefficient D1(R) = D2(R) is a smooth

function of the pairwise correlation ρ (Example 3.14). The estimator Dn,r is then equal to the corresponding value of

the coefficient at the estimated correlation. The limit distribution in Theorem 4.6 is equal to the one given by the delta

method in combination with the asymptotic normality of the empirical correlation for the bivariate normal distribution

in setting (GD) and the normal scores rank correlation for the bivariate Gaussian copula in setting (GC).

4.4. Additional lemmas

The following lemmas played a role in the proofs of the results in this section. Recall that Sd denotes the set of

real symmetric d × d matrices and S
d
> ⊂ S

d the subset of positive definite such matrices.

Lemma 4.10. Let B ∈ Sd
> and let Ht,H ∈ Sd for t > 0 be such that Ht → H element-wise as t ↓ 0. Then

lim
t↓0

t−1((B + tHt)
1/2 − B1/2)

= X, (38)

where X ∈ Sd is the solution to the Sylvester equation B1/2X + XB1/2
= H. Moreover,

lim
t↓0

t−1
(

tr
(

(B + tHt)
1/2) − tr

(

B1/2)
)

= tr(X) = 1
2

tr(B−1/2H). (39)
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In the sequel, we will also use the notation ψ : Sd
> → S

d
> : B 7→ B1/2 and denote the Fréchet derivative of the latter

map at B evaluated in G by DψB(G).

Proof. The existence of the limit (38) follows from the fact that function z 7→ z1/2 is analytic on the positive part of

the complex plane and the fact that B has positive eigenvalues. Squaring both sides of the expansion

(B + tHt)
1/2
= B1/2

+ tX + o(t)

as t ↓ 0 yields B+ tHt =
(

B1/2
+ tX+o(t)

)2
= B+ t(B1/2X+XB1/2)+o(t) as t ↓ 0. Examining the terms linear in t yields

the stated Sylvester equation (38). In that equation, premultiply both sides with B−1/2 and take the trace to see that

tr(X) + tr(B−1/2XB1/2) = tr(B−1/2H). But tr(B−1/2XB1/2) = tr(XB1/2B−1/2) = tr(X) and thus tr(X) = 1
2

tr(B−1/2H).

For A ∈ Sd, let L(A) ∈ Sd be the diagonal matrix whose diagonal is equal to the d eigenvalues (counting multiplic-

ities) of A in decreasing order.

Lemma 4.11. Let A ∈ S
d have d distinct (real) eigenvalues and let the orthogonal matrix U ∈ R

d×d contain the

associated eigenvectors as columns. Let Ht,H ∈ Sd for t > 0 be such that Ht → H element-wise as t ↓ 0. Then

lim
t↓0

t−1(L(A + tHt) − L(A)
)

= DU⊤HU =: L̇A(H).

Proof. This is a special case of Theorem 3.3 in Hiriart-Urruty and Lewis [17].

Lemma 4.12. Under the conditions of Theorem 4.1, it holds that

lim
t↓0

t−1
(

tr
(

(Σ + tHt)
1/2
m

)

− tr(Σ1/2
m )

)

=
1

2
tr(Υ1H),

with (Σ + tHt)m the matrix in (10) for Σ replaced by Σ + tHt and with Υ1 defined in (21).

Proof. The diagonal elements of the diagonal matrix L(Σr) = Λr are λ1,1 ≥ . . . ≥ λp,1 for r = 1 and λ1,2 ≥ . . . ≥ λq,2

for r = 2. We need to deal with the term

tr(Σ1/2
m ) =

q
∑

j=1

(λ j,1 + λ j,2)1/2
=: g(Λ1,Λ2), (40)

where λ j,1 = 0 if j ∈ {p + 1, . . . , q} (recall q ≥ p). Similarly,

tr
(

(Σ + tHt)
1/2
m

)

= g
(

L(Σ1 + tHt,11), L(Σ2 + tHt,22)
)

,

where Ht,11 and Ht,22 are the upper p × p and lower q × q diagonal blocks of Ht. In view of Lemma 4.11 and the

differentiability of g in (40), the chain rule gives

lim
t↓0

t−1 (

g
(

L(Σ1 + tHt,11), L(Σ2 + tHt,22)
)

− g(Λ1,Λ2)
)

=

p
∑

j=1

1

2(λ j,1 + λ j,2)1/2
[U⊤1 H11U1] j j +

q
∑

j=1

1

2(λ j,1 + λ j,2)1/2
[U⊤2 H22U2] j j,

where H11 and H22 are the upper p × p and lower q × q diagonal blocks of H. The right-hand side can be simplified

as follows: with Π1 and Π2 as in (18),

. . .
(a)
=

1

2

(

tr(∆1U⊤1 H11U1) + tr(∆2U⊤2 H22U2)
) (b)
=

1

2

(

tr(Π⊤1 U1∆1U⊤1 Π1H) + tr(Π⊤2 U2∆2U⊤2 Π2H)
)

(c)
=

1

2
tr

([

U1∆1U⊤
1

0

0 U2∆2U⊤
2

]

H

)

=
1

2
tr(Υ1H),

using the following arguments:
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(a) by the identity tr(A diag(B)) = tr(diag(A)B) for square matrices A and B;

(b) by the cyclic permutation property of the trace operator together with Hrr = ΠrHΠ⊤r for r ∈ {1, 2};

(c) by the identity Π⊤
1

A1Π1 +Π
⊤
2

A2Π2 =

[

A1 0

0 A2

]

for matrices A1 and A2 of dimensions p× p and q×q, respectively.

The following lemma provides the Fréchet derivative of the squared 2-Wasserstein distance (6) between Gaussian

distributions. As explained in Remark 4.4, it rectifies the formula in Lemma 2.4 in Rippl et al. [35].

Lemma 4.13 (Differentiability of the Bures–Wasserstein distance). The Fréchet derivative of the map

φ : (Sd
>)2 → R : (A, B) 7→ 2 tr

(

(A1/2BA1/2)1/2)

at (A, B) ∈ (Sd
>)2 evaluated at (G,H) ∈ (Sd)2 is

lim
t↓0

t−1(φ(A + tGt, B + tHt) − φ(A, B)
)

= tr(JG) + tr(J−1H) =: Dφ(A,B)(G,H) (41)

where Gt,Ht ∈ Sd for t > 0 are such that Gt → G and Ht → H element-wise as t ↓ 0 and where

J = A−1/2(A1/2BA1/2)1/2A−1/2
= B1/2(B1/2AB1/2)−1/2B1/2,

J−1
= A1/2(A1/2BA1/2)−1/2A1/2

= B−1/2(B1/2AB1/2)1/2B−1/2.
(42)

As a consequence, the Fréchet derivative of the squared Bures–Wasserstein distance is

lim
t↓0

t−1(d2
W(A + tGt, B + tHt) − d2

W (A, B)
)

= tr
(

(Id − J)G
)

+ tr
(

(Id − J−1)H
)

. (43)

The matrices J and J−1 in (42) are the unique solutions in S
d
> to the matrix equations JAJ = B and J−1BJ−1

= A.

They operationalize the optimal couplings betweenNd(0, A) andNd(0, B) with the squared Euclidean distance as cost

function [29].

Proof. Equation (43) is an immediate consequence of (41) and the linearity of the trace operator. So it suffices to

show (41).

We start by showing the two identities following the definitions of J and J−1. A direct calculation gives

(

A1/2B1/2(B1/2AB1/2)−1/2B1/2A1/2
)2
= A1/2BA1/2.

Since the left-hand side is the square of a symmetric matrix, we find

A1/2B1/2(B1/2AB1/2)−1/2B1/2A1/2
= (A1/2BA1/2)1/2. (44)

Pre- and post-multiply with A1/2 to find

B1/2(B1/2AB1/2)−1/2B1/2
= A−1/2(A1/2BA1/2)1/2A−1/2,

which is the identity following the definition of J. The identity following the definition of J−1 follows in the same

way, by changing the roles of A and B. Note that, by (44) and the cyclic permatution property of the trace operator,

φ(A, B) = 2 tr
(

(A1/2BA1/2)1/2)
= 2 tr

(

A1/2B1/2(B1/2AB1/2)−1/2B1/2A1/2)

= 2 tr
(

(B1/2AB1/2)1/2)
= φ(B, A),

confirming the symmetry of φ.
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By Lemma 4.10, we have, as t ↓ 0,

(A + tGt)
1/2(B + tHt)(A + tGt)

1/2
=

(

A1/2
+ tDψA(G) + o(t)

)(

B + tH + o(t)
)(

A1/2
+ tDψA(G) + o(t)

)

= A1/2BA1/2
+ t

(

DψA(G)BA1/2
+ A1/2HA1/2

+ A1/2BDψA(G)
)

+ o(t).

In Eq. (39), we have calculated the Fréchet derivative of the map S
d
> → R : C 7→ 2 tr(C1/2) to be the linear operator

S
d → R : K 7→ tr(C−1/2K). Therefore,

Dφ(A,B)(G,H) = tr
(

(A1/2BA1/2)−1/2(DψA(G)BA1/2
+ A1/2HA1/2

+ A1/2BDψA(G)
)

)

.

Isolating the term involving H, we find tr(J−1H), as required. It remains to deal with the terms involving G. By

symmetry of φ, we have Dφ(A,B)(G,H) = Dφ(B,A)(H,G). The terms involving G must therefore simplify to become the

term involving H but with the roles of A and B reversed: this transformation leads from J−1 to J.

For a d × d matrix A partitioned into blocks

A =

[

A11 A12

A21 A22

]

of dimensions p × p, p × q, q × p and q × q, respectively, we put

A0 =

[

A11 0

0 A22

]

, (45)

with zero off-diagonal blocks. This notation is coherent with the one used for Σ0 in (8) and for J0 in (27).

Corollary 4.14. The Fréchet derivative of the map

η : Sd
> → R : Σ 7→ tr

(

(

Σ
1/2

0
ΣΣ

1/2

0

)1/2
)

is given by

lim
t↓0

t−1(η(Σ + tHt) − η(Σ)
)

=
1
2

tr
(

(J0 + J−1)H
)

for Ht,H ∈ Sd such that Ht → H element-wise as t ↓ 0, with J and J0 as in (26) and (27), respectively.

Proof. We apply Lemma 4.13 with A = Σ0, B = Σ, and, following the convention in (45), Gt = (Ht)0 as well as

G = H0 obtained from Ht and H, respectively. The limit is equal to 1
2
(tr(JH0) + tr(J−1H)) with J as in (26). Now

tr(JH0) = tr(J0H) in view of (16).

It remains to treat the last term in the denominator in the expression for D2(Σ) in Proposition 3.10. This is not

particularly involved in the light of the earlier developments.

Lemma 4.15. Under the conditions of Theorem 4.2, it holds that

lim
t↓0

t−1 tr
(

(

(Σ + tHt)
1/2

0
(Σ + tHt)m(Σ + tHt)

1/2

0

)1/2 −
(

Σ
1/2

0
ΣmΣ

1/2

0

)1/2
)

= tr(Υ2H),

with (Σ + tHt)0 as in (45), with (Σ + tHt)m the matrix in (10) for Σ replaced by Σ + tHt, and with Υ2 defined in (28).

Proof of Lemma 4.15. The proof is similar to the one of Lemma 4.12, exploiting the eigenvalue map L in Lemma 4.11.

Recall from Proposition 3.10 that the trace of interest can be written as

tr
(

(

Σ
1/2

0
ΣmΣ

1/2

0

)1/2
)

=

p∨q
∑

j=1

(λ2
j,1 + λ

2
j,2)1/2

=: h(Λ1,Λ2).
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This expression is similar to the one for tr(Σ
1/2
m ) in (40), so that one can see, using the same arguments and the same

notation, that

lim
t↓0

t−1
(

h
(

L(Σ1 + tH11), L(Σ2 + tH22)
)

− h(Λ1,Λ2)
)

=

p
∑

j=1

λ j,1

(λ2
j,1
+ λ2

j,2
)1/2

[U⊤1 H11U1] j j +

q
∑

j=1

λ j,2

(λ2
j,1
+ λ2

j,2
)1/2

[U⊤2 H22U2] j j

= tr(∆′1U⊤1 H11U1) + tr(∆′2U⊤2 H22U2)

= tr(Υ2H).

Lemma 4.16 (Empirical covariance matrix, standard Gaussian case). Let ǫ1, . . . , ǫn be independentNd(0, Id) random

vectors and let

Wn =
1
√

n

n
∑

i=1

(ǫiǫ
⊤
i − Id). (46)

Then Wn  W as n→ ∞, with W a random symmetric matrix such that

W jk ∼














N(0, 2), for j = k ∈ {1, . . . , d},
N(0, 1), for 1 ≤ j < k ≤ d,

all entries being independent (except for the symmetry of W). For A, B ∈ Sd, we have

E[tr(AW) tr(BW)] = 2 tr(AB). (47)

Proof of Lemma 4.16. The weak convergence Wn  W with W as stated is a direct consequence of the multivariate

central limit theorem. For A ∈ Sd, we have, by symmetry of W,

tr(AW) =

d
∑

j=1

d
∑

k=1

A jkW jk =

d
∑

j=1

A j jW j j + 2
∑

1≤ j<k≤d

A jkW jk.

Since the random variables appearing on the last line are independent and have zero mean, it follows that, for A, B ∈ Sd,

E[tr(AW) tr(BW)] =

d
∑

j=1

A j jB j jE[W2
j j] + 4

∑

1≤ j<k≤d

A jkB jkE[W2
jk]

= 2

d
∑

j=1

A j jB j j + 4
∑

1≤ j<k≤d

A jkB jk

= 2

d
∑

j=1

d
∑

k=1

A jkB jk = 2 tr(AB).

Lemma 4.17 (Asymptotic expansion of correlation matrix estimates). Let R = (ρ jk)d
j,k=1

be a d × d correlation matrix

and let Rn = (ρn, jk)d
j,k=1

be either the empirical correlation matrix R̂n in (35) in the Gaussian distribution setting (GD)

or the matrix Řn in (36) of normal scores rank correlation coefficients in the Gaussian copula setting (GC). In both

cases, for j, k ∈ {1, . . . , d},

√
n(ρn, jk − ρ jk) =

1
√

n

n
∑

i=1

(

Zi jZik −
1

2
ρ jk(Z2

i j + Z2
ik)

)

+ op(1), n→ ∞, (48)

or, in matrix form,

√
n(Rn − R) =

1
√

n

n
∑

i=1

ϕ̇R(ZiZ
⊤
i ) + op(1), n→ ∞ (49)

with ϕ̇R as in (31) and with Z1, . . . , Zn an independent random sample from Nd(0,R).
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Proof. The matrix formula (49) is just a repackaging of the element-wise one (48) exploiting (31).

In the Gaussian distribution setting (GD), put Zi = D
−1/2

Σ
(ξi − µ) for i ∈ {1, . . . , n}. The common distribution of Zi

isNd(0,R). Let Σ̂n,Z be their empirical covariance matrix, replacing ξi by Zi in (35). We have ξi = µ + ξiD
1/2

Σ
and thus

Σ̂n = D
1/2

Σ
Σ̂n,ZD

1/2

Σ
.

As ϕ reduces variables to unit scale anyway, we have R̂n = ϕ(Σ̂n) = ϕ(Σ̂n,Z). By the multivariate central limit theorem

and Slutsky’s lemma,

√
n(Σ̂n,Z − R) =

1
√

n

n
∑

i=1

(ZiZ
⊤
i − R) + op(1), n→ ∞.

The delta method and the identity ϕ(R) = R yield

√
n(R̂n − R) = ϕ̇R

(
√

n(Σ̂n,Z − R)
)

+ op(1), n→ ∞.

The combination of the last two expansions gives (49) in view of linearity of ϕ̇R and the identity ϕ̇R(R) = 0, as R has

unit diagonal.

In the Gaussian copula setting (GC), the expansion (48) is Theorem 3.1 in Klaassen and Wellner [20]. We have

Zi = (Zi1, . . . , Zid) with Zi j = Φ
−1 ◦ F−1

j
(ξi j) for i ∈ {1, . . . , n} and j ∈ {1, . . . , d}. The common distribution of the

random vectors Zi is Nd(0,R) by the assumption that the copula of ξi is Gaussian with correlation matrix R.

Remark 4.18. The expansion (49) remains valid for the empirical correlation matrix from an independent random

sample ξ1, . . . , ξn from a distribution with finite fourth moments and positive variances, upon defining Zi = D
−1/2

Σ
(ξi−µ)

with µ and Σ the population mean vector and covariance matrix, respectively. The random vectors Zi have zero means

and unit variances but are no longer Gaussian. From the expansion, the asymptotic distribution of the empirical

correlation matrix can be found using the multivariate central limit theorem. The asymptotic distribution of
√

n(R̂n−R)

is a random matrix whose d2 elements have a centered multivariate normal distribution the covariance matrix of which

can be derived from (48). See also Kollo and von Rosen [21, Theorem 3.1.6].

5. Discussion

In this paper, we investigated the possibility to rely on the properties of the 2-Wasserstein distance to define

new dependence coefficients that are easy to interpret. We mostly developed the theory under a Gaussian lens, thus

moving from the Wasserstein distance between distributions to the Bures–Wasserstein distance between covariance

or correlation matrices. Further, we have shown that the coefficients are particularly natural in this case and that

they enjoy desirable properties. They can be estimated easily from an empirical covariance or correlation matrix. The

asymptotic distributions of the resulting plug-in estimators can be found by the delta method, with explicit expressions

for the asymptotic variances, enabling inference. Some questions remain open and are expected to lead to further

research.

The plug-in estimators turned out to have a positive bias, which we proposed to correct by eigenvalue shrinkage

in the supplementary material. Some more developments towards bias correction would certainly be welcome, for

instance in the context of the matrix of normal scores rank correlation coefficients for data drawn from a distribution

with a Gaussian copula.

The Fréchet-differentiability of the maps that send a covariance matrix to its dependence coefficients paves the

way for further developments in large-sample theory. In a high-dimensional setting, the correlation matrix could

be estimated using regularisation techniques or exploiting modelling assumptions. In time series analysis, the focus

would be on auto-covariance matrices.

A technical challenge is to obtain the limit distribution of the plug-in estimators in case all cross-covariances are

zero so that the dependence coefficients are zero. The rate of convergence may then be conjectured to be Op(n−1) and

the limit laws linear combinations of independent chi-squared random variables. Equally interesting is to quantify the

impact of the non-linearity of the (Hadamard) derivatives in case of repeated eigenvalues. A further refinement would

be to allow for positive semi-definite correlation matrices instead of positive definite ones.
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The differentiability questions we referred to are important for resampling. Indeed, the n-out-of-n bootstrap is not

consistent when the Fréchet derivative is not linear. A comprehensive and careful analysis of the bootstrap consistency

in this case could also be potentially interesting per se.

Finally, one could seek for nonparametric estimators of the distribution-based dependence coefficients D̃r . This

will require new probabilistic results to derive their limit laws—or at least guarantee the possibility to approximate

their sampling distributions through a numeric scheme—as well as new algorithmic developments to determine the

couplings in the maximally dependent case. Identifying the couplings furthest away from a given reference point in

Wasserstein space is also an interesting theoretical challenge.

Appendix A. Simulation experiments

In this Appendix, we investigate the plug-in estimators for the dependence coefficients by means of various sim-

ulation experiments. First, we evaluate the quality of the approximation of their finite-sample distributions by the

asymptotically normal one (Appendix A.1). We then numerically assess the impact of shrinking the eigenvalues

of the empirical covariance matrix to reduce the inherent bias (Appendix A.3) and finally we evaluate the actual

coverage of confidence intervals based on the normal approximation (Appendix A.4).

Appendix A.1. Gaussian goodness-of-fit for finite samples

The Figure A.3 presents P-P plots illustrating the asymptotic normality of the plug-in estimators in Section 4.3.

The results are resented for for Gaussian data (GD) with correlation matrix estimated by R̂n in (35).The standard

normal distribution function is on the vertical axis while the actual sampling distribution function of
√

n(Dn,r −
Dr(R))/ζn,r based on 3000 independent replications is on the horizontal one. From left to right, the sample sizes

are 50, 200, 1000 and 5000, respectively.

The three rows correspond to the three following settings.

1. A trivariate autoregressive matrix (p = 1, q = 2) as in (14) with coefficient ρ = 0.25. The true values of D1 and

D2 are 0.026 and 0.025 respectively.

2. A trivariate autoregressive matrix (p = 1, q = 2) with coefficient ρ = 0.8. The true values ofD1 andD2 are 0.34

and 0.33 respectively.

3. A five-variate correlation matrix with p = 2 and q = 3 without any particular structure:







































1.00 0.20 0.15 0.10 0.25

0.20 1.00 0.05 0.30 0.35

0.15 0.05 1.00 0.40 0.50

0.10 0.30 0.40 1.00 0.45

0.25 0.35 0.50 0.45 1.00







































.

The true values of D1 and D2 are 0.051 and 0.050 respectively.

Observing Figure A.3 one can clearly see that in case n = 50, the quality of the normal approximation is much better

for larger values of the coefficients. For the five-dimensional example, the lack-of-fit at n = 50 is rather pronounced,

as one could expect given the number of matrix entries to estimate. In particular, the estimator has a large positive bias.

In all three settings, the goodness-of-fit improves with the sample size, as expected. We evoke the high-dimensional

case, that is, when the number of matrix entries is of the order of magnitude of n, in Section 5.

Appendix A.2. Goodness-of-fit for rank-based estimation of the correlation matrix

We now repeat the simulations in the same settings as those of Appendix A.1 for the Gaussian copula case, that is

when the estimated correlation matrix is Řn. The results forD1 andD2 are shown in Figures A.5 and A.6, respectively.
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Figure A.3: P-P plots for 3000 repetitions of the centred and (empirically) rescaled estimator of D1 in the three settings from

Appendix A.1 for increasing sample sizes (from left to right). The results are presented for an empirical correlation matrix in the

case of Gaussian data.

Appendix A.3. Eigenvalue shrinkage

The simulations in Appendix A.1 reveal the plug-in estimator to have a positive bias for small sample sizes. This

is not surprising; it was already noted by C. Stein in the ’60s and ’70s that the eigenvalues of the empirical covariance

matrix tend to be more spread out than their population counterparts. We refer to Dey and Srinivasan [6] and Donoho

et al. [7] for references about the subject.

In the aforementioned works, new estimators of the covariance matrix were proposed. The idea is to shrink the

largest eigenvalues and increase the smaller ones to correct for the discrepancy arising. We follow Dey and Srinivasan

[6]. Let S be distributed according to the Wishart Wd(Σ, n− 1) distribution. The maximum likelihood estimator of the

covariance matrix of theNd(µ,Σ) distribution with unknown µ and Σ based on an independent random sample of size

n has distribution S/n.

Let Σ̂ = ÛΛ̂Û⊤ where Û is an orthogonal matrix and Λ̂ is a diagonal matrix with elements l1 ≥ . . . ≥ ld.

Orthogonally invariant estimators of Σ are those of the form

Σ̂ℓ = Ûℓ(Λ̂)Û⊤
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Figure A.4: P-P plots for 3000 repetitions of the centred and (empirically) rescaled estimator of D2 in the three settings from

Appendix A.1 for increasing sample sizes (from left to right). The results are presented for an empirical correlation matrix in the

case of Gaussian data.

where ℓ(Λ̂) is a diagonal matrix with elements ℓ1(Λ̂), . . . , ℓd(Λ̂). Many functions ℓ j have been proposed that correspond

to certain loss functions. The maximum likelihood estimator corresponds to ℓ0
j
(Λ̂) = n−1l j. In Dey and Srinivasan [6],

the following choices are considered:

• ℓm
j
(Λ̂) = d jl j (Theorem 3.1) with d j = 1/(n + d − 2 j) for j = 1, . . . , d, referred to as DS1.

• ℓS
j
(Λ̂) = d jl j − (l j log l j)τ(u)/(b1+ u) (Theorem 3.2) where u =

∑d
j=1(log l j)

2, b1 > 5.76(d− 2)2/(n+ d− 1)2 and

τ(u) is a function satisfying, among others, 0 < τ(u) < 2.4(d − 2)/(n + d − 1)2. In their Section 4, they propose

b1 = 5.8(d − 2)2/(n + d − 1) and τ(u) = 1.2(d − 2)/(n + d − 1)2. This method is referred to as DS2.

The above shrinkage methods are based upon Σ̂ sampled from Wd(Σ, n), see Dey and Srinivasan [6]. Therefore, we

replace n by n − 1. These are but two choices out of a large number of shrinkage methods that depend on the loss

function and the model. We refer to Donoho et al. [7] for a survey.

In Table A.1, we consider settings (1) and (3) from Appendix A.1 for sample size n = 200. The number of

replications is 3000 and the results are obtained for the empirical correlation matrix in the fully Gaussian case, that
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Figure A.5: P-P plots for 3000 repetitions of the centred and (empirically) rescaled estimator of D2 in the three settings from

Appendix A.1 for increasing sample sizes (from left to right). The results are presented for a Gaussian copula relying on Řn.

is, case (GD) in Section 4.3. The entries in the table show the observed mean, median and standard deviation of

the quantity
√

n(Dr(ϕ(Σ̂ℓ)) − Dr(R))/ζn,r, where the estimator Σ̂ℓ of the covariance matrix uses one of the shrinkage

functions defined above and where the estimated standard error ζn,r is based on plugging in the estimated correlation

matrix ϕ(Σ̂ℓ), similar to what was done in Corollary 4.7. From the results, we observe that shrinkage moves the median

closer to zero in both settings while leaving the standard deviation close to one.

There does not seem to be an important difference between DS1 and DS2.

Appendix A.4. Coverage of confidence intervals

We investigate the actual coverage of the asymptotic (1 − α) × 100% confidence intervals

[

Dr(Řn) ± z1−α/2 × ζn,r/
√

n
] ∩ [0, 1]

for various sample sizes, where zp is the quantile of a standard normal distribution at level p. We consider settings (1)

and (3) from Appendix A.1 in the Gaussian copula (GC) case, so Řn and ζn,r are as in (36) and Corollary 4.7. The

chosen coverage probability is 95%. The results are presented in Tables A.2. For each coefficientD1 and D2, we give
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Figure A.6: P-P plots for 3000 repetitions of the centred and (empirically) rescaled estimator of D2 for the three settings from

Appendix A.1 for increasing sample sizes (from left to right). The results are presented for a Gaussian copula relying on Řn.

the true value, the mean of the lower and upper bounds over 3000 independent replications, and, finally, the empirical

coverage. We did not rely on shrinkage methods in this part.

Appendix A.5. Shrinkage evaluation for EEG data

For the EEG case study in Appendix B, we conducted a preliminary assessment to evaluate whether the shrinkage

methods in Appendix A.3 produce confidence intervals performing as they should. The sample size and parameter

values were taken to match those of the data. The empirical coverage of the confidence intervals was estimated based

on 2000 replications. The results are presented in Figure A.7. In plots (a) and (c), the advantage of shrinking the

eigenvalues is clearly visible for coefficientD1.
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D1 D2

Setting Method Mean Median SD Mean Median SD

(1) MLE −0.026 0.118 1.292 −0.020 0.146 1.282

DS1 −0.125 0.031 1.320 −0.116 0.058 1.303

DS2 −0.126 0.031 1.320 −0.117 0.058 1.303

(3) MLE 0.279 0.335 0.979 0.220 0.261 0.984

DS1 0.118 0.174 0.981 0.075 0.120 0.986

DS2 0.117 0.173 0.981 0.074 0.119 0.986

Table A.1: Effect of eigenvalue shrinkage methods on the studentised estimator,
√

n(Dr(ϕ(Σ̂ℓ))−Dr(R))/ζn,r, at n = 200 in settings (1)

and (3) from Appendix A.1.

D1 D2

Setting n True LB UB Cov. True LB UB Cov.

(1) 50 0.026 0.000 0.104 93.8% 0.025 0.000 0.098 92.8%

200 0.026 0.001 0.057 93.5% 0.025 0.001 0.056 93.5%

1000 0.026 0.014 0.039 94.3% 0.025 0.014 0.038 94.4%

5000 0.026 0.021 0.032 95.8% 0.025 0.020 0.030 95.5%

(3) 50 0.051 0.012 0.129 94.0% 0.050 0.009 0.128 94.4%

200 0.051 0.028 0.083 94.8% 0.050 0.027 0.083 94.9%

1000 0.051 0.040 0.064 94.6% 0.050 0.039 0.064 94.8%

5000 0.051 0.045 0.056 95.4% 0.050 0.045 0.056 94.3%

Table A.2: Means of lower and upper bounds and actual coverage of rank-based asymptotic 95% confidence intervals

[Dr(Řn) ± z0.975 × ζn,r/
√

n] ∩ [0, 1] in settings (1) and (3) from Appendix A.1 over 3000 independent replications.
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Figure A.7: Empirical coverage of 95% confidence intervals estimated from 2000 replications in the Gaussian copula setting with

sample size and parameters derived from the case study in Appendix B. MLE refers to no shrinkage while DS1 and DS2 refer to

the two shrinkage methods in Appendix A.3. (a) Alcoholic group with D1. (b) Alcoholic group with D2. (c) Control group with

D1. (d) Control group with D2.
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Appendix B. Case study: EEG data

We now turn to an application on real data exhibiting a possible use of the new dependence coefficients. We

consider the electroencephalogram (EEG) dataset gathered by Henri Begleiter1 and first analysed in Zhang et al. [43].

Data are available for two types of patients: those suffering from alcoholism and a control group. The dataset consists

of 120 trials for 122 subjects and is available on the UCI Machine Learning Archive [9].

An EEG measures the electric activity of the brain and thus helps to understand its functioning. In the dataset we

consider, the data are gathered through 64 electrodes placed on the patient’s scalp.2 The electrical activity for each

electrode is measured in µV through time. Each patient is exposed to a visual stimulus during a one-second timespan

during which 256 measurements are collected. The 120 trials are divided into three types of stimuli tested: a single

visual stimulus, two stimuli where the second one matches the first one and two stimuli where the second one does

not match the first one. In each trial a different picture or different sets of pictures are used.

This dataset was recently analysed in Solea and Li [37] and Anuragi and Sisodia [1]. In this first paper, the

dependence structure is modelled under a Gaussian copula assumption, which has become classical since the seminal

work of Liu et al. [23]. Even though the Gaussian copula hypothesis may seem restrictive, it turned out quite successful

and is well accepted in the field, as stressed in Solea and Li [37]. In the sequel, we also make the assumption that

the copula is Gaussian and thus use the rank-based estimator Dr(Řn,r) with Řn,r the matrix of normal scores rank

correlation coefficients in (36).

The graphs in Solea and Li [37, p. 11] present the results of different estimation procedures for the dependence

graph. A visual inspection shows that the connectivity networks estimated by the different methods largely differ from

one estimation procedure to another. These discrepancies motivate our analysis of the dependence between the pre-

frontal (FP) and the anterio-frontal (AF) electrodes, as the methods seem to estimate different network structures for

these particular blocks. The AF region consists of the electrodes AF1, AF2, AF7, AF8 and AFZ while the FP region

consists of the FP1, FP2 and FPZ electrodes. In our notation we are thus seeking to quantify dependence between a

group of p = 3 variables and another one with q = 5 variables.

We chose to focus on trial No. 26. This choice is purely random and was made prior to the analysis. The only check

that was made concerns the number of patients in the trial. Indeed, even though the experiment was carried out on

122 patients, certain results are missing. For the trial selected, the data for 99 patients were available. Among these 99

patients, 60 were alcoholic. Preliminary Monte-Carlo simulations evaluating the coverage probabilities of estimated

confidence intervals—reported in Appendix A.5—suggested the use of the shrinkage estimator DS1 (Appendix A.3)

of the correlation matrix which is then standardised again via the square roots of the diagonal elements. This finding

is purely empirical and theoretical justifications for this or other shrinkage methods in the context of the matrix of

normal scores rank correlation coefficients are yet to be developed.

In the top row of Figure B.8, we show estimates of various dependence coefficients for the two groups of patients.

The coefficients are estimated at one out of five time instants to avoid overloading the graphs. To enable a proper

comparison, the RV and RV are computed on the same, shrinked matrix as the Dr coefficients. The interest of

correcting the RV coefficient as in Remark 3.13 is clear. The various coefficients exhibit quite similar profiles over

time. Interestingly, the curve of the square of the adjusted RV coefficient (not shown) would be close to D1 and D2.

In the middle row of Figure B.8, we compare the coefficients D1 and D2 for both types of patients and provide

pointwise confidence bands. The latter are formed out of a confidence interval at each time instant, are based on the

estimated asymptotic variance and are chosen to have a 95% coverage probability.

Assuming independence between alcoholics and control patients, an asymptotic two-sided (1 − α) confidence

interval for the differenceDctr
r −Dalc

r is

D̂
ctr
r − D̂alc

r ± z1−α/2

√

(ζ̂ctr
r )2

nctr
+

(ζ̂alc
r )2

nalc

with nctr
= 99 − 60 = 39 and nalc

= 60 and with z the standard normal quantile. We present the confidence intervals

corresponding to the difference above in the bottom row of Figure B.8. From the data one cannot conclude that the

1At the Neurodynamics Laboratory at the State University of New York Health Center at Brooklyn.
2The position of the electrodes follows the Standard Electrode Position Nomenclature put forward by the American Electroencephalographic

Association in 1990.
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Figure B.8: Top: Dependence across time for alcoholics (a) and control patients (b). Middle: Comparison of patients suffering from

alcoholism versus control group using dependence coefficients D1 (a) and D2 (b). Estimates as solid lines and point-wise 95%

confidence bands as coloured shaded areas. Bottom: Asymptotic 95% confidence intervals for the difference Dctr
r − Dalc

r between

the two groups of patients for D1 (a) and D2 (b).
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two groups of patients have different dependence coefficients between the AF and FP regions. Still, it seems that the

dependence between the two regions under study is higher for the control group than for the alcoholics. The variability

of the data is too high to reject the null hypothesis of no difference, but complementary analyses with higher sample

sizes might help settle the case. Also, a slight downward trend seems to be present for control patients; see Figure B.8,

top row, panel (b). Time-varying modelling of dependence could thus also constitute a future research path.

Appendix C. Formulas for dependence coefficients in parametric models

We now present some closed-form formulas for some of the coefficients presented in the examples in Section 3.3.

In Example 3.15, as the eigenvalues of Σ are 1 + 2ρ, 1 − ρ and 1 − ρ, we get, after some simplifications,

D1(Σ) =
1 +

√

1 + ρ −
√

1 + 2ρ −
√

1 − ρ
1 +

√

1 + |ρ| −
√

2 + |ρ|
.

For the second coefficient, a more involved calculation yields

D2(Σ) =
2 + ρ −

√

λ+(ρ) −
√

λ−(ρ)

2 + |ρ| −
√

ρ2 + 2 |ρ| + 2
,

with λ±(ρ) = 1
2
[ρ2
+ 2ρ + 2 ± ρ

√

ρ2 + 12ρ + 12]. The RV coefficient and its adjusted version in (13) are

RV(Σ) =
2ρ2

√

2(1 + ρ2)
, RV(Σ) =

2ρ2

1 + |ρ|
.

In Example 3.16, for the trivariate autoregressive matrix, one has

RV(Σ, 1) =
ρ4
+ ρ2

√

2(1 + ρ2)
and RV(Σ, 1) =

ρ4
+ ρ2

1 + |ρ|
,

while

D1(Σ, 1) =
1 +

√

1 + ρ +
√

1 − ρ −
√

1 − ρ2 −
√

λ1,+(ρ) −
√

λ1,−(ρ)

1 +
√

1 + |ρ| −
√

2 + |ρ|
and

D2(Σ, 1) =
3 −

√

1 − ρ2 −
√

λ2,+(ρ) −
√

(λ2,−(ρ)

2 + |ρ| −
√

2 + 2|ρ| + ρ2

with λ1,±(ρ) = ρ2/2 ± ρ
√

ρ2 + 8/2 + 1 and λ1,±(ρ) = 3ρ2/2 ± (
√

5ρ
√

ρ2 + 4)/2 + 1. For the trivariate moving average

matrix, it holds that

RV(Σ, 1) =
ρ2

√

2(1 + ρ2)
and RV(Σ, 1) =

ρ2

1 + |ρ|
,

while

D1(Σ, 1) =

√

1 + ρ +
√

1 − ρ −
√

1 + ρ
√

2 −
√

1 − ρ
√

2

1 +
√

1 + |ρ| −
√

2 + |ρ|
.

In this case, the formula for D2 is not particularly convenient and the eigendecomposition was obtained numerically.
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