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Abstract

This paper considers the problem of joint change detection and identification assuming multiple composite post-
change hypotheses. We propose a multihypothesis changepoint detection-identification procedure that controls the
probabilities of false alarm and wrong identification. We show that the proposed procedure is asymptotically min-
imax and pointwise optimal, minimizing moments of the detection delay as probabilities of false alarm and wrong
identification approach zero. The asymptotic optimality properties hold for general stochastic models with dependent
observations. We illustrate general results for detection-identification of changes in multistream Markov ergodic pro-
cesses. We consider several examples, including an application to rapid detection-identification of COVID-19 in Italy.
Our proposed sequential algorithm allows much faster detection of COVID-19 than standard methods.
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1. Introduction

As discussed in [9, 15–17], in a variety of applications it is important not only to quickly detect abrupt changes
but also to diagnose them (e.g., to determine which change in a set of possible changes has occurred). This problem
of change detection and diagnosis applies, for example, to rapid detection and identification of intrusions in computer
networks, object detection with various sensors, integrity monitoring of navigation systems, and early detection and
localization of epidemics. Often called Change Detection and Isolation, the problem is a generalization of the quickest
change detection problem to the case of multiple post-change hypotheses and can be formulated as joint change de-
tection and identification. Nikiforov [9] first considered the change detection-isolation problem in a minimax setting
for independent and identically distributed (i.i.d.) observations (in pre-change and post-change modes with different
distributions) and simple post-change hypotheses. Several versions of the multihypothesis CUSUM-type and SR-type
procedures, which have minimax optimality properties in the classes of rules with constraints imposed on the average
run length to a false alarm and conditional probabilities of false isolation, are proposed by Nikiforov [10, 11] and
Tartakovsky [14]. Dayanik et al. [2] proposed an asymptotically optimal Bayesian detection-isolation rule assuming
that the prior distribution of the change point is geometric also in the i.i.d. case. However, in many practical applica-
tions, the i.i.d. assumption is too restrictive – the observations may be either non-identically distributed or dependent
or both, i.e., non-i.i.d. Also, the post-change distribution is usually not completely known. Lai [7] provided a certain
generalization for the non-i.i.d. case and composite hypotheses for a specific loss function. Recently, Tartakovsky [16]
developed a general asymptotic multistream Bayesian theory of sequential change detection and identification for low
rates of false alarms and misidentification, assuming (1) there are multiple data streams, (2) the change occurs in some
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data stream(s) at an unknown random point in time, and (3) it is necessary to detect the change as soon as possible
and identify which data streams are affected. However, a non-Bayesian multistream change detection-identification
theory for non-i.i.d. data is still missing.

The primary goal of this paper is to provide a general non-Bayesian asymptotic multistream change detection-
identification theory (minimax and pointwise) for non-i.i.d. data and composite post-change hypotheses. This the-
ory generalizes changepoint detection theory (with no identification) developed by Pergamenchtchikov and Tar-
takovsky [13]. In Section 2, we describe the general stochastic model and provide basic notation. In Section 3,
we introduce main conditions. In Section 4, we introduce the change detection-identification rule. In Section 5,
we derive the information lower bounds for moments of the detection delay in the class of changepoint detection-
identification rules with constraints imposed on the probabilities of false alarm and wrong identification. In Section 6,
we prove asymptotic optimality of the proposed detection-identification rule as the probabilities of false alarm and
misidentification go to zero. We show that the lower bounds are attained for this procedure under very general condi-
tions. In Section 7, we illustrate general results for detection-identification of changes in Markov ergodic processes.
In Section 8, we consider two examples – detection-identification of changes in (1) the parameters of multivariate
linear difference equations and (2) the correlation coefficients of multistream p-th order autoregressive models. In
Section 9, we propose a specific model for epidemics and show that the proposed change detection-identification rule
is asymptotically optimal. We also apply our rule for detection of COVID-19 in Italy and show that it allows for much
earlier detection of COVID-19 than standard methods.

2. Basic notation

We consider the N independent streams of observations (X1,l)l>1 , . . . , (XN,l)l>1. For any 1 6 i 6 N, ν > 0 and θi
from an open set Θi ⊆ Rm we denote by Pi,ν,θi

the distribution of the observations (Xi,l)l>1 in R∞. In the case when
ν = ∞, this distribution will be denoted by P∗. We use the convention that Xi,ν is the last pre-change observation.
Write Xn

i = (Xi,1, . . . , Xi,n) for the concatenation of the first n observations in the ith data stream. Let now for any
1 6 i 6 N (

f ∗i, j(y j|y1, . . . , y j−1)
)

j>1
and

(
fi,θi, j

(y j|y1, . . . , y j−1)
)

j>1
(2.1)

be sequences of conditional densities of Xi, j given X j−1
i with respect to some non-degenerate σ-finite measure. Note

that for 1 6 i 6 N the density qi of Xn
i in Rn has the following form

qi,ν,θi
(y1, . . . , yn) =


q∗i (y1, . . . , yn) for ν > n ;

∏ν
l=1 f ∗i,l(yl|y1, . . . , y j−1)

∏n
l=ν+1 fi,θi,l

(yl|y1, . . . , yl−1) for ν < n ,
(2.2)

where q∗i (y1, . . . , yn) =
∏n

l=1 f ∗i,l(yl|y1, . . . , yl−1).
Denote by γ a random variable with values in {1, . . . ,N} and assume that the change can occur only in the data

stream (Xγ,l)l>1 with probability υi = P(γ = i). For ν > 1 and θ = (θ1, . . . , θN) ∈ Θ = Θ1 × . . . × ΘN the joint density
of the observations Xn

1, . . . ,X
n
N is given by

pν,θ(y1,1, . . . , yN,n) =

N∑
i=1

υipi,ν,θ(y1,1, . . . , yN,n) , (2.3)

where

pi,ν,θi
(y1,1, . . . , yN,n) = qi,ν,θi

(yi,1, . . . , yi,n)
N∏
l,i

q∗l (yl,1, . . . , yl,n) . (2.4)

In the sequel we denote byM the set of all Markov times with respect to the filtration (Fn)n>0 where F0 = {Ω,∅}
and Fn = σ

{
Xi, j , 1 6 i 6 N , 1 6 j 6 n

}
.

Note that when n > k and ϑ ∈ Θi the Radon-Nykodim density (likelihood ratio)

g∗i,k,n = g∗i,k,n(ϑ) =
dPi,k,ϑ

dP∗

∣∣∣∣
Fn

= eZk
i,n(ϑ) , (2.5)
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where

Zk
i,n(ϑ) =

n∑
l=k+1

log
fi,ϑ,l(Xi,l|Xl−1

i )

f ∗i,l(Xl|Xl−1
i )

(2.6)

is the log-likelihood ratio, and for any (θi, θ j) ∈ Θi × Θ j with i , j the Radom-Nikodym density

gi, j,k,n = gi, j,k,n(θi, θ j) =
dPi,k,θi

dP j,k,θ j

∣∣∣∣
Fn

= eZk
i,n(θi)−Zk

j,n(θ j) . (2.7)

A sequential change detection-identification procedure δ is a pair δ = (T, d), where T is a stoping time fromM,
i.e., for any 1 6 i 6 N, k > 0 and ϑ ∈ Θi the probability Pi,k,ϑ(T < ∞) = 1, and d is a decision rule, i.e., a random
variable with the values in {1, . . . ,N} which is measurable with respect to the σ-field FT . We denote by S the class of
all sequential procedures. For r > 1 and θi ∈ Θi, define the risk for a sequential procedure δ = (T, d) ∈ S associated
with the conditional r-th moment of the detection delay

Ri,k,θi
(δ) = Ei,k,θi

[
(T − k)r 1{d=i}|T > k

]
, (2.8)

where Ei,k,θi
is the expectation with respect to the distribution Pi,k,θi

in R∞.
Introduce the conditional probability of false alarm P∗(T < k+m∗ , d = i|T > k) on the event {d = i} in the interval

[k, k +m∗), i.e., the probability of raising the alarm with the decision d = i that there is a change in the ith stream when
there is no change. Also, introduce the misidentification probabilities Pi,k,θi

(d = j|T > k), i , j, i, j = 1, . . . ,N.
For any N × N matrix β = (βi, j)16i, j6N with 0 < βi, j < 1, m∗ > 1 and k∗ > m∗ we introduce the class of change

detection-identification rules

H(β,k∗,m∗) =

δ ∈ S : sup
16k6k∗−m∗

max
16i6N

P∗ (T < k + m∗ , d = i|T > k)
βi,i

6 1 ,

max
06k6k∗

max
16i6N

sup
θ∈Θi

max
16 j,i6N

Pi,k,θi
(d = j|T > k)

βi, j
6 1

 . (2.9)

Our goal is to find a sequential procedure asymptotically optimal in two problems in the class of detection-
identification rulesH(β,k∗,m∗): the pointwise minimization

inf
δ∈H(β,k∗,m∗)

Ri,k,θi
(δ) for every 1 6 i 6 N , k > 0 and θi ∈ Θi (2.10)

and the minimax optimization

inf
δ∈H(β,k∗,m∗)

sup
k>0
Ri,k,θi

(δ) for every 1 6 i 6 N and θi ∈ Θi . (2.11)

The parameters k∗ and m∗ will be specified later.

3. Main conditions

For a fixed θi ∈ Θi, we assume the following conditions for the log-likelihood ratio (LLR) processes (Zk
i,n(θi))n>k+1

introduced in (2.6) for 1 6 i 6 N and θi ∈ Θi.
(A1) For any 1 6 i, j 6 N there are Θi × Θ j → R+ positive continuous functions Ii, j with

0 < inf
(θi,θ j)∈Θi×Θ j

Ii, j(θi, θ j) 6 sup
(θi,θ j)∈Θi×Θ j

Ii, j(θi, θ j) < ∞ (3.1)

such that for any k > 0, ε > 0 and θ = (θ1, . . . θN) ∈ Θ1 × . . . × ΘN

lim
n→∞

max
16i, j6N

Pi,k,θi

(
Zk

i,k+n(θi) − Zk
j,k+n(θ j) > (1 + ε)Ii, j(θi, θ j)n

)
= 0 (3.2)
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and
lim
n→∞

max
16i6N

Pi,k,θi

(
Zk

i,k+n(θi) > (1 + ε)Ĩi(θi)n
)

= 0 , (3.3)

where Ĩi(θi) = Ii,i(θi, θi) for θi ∈ Θi.
In order to study asymptotic approximations to risks of the change detection-identification rule introduced below

in Section 4 and for establishing its asymptotic optimality, we impose the following left-tail conditions:
(A2(r)) For any 1 6 i, j 6 N there are Θi × Θ j → R+ positive continuous functions Ii, j with the property (3.1) such
that for every θ = (θ1, . . . , θN) ∈ Θ1 × . . . × Θi = Θ and for any 0 < ε < 1

lim
ζ→0

sup
θ∈Θ

max
16i6N

∞∑
n=1

nr−1 sup
k>0

Pi,k,θi

(
inf
|u−θi |<ζ

Zk
i,k+n(u) < (1 − ε)Ĩi(θi)n

)
< ∞ (3.4)

and

lim
ζ→0

sup
θ∈Θ

max
16i, j6N

∞∑
n=1

nr−1 sup
06k6ζn

Pi,k,θi

(
inf
|u−θi |<ζ

Zk
i,k+n(u) − Z∗j,k+n < (1 − ε)Ĩi(θi)n

)
< ∞ , (3.5)

where Z∗j,n = max06l6n supz∈Θ j
Zl

j,k+n(z).

Remark 1. This is always true for i.i.d. data models with Kullback–Leibler informations given by

Ii, j(θi, θ j) =

∫
log

 fi,θi
(x)

f j,θ j
(x)

 fi,θi
(x)dµ(x) and Ĩi(θi) =

∫
log

 fi,θi
(x)

f ∗i (x)

 fi,θi
(x)dµ(x)

for (θi, θ j) ∈ Θi × Θ j.

4. Sequential change detection-identification procedure

First introduce weight distributions (Wi(ϑ))16i6N , which are probability measures on the sets Θi, i.e. Wi(Θi) = 1
for any 1 6 i 6 N. In what follows, we assume that Wi(·) satisfy the following condition:
(CW ) For any ε > 0 and any ϑ ∈ Θi the measure Wi{u ∈ Θi : |u − ϑ| < ε} > 0.

Now, for some fixed 0 < % < 1 we set

πk = πk(%) = % (1 − %)k , k = 0, 1, 2, . . . (4.1)

and using this distribution we set

Li,n =

n−1∑
k=0

πk

∫
Θi

g∗i,k,n(ϑ)Wi(dϑ) and L̂i,n =

n−1∑
k=0

πk sup
θ∈Θi

g∗i,k,n(ϑ) . (4.2)

Using these statistics we define the following random N × N matrix Un as

< Un >i, j=
Li,n

L̂ j,n

if i , j and < Un >i,i=
Li,n∑
l>n πl

, (4.3)

where < U >i, j is the (i, j)th element of the matrix U. Finally, using this matrix we set

T ∗i,A = inf
n > 1 : min

16 j6N

< Un >i, j

Ai, j
> 1

 , (4.4)

where A = (Ai, j)16i, j6N is a N × N matrix with positive elements which will be specified later. In the definitions of
stopping times we set inf{∅} = +∞. The sequential change detection-identification procedure δ∗A = (T ∗A, d

∗
A) that will

be studied in this paper has the form

T ∗A = min
16i6N

T ∗i,A and d∗A = i if T ∗i,A = T ∗A . (4.5)
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If there are several numbers i for which T ∗i,A = T ∗A we can take arbitrary. Note that, as we will see later in Proposition 2,
the condition (A∗2(r)) implies that T ∗A is a Pi,k,θi

-proper stopping time, that is, for any 1 6 i 6 N, k > 1 and θi ∈ Θi

Pi,k,θi
(T ∗A < ∞) = 1 . (4.6)

Now, for any sequential procedure δ = (T, d) ∈ S we set

PFAi(δ) =

∞∑
k=0

πkP
∗ (T 6 k , d = i) (4.7)

and

PMIi, j(δ) =

∞∑
k=0

πk sup
θi∈Θi

Pi,k,θi
(T > k , d = j) . (4.8)

For some N × N matrix α = (αi, j) with 0 < αi, j < 1 and some fixed 0 < % < 1, define the following Bayesian class:

∆(α, %) =

δ ∈ S : max
 max

16i6N

PFAi(δ)
αi,i

, max
16i, j6N,i, j

PMIi, j(δ))

αi, j

 6 1
 . (4.9)

Next, for any arbitrary fixed matrix β = (βi, j)16i, j6N and 0 < % < 1 introduce two matrices α1 = (α(1)
i, j )16i, j6N and

α2 = (α(2)
i, j )16i, j6N as

α(1)
i, j =

βi,i(1 − %)k∗

1 + tr β
1{i= j} +

βi, j%(1 − %)k∗

1 + tr β
1{i, j} (4.10)

and
α(2)

i, j =
(
βi,i + (1 − %)m∗+1

)
1{i= j} +

(
βi, j + (1 − %)k∗+1

)
1{i, j} . (4.11)

The following proposition compares classes (2.9) and (4.9).

Proposition 1. For any matrix β = (βi, j)16i, j6N , 1 6 m∗ < k∗ and 0 < % < 1 the following inclusions hold

∆(α1, %) ⊂ H(β,k∗,m∗) ⊂ ∆(α2, %) . (4.12)

Proof. First note that if δ = (T, d) ∈ ∆(α1, %), then for any 1 6 i 6 N and k > 1

α(1)
i,i >

∞∑
l=0

πlP
∗ (T 6 l , d = i) > P∗ (T 6 k , d = i)

∞∑
l=k

πl = (1 − %)kP∗ (T 6 k , d = i) ,

i.e., for k > 1

P∗ (T 6 k , d = i) 6 (1 − %)−kα(1)
i,i and P∗ (T 6 k) 6

N∑
j=1

P∗ (T 6 k , d = j) 6 (1 − %)−k trα1 . (4.13)

Therefore, for any 1 6 i 6 N and 1 6 k 6 k∗ −m∗

P∗ (T < k + m∗ , d = i|T > k) =
P∗ (k 6 T < k + m∗ , d = i)

1 − P∗(T < k)

6
P∗ (T 6 k∗ , d = i)

1 − P∗(T 6 k∗)
6

(1 − %)−k∗α(1)
i,i

1 − (1 − %)−k∗ trα1
:= βi,i .

Moreover, for i , j and any k > 1

α(1)
i, j > πk sup

θi∈Θi

Pi,k,θi
(T > k , d = j) = %(1 − %)k sup

θi∈Θi

Pi,k,θi
(T > k , d = j) ,
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i.e., in view of (4.13), for 1 6 k 6 k∗ and θi ∈ Θi

Pi,k,θi
(d = j|T > k) =

Pi,k,θi
(T > k , d = j)

Pi,k,θi
(T > k)

=
Pi,k,θi

(T > k , d = j)

1 − P∗ (T > k)

6
α(1)

i, j %
−1(1 − %)−k

1 − P∗ (T 6 k)
6

α(1)
i, j %

−1(1 − %)−k∗

1 − (1 − %)−k∗ trα1
= βi, j .

This implies, that δ ∈ H(β,k∗,m∗), i.e., we get the first inclusion in (4.12).
Let now δ = (T, d) ∈ H(β,k∗,m∗), i.e., for any 1 6 k 6 k∗ −m∗ and 1 6 i 6 N

βi,i > P∗ (T < k + m∗ , d = i|T > k) =
P∗ (k 6 T < k + m∗ , d = i)

P∗(T > k)
> P∗ (k 6 T < k + m∗ , d = i)

and, in particular,
βi,i > P∗ (T < 1 + m∗ , d = i) .

Therefore, ∑
k>0

πkP
∗ (T 6 k , d = i) 6 P∗ (T < 1 + m∗ , d = i) +

∑
k>m∗+1

πk

6 βi,i + (1 − %)m∗+1 = α(2)
i,i .

Furthermore, for any i , j, θi ∈ Θi and 0 6 k 6 k∗

βi, j > Pi,k,θi
(d = j|T > k) > Pi,k,θi

(k < T < ∞ , d = j) ,

i.e., ∑
k>0

πkPi,k,θi
(T > k , d = j) 6 βi, j +

∑
k>k∗

πk = βi, j + (1 − %)k∗+1 = αi, j .

Thus, we obtain the last inclusion (4.12). Hence Proposition 1.
The first question we ask is how to select the thresholds in the procedure (4.5) to imbed it into class ∆(α, ρ). To

study this question we need the following probability measures on N × R∞ which for any 1 6 i 6 N are defined as

Qi(J × A) =
∑
k∈J

πk

∫
Θi

Pi,k,ϑ(A) Wi(dϑ) , J ⊆ N and A ∈ B(R∞) , (4.14)

where N = {0, 1, . . .} and B(R∞) is the cylinder field in R∞. In the sequel we denote by EQi the expectation over the
probability measure Qi. One can check directly that

Qi
(
ν > n|Fn

)
=

1
1+ < Un >i,i

, (4.15)

where the matrix Un is defined in (4.3).

Lemma 1. For all 1 6 i 6 N the probabilities (4.7) satisfy the inequalities

PFAi(δ
∗

A) 6
1

1 + Ai,i
. (4.16)

Proof. Note that

PFAi(δ
∗

A) =

∞∑
k=0

πkP
∗
(
T ∗A 6 k , d = i

)
=

∞∑
k=0

πk

∫
Θi

Pi,k,ϑ

(
T ∗i,A 6 k , d = i

)
Wi(dϑ)

6



6
∞∑

k=0

πk

∫
Θi

Pi,k,ϑ

(
T ∗i,A 6 k

)
Wi(dϑ) = Qi

(
ν > T ∗i,A

)
= EQi

[
Qi

(
ν > T ∗i,A|FT ∗i,A

)]
.

Therefore, using (4.15) and (4.4) we obtain that

PFAi(δ
∗

A) 6 EQi

 1
1+ < UT ∗i,A

>i,i

 6 1
1 + Ai,i

,

which completes the proof.

Lemma 2. For any 1 6 i, j 6 N, i , j the PMI probabilities of the procedure (4.5) satisfy the inequalities

PMIi, j(δ
∗

A) 6
1

A j,i
. (4.17)

Proof. First note that for the rule (4.4) we obtain that for any j , i and θi ∈ Θi

Pi,k,θi

(
T ∗A > k , d = j

)
6 Pi,k,θi

(
k < T ∗j,A < ∞

)
6

1
A j,i

Ei,k,θi

[
< UT ∗j,A

> j,i 1{
k<T ∗j,A<∞

}]
=

1
A j,i

E∗
[
< UT ∗j,A

> j,i gi,k,T ∗j,A
(θi)1{

k<T ∗j,A<∞
}] .

Therefore, in view of the definition in (4.2), we get

∑
k>0

πkPi,k,θi

(
T ∗A > k , d = j

)
6

1
A j,i

E∗

< UT ∗j,A
> j,i

T ∗j,A−1∑
k=0

πkgi,k,T ∗j,A
(θi)1{

T ∗j,A<∞
}


6
1

A j,i
E∗

[
< UT ∗j,A

> j,i L̂i,T ∗j,A
1{

T ∗j,A<∞
}]

=
1

A j,i
E∗

[
L j,T ∗j,A

1{
T ∗j,A<∞

}] .
Moreover, note that

E∗
[
L j,T ∗j,A

1{
T ∗j,A<∞

}] =
∑
k>0

πk

∫
Θi

E∗
[
g j,k,T ∗j,A

(θi)1{
k<T ∗j,A<∞

}] Wi(dθi)

=
∑
k>0

πk

∫
Θi

Pi,k,θi

(
k < T ∗j,A < ∞

)
Wi(dθi)) 6 1 ,

which implies upper bound (4.17)
Now, if we take in (4.4)

Ai, j =

(
1
αi,i
− 1

)
1{i= j} +

1
α j,i

1{i, j} (4.18)

then using the property (4.6) and the upper bounds (4.16) and (4.17) we obtain that under condition (A∗2(r)) the
sequential procedure (4.5) belongs to class ∆(%, α) for any 0 < % < 1 and α = (αi, j)16i, j6N with 0 < αi, j < 1.
Therefore, if we take

Ai, j =

(
1 + tr β

βi,i(1 − %)k∗ − 1
)

1{i= j} +
1 + tr β

β j,i%(1 − %)k∗ 1{i, j} , (4.19)

we obtain that for any 0 < % < 1 the sequential procedure (4.5) belongs to classH(β,k∗,m∗).
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5. Information lower bounds

5.1. Bayesian setting
For any matrix α = (αi, j)16i, j6N and any parameter value θi ∈ Θi define

bi,α(θi) = max
16 j6N

| logα j,i|

ιi, j(θi)
and ιi, j(θi) = Ĩi(θi) 1{ j=i} + Îi, j(θi) 1{ j,i} , (5.1)

where the function Ĩi(·) is defined in (3.3) and Îi, j(θi) = infϑ∈Θ j
Ii, j(θi, ϑ) for θi ∈ Θi. In what follows we will always

suppose without special emphasis that

inf
θ j∈Θ j

Ii, j(θi, θ j) > 0 for all θi ∈ Θi, j , i and i = 1, . . . ,N

(see condition (3.1)).
Write αmax = max16i, j6N αi, j and ∆α = ∆(α, %α) (in case where % = %α depends on α). The following theo-

rem establishes information lower bounds in the Bayesian problem. These bonds will be used to obtain asymptotic
lower bounds for Ri,k,θi (δ) in class H (β,k∗,m∗) (see Theorem 2) and to prove asymptotic optimality of the proposed
detection-identification procedure in this class.

Theorem 1. Assume that the right-tail probability convergence condition (A1) holds and in (4.1) the parameter of the
geometric prior distribution % is a function of α, i.e., % = %α, such that

lim
αmax→0

(
%α +

| log %α|
| logαmax|

)
= 0 . (5.2)

Then, for any r > 1, k > 0, θi ∈ Θi, and 1 6 i 6 N the following asymptotic lower bounds hold:

lim inf
αmax→0

infδ∈∆α
Ei,k,θi

[
(T − k)r

+
1{d=i}

]
|bi,α(θi)|r

> 1 . (5.3)

Proof. To prove this theorem it suffices to show that for any j , i and (θi, θ j) ∈ Θi × Θ j ( j = 1, . . . ,N)

inf
δ∈∆α

Ei,k,θi

[
(T − k)r

+
1{d=i}

]
> (1 + ψα,i, j(θi, θ j))

| logα j,i|
r

Ir
i, j(θi, θ j)

, (5.4)

and for any j = i and θi ∈ Θi

inf
δ∈∆α

Ei,k,θi

[
(T − k)r

+
1{d=i}

]
> (1 + ψα,i,i(θi, θi))

| logαi,i|
r

Ĩr
i (θi)

, (5.5)

where the term ψα,i, j(θi, θ j) is such that

lim
αmax→0

|ψα,i, j(θi, θ j)| = 0 for any (θi, θ j) ∈ Θi × Θ j and 1 6 j 6 N .

To prove (5.4) note that condition (3.2) implies that for any ε > 0, k > 0 and (θi, θ j) ∈ Θi × Θ j with j , i

Pi,k,θi

{
Zk

i,k+M(θi) − Zk
j,k+M(θ j) > (1 + ε)Ii, jM

}
−−−−→
M→∞

0 , (5.6)

where Ii, j = Ii, j(θi, θ j). Define for (θi, θ j) ∈ Θi × Θ j

Di, j,k(δ) = Pi,k,θi

(
k < T 6 k + Mi, j , d = i

)
and Mi, j = Mi, j(θi, θ j) = (1 − ε)

| logα j,i|

Ii, j
.
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We now show that for any k > 0, 0 < ε < 1 and 1 6 j , i 6 N

lim
αmax→0

sup
δ∈∆α

Di, j,k(δ) = 0 . (5.7)

Using definition (2.7) we can obtain that for m = k + Mi, j

Di, j,k(δ) = E j,k,θ j

[
gi, j,k,m 1{k6T6m , d=i}

]
6 e(1+ε)Ii, j Mi, j P j,k,θ j

(k < T 6 m , d = i)

+ Pi,k,θi

(
Zk

i,m(θi) − Zk
j,m(θ j) > (1 + ε)Ii, jMi, j

)
.

(5.8)

Using the definition of PMI ji(δ) in (4.8) along with the fact that PMI ji(δ) 6 α j,i for any δ ∈ ∆(α, %α) we get

α j,i >
∑
l>0

πl sup
θ j∈Θ j

P j,l,θ j (T > l, d = i) > πkP j,l,θ j (T > l, d = i) > πkP j,k,θ j (k < T 6 m, d = i)

= %α(1 − %α)kP j,k,θ j (k < T 6 m, d = i) for any θ j ∈ Θ j and any k > 0,

so that
sup
δ∈∆α

P j,k,θ j
(k < T 6 m , d = i) 6 %−1

α
(1 − %α)−kα j,i = e−| logα j,i |−log %α+k$α ,

where in view of (5.2) the term $α = − log(1 − %α) → 0 as αmax → 0. So the first term on the right-hand side of the
inequality (5.8) can be estimated as

exp
{
(1 + ε)Ii, jMi, j − log %α + k$α + logα j,i

}
6 exp

{
−ε2| logα j,i| − log %α + k$α

}
6 exp

{
−ε2| logαmax| − log %α + k$α

}
and by condition (5.2) it goes to zero as αmax → 0. Therefore, (5.8) and (5.6) impliy (5.7) for any j , i.

Let now i = j. Using the definition (2.5) we can rewrite the inequality (5.8) as

Di,i,k(δ) = E∗
[
g∗i,k,m 1{k6T6m , d=i}

]
6 e(1+ε)Ĩi(θi)Mi,i P∗ (k < T 6 m , d = i)

+ Pi,k,θi

(
Zk

i,m(θi) > (1 + ε)Ĩi(θi)Mi,i

)
,

(5.9)

where Ĩi(θi) = Ii,i(θi, θi) and where by condition (3.3)

lim
Mii→∞

Pi,k,θi

(
Zk

i,k+Mii
(θi) > (1 + ε)Ĩi(θi)Mii

)
= 0 for any θi ∈ Θi . (5.10)

Now, the definition of class ∆α = ∆(α, %α) in (4.9) implies that for any δ ∈ ∆α, any k > 1 and all i = 1, . . . ,N

αii >
∑
`>1

π`P∗(T 6 l, d = i) > P∗(T 6 k, d = i)
k∑
`=1

%α(1 − %α)l−1 = (1 − %α)k P∗(T 6 k, d = i),

which yields
sup
δ∈∆α

P∗ (T 6 k , d = i) 6 αi,i (1 − %α)−k = e−| logαi,i |+k$α . (5.11)

Therefore, the first term on the right side of the inequality (5.9) may be estimated as

e(1+ε)Ĩi,i(θi)Mi,i−| logαi,i |+$αk+$αMi,i 6 e−ε
2 | logαi,i |+$αk+$αMi,i

and it goes to zero for any fixed 0 6 k < ∞ as αmax → 0, which along with (5.10) implies (5.7) for i = j.
To obtain lower bounds (5.4) and (5.5) note that for any 1 6 j 6 N

Ei,k,θi

[
(T − k)r

+
1{d=i}

]
> Ei,k,θi

[
(T − k)r

+
1{T>k+Mi, j , d=i}

]
> Mr

i, j Pi,k,θi

(
T > k + Mi, j , d = i

)
9



= Mr
i, j

(
Pi,k,θi

(T > k , d = i) − Di, j,k(δ)
)
. (5.12)

Using the upper bound (5.11), we get

Pi,k,θi
(T > k , d = i) = Pi,k,θi

(d = i) − Pi,k,θi
(T 6 k , d = i)

= Pi,k,θi
(d = i) − P∗ (T 6 k , d = i)

> 1 −
N∑

l=1,l,i

Pi,k,θi
(d = l) − αi,i(1 − %α)−k .

Next, it follows from (4.8) and (4.9) that for l , i

sup
θi∈Θi

Pi,k,θi
(T > k , d = l) 6

αi,l

%α
(1 − %α)−k = elogαi,l−log %α+k$α ,

i.e., for any l , i and θi ∈ Θi

Pi,k,θi
(d = l) = P∗ (T 6 k , d = l) + Pi,k,θi

(T > k , d = l)

6 αl,l(1 − %)−k +
αi,l

%α
(1 − %α)−k = elogαi,l+k$α + elogαi,l−log %α+k$α .

Thus, in view of (5.2) for any θi ∈ Θi

Pi,k,θi
(T > k , d = i)→ 1 as αmax → 0

and using (5.12) and (5.7), we finally obtain the asymptotic inequality

Ei,k,θi

[
(T − k)r

+
1{d=i}

]
>

(1 − ε)
| logα j,i|

Ii, j(θi, θ j)

r

(1 + o(1)), αmax → 0

(where o(1) → 0), which holds for an arbitrary ε ∈ (0, 1), so letting ε → 0 implies lower bounds (5.4) (for j , i) and
(5.5) (for j = i). The proof is complete.

5.2. The local constraints setting
To find asymptotic lower bounds for the problems (2.10) and (2.11) in addition to condition (A1) we impose the

following condition.
(H1) The parameters %, m∗ and k∗ in (4.11) are functions of β, i.e. % = %β, m∗ = m∗

β
and k∗ = k∗

β
, such that

lim
βmax→0

%β = 0 , lim
βmax→0

| log %β|

| logα(2)
max|

= 0 and lim
βmax→0

max
16i, j6N

∣∣∣∣∣∣∣ | logα(2)
i, j |

| log βi, j|
− 1

∣∣∣∣∣∣∣ = 1 , (5.13)

where α(2)
max = max16i, j6N α

(2)
i, j and βmax = max16i, j6N βi, j.

For example, we can take

m∗β = [| log βmin|/%β] , k∗β = ǩ m∗
β

and %β =
1

1 + | log βmax|
, (5.14)

where [x] is the integer part of the x, βmin = min16i, j6N βi, j and ǩ > 1 is some fixed number.
The following theorem establishes asymptotic lower bounds in class of detection-identification proceduresH (β,k∗,m∗).

Theorem 2. Assume that conditions (A1) and (H1) hold. Then, for any r > 1, k > 0, 1 6 i 6 N and θi ∈ Θi,

lim inf
βmax→0

infδ∈H(β,k∗,m∗) Ri,k,θi
(δ)

br
i,β(θi)

> 1 , (5.15)

where the denominator bi,β(θi) is defined in (5.1) by replacing the matrix α with β.
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Proof. First of all, note that the last condition in (5.13) implies that for any 1 6 i 6 N and θi ∈ Θi

lim
βmax→0

bi,α2
(θi)

bi,β(θi)
= 1 .

It is clear that the last inclusion in (4.12) implies that for all k > 0 and sufficiently small β > 0

inf
δ∈H(β,k∗,m∗)

Ri,k,θi
(δ) > inf

δ∈∆(α2,%β)
Ri,k,θi

(δ) > inf
δ∈∆(α2,%β)

Ei,k,θi

[
(T − k)r

+
1{d=i}

]
.

Now, the lower bounds (5.15) directly follow from the lower bounds (5.3) and condition (H1).

6. Upper bounds and asymptotic optimality

We begin with studying the sequential procedure (4.5) for large threshold values Ai, j. For any matrix A =

(Ai, j)16i, j6N with Ai, j > 1 and any ϑ ∈ Θi define

Bi,A(ϑ) = max
16 j6N

log Ai, j

ιi, j(ϑ)
, (6.1)

where the “information” functions ιi, j(·) are defined in (5.1). We need the following condition:
(H2) The matrix A = (Ai, j)16i, j6N is such that

lim
Amin→∞

max
16i6N

∣∣∣∣∣∣max16 j6N log Ai, j

log Ai,i
− 1

∣∣∣∣∣∣ = 0 .

Proposition 2. If conditions (A2) and (H2) hold true, then for any 1 6 i 6 N and any compact set K ⊂ Θ the
sequential procedure (4.5), in which | log %| = o(log Amin) as Amin → ∞, admits the following upper bound

lim sup
Amin→∞

max
16i6N

sup
θi∈K

sup
16k6k

∗

Ri,k,θi
(δ∗A)

Br
i,A(θi)

6 1 , (6.2)

where θ = (θ1, . . . , θN), Amin = min16i, j6N Ai, j and k∗ is such that k∗ = o(log Amin) as Amin → ∞.

Proof. First, note that in view of (4.17) δ∗A belongs to class ∆(%, α) with

αi, j =
1

1 + Ai,i
1{i= j} +

1
1 + A j,i

1{i, j} .

Therefore, using the upper bound (4.13), we obtain that uniformly over 1 6 k 6 k∗

Pi,k,θi
(T ∗A > k) = P∗(T ∗A > k) > 1 − (1 − %)−k

N∑
j=1

1
1 + A j, j

> 1 − (1 − %)−k
∗

N∑
j=1

1
1 + A j, j

→ 1 , Amin → ∞ .

Therefore, to obtain the inequality (6.2) it suffices to show that

lim sup
Amin→∞

max
16i6N

sup
θi∈K

sup
16k6k

∗

Ei,k,θi
[(T ∗A − k)r

+
]1{d∗A=i}

Br
i,A(θi)

6 1 . (6.3)
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Note also that by condition (A2) for arbitrary 0 < ε < 1 we can chose such 0 < ζ < 1 for which
{
ϑ : |ϑ − θi| < ζ

}
⊂

Θi for all 1 6 i 6 N,

U∗1(ζ) = max
16i6N

sup
θi∈K

∞∑
n=1

nr−1 sup
k>0

Pi,k,θi

(
inf
|u−θi |<ζ

Zk
i,k+n(u) < (1 − ε)Ĩi(θi)n

)
< ∞

and

U∗2(ζ) = max
i, j

sup
θi∈K

∞∑
n=1

nr−1 max
06k6ζn

Pi,k,θi

(
inf
|u−θi |<ζ

Zk
i,k+n(u) − Z∗j,k+n < (1 − ε)Ĩi(θi)n

)
< ∞ .

Now, for an arbitrary ϑ ∈ Θi, we set

n∗i = n∗i,A(ϑ) =

[
1 + ε

1 − ε
κi,ABi,A(ϑ)

]
+ 1 and κi,A =

max16 j6N log Ai, j

log Ai,i
. (6.4)

Note that in view of the properties (3.1) and the fact that k∗ = o(log Amin) we can conclude that for a sufficiently large
Amin we have k∗ 6 ζn∗i . Moreover,

Ei,k,θi

[
(T ∗A − k)r

+
1{d∗A=i}

]
6

∑
n>0

nr−1Pi,k,θi

(
T ∗i,A > k + n

)
6 1 + (n∗i )r +

∑
n>n∗i

nr−1Pi,k,θi

(
T ∗i,A > k + n

)
. (6.5)

Now, the definition (4.4) implies that

Pi,k,θi

(
T ∗i,A > k + n

)
= Pi,k,θi

 max
16l6n+k

min
16 j6N

< Ul >i, j

Ai, j
< 1

 6 N∑
j=1

Pi,k,θi

(
< Uk+n >i, j< Ai, j

)
,

i.e.

Pi,k,θi

(
T ∗i,A > k + n

)
6

N∑
j=1

Pi,k,θi

(
log < Uk+n >i, j< log Ai, j

)
. (6.6)

Using (4.3) we obtain that for i , j

Pi,k,θi

(
log < Uk+n >i, j< log Ai, j

)
= Pi,k,θi

(
log Li,k+n − log L̂ j,k+n < log Ai, j

)
(6.7)

and for i = j

Pi,k,θi

(
log < Uk+n >i,i< log Ai,i

)
= Pi,k,θi

(
log Li,k+n − (k + n) log(1 − %) < log Ai,i

)
. (6.8)

Note that
log Li,k+n > log πk

∫
{|υ−θi |<ζ}

g∗i,k,k+n(υ)Wi(dυ) > inf
{|υ−θi |<ζ}

Zk
i,k+n(υ) + li(%) ,

where li(%) = − log % − k∗ log(1 − %) − log Wi
(
z ∈ Θi : |z − θi| < ζ

)
. Since | log %| = o(log Amin) and k∗ = o(log Amin),

we get

lim
Amin→∞

max16i6N li(%)

log Amin
= 0 .

Obviously, log L̂ j,k+n 6 Z∗j,k+n. Moreover, taking into account that for any 1 6 j 6 N

n∗i >
(1 + ε) log Ai, j

(1 − ε)Ĩi(θi)

we can obtain that for any j , i, θi ∈ Θi, n > n∗i > k∗/ζ and 0 6 k 6 k∗ and for sufficiently large Amin for which
max16i6N li(%) 6 ε log Amin

Pi,k,θi

(
log < Uk+n >i, j< log Ai, j

)
6 Pi,k,θi

(
inf

{|υ−θi |<ζ}
Zk

i,k+n(υ) − Z∗j,k+n < log Ai, j + li(%)
)
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6 max
06l6ζn

Pi,l,θi

(
inf
|υ−θi |<ζ

Zl
i,l+n(υ) − Z∗j,l+n < (1 − ε)Ĩi(θi)n

)
and

Pi,k,θi

(
log < Uk+n >i,i< log Ai,i

)
6 Pi,k,θi

(
inf

{|υ−θi |<ζ}
Zk

i,k+n(υ) < log Ai,i + li(%)
)

6 max
06l6ζn

Pi,l,θi

(
inf
|υ−θi |<ζ

Zl
i,l+n(υ) < (1 − ε)Ĩi(θi)n

)
.

Therefore, from (6.5) we get

Ei,k,θi

[
(T ∗A − k)r

+
1{d∗A=i}

]
6 1 + (n∗i )r + U∗1(ζ) + U∗2(ζ)

6 1 +

(
1 + ε

1 − ε

)r

κr
i,ABr

i,A(θi) + U∗1(ζ) + U∗2(ζ) ,

and using the condition (H2), we get

lim sup
Amin→∞

max
16i6N

sup
θi∈K

sup
16k6k

∗

Ei,k,θi

[
(T ∗A − k)r

+
1{d∗A=i}

]
Br

i,A(θi)
6

(
1 + ε

1 − ε

)r

.

Since ε can be arbitrarily small, taking the limit as ε → 0, we obtain the bound (6.3), which completes the proof of
Proposition 2.

Remark 2. If both left-tail and right-tail conditions (A1) and (A2) hold along with conditions (H1) and (H2), then
inverting the equality (4.19) and using Theorem 2 (with β replaced with A−1) and Proposition 2 simultaneously it can
be shown that the following asymptotic equalities for the moments of delay of the procedure δA hold for any fixed k,
θi ∈ Θi and all i = 1, . . . ,N:

Ri,k,θi (δA) = max
16 j6N

log Ai, j

ιi, j(θi)
(1 + o(1)) = max

 log Ai,i

Ĩi(θi)
, max

16 j,i6N

log Ai, j

Îi, j(θi)

 (1 + o(1)) as Amin → ∞.

To obtain the optimal detection rate we need to impose the following condition:
(H3) Parameters %opt and k∗ are functions of β, i.e. %opt = %

opt
β , k∗ = k∗β and m∗ = m∗β, such that

lim
βmax→0

| log %opt |

| log βmax|
= 0 and lim

βmax→0
max

16i, j6N

∣∣∣∣∣∣∣ | logα(1)
i, j |

| log βi, j|
− 1

∣∣∣∣∣∣∣ = 0 , (6.9)

where
α(1)

i, j = βi,i(1 − %
opt)k∗1{i= j} + βi, j%

opt(1 − %opt)k∗1{i, j} .

For example, for some ǩ > 1 we can take

m∗
β

=

 | log βmin|

%β

 , k∗β = ǩm∗
β
, %opt =

| log βmax|%β

| log βmin|(1 + | log %β|)
and %β =

1
1 + | log βmax|

. (6.10)

Then under the conditions

lim
βmax→0

log | log βmin|

| log βmax|
= 0 and lim

βmax→0
max

16i6N

∣∣∣∣∣∣max16 j6N | log β j,i|

| log βi,i|
− 1

∣∣∣∣∣∣ = 0 , (6.11)

we obtain that the conditions (H1) – (H3) hold.
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Denote by δopt
β = (T opt, dopt) the procedure (4.5) with % = %opt and

Ai, j = Aopt
i, j (β) =

(
1 + tr β

βi,i(1 − %opt)k∗ − 1
)

1{i= j} +
1 + tr β

β j,i(%opt)(1 − %opt)k∗ 1{i, j} , (6.12)

that is,
T opt
β = min

16i6N
T opt

i,β and dopt
β = i if T opt

i,β = T opt
β , (6.13)

where

T opt
i,β = inf

n > 1 : min
16 j6N

< Un >i, j

Aopt
i, j (β)

> 1

 . (6.14)

The following theorem deduces the pointwise and minimax optimality properties of the procedure δopt
β .

Theorem 3. Assume that conditions (A1)–(A2) and (H1)–(H3) hold true. Then the procedure δopt
β is optimal in the

pointwise sense, i.e., for any θi ∈ Θi, 1 6 i 6 N, and for every fixed k > 0

lim
βmax→0

infδ∈H(β,k∗,m∗) Ri,k,θi
(δ)

Ri,k,θi
(δopt
β )

= 1 and lim
βmax→0

Ri,k,θi
(δopt
β )

br
i,β(θi)

= 1 . (6.15)

Also, for any k∗ = o(| log βmax|) as βmax → 0 the procedure δopt
β is optimal in the minimax sense, i.e., for any θi ∈ Θi

and 1 6 i 6 N,

lim
βmax→0

infδ∈H(β,k∗,m∗) max16k6k
∗
Ri,k,θi

(δ)

max16k6k
∗
Ri,k,θi

(δopt
β )

= 1 and lim
βmax→0

max16k6k
∗
Ri,k,θi

(δopt
β )

br
i,β(θi)

= 1 . (6.16)

Proof. By condition (H3)

lim
βmax→0

max
16i, j6N

∣∣∣∣∣∣∣ | log Aopt
i, j (β)|

| log β j,i|
− 1

∣∣∣∣∣∣∣ = 0,

so that using the asymptotic upper bound (6.2) in Proposition 2 we obtain the asymptotic upper bound

lim sup
βmax→0

max
16i6N

sup
θi∈K

sup
16k6k

∗

Ri,k,θi
(δopt
β )

Br
i,β(θi)

6 1 . (6.17)

Comparing this bound with the lower bound (5.3) in Theorem 1 yields (6.15) and (6.16).
The next theorem also shows that the procedure δopt

β = (T opt, dopt) is “robust” in the following sense

R∗
β
(δ) = sup

θ∈Θ

max
16i6N

max
16k6k

∗

Ri,k,θi
(δ)

br
i,β(θi)

. (6.18)

Theorem 4. Suppose that conditions (A1)–(A2) and (H1)–(H3) hold and k∗ = o(| log βmax|) as βmax → 0. Then

lim
βmax→0

infδ∈H(β,k∗,m∗) R
∗
β
(δ)

R∗β(δ
opt
β )

= 1 . (6.19)

The proof is similar to the proof of Theorem 2 in [13] for the single-stream detection problem and is omitted.
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7. Detection-identification of changes in homogeneous Markov models

Let the observations (Xi,n)n>1 be time homogeneous Markov processes with values in a measurable space (Xi,Bi)
defined by a family of the transition probabilities (Pθi

i (x, A))θi∈Θi
for some fixed parameter set Θi ⊆ Rp. In the sequel

we denote by Eθi
i,x(·) the expectation with respect to this probability. Moreover, we assume that for any 1 6 i 6 N

the observations (Xi,n)n>1 are Markov processes, such that (Xi,n)16n6ν is a homogeneous process with the transition
(from x to y) density f ∗i (y|x) and in the case when ν = +∞ this process is ergodic with the ergodic distribution λ∗,i.
We denote by P∗ the distribution of the observations (Xi,n)16i6N,n>1 of this process when ν = ∞. The expectation
with respect to this distribution will be denoted by E∗(·). In addition, we assume that for any 1 6 i 6 N the process
(Xi,n)n>ν is homogeneous positive ergodic with the transition density fi,θi

(y|x) and the ergodic (stationary) distribution
λθi,i (θi ∈ Θi). The densities f ∗i (y|x) and ( fi,θi

(y|x))θ∈Θi
are calculated with respect to a sigma-finite positive measure µi

on Bi. In this case, we can represent the LLR process Zk
i,n(u) defined in (2.6) as

Zk
i,n(u) =

n∑
j=k+1

gi(u, Xi, j, Xi, j−1) , gi(u, y, x) = log
fi,u(y|x)
f ∗i (y|x)

. (7.1)

We also assume that densities fi,u(y|x) are continuously differentiable with respect to u in a compact set Θ̃i ⊆ Θi.
Now we set

h(x, y) = max
16i6N

max
u∈Θ̃i

max
16 j6p

|∂gi(u, y, x)/∂u j| (7.2)

and
hi(θi, y) =

∫
Xi

h(y, x) fi,θi
(y|x) µi(dy) , θi ∈ Θi .

For some q > 0 define
g∗q(x) = sup

n>1
max

16i6N
sup
θi∈Θi

Eθi
i,x |gi(θ, Xi,n, Xi,n−1)|q

and
h∗q(x) = sup

n>1
max

16i6N
sup
θi∈Θi

Eθi
i,x |h(Xi,n, Xi,n−1)|q . (7.3)

Also, define

Ji(θi, x) =

∫
Xi

gi(θi, y, x) fi,θi
(y|x) µi(dy) and J∗i (θi, x) =

∫
Xi

gi(θi, y, x) f ∗i (y|x) µi(dy) . (7.4)

Obviously, Ji(θi, x) > 0 and J∗i (θi, x) 6 0. Write

Ji(θi) =

∫
Xi

Ji(θi, x)λθi,i(dx) and J
∗

i (θi) =

∫
Xi

J∗i (θi, x)λ∗,i(dx) . (7.5)

Introduce the following conditions.
(C1) For any 1 6 i 6 N there exist sets Ci ∈ Bi with µi(Ci) < ∞ such that

(C1.1) f∗ = min16i6N infθi∈Θi
infx,y∈Ci

fi,θi
(y|x) > 0.

(C1.2) For any 1 6 i 6 N there exists Xi → [1,∞) Lyapunov’s function Vi such that

• Vi(x) > Ji(θi, x) and Vi(x) > hi(θi, x) for any θi ∈ Θi and x ∈ Xi .

• max16i6N supx∈Ci
Vi(x) < ∞.

• There exist 0 < ρ < 1 and m∗ > 0 such that for all 1 6 i 6 N, x ∈ Xi and θi ∈ Θi,

Eθi
i,x[Vi(Xi,1)] 6 (1 − ρ)Vi(x) + m∗ 1Ci

(x) . (7.6)
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(C2(q)) There exists q > 2 such that for any 1 6 i 6 N

sup
k>1

E∗ [g∗q(Xi,k)] < ∞ , sup
k>1

E∗[h∗q(Xi,k)] < ∞ and sup
k>1

E∗[υ∗q(Xi,k)] < ∞ ,

where the functions g∗q(x) and h∗q(x) are given in (7.3) and

υ∗q(x) = sup
16i6N , n>0

sup
θi∈Θi

Eθi
i,x

[
Vi(Xi,n)

]q
. (7.7)

(C3(q)) The function gi(u, y, x) can be represented as

gi(u, y, x) − J
∗

i (u) =

m∑
l=1

αi,l(u)ǧi,l(y, x) (7.8)

with α j,l(u) and ǧi,l(y, x) such that for any 1 6 i 6 N and 1 6 l 6 m

sup
u∈Θi

|α j,l(u)| < ∞ and sup
n>1

n−q/2E∗

∣∣∣∣∣∣∣∣
n∑

j=1

ǧi,l(Xi, j, Xi, j−1)

∣∣∣∣∣∣∣∣
q

< ∞ .

Theorem 5. Assume that conditions (C1) − (C3(q)) hold true and the functions Ji(θi) and −J
∗

i (θi) defined in (7.4) are
continuous and positive for θi ∈ Θi. Then conditions (A1) and (A2(r)) are satisfied for any 0 < r < q/2 with

Ii, j(θi, θ j) = Ji(θi) 1{i= j} + [Ji(θi) − J
∗

j(θ j)]1{i, j} . (7.9)

Proof. Note first that conditions (3.3) and (3.4) follow from Theorem 8 in [13] that uses the uniform geometric
ergodicity property and concentration inequalities methods developed in [3, 4]. To prove condition (3.5) we observe
that condition (C3) and the Chebyshev inequality imply that for any a > 0

sup
n>1

nq/2 max
16i6N

max
16k6n

P∗
sup
θi∈Θi

|∆k
i,n(θi)| > an

 < ∞ , (7.10)

where

∆k
i,n(θi) = Zk

i,n − J
∗

i (θi)(n − k) =

n∑
j=k+1

(
gi(θi, Xi, j, Xi, j−1) − J

∗

i (θi)
)
.

Taking into account that J
∗

j(θi) 6 0, we obtain that for any ε > 0 and 1 6 j 6 N

P∗
(
Z∗j,n > εn

)
6 P∗

 max
16k6n

sup
θ j∈Θ j

|∆k
j,n(θ j)| > εn

 6 n max
16k6n

P∗
 sup
θ j∈Θ j

|∆k
j,n(θ j)| > εn

 .
Therefore, (7.10) implies the condition (3.5) for r < q/2.

Remark 3. The function Ji(·) is called the Kullback-Leibler divergence for the Markov processes (see, e.g., [5]).

Note that condition (C1.1) does not always hold for the process (Xi,n)n>1 directly. For example, this condition
does not hold for the practically important autoregression process of the order more than one. For this reason, we
need to weaken this requirement. Similarly to [12] we assume that there exists p > 2 for which the process (X̃ι

i,n)n>ν̃

for ν̃ι = ν/p − ι and 0 6 ι 6 p − 1 defined as X̃ι
i,n = Xi,np+ι satisfies the following conditions:

(C′1) There exist sets Ci ∈ Bi with µi(Ci) < ∞ such that

(C′1.1) min16i6N inf16ι6p infθi∈Θi
infx,y∈C f̃ ιi,θi

(y|x) > 0 ,where f̃ ιi,θi
(y|x) is the transition density for the process (X̃ι

i,n)n>ν̃i
.
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(C′1.2) For any 1 6 i 6 N there exists Xi → [1,∞) Lyapunov’s function Vi such that

max
16i6N

max
16 j6p

sup
θi∈Θi

sup
x∈Xi

Eθi
i,x

[
Vi(Xi, j)

]
Vi(x)

< ∞ and sup
θi∈Θi

λθi,i(Vi) < ∞ .

• Vi(x) > Ji(θi, x) and Vi(x) > hi(θi, x) for θi ∈ Θi and x ∈ Xi and max16i6N sup
θi∈Θi

supx∈Ci
Vi(x) < ∞.

• For any 1 6 i 6 N, there exist 0 < ρ < 1 and m∗ > 0 such that for all x ∈ Xi, θi ∈ Θi, and 0 6 ι 6 p − 1

Eθi
i,x

[
Vi(X̃

ι
i,1)

]
6 (1 − ρ)Vi(x) + m∗1Ci

(x) . (7.11)

Similarly to Theorem 5 we can prove, using Theorem 9 in [13], the following result.

Theorem 6. Assume that conditions (C′1) and (C2(q)) hold, the processes (X̃ι
i,n)n>ν̃ satisfy the condition (C3(q)), and

the functions Ji(θi) and −J
∗

i (θi) defined in (7.4) are continuous and positive for θi ∈ Θi. Then conditions (A1) and
(A2(r)) hold for any 0 < r < q/2 with the functions Ii, j defined in (7.9).

To check the condition C3(q)) we need to obtain concentration inequality for the homogenous Markov process
(Xi,n)n>1 with the transition density f ∗i (y|x). The following condition is sufficient for this purpose:
(C∗3(q)) For any 1 6 i 6 N there exist sets Ci ∈ Bi with µi(Ci) < ∞ such that

1. min16i6N infx,y∈Ci
f ∗i (y|x) > 0.

2. For any 1 6 i 6 N there exists Xi → [1,∞) Lyapunov’s function Vi such that

• max16i6N supx∈Ci
Vi(x) < ∞.

• There exist 0 < ρ < 1 and m∗ > 0 such that for all 1 6 i 6 N, x ∈ Xi and θi ∈ Θi,

E∗x[Vi(Xi,1)] 6 (1 − ρ)Vi(x) + m∗ 1Ci
(x) . (7.12)

• There exists q > 0 such that for any xi ∈ Xi

max
16i6N

sup
j>1

E∗xi
[Vq

i (Xi, j)] < ∞ . (7.13)

3. The functions ǧi,l(y, x) in (7.8) are such that for any 1 6 i 6 N and x ∈ Xi

max
16l6m

∣∣∣∣∣∣∣
∫
Xi

ǧi,l(y, x) f ∗i (y|x)µi(dy)

∣∣∣∣∣∣∣ 6 Vi(x) and sup
j>1

E∗x|ǧi,l(Xi, j, Xi, j−1)|q < ∞ .

Proposition 1 from [12] provides the following result.

Proposition 3. The condition (C∗3(q)) implies the condition (C3(q)).

8. Examples

8.1. Example 1: Change in the parameters of multivariate linear difference equations
Consider the multivariate models in Rp given by

Xi,n =
(
Γ∗i,n1l{n6ν} + Γi,n1l{n>ν}

)
Xi,n−1 + wi,n , (8.1)

where Γ∗i,n and Γi,n are p× p random matrixes and (wi,n)n>1 is an i.i.d. sequence of Gaussian random vectorsN(0,Q∗i )
in Rp with the positive definite p × p matrix Q∗i . Assume also that

Γ∗i,n = θ∗i + Bi,n and Γi,n = θi + Bi,n (8.2)
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and (Bi,n)n>1 are i.i.d. Gaussian random matrices N(0 ,Qi), where the p2 × p2 matrix Qi = E[Bi,1 ⊗ Bi,1] is positive
definited. Assume, in addition, that all eigenvalues of the matrix

E[Γ∗i,1 ⊗ Γ∗i,1] = θ∗i ⊗ θ
∗

i + Qi

are less than one in module. Define

Θst
i = {θi ∈ Rp2

: max
16 j6p4

i

e j(θi ⊗ θi + Qi) < 1}} \ {θ∗i } , (8.3)

where e j(Γ) is the jth eigenvalue of matrix Γ, and assume further that in (8.2) the matrices θi ∈ Θst
i . In this case, the

processes (Xi,n)n>1 (for ν = ∞) and (Xi,n)n>ν (for ν < ∞) are ergodic with the ergodic distributions given by the vectors
[[6]]

ς∗i =
∑
l>1

l−1∏
j=1

Γ∗i, j wi,l and ςi,θ =
∑
l>1

l−1∏
j=1

Γi, j wi,l

i.e., the corresponding invariant measures λ∗,i and λθ,i on Rp are defined as

λ∗,i(dx) = P(ς∗i ∈ dx) and λθ,i(dx) = P(ςi,θ ∈ dx)

Note that in this case the Markov processes (Xi,n)n6ν and (Xi,n)n>ν have the following transition densities in Rp, θi ∈ Θi

f ∗i (y|x) =

exp
{
−
|η∗i (y,x)|2

2

}
(2π)p/2

√
det(Gi(x))

and fi,θi
(y|x) =

exp
{
−
|ηθi ,i

(y,x)|2

2

}
(2π)p/2

√
det(Gi(x))

, (8.4)

where η∗i (y, x) = G−1/2
i (x)(y − θ∗i x), ηθi,i(y, x) = G−1/2

i (x)(y − θix), θi ∈ Θi and

Gi(x) = E [Bi,1xx′B′i,1] + Q∗i = Qi Vect(xx′) + Q∗i .

Therefore, in this case,

gi(θi, y, x) = log
fi,θi

(y|x)

f ∗i (y|x)
= y′G−1

i (x)(θi − θ
∗

i )x +
x′(θ∗i )

′

G−1
i (x) θ∗i x − x′θ′i G−1

i (x) θi x

2
.

Now we set

Li,n = %opt
n−1∑
k=0

(1 − %opt)k
∫

Θi

e
∑n

j=k+1 gi(θi,Xi, j,Xi, j−1)Wi(dθi) (8.5)

and

L̂i,n = %opt
n−1∑
k=0

(1 − %opt)k sup
θ∈Θi

e
∑n

j=k+1 gi(θi,Xi, j,Xi, j−1)
, (8.6)

where %opt is defined in (6.10). The random N × N matrix (4.3) has the following form

< Un >i, j=
Li,n

L̂ j,n

if i , j and < Un >i,i=
Li,n

(1 − %opt)n , (8.7)

and the corresponding change detection-identification procedure δopt
β = (T opt

β , dopt
β ) is defined by (6.13)-(6.14) with

the threshold matrix A = Aopt
β given by (6.12).

As shown in [13], conditions (C1) and (C2(r)) hold for any r > 0. Moreover, one can calculate directly that

Ji(θi) =
1
2

E
[
ς′i,θi

(θi − θ
∗

i )′G−1
i (ςi,θi

)(θi − θ
∗

i )ςi,θi

]
18



and
J
∗

i (θi) = −
1
2

E
[
(ς∗i )′(θi − θ

∗

i )′G−1
i (ς∗i )(θi − θ

∗

i )ς∗i
]
.

To check the condition (C3) denote θi = θ∗i − u. It can be easily shown that for 1 6 i 6 N

gi(u, y, x) − J
∗

i (u) = −

p∑
s1,s2=1

< θi >s1,s2

p∑
k=1

D(i,1)
s1,s2,k

(x) < η∗i (y, x) >k

−
1
2

p∑
s1,s2,s3,s4=1

< θi >s1,s2
< θi >s3,s4

D(i,2)
s1,s2,s3,s4

(x) ,

where D(i,1)
s1,s2,k

(x) =< G−1/2
i (x) >s1,k

< x >s2
, D(i,2)

s1,s2,s3,s4
(x) = bs1,s2,s3,s4

(x) − E∗[bs1,s2,s3,s4
(ς∗i )] and

bs1,s2,s3,s4
(x) =< x >s2

< x >s4
< G−1

i (x) >s1,s3
.

Note that for any z ∈ Rp and |z| = 1

z′Gi(x)z = |x|2(Vect(x̃z′))′Qi Vect(x̃z′) + z′Q∗i z ,

where x̃ = x/|x|. Taking into account that the matrices Qi are positive definite, we obtain that for some c∗ > 0

max
16i6N

|G−1
i (x)| 6

c∗
1 + |x|2

. (8.8)

Therefore, the functions D(i,1)
s1,s2,k

(x) and bs1,s2,s3,s4
(x) are bounded. Moreover, as shown in [13] (Example 1), the Lya-

punov function for the process (8.1) (with ν = +∞) has the form

V(x) = v∗
(
1 + (x′T x)δ

)
for some constant v∗ > 1, a fixed matrix T and any δ > 0. Since in this case max16i6N sup j>1 E∗[X2

i, j] < ∞, we
obtain that condition (C∗3(q)) holds true for any q > 0. Now, taking into account that under P∗ the random vectors
(η∗i (Xi, j, Xi, j−1))16i6N , j>1 are i.i.d. (0,Ip) Gaussian (Ip is the unity matrix in Rp), we obtain the condition (C3(q))
for any q > 0 using Proposition 3. Therefore, Theorems 3 and 4 imply that the sequential procedure δopt

β defined in
(6.13)-(6.14) is asymptotically optimal and robust in the pointwise and minimax senses for any compact sets Θi ⊂ Θst

i
and for any r > 0.

8.2. Example 2: Change in the correlation coefficients of autoregressive models
Consider the problem of detecting the change of the correlation coefficient in the pth order AR process which in

the ith stream satisfies the recursion

Xi,n = a(n)
i,1 Xi,n−1 + . . . + a(n)

i,p Xi,n−p + wi,n, for n > 1, (8.9)

where a(n)
i,l = θ∗l 1l{n6ν} + θi,l1l{n>ν} and (wi,n)n>1 are i.i.d. Gaussian random variables with E [wi,1] = 0, E [w2

i,1] = 1.
In the sequel, we use the notation θ∗i = (θ∗i,1, . . . , θ

∗
i,p)′ and θi = (θi,1, . . . , θi,p)′. Hereafter ′ denotes the transposition

operation. The corresponding conditional densities Xi,n|Xi,n−1, . . . , Xi,n−p for ν 6 n and ν > n, θi ∈ Θi, are

f ∗i (y|x) =
1

(2π)p/2 exp

− (η∗i (y, x))2

2

 and fi,θi
(y|x) =

1
(2π)p/2 exp

− (ηθi,i(y, x))2

2

 , (8.10)

where η∗i (y, x) = y − (θ∗i )′x and ηθi,i(y, x) = y − (θi)
′x. Therefore, for any θi ∈ Rp, y ∈ R and x = (x1, . . . , xp)′ ∈ Rp

gi(θi, y, x) = log
fi,θi

(y|x)

f ∗i (y|x)
= y1(θi − θ

∗

i )′x +
((θ∗i )′x)2 − (θ′i x)2

2
. (8.11)
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The process (8.9) is not Markov, but the p-dimensional processes

Φi,n = (Xi,n, . . . , Xi,n−p+1)′ ∈ Rp, i = 1, . . . ,N (8.12)

are Markov. Now, for any ϑ = (ϑ1, . . . , ϑp) ∈ Rp we difine

Λ(ϑ) =


ϑ1 ϑ2 . . . ϑp
1 0 . . . 0
...

...
. . .

...
0 0 . . . 1 0

 .
Using this matrix it is easy to show that the processes (Φi,n)n6ν and (Φi,n)n>ν+p satisfy the following stochastic linear
equations:

Φi,n = Λ∗,iΦi,n−1 + w̃i,n for n 6 ν and Φi,n = ΛiΦi,n−1 + w̃i,n for n > ν , (8.13)

where Λ∗,i = Λ(θ∗i ), Λi = Λ(θi) and w̃i,n = (wi,n, 0, . . . , 0)′ ∈ Rp. Obviously,

E[w̃n w̃′n] = B =


1 . . . 0
...

. . .
...

0 . . . 0

 .
Assume that all eigenvalues of the matrices Λ∗,i = Λi(θ

∗
i ) in modules are less than 1 and that θi belongs to the set

Θst
i = {ϑ ∈ Rp : max

16 j6p
|e j(Λi(ϑ))| < 1} \ {θ∗i } , (8.14)

where e j(Λ) is the ith eigenvalue of the matrix Λ. In this case, the processes (8.13) have the ergodic distributions
defined by the random vectors

ς∗i =
∑
l>1

(Λ∗,i)
l−1w̃i,l and ςi,θ =

∑
l>1

(Λi)
l−1w̃i,l

which are (0,F∗) and (0,Fi(ϑ)) Gaussian vectors in Rp, where

F∗ =
∑
n>0

(Λ∗,i)
n B (Λ′

∗,i)
n and Fi(ϑ) =

∑
n>0

Λn
i B(Λ′i)

n .

Now we set

Li,n = %opt
n−1∑
k=0

(1 − %opt)k
∫

Θi

e
∑n

j=k+1 gi(ϑ,Xi, j,Φi, j−1)Wi(dϑ) (8.15)

and

L̂i,n = %opt
n−1∑
k=0

(1 − %opt)k sup
θ∈Θi

e
∑n

j=k+1 gi(ϑ,Xi, j,Φi, j−1)
, (8.16)

where %opt is defined in (6.10). The random N × N matrix (4.3) has the following form

< Un >i, j=
Li,n

L̂ j,n

if i , j and < Un >i,i=
Li,n

(1 − %opt)n . (8.17)

and the corresponding change detection-identification procedure δopt
β = (T opt

β , dopt
β ) is defined in (6.13)-(6.14) with the

threshold matrix A = Aopt
β given by (6.12).

As shown in [13], conditions (C′

1) and (C2(r)) hold for any r > 0 and any compact sets Θi ⊂ Θst
i for the function

Ii, j defined in (7.9) with

Ji(ϑ) =
1
2

(ϑ − θ∗i )′F(ϑ)(ϑ − θ∗i ) and Ji(ϑ) = −
1
2

(ϑ − θ∗i )′F∗(ϑ − θ∗i ) . (8.18)
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It should be noted that in the scalar case, i.e., when p1 = . . . = pN = 1,

Ji(ϑ) =
(ϑ − θ∗i )2

2(1 − ϑ2)
and Ji(ϑ) = −

(ϑ − θ∗i )2

2(1 − (ϑ∗i )2)
.

Write θi = θ∗i − u. To check the condition (C3) direct calculations show that for 1 6 i 6 N

gi(u, y, x) − J
∗

i (u) = −θ
′

iηi(y, x) −
1
2
θ
′

i

(
xx′ − E[ς∗i,1(ς∗i,1)′]

)
θi .

Therefore, taking into account that in this case max16i6N sup j>1 E∗|Xi, j|
q < ∞ for any q > 0 we obtain that condition

(C∗3(q)) holds for any q > 0. Now, taking into account that under the probability measure P∗ the random variables
(η∗i (Xi, j,Φi, j−1))16i6N , j>1 are i.i.d. N(0, 1) we obtain the condition (C3(q)) for any q > 0 using Proposition 3. There-
fore, Theorems 3 and 4 imply that the sequential procedure δopt

β is asymptotically optimal and robust in the pointwise
and minimax senses for any compact sets Θi ⊂ Θst

i and for any r > 0.

9. Application to epidemics detection and localization

9.1. Near optimality

We begin with considering the epidemiological statistical models proposed in [1]. Assume that for any 1 6 i 6 N
the observations (Xi,n)16n6ν and (Xi,n)n>ν are homogenous Markov processes with the values in the finite space (X, µ),
Xi = {0, . . . ,D} and µ{0} = . . . = µ{D} = 1. In this model, the conditional Xi,n|Xi,n−1 densities for n 6 ν and for n > ν
are defined respectively as

f ∗i (y|x) =

(
x
y

)
(p∗i )x−y(1 − p∗i )y and fi,θi

(y|x) =

(
x
y

)
θ

x−y
i (1 − θi)y , (9.1)

where 0 < p∗i < 1 and θi ∈ Θi ⊂ [0, 1]. The probabilities p∗i are non-epidemic (normal) infection rates and the Θi
are the sets of epidemic values of the infection parameters θi. In this case, the functions gi defined in (7.1) for any
0 < θi < 1, x, y ∈ X have the following forms

gi(θi, y, x) = log
fi,θi

(y|x)

f ∗i (y|x)
= (x − y) log

θi

p∗i
+ y log

1 − θi

1 − p∗i
, i = 1, . . . ,N. . (9.2)

So the functions (7.4) are

Ji(θi, x) =

x∑
y=0

(
(x − y) log

θi

p∗i
+ y log

1 − θi

1 − p∗i

) (
x
y

)
θ

x−y
i (1 − θi)y

and

J∗i (θi, x) =

x∑
y=0

(
(x − y) log

θi

p∗i
+ y log

1 − θi

1 − p∗i

) (
x
y

)
(p∗i )x−y(1 − p∗i )y .

One can check directly that the set C = {0} is an accesible atom for the Markov chains (Xi,n)n>ν. Obviously, if
Xi,n−1 = 0 then Xi,n = 0 almost surely. Define the Markov time

τ = inf{n > 1 : Xi,n = 0} .

If Xi,0 = 0 then τ = 1, i.e., Eθi
i,x=0 [τ] = 1. Therefore, for any 0 < θi < 1 the chain is ergodic with the ergodic

distribution λθi (Γ) = 1{0∈Γ} for any Γ ⊆ X (point measure). See, e.g., Theorems 10.2.1 and 10.2.2 in [8]. In this case,
for any compact sets Θi ⊂ Θ

min
16i6N

inf
θi∈Θi

inf
x,y∈C

fi,θi
(y|x) = 1 .
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Let us select
V(x) = V∗e

γx , (9.3)

where γ > 0 and V∗ > 1. For any x > 1 we have

Eθi
x [V(X1)]

V(x)
=

x∑
y=0

V(y)
V(x)

(
x
y

)
θ

x−y
i (1 − θi)y

= (1 − θi)x +

x−1∑
y=0

V(y)
V(x)

(
x
y

)
θ

x−y
i (1 − θi)y

6 (1 − θi)x + e−γ
x−1∑
y=0

(
x
y

)
θ

x−y
i (1 − θi)y = (1 − e−γ)(1 − θi)x + e−γ

6 (1 − e−γ)(1 − θi) + e−γ .

So, if we take γ = log 2 in (9.3), we obtain that for 1 6 i 6 N and θi ∈ Θi

Eθi
x [V(Xi,1)]

V(x)
6

2 − θi

2
6 1 − ρ with ρ = min

16i6N
inf
θi∈Θi

θi

2
.

By Theorem A1 in [13], the Markov chain (Xi,n)n>ν is uniformly geometric ergodic and for some positive constants
κ∗ and R∗

sup
n>0

eκ
∗n max

16i6N
sup
x∈Xi

sup
θi∈Θi

sup
06g6V

1
V(x)

|Eθ
i,x [g(Xi,n)] − g(0)| 6 R∗ .

Therefore, Theorem 5 implies conditions (A1) and (A2(r)) with Ji(θi) = Ji(θi, 0) = 0 and J
∗

j(θ j) = J∗i (θi, 0) = 0 for all
r > 0. This means that we cannot use the procedures (4.4) for this problem directly. However, in practice the values
of the observations Xi,n are sufficiently large, i.e., D → ∞, and usually the number of the infected populations is not
too large, i.e., Xi,n > εD for some 0 < ε < 1. So it is more natural to modify the initial model and study the limiting
model when D is sufficiently large. Note that in this case observations in the binomial models (9.1) can be represented
as

Xi,n = (1 − ϑ)Xi,n−1 +

Xi,n−1∑
j=1

(ηn, j − 1 + ϑ) ,

where (ηn, j) j>1 is i.i.d. sequence of Bernoulli random variables with P(ηn, j = 1) = 1 − ϑ and independent from Xi,n−1
and where ϑ = θi and p∗i in the post-change and pre-change modes, respectively. Using the Gaussian approximation
for the last sum

1√
Xi,n−1

Xi,n−1∑
j=1

(ηn, j − 1 + ϑ) ∼ N(0, σ2
ϑ) , σ2

ϑ
= ϑ(1 − ϑ) ,

we obtain the following model

Xi,n = (1 − ϑ)Xi,n−1 + σϑ

√
|Xi,n−1|ξi,n ,

where (ξi,n)n>1 is the sequence of i.i.d. normal N(0, 1) random variables.
Thus, in place of the original Bernoulli model we will use the following model: the observations Xi,k before change

are defined as
Xi,n = (1 − p∗i )Xi,n−1 + σ∗i

√
|Xi,n−1| ξi,n , σ∗i =

√
p∗(1 − p∗) , (9.4)

and after change as

Xi,n = (1 − θi)Xi,n−1 + σθi

√
|Xi,n−1| ξi,n , (9.5)
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where θi ∈ Θi ⊂ [0, 1] and (ξi,n)n>1 are i.i.d. N(0, 1) random variables. In this case, the spaces (Xi,Bi, µi) are:
X = R∗ = R \ {0}, Bi = B(R∗) is the Borel field and µi = µ is the Lebesgue measure on B(R∗). Obviously,

f ∗i (y|x) =
1

σ∗i
√

2π|x|
exp

{
−

[y − (1 − p∗)x]2

2(σ∗i )2|x|

}
and fθi

(y|x) =
1

σθi

√
2π|x|

exp

− [y − (1 − θi)x]2

2σ2
θi
|x|

 . (9.6)

Using definitions (7.2) and (7.4) we obtain that for x ∈ R∗

gi(θi, y, x) = log
σ∗i
σθi

+
(η∗i (y, x))2

2
−

(ηθi,i(y, x))2

2
, (9.7)

where
η∗i (y, x) =

y − (1 − p∗)x

σ∗i
√
|x|

and ηθi,i(y, x) =
y − (1 − θi)x

σ∗θi

√
|x|

.

In this case,

Li,n = %opt
n−1∑
k=0

(1 − %opt)k
∫

Θi

e
∑n

j=k+1 gi(θi,Xi, j,Xi, j−1)Wi(dθi) (9.8)

and

L̂i,n = %opt
n−1∑
k=0

(1 − %opt)k sup
θ∈Θi

e
∑n

j=k+1 gi(θi,Xi, j,Xi, j−1)
, (9.9)

where %opt is defined in (6.10). The elements of the random N × N matrix (4.3) have the following form

< Un >i, j=
Li,n

L̂ j,n

if i , j and < Un >i,i=
Li,n

(1 − %opt)n , (9.10)

and the corresponding change detection-identification procedure δopt
β = (T opt

β , dopt
β ) is defined in (6.13)-(6.14) with the

threshold matrix A = Aopt
β given by (6.12).

Let us check conditions (C1) − (C3). To this end, first note that

Ji(θi, x) =
1
2

log
p∗i (1 − p∗i )
θi(1 − θi)

− 1 +
θi(1 − θi)
p∗i (1 − p∗i )

+
(θi − p∗i )2

p∗i (1 − p∗i )
|x|

 (9.11)

and

J∗i (θi, x) =
1
2

log
p∗i (1 − p∗i )
θi(1 − θi)

+ 1 −
p∗i (1 − p∗i )
θi(1 − θi)

−
(θi − p∗i )2

θi(1 − θi)
|x|

 . (9.12)

Taking into account that the function z − log z − 1 > 0 for all z > 0 and z , 1 we obtain that infx Ji(θi, x) > 0 and
supx Ji(θi, x) < 0 for all θi , p∗i . Recall that p∗i and θi are the infection rates, where p∗ is normal non-epidemic value
and θi is epidemic value. So, if p̌i is the epidemic threshold for the ith stream, then Θi ⊂ ( p̌i, 1) and for all p∗i < p̌i

min
16i6N

inf
θi∈Θ

inf
x

Ji(θi, x) > 0 . (9.13)

Now we need to check the conditions of Theorem 5. First, note that the definition (9.6) yields that for any B > 0

min
16i6N

inf
θi∈Θi

inf
|y|6B

inf
|x|6B

fθi
(y|x) > 0 .

From (9.11) it is easy to deduce that for any compact sets Θi ⊂ ( p̌i, 1)

g∗ = max
16i6N

max
x∈R

sup
θi∈Θi

Ji(θi, x)
1 + |x|

< ∞ . (9.14)
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Moreover, note that
∂gi(ϑ, y, x)

∂ϑ
=

2ϑ − 1
ϑ(1 − ϑ)

−
(y − (1 − ϑ)x)x
ϑ(1 − ϑ)|x|

+
(y − (1 − ϑ)x)2

2ϑ2(1 − ϑ)2|x|
and, therefore, using the definition (7.2) we obtain

h(x, y) = max
16i6N

max
u∈Θi

|∂gi(u, y, x)/∂u| 6 ȟ
(
1 + |x| + |y| +

y2

|x|

)
, (9.15)

where ȟ = max16i6N maxϑ∈Θi
ϑ−2(1 − ϑ)−2. Therefore, taking into account, that in this case fi,ϑ(y|x) = fϑ(y|x) for all

1 6 i 6 N, we get for any ϑ ∈ Θi

hi(ϑ, y) = h(ϑ, y) =

∫
R

h(y, x) fϑ(y|x) dy 6 ȟ
(
1 + |x| +

∫
R
|y| fϑ(y|x) dy +

1
|x|

∫
R

y2 fϑ(y|x) dy
)

6 ȟ
(
1 + |x| + (1 − ϑ)|x| + σϑ

√
|x| + (1 − ϑ)2|x| + σ2

ϑ
|x|

)
6 4ȟ(1 + |x|) .

To check the conditions (C1.2) we set

V(x) = V∗(1 + |x|) and V∗ = g∗ + 4ȟ .

For the model (9.5) we have

Eθi
i,x [V(Xi,1)] 6 V∗

(
1 + (1 − θi)|x| + σθi

√
|x|E|ξ1|

)
,

i.e.,

lim sup
B→∞

sup
|x|>B

max
16i6N

sup
θi∈Θi

Eθi
i,x [V(Xi,1)]

V(x)
6 1 − min

16i6N
inf
θi∈Θi

θi .

Therefore, there exists B > 0 such that for all |x| > B

max
16i6N

sup
θi∈Θi

Eθi
i,x [V(Xi,1)] 6 (1 − ρ)V(x) and ρ =

1
2

min
16i6N

inf
θi∈Θi

θi .

Obviously, this inequality implies condition (C1) with C = {x ∈ R : |x| 6 B}. Using Theorem 15.01 in [8] and
Proposition A.1 in the Appendix, it is easy to deduce that the processes (9.4) and (9.5) are stationary with the ergodic
distributions defined by the random variables ς∗i and ςθi,i such that for any q > 0

E|ς∗i |
q < ∞ and E|ςθi,i|

q < ∞ . (9.16)

Hence, from (9.11) and (9.12) we get

Ji(θi) =
1
2

log
p∗i (1 − p∗i )
θi(1 − θi)

− 1 +
θi(1 − θi)
p∗i (1 − p∗i )

+
(θi − p∗i )2

p∗i (1 − p∗i )
E|ςθi,i|

 (9.17)

and

J
∗

i (θi) =
1
2

log
p∗i (1 − p∗i )
θi(1 − θi)

+ 1 −
p∗i (1 − p∗i )
θi(1 − θi)

−
(θi − p∗i )2

θi(1 − θi)
E|ς∗i |

 . (9.18)

As far as the condition (C2) is concerned it follows from (9.7) and (9.15) that there exists a constant c∗ > 0 such
that for all x, y ∈ R∗

max
16i6N

sup
θi∈Θi

(
|gi(θi, y, x)| + hi(x, y)

)
6 c∗

(
1 + |x| + |y| +

y2

|x|

)
.

Note that for any m > 1 there exists a constant Cm > 0 for which for any 1 6 i 6 N and θi ∈ Θi

Ei,θi

[
X2m

i,n |Xi,n−1

]
6 Cm(X2m

i,n−1 + |Xi,n−1|
m) .
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Hence, for any m > 1 there exists a constant Cm > 0 such that

Eθi
i,x [g2m

i (θi, Xi,n, Xi,n−1)] 6 Cm

(
1 + Eθi

i,x [X2m
i,n−1] + Eθi

i,x [|Xi,n−1|
m]

)
6 Cm

(
1 + Eθi

i,x [X2m
i,n−1]

)
and

Eθi
i,x [h2m

i (Xi,n, Xi,n−1)] 6 Cm

(
1 + Eθi

i,x [X2m
i,n−1]

)
.

To check the condition (C3) we can obtain directly from (9.18) that for 1 6 i 6 N

gi(u, y, x) − J
∗

i (u) =
1
2

(
1 −

p∗i (1 − p∗i )
u(1 − u)

)
((η∗i (y, x))2 − 1) −

(u − p∗i )2

2u(1 − u)

(
|x| − E[|ς∗i |]

)
−

√
p∗i (1 − p∗i )
u(1 − u)

(u − p∗i )xη∗i (y, x) .

By Proposition A.1 (see the appendix) max16i6N sup j>1 E∗|Xi, j|
q < ∞ for any q > 0. Also, under P∗ the random

variables (η∗i (Xi, j, Xi, j−1))16i6N , j>1 are i.i.d. N(0, 1), so that condition (C∗3(q)) holds for any q > 0, which implies
condition (C3(q)) for any q > 0 (see Proposition 3). Thus, it follows from Theorems 3 and 4 that the sequential
detection-identification procedure δopt

β = (T opt
β , dopt

β ) defined in (6.13)-(6.14) is asymptotically optimal (as βmax → 0)
and robust in the pointwise and minimax senses for any r > 0.

9.2. Monte Carlo
To get operating characteristics of the proposed detection-identification algorithm not only in the asymptotic case

but also for reasonable probabilities of false alarm and misidentification, we perform Monte Carlo (MC) simulations
for the modified Bernoulli model (9.4), (9.5) with Xi,n = Yi,n/Vi. The values of Yi,n correspond to the number of
susceptible at the n-th point in time for the ith population (n > 0, i = 1, . . . ,N) and the values of Vi to the number
of susceptible at the initial moment, i.e. Yi,0 = Vi. In simulations, we set the initial value Yi,0 = Vi = 0.5(i + 1) · 104

for 1 6 i 6 N. Without loss of generality we assume that the change occurs in the Nth stream. Then (9.4) for
1 6 i 6 N − 1 reduces to

Xi,n = (1 − p∗i )Xi,n−1 + σ∗i

√
|Xi,n−1| ξi,n , σ∗i =

√
p∗i (1 − p∗i )

Vi
, Xi,0 = 1,

and (9.5) to

XN,n = (1 − ϑ)Xi,n−1 + σϑ

√
|XN,n−1| ξN,n , σϑ =

√
ϑ(1 − ϑ)

VN
, XN,0 = 1,

where ϑ = ϑn = p∗N + (p − p∗N)1{n>ν}.
In each MC run m, using formulas (9.7)–(9.10) and (6.12), we get a pair δ∗,mA = (T ∗,mA , d∗,mA ) — the stopping time

and the number of the stream where the change is detected (m = 1, . . . ,M, M is the total number of MC runs).
The theoretic estimate of the expected detection delay for i = N is given by the second asymptotic formula in

(6.15) with r = 1, i.e.,

RN,ν,θN ≈ max
16 j6N

| log β j,N |

ιN, j(θN)
for θN = p .

Since calculation of ιN, j(θN) analytically is difficult we evaluate it using MC simulations. To this end, we first estimate
the conditional informations

Ji(ϑ, x) =

∫
R

gi(ϑ, y, x) fϑ(y|x)dy and J∗i (ϑ, x) =

∫
R

gi(ϑ, y, x) f ∗i (y|x)dy

and then we calculate the Kullback-Leibler divergences by MC as

IN(ϑ) =
1
K

ν+K∑
n=ν+1

JN(ϑ, XN,n) and I
∗

i (ϑ) =
1
K

K∑
n=1

J∗i (ϑ, Xi,n) for 1 6 i 6 N − 1 . (9.19)
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By the law of large numbers for Markov chains the MC estimates Ii(ϑ) and I
∗

i (ϑ) converge to the true values Ji(ϑ) and
J
∗

i (ϑ) defined in (7.5). Then (5.1) and (7.9) reduce to

ιN, j(θN) = IN(θN)1{ j=N} + (IN(θN) −max
ϑ∈Θ j

I
∗

j(ϑ))1{ j,N} . (9.20)

The MC estimate of the expected detection delay (in the Nth stream) is calculated from the formula:

R̂ =

∑M
m=1(T ∗,mA − ν)1(T ∗,mA >ν)1{d∗,mA =N}∑M

m=1 1{T ∗,mA >ν}

.

In particular, for ν = 0, which is used in simulations, it reduces to

R̂ =
1
M

M∑
m=1

T ∗,mA 1{d∗,mA =N} .

The MC estimate of the false alarm probability (ν = +∞) is:

P̂N = max
16`6k∗−m∗

∑M
m=1 1{`6T ∗,mA <`+m∗} 1{d∗,mA =N}∑M

m=1 1{T ∗,mA >`}

,

and the MC estimates of the miss identification probabilities are:

P̌ j,N = max
ν<`6ν+k∗

∑M
m=1 1{T ∗,mA >`}1{d∗,mA = j}∑M

m=1 1{T ∗,mA >`}

for 1 6 j 6 N − 1 .

In simulations, we assume that the number of streams N = 5; the parameters of the observed process are p∗i =

1/(100 + i), 1/(50 + i); q = p/p∗N = 1.1, 1.15, 1.2; for calculation of thresholds Ai, j we use (6.10) and (6.12) with
βi, j = ε

i+ j , ε = 0.3, 0.1, 0.01 and ǩ = 2, 1.55, 1.23. We also assume that the change occurs from the very beginning,
i.e., at the time ν = 0, in which case ϑ = p.

The results are shown in Table 1 and Table 2. It is seen that the detection-identification algorithm has good
performance. Even for small false alarm and miss identification probabilities the average detection delay is small.
Therefore, we recommend using this algorithm in practice for the detection and localization of epidemics. Also,
the asymptotic approximations for the average detection delay are quite accurate and, therefore, can be used for the
evaluation of the performance of the detection-identification procedure in practice.

Table 1: Operating characteristics of the detection-identification procedure for p∗i = 1
100+i (MC simulations with 105 runs).

ε ǩ q P̌1,N P̌2,N P̌3,N P̌4,N P̂N R̂ RN,0,θN

0.3 2 1.1 0.0024 0.0027 0.0011 0.0007 0.00088 6.46 5.17
0.3 2 1.15 0.0018 0.0041 0.0020 0.0007 0.00154 3.32 2.95
0.3 2 1.2 0.0036 0.0091 0.0044 0.0021 0.00459 2.02 2.03
0.1 1.55 1.1 0.0009 0.0014 0.0008 0.0003 0.00028 7.52 6.95
0.1 1.55 1.15 0.0004 0.0023 0.0013 0.001 0.0007 3.75 3.96
0.1 1.55 1.2 0.0014 0.0056 0.0023 0.0013 0.0023 2.26 2.72

0.01 1.23 1.1 0.00016 0.00062 0.00014 0.00011 < 10−5 9.96 10.50
0.01 1.23 1.15 0.0001 0.0006 0.0004 0.0002 0.00014 4.78 5.99
0.01 1.23 1.2 0.0002 0.0019 0.0006 0.0005 0.0008 2.77 4.12
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Table 2: Operating characteristics of the detection-identification procedure for p∗i = 1
50+i (MC simulations with 105 runs).

ε ǩ q P̌1,N P̌2,N P̌3,N P̌4,N P̂N R̂ RN,0,θN

0.3 2 1.1 0.00076 0.00062 0.00033 0.00016 0.0004 3.92 3.89
0.3 2 1.15 0.00078 0.00162 0.0004 0.0003 0.0007 2.03 2.29
0.3 2 1.2 0.0073 0.0078 0.0019 0.0009 0.0045 1.24 1.65
0.1 1.55 1.1 0.0002 0.00022 0.00004 0.00006 0.00014 4.50 5.23
0.1 1.55 1.15 0.00018 0.00082 0.00026 0.00016 0.00044 2.26 3.08
0.1 1.55 1.2 0.00342 0.00447 0.00142 0.00049 0.0017 1.33 2.21

0.01 1.23 1.1 0.00004 0.00004 0.00002 0.00002 0.00002 5.74 7.91
0.01 1.23 1.15 0.00002 0.00022 0.00008 0.00001 0.00008 2.78 4.65
0.01 1.23 1.2 0.00084 0.00145 0.00056 0.00019 0.0003 1.57 3.35

9.3. Detection of COVID-19 in Italy

In Subsection 9.1, we applied the proposed sequential detection-identification algorithm to epidemic models and
showed it to be asymptotically optimal when the probabilities of wrong identification and false alarm are small. In
this subsection, we demonstrate that the proposed detection-identification procedure can be effectively applied for the
localization of COVID-19, i.e., for the detection of the epidemic anomalies and identification of the affected region.
Consider the case of Italy.

Let Hi,n be the number of hospitalized people at the n-th moment for the ith region. (Since the shortage of hospital
beds presented a major challenge in Italy during the first wave of COVID-19, we focus on hospitalizations. However,
this model also applies to other kinds of observations, e.g., number of infected people, number of visits to the doctor
[1].) Then, Yi,n = Vi − Hi,n, where Vi is the total number of hospital beds, i.e., Yi,n is potentially free beds for new
hospitalizations at the n-th moment for the ith region. Then the observation, as in (9.2), will be Xi,n = Yi,n/Vi.

We use the data provided by Sito del Dipartimento della Protezione Civile - Emergenza Coronavirus: la risposta
nazionale (the Italian Department of Civil Protection). This data includes information on hospitalizations by region
each day. We consider five Italian regions: Sicily, Lazio, Tuscany, Venice, and Lombardy. We use the proposed
detection-identification algorithm to detect the presence of COVID-19 in a given region. Fig. 1 shows raw observa-
tions for five different regions, detection and identification of a region with a COVID outbreak in Italy by the proposed
algorithm (blue vertical line), and the official introduction of a regional quarantine (red vertical line) in Lombardy.

It is known that Lombardy became the epicenter of the spread of COVID not only in Italy but throughout Europe.
According to Fig. 1, the proposed algorithm detected COVID in Italy 9 days prior to the imposition of quarantine
protocols in Lombardy (February 28, 2020 vs. March 8, 2020). The proposed detection-identification algorithm could
therefore be a useful tool for researchers and public health aurhorities in detecting and localizing epidemics.

10. Conclusion

1. In this paper, we ignore the possible indifference zone Θind of parameter values where the probabilities of false
alarms and misidentification are too close to be reasonably distinguishable. In the indifference zone, the constraints on
the erroneous decisions are not imposed, but still, the expected detection delays (or more generally moments of delay)
have to be minimized for all possible parameter values, including those in the indifference zone. The modification of
the proposed procedure to take into account an indifference zone, if needed, is straightforward. For the sake of brevity,
the details are omitted.

2. As in the recent paper by Tartakovsky [16], we focus on the multistream changepoint model (2.1)–(2.2). It
is worth noting that the same results hold in the single-stream detection-isolation problem when the observations
{Xn}n>1 represent either a scalar process or a vector process but all components of this process change at time ν.
Specifically, in change detection and isolation, the post-change hypothesis Hν,i,θi , θ ∈ Θi corresponding to the ith type
of change usually involves unknown parameters θi and, therefore, is composite. Under the hypothesis Hν,i,θi , θ ∈ Θi
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Fig. 1: Detection and identification of the region with an outbreak of the COVID-19 epidemic in Italy: the proposed algorithm vs. the imposition
of quarantine protocols in Lombardy. The time of detection and identification by our algorithm is shown by blue vertical line and the time of the
official imposition of quarantine protocols by red vertical line.

the post-change conditional density function is fi,θi,n(Xn|Xn−1
1 ), n > ν, while the pre-change density is f ∗n (Xn|Xn−1),

n 6 ν, where Xt = (X1, . . . , Xt). Hence, introducing parametric families of densities { fi,θi,n(Xn|Xn−1), θi ∈ Θi} and for
i = 1, . . . ,N and Θi ⊂ Θ considering the model1

p(Xn|Hν,i,θi ) =

q∗(Xn) for ν > n ;
q∗(Xν)

∏n
l=ν+1 fi,θi,l

(Xl|Xl−1) for ν < n
, (10.1)

where p(Xn|Hν,i,θi ) stands for the joint density of the first n observations Xn conditioned on the hypothesis Hν,i,θi

and q∗(Xs) =
∏s

l=1 f ∗l (Xl|Xl−1) for s > 1, we arrive at the single-stream model that has all features of the previous
multistream model (2.1)–(2.2). In fact, setting Xn = (X1,n, . . . , XN,n), where the components of this vector are mutually
independent and assuming that the change may occur only in a single component, we obtain

p(Xn|Hν,i,θi ) =


∏N

i=1 q∗i (Xn
i ) for ν > n ;

q∗i (Xν
i )

∏n
l=ν+1 fi,θi,l(Xi,l|Xl−1

i )
∏

16 j,i6N
∏n

l=1 f ∗j (X j,l)|Xl−1
j ) for ν < n

,

where Xn
i = (X1,i, . . . , Xi,n), Xn = (Xn

1, . . . ,X
n
N), and q∗i (Xs) =

∏s
l=1 f ∗i,l(Xl|Xl−1

i ). Obviously, this joint density is
the same as the one in (2.4), so that in the case of mutually independent streams the multistream model defined in
(2.1)–(2.2) is a particular case of the model (10.1).

3. All previous results can be generalized for the case when the change points are different for different streams,
i.e., when ν = νi.

4. For independent observations as well as for a variety of Markov and certain hidden Markov models (see, e.g.,
Subsections 8.1 and (8.2) and Section 9), the decision statistics < Un >i, j defined in (4.3) can be computed relatively

1Often, θi ≡ θ does not depend on i in practice.
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easily, in which case implementation of the proposed change detection-identification procedure is not an issue. In
general, however, the computational complexity of rule δA may be high. To avoid computational difficulties rule δA

can be modified into a window-limited version where the summation in the decision statistics over potential change
points ν is restricted to the sliding window of specific fixed size ` = `β, which is a function of the error probabilities
constraints β. Following guidelines of [16] (Ch 3, Sec 3.10) where asymptotic optimality of mixture window-limited
rules was established in the single-stream case, it can be shown that the window-limited version of the multihypothesis
detection-identification procedure also has asymptotic optimality properties as long as the size of the window `β goes
to infinity as βmax → 0 at such a rate that `β/| log βmax| → ∞.
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Appendix A. Moment properties of the epidemic models

Proposition A.1. For any integer m > 1 and for any compact set Θi ⊆ Θ the process Xi,n defined in (9.4) and (9.5)
has the following moment properties

sup
x∈R

sup
n>0

max
16i6N

E∗i,x (X∗i,n)2m

1 + x2m < ∞ and sup
x∈R

sup
n>0

max
16i6N

sup
ϑ∈Θi

Eϑ
i,x (Xi,n)2m

1 + x2m < ∞ . (A.1)

Proof. We prove only the second inequality in (A.1) since the proof of the first one is essentially similar. To this end,
we first show that for any x ∈ R

sup
n>0

max
16i6N

sup
ϑ∈Θi

Eϑ
i,x [X2

i,n] 6 x2 + 1 . (A.2)

It is easily seen that for the model (9.5) we have

Eϑ
i,x [X2

i,n] 6 (1 − ϑ)2Eϑ
i,x [X2

i,n−1] + σ2
ϑ
Eϑ

i,x |Xi,n−1| .

For the sake of brevity write yn = Eϑ
i,x [X2

i,n]. Taking into account that x 6 1 + x2, we obtain

yn 6 (1 − ϑ)2yn−1 + σ2
ϑ

√
yn−1 6 [(1 − ϑ)2 + σ2

ϑ
]yn−1 + σ2

ϑ
= (1 − ϑ)yn−1 + σ2

ϑ
.

Let now υn = yn − (1 − ϑ)2yn−1. Clearly υn 6 σ2
ϑ

and

yn = x2 (1 − ϑ)n +

n∑
j=1

ϑn− j υ j 6 x2 + σ2
ϑ

∑
j>0

(1 − ϑ) j = x2 +
σ2
ϑ

ϑ
= x2 + 1 − ϑ .

This implies inequality (A.2) and, therefore, the second inequality in (A.1) for m = 1.
For an arbitrary m > 1 this inequality can be proved by induction as follows. Assume that the second inequality

in (A.1) is true for m − 1 and m > 2, i.e., there exists a constant Cm > 1 such that for any x ∈ R, k > 1, 1 6 i 6 N
and ϑ ∈ Θi

Eϑ
i,x [(Xi,k)2(m−1)] 6 Cm(1 + x2(m−1)) . (A.3)

To show that it holds for m, using the initial condition Xi,0 = x, we represent the process (9.5) as

Xi,k = (1 − ϑ)k x + σϑ

k∑
j=1

(1 − ϑ)k− j
√
|Xi, j−1|ξi, j .

29



By the Hölder inequality,

Eϑ
i,x [X2m

i,k ] 6 22m−1

x2m +
σ2m
ϑ

ϑ2m−1

k∑
j=1

(1 − ϑ)k− jEϑ
i,x[|Xi,k |

mξ2m
i, j ]


6 22m−1

x2m +
(2m − 1)!!σ2m

ϑ

ϑ2m sup
k>0

Eϑ
i,x|Xi,k |

m

 .
Now, using the induction assumption (A.3) and that |x + y|α 6 |x|α + |y|α for 0 < α 6 1, we obtain

Eϑ
i,x|Xi,k |

m 6
(
Eϑ

i,x|Xi,k |
2(m−1)

)m/(2m−2)
6 Cm/(2m−2)

m

(
1 + x2(m−1)

)m/(2m−2)
6 Cm

(
1 + x2m

)
.

This implies the second inequality in(A.1), completing the proof.
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