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Abstract

In this paper, we study the empirical spectral distribution of Spearman’s rank correlation matrices, under the as-
sumption that the observations are independent and identically distributed random vectors and the features are cor-
related. We show that the limiting spectral distribution is the generalized Marc̆enko-Pastur law with the covariance
matrix of the observation after standardized transformation. With these results, we compare several classical covari-
ance/correlation matrices including the sample covariance matrix, Pearson’s correlation matrix, Kendall’s correlation
matrix and Spearman’s correlation matrix.

Keywords: Kendall’s correlation, Limiting spectral distribution, Random matrix theory, Spearman’s correlation.
2020 MSC: 62G30, 62H20.

1. Introduction

Statistical inference for covariance or correlation matrices are fundamental problems in high dimensional data
analysis [7, 10]. Recently, rank-based correlation matrices, e.g., Kendall’s tau and Spearman’s rho, have drawn
increasing attention in a variety of fields. Due to the robustness of non-parametric statistics, these rank-based corre-
lations have appealing properties in theory and have the potential to solve problems for high dimensional data with
complex structure such as heavy-tailed distributions [12].

In high dimensional data analysis, Liu et al. [19] and Xue and Zou [27] firstly used rank-based correlation matrices
to conduct sparse estimation for the covariance matrix and the precision matrix (i.e, the inverse of the covariance
matrix). For Gaussian distribution, there exists an explicit relationship between rank-based correlation and Pearson’s
correlation. Exploiting this neat property, Liu et al. [20] extended the Gaussian graphical model to the non-paranormal
distribution. Further, there are many works on hypothesis testing of covariance/correlation matrices, which are based
on Kendall’s tau correlation matrix τn or Spearman’s rho correlation matrix ρn. In details, Bao et al. [6] derived
the asymptotic normal distributions of tr(ρk

n), k ∈ {2, 3, . . .} and conducted several statistics for testing the complete
independence. Han et al. [11] studied the maximum norm of off-diagonal elements which converges weakly to Gumbel
distribution and proposed test statistics based on Kendall’s tau and Spearman’s rho. Leung and Drton [16] considered
the test statistics based on the squared Frobenius norm and see also Mao [22].

Technically, Liu et al. [19] and Xue and Zou [27] focused on the sparse estimation of Kendall’s tau and Spearman’s
rho. To guarantee the consistency, they need to bound the maximum norm between the empirical and population rank-
based correlation matrices, i.e., ‖ρn−ρ‖∞ and ‖τn−τ‖∞. To control the maximum norm, the crucial issue is to bound the
tail probability of each element uniformly. The main tools are the Hoeffding decomposition for U-statistics and some
classical concentration inequalities such as Hoeffding and McDiarmid inequalities. As far as the hypothesis testing,
to derive the asymptotic distribution of the test statistics, we need more refined results. Under the null hypothesis of
independence, all the features are independent and it is doable to derive the distribution of the test statistics. Under
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the alternative case, it is challenging to analyze Kendall’s tau or Spearman’s rho since rank variables depend on all
the samples. Thus, the existing works [e.g., 6, 11, 16, 22] only derived the distribution under the null case.

In random matrix theory, the same challenges also exist. Bai and Zhou [2] and Bandeira et al. [3] studied the
limiting spectral distribution of Spearman’s rho and Kendall’s tau, respectively. Bao et al. [6] and Li et al. [18]
considered the asymptotic distribution of the test statistics involved Spearman’s rho and Kendall’s tau, respectively.
Bao [5] and Bao [4] derived the Tracy–Widom limits for Spearman’s rho and Kendall’s tau, respectively. All these
works are based on the independent assumption. For the data with a common covariance structure, the data matrix
after ranking does not have independent columns or rows anymore and in random matrix theory, it is challenging
to analyze such matrices and see Bai and Zhou [2] for more details. Recently, we derived the limiting spectral
distribution (LSD) of Kendall’s rank correlation matrix with dependence in Li et al. [17] and it is the first result
on rank correlation matrices with dependence. In this paper, as a companion work, we study the limiting spectral
distribution of Spearman’s rank correlation matrices. Under mild conditions, we show that the LSD follows the
generalized Marc̆enko-Pastur law with a conditional covariance matrix. With these results, we can look insider into
Spearman’s correlation matrix, and also its connections with other covariance/correlation matrices.

The rest of the paper is organized as follows. In Section 2, we revisit the Spearman’s rank correlation matrix and
provide some trivial results when the data is correlated. In Section 3, we formulate Spearman’s correlation matrix
in the form of U-statistics and we present the main results on LSD in Section 4. Finally, we provide discussions on
several covariance/correlation matrices and also compare their LSDs through numerical simulations in Section 5. All
technical proofs are relegated to Appendix.

2. Spearman’s rank correlation matrix

We first introduce some necessary notation. Throughout the paper, Im is a m ×m identity matrix and 1m is a m × 1
vector with all ones. ‖ · ‖2 denotes the Frobenius norm of a vector or matrix. ‖ · ‖ is the spectral norm and ‖ · ‖∞ is the
element-wise maximum norm of a vector or matrix, respectively.

Given the independent and identically distributed (i.i.d.) observations X1, . . . ,Xn ∈ Rp, we have the data matrix

X =


X>1
...

X>n

 =


x11 · · · x1p
...

. . .
...

xn1 · · · xnp

 = (xi j)n×p,

where each row is an observation and each column is a feature. Transforming each column of the data matrix into the
order statistics (ri j)n×p and normalizing these order statistics, we get the standardized ranking matrix,

R =


R>1
...

R>n

 def
=

√ 12
n2 − 1

(ri j −
n + 1

2
)


n×p

.

With the ranking matrix, Spearman [25] introduced the famous Spearman’s rank correlation matrix

ρn =
1
n

R>R =
1
n

n∑
i=1

RiR>i . (1)

From the statistical point of view, inducing the order statistics makes the correlation more robust to heavy-tailed
distributions. From the technical point of view, the ranking violates the independent structure among the rows of the
observations. In particular, we have the following proposition.

Proposition 1. Assuming X1, . . . ,Xn, i.i.d. ∼ N(0, Ip), we have E{R>R/n} = Ip and E{RR>/p} = (nIn−1n1>n )/(n−1).

From Proposition 1, we can see that when the raw data is with i.i.d. rows, the ranking matrix R does not have
independent rows anymore. Since the columns of the data matrix X is also i.i.d., the ranking matrix R has i.i.d.
columns and in special, each column (r1 j, . . . , rn j) is uniformly distributed from the permutations of {1, . . . , n}. Bai
and Zhou [2] studied this case and they proved that the LSD of ρn is also the Marc̆enko-Pastur law.
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On the other hand, although we assume X1, . . . ,Xn, i.i.d. ∼ N(0, Ip), it actually covers a large class of distributions
since the Spearman’s correlation is rank-based. For example, when all the features are independent and continuous,
we can transform each feature into a standard normal distribution where the ranking matrix is invariant. It is referred
to the monotonic invariance of rank-based correlation matrices introduced by Weihs et al. [26] and the non-paranormal
model proposed by Liu et al. [20]. Thus, the independent case of previous works on Spearman’s correlation matrix
[e.g., 2, 5, 6] can be formulated as X1, . . . ,Xn, i.i.d. ∼ N(0, Ip).

Assuming that the data matrix is with i.i.d. entries is very limited. A natural extension is to consider general
covariance structures. For the multivariate normal distribution with general Σ, we have the following result.

Proposition 2. Assuming X1, . . . ,Xn, i.i.d. ∼ N(0,Σ), where Σii = 1, i ∈ {1, . . . , p}, we have

E{
1
n

R>R} =
3

n + 1
Σ1 +

3(n − 2)
n + 1

Σ2, E{
1
p

RR>} =
n

n − 1
(In −

1
n

1n1>n ),

where

Σ1 =

(
2
π

arcsin(Σi j)
)

p×p

def
=

2
π

arcsin(Σ), Σ2 =

(
2
π

arcsin(Σi j/2)
)

p×p

def
=

2
π

arcsin(Σ/2).

From Proposition 2, we can see that the rows and columns of the ranking matrix R are both dependent if the data
has a general covariance structure Σ. From the perspective of random matrix theory, it is challenging to analyze such
matrices.

3. U-statistic of Spearman’s correlation

For each feature j ∈ {1, . . . , p}, we invoke the empirical cumulative distribution function

F̂ j(x) =
1
n

n∑
i=1

I(xi j ≤ x),

and the order statistics are

ri j = n · F̂ j(xi j) = 1 +
∑
k,i

I(xk j ≤ xi j), i ∈ {1, . . . , n}, j ∈ {1, . . . , p}.

Throughout the paper, we consider the continuous population distribution and assume that there is no ties in data
matrix.

Defining the sign vector

Aik = sign (Xi − Xk) =
(
sign (xi1 − xk1) , . . . , sign

(
xip − xkp

))>
,

we have

ri j −
n + 1

2
= 1 +

∑
k,i

1 + sign
(
xi j − xk j

)
2

−
n + 1

2
=

1
2

∑
k,i

sign
(
xi j − xk j

)
.

In vector form, we can get

Ri =

√
12

n2 − 1


ri1 −

n+1
2

...

rip −
n+1

2

 =

√
3

n2 − 1

∑
k,i

Aik. (2)

With these notations, we can rewrite the Spearman’s rank correlation matrix as follows

ρn =
3

n(n2 − 1)

n∑
i=1

 ∑
k1,k2,i

Aik1 A>ik2

 . (3)

Following the definition of U-statistics, we can divide the summation into two parts and each part is a U-statistic.
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Proposition 3. Assuming the observations X1, . . . ,Xn have no ties, the Spearman’s correlation matrix can be defined
by

ρn =
3

n(n2 − 1)

∗∑
i, j

Ai jA>i j +
3

n(n2 − 1)

∗∑
i, j,k

Ai jA>ik, (4)

where
∑∗ denotes summation over mutually different indices.

When X1, . . . ,Xn are i.i.d. from a population with absolutely continuous densities, by Proposition 3, we can see

E(ρn) =
3

n(n2 − 1)
n(n − 1) · cov (A12) +

3
n(n2 − 1)

n(n − 1)(n − 2) · cov (A1) =
3

n + 1
cov (A12) +

3(n − 2)
n + 1

cov (A1) ,

where

Ai
def
= E{Aik | Xi}. (5)

The population Spearman’s correlation matrix consists of two covariance matrices cov (A12) and cov (A1). For the
classical sample covariance matrix

Sn =
1

2n(n − 1)

∗∑
i, j

(Xi − X j)(Xi − X j)>,

we know cov(Xi − X j) = 2cov(Xi). Thus, the sign function introduces a non-linear correlation into rank-based
correlation matrices and these two covariance matrices are different, e.g.,

cov (A12) = Σ1 =
2
π

arcsin(Σ), and cov (A1) = Σ2 =
2
π

arcsin(Σ/2),

for the multivariate normal distribution N(0,Σ).
Since both cov (A12) and cov (A1) can describe correlations among features, an intuitive way is to conduct U-

statistics for these two covariance matrices separately, e.g.,

τn =
1

n(n − 1)

∗∑
i, j

Ai jA>i j, (6)

and

ρ̃n =
3

n(n − 1)(n − 2)

∗∑
i, j,k

Ai jA>ik. (7)

Interestingly, τn is exactly Kendall’s rank correlation matrix proposed by [15] and ρ̃n is an improved Spearman’s rank
correlation matrix proposed by [13]. See also Example 3 of [11]. Our recent work [17] studied the LSD of τn and in
this work, we consider Spearman’s correlation matrices ρn and ρ̃n.

4. Limiting spectral distribution

For an n × n Hermitian matrix Hn whose eigenvalues are λ1, . . . , λn, the empirical spectral distribution of Hn is
defined as

FHn (x) =
1
n

n∑
i=1

I(λi ≤ x).

4



The limit of FHn is called the limiting spectral distribution of Hn. In random matrix theory, the LSD is usually defined
by its Stieltjes transform

sF(z) =

∫
1

x − z
dF(x), z ∈ C+,

where C+ denotes the upper complex plane. With a Stieltjes transform s(z), the distribution function can be obtained
by the inversion formula

F(b) − F(a) = lim
ν→0+

1
π

∫ b

a
=sF(x + iν)dx,

where =(·) is the imaginary part and i is the imaginary unit.
Note

ρ̃n =
3
n

n∑
i=1

 1
(n − 1)(n − 2)

∗∑
j,k,i

Ai jA>ik


and for a given i,

1
(n − 1)(n − 2)

∗∑
j,k,i

Ai jA>ik

is also a U-statistic for AiA>i . Intuitively, the improved Spearman’s rank correlation matrix ρ̃n is close to the random
matrix

Wn =
3
n

n∑
i=1

AiA>i . (8)

The following result shows that ρ̃n and Wn share the same limiting spectral distribution.

Theorem 1. Assuming X1, . . . ,Xn, i.i.d. ∼ N(0,Σ) where Σii = 1, i ∈ {1, . . . , p}, and if

(i) p/n→ y ∈ (0,∞);

(ii) tr
(
Σ2

)
= o(p2);

we have

L
(
F ρ̃n , FWn

)
→ 0, in probability, (9)

where L(·, ·) is the Levy distance between two distribution functions.

For Spearman’s rank correlation matrix ρn, by Proposition 3, we know

ρn =
3

n + 1
τn +

n − 2
n + 1

ρ̃n =
3

n + 1
τn −

3
n + 1

ρ̃n + ρ̃n,

where τn is the Kendall’s rank correlation matrix (6). We claim that ρn and Wn also share the same limiting spectral
distribution. The following result establishes this claim.

Proposition 4 (Weak convergence). Under the assumptions of Theorem 1, we have

L
(
Fρn , FWn

)
→ 0, in probability. (10)
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The proofs of Theorem 1 and Proposition 4 are based on Corollary A.41 of Bai and Silverstein [1] and we need
to show E

∥∥∥ρ̃n −Wn

∥∥∥2
2 = o(p) and E

∥∥∥ρn −Wn

∥∥∥2
2 = o(p). To further refine the conclusion, e.g., to show the strong

convergence, we need to prove
∥∥∥ρ̃n −Wn

∥∥∥2
2 /p → 0, a.s. which is challenging since the calculation of higher order

moments of Ai is hard. Here, we turn to the ranking statistics R. Intuitively,

R =

√ 12
n2 − 1

(ri j −
n + 1

2
)


n×p

=

√
12n2

n2 − 1

(
F̂ j(xi j) −

n + 1
2n

)
n×p
≈ 2
√

3
(
F j(xi j) −

1
2

)
n×p

=
√

3(A1, . . . ,An)>.

Thus, we can control the difference between Fρn and FWn by bounding R −
√

3(A1, . . . ,An)>. Specifically, we will
use Corollary A.42 of Bai and Silverstein [1], i.e.,

L4
(
Fρn , FWn

)
≤

2tr
(
ρn + Wn

)
np2 ‖R −

√
3(A1, . . . ,An)>‖22

and then we can show the strong convergence as follows.

Theorem 2 (Strong convergence). Assuming X1, . . . ,Xn are i.i.d. continuous random vectors and p/n→ y ∈ (0,∞),
we have

L
(
Fρn , FWn

)
→ 0, almost surely. (11)

It is noted that Theorem 2 provides a stronger conclusion with a weaker condition and the key technical tool
is the Dvoretzky–Kiefer–Wolfowitz inequality for empirical cumulative distribution functions. By Proposition 4 or
Theorem 2, to study the LSD of ρn, we can consider the matrix Wn which is the sample covariance matrix of the
random vectors

√
3(A1, . . . ,An). It is noted that A1, . . . ,An are i.i.d., and the LSD can be derived from classical

results on sample covariance matrices, e.g., Theorem 1 of Bai and Zhou [2]. Assuming X1, . . . ,Xn, i.i.d. ∼ N(0,Σ)
where Σii = 1, we have

Ai = E{Ai j | Xi} =


2Φ(xi1) − 1

...
2Φ(xip) − 1

 .
Here Φ(·) is the cumulative distribution function of N(0, 1). Therefore, each entry of (A1, . . . ,An) follows the uniform
distribution U[−1, 1] and

cov(Ai) = Σ2 =
2
π

arcsin(Σ/2).

Based on the main result of Bai and Zhou [2], we can derive the LSD of Spearman’s rank correlation matrix as follows.

Theorem 3. Assume X1, . . . ,Xn, i.i.d. ∼ N(0,Σ) where Σii = 1, i ∈ {1, . . . , p}, and

(i) p/n→ y ∈ (0,∞) as n→ ∞;

(ii) the spectral norm of Σ is uniformly bounded by a constant C;

(iii) the empirical spectral distribution of 6 arcsin(Σ/2)/π tends to a non-random probability distribution H.

Then, with probability 1, Fρn tends to a probability distribution, whose Stieltjes transform m = m(z), z ∈ C+ satisfies

m =

∫
1

t(1 − y − yzm) − z
dH(t). (12)

Noting the Spearman’s correlation matrix is rank-based, Theorem 3 actually holds for the non-paranormal distri-
bution proposed by Liu et al. [20]. In particular, for a random vector Z = (z1, . . . , zp)> ∈ Rp, there exist monotone
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functions
{
f j

}p

j=1
such that

(
f1(z1), . . . , fp(zp)

)
∼ N(0,Σ) where Σii = 1, i ∈ {1, . . . , p}. Denoting the cumulative dis-

tribution function of z j as F j, Liu et al. [20] show that f j(t) = Φ−1(F j(t)) and the non-paranormal distribution model
actually assumes (

Φ−1(F1(z1)), . . . ,Φ−1(Fp(zp))
)
∼ N(0,Σ).

We can see that the non-paranormal distribution extends the multivariate normal distribution and more discussions
can be found in Lu et al. [21]. More generally, we can further extend the assumption to general distributions with
some moment conditions and it is referred to Li et al. [17] for more details. To illustrate the robustness of Spearman’s
rank correlation, we consider a toy example where each element follows the Cauchy distribution.

Example 1. For the data matrix

X =


X>1
...

X>n

 =


x11 · · · x1p
...

. . .
...

xn1 · · · xnp

 = (xi j)n×p,

where xi j follows the standard Cauchy distribution, we consider the monotone transformation

xi j 7→ Φ−1
(

1
2

+
1
π

arctan(xi j)
)

def
= yi j.

As we know, the transformation does not change the ranking matrix R and to analyze R, we can make assumptions
on yi j without loss of generality. For the independent case, i.e., xi1, . . . , xip are independent, we have (yi1, . . . , yip)> ∼
N(0, I). For the dependent case, we need further assumptions to define the correlation structure. Noting yi j ∼ N(0, 1),
a natural way is to assume

(yi1, . . . , yip) ∼ N(0,Σ) (13)

where Σii = 1, i ∈ {1, . . . , p}. This is exactly the non-paranormal distribution and Σ is called the latent generalized
correlation matrix by Lu et al. [21]. In summary, we have the relationships

Spearman’s correlation (xi j, xik) = Spearman’s correlation (yi j, yik) =
2
π

arcsin
(
Pearson’s correlation (yi j, yik)

)
,

where the second equality is due to the non-paranormal distribution assumption (13).

5. Discussions and simulations

In this section, we compare several important covariance/correlation matrices. Given the data X1, . . . ,Xn ∈ Rp,
there are four classical covariance/correlation matrices in statistical applications:

• Sample covariance matrix:

Sn =
1

n − 1

n∑
i=1

(Xi − X̄)(Xi − X̄)> =
1

2n(n − 1)

∗∑
i, j

(Xi − X j)(Xi − X j)> =
1

n − 1

n∑
i=1

XiX>i −
n

n − 1
X̄X̄>,

where X̄ = 1
n
∑n

i=1 Xi;

• Pearson’s correlation matrix [24]:

Pn = {diag(Sn)}−1/2Sn{diag(Sn)}−1/2,

where diag(·) is a diagonal matrix with the diagonal entries of the matrix;

7



• Kendall’s correlation matrix [15]:

τn =
1

n(n − 1)

∗∑
i, j

Ai jA>i j,

where Ai j = sign(Xi − X j);

• Spearman’s correlation matrix [25]

ρn =
3

n(n2 − 1)

∗∑
i, j

Ai jA>i j +
3

n(n2 − 1)

∗∑
i, j,k

Ai jA>ik,

and the improved Spearman’s correlation matrix [13]

ρ̃n =
3

n(n − 1)(n − 2)

∗∑
i, j,k

Ai jA>ik.

For comparison purposes, we assume that X1, . . . ,Xn, i.i.d. ∼ N(0,Σ). Since Pn, τn and ρn, ρ̃n are all correlation
matrices which are invariant to the scale of features, we assume Σii = 1 to make a fair comparison on the sample
covariance matrix.

When Σ = I, Marc̆enko and Pastur [23] showed that the LSD of Sn is the standard Marc̆enko-Pastur law which
has the density function

p(x) =
1

2πxy

√
(x+ − x)(x − x−)I(x− ≤ x ≤ x+),

for y ≤ 1 and has a point mass 1−1/y at the origin if y > 1. Here p/n→ y ∈ (0,∞), x+ = (1+
√

y)2 and x− = (1−
√

y)2.
Jiang [14] proved that the LSD of Pn is also the Marc̆enko-Pastur law. Bai and Zhou [2] established the Marc̆enko-
Pastur law for the Spearman’s rank correlation matrix. Bandeira et al. [3] proved that the LSD of Kendall’s correlation
matrix is an affine transformation of the Marc̆enko-Pastur law, i.e.,

2
3

Y +
1
3
,

where Y follows the Marc̆enko-Pastur law. Fig 1 shows the theoretical LSDs and the empirical distributions based on
100 replications for these four matrices.

For general Σ, Marc̆enko and Pastur [23] derived the LSD of the sample covariance matrix whose Stieltjes trans-
form m is given by the Marc̆enko-Pastur equation

m =

∫
1

t(1 − y − yzm) − z
dH(t), H(t) = lim

p→∞
FΣ(t).

This distribution is called the generalized Marc̆enko-Pastur law. El Karoui [8] proved that the Marc̆enko-Pastur
equation also holds for the Pearson’s correlation matrix. For the Spearman’s correlation matrix, our Theorem 1 shows
that

ρn
LSD
== ρ̃n

LSD
== Wn =

3
n

n∑
i=1

AiA>i ,

where LSD
== denotes the two matrices share the same LSD. Our Theorem 3 further proves that the LSD is also the

generalized Marc̆enko-Pastur law whose Stieltjes transform m is

m =

∫
1

t(1 − y − yzm) − z
dH(t), H(t) = lim

p→∞
F3Σ2 (t).
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Fig. 1: The limiting spectral distributions of sample covariance matrix, Pearson’s correlation matrix, Spearman’s correlation matrix and Kendall’s
correlation matrix where X1, . . . ,Xn, i.i.d. ∼ N(0, I).

For the Kendall’s correlation matrix, Li et al. [17] established that

τn
LSD
==

2
n

n∑
i=1

AiA>i + Σ3,

and they presented the LSD in two equations where the LSD is not the generalized Marc̆enko-Pastur law anymore.
Here

Σ1 =
2
π

arcsin(Σ), Σ2 =
2
π

arcsin(Σ/2), Σ3 = Σ1 − 2Σ2.

In particular, we consider a specific tridiagonal covariance matrix

Σ(ρ) =



1 ρ
ρ 1 ρ

. . .
. . .

. . .

ρ 1 ρ
ρ 1


,

where ρ , 0 and |ρ| ≤ 1/2. By Szegö Theorem, we have

lim
p→∞

FΣ(t) = 1 −
1
π

arccos
t − 1
2ρ

, |t − 1| ≤ 2|ρ|,

and

lim
p→∞

F3Σ2 (t) = 1 −
1
π

arccos
t − 1
2ρ1

, |t − 1| ≤ 2|ρ1|, ρ1 =
6
π

arcsin
ρ

2
.
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Therefore, the Marc̆enko-Pastur equation of the sample covariance matrix and the Pearson’s correlation matrix is

m =

∫ 1+2|ρ|

1−2|ρ|

1
t(1 − y − yzm) − z

d
(
1 −

1
π

arccos
t − 1
2ρ

)
=

1√
(1 − y − yzm − z)2 − 4ρ2(1 − y − yzm)2

,

and similarly, the Marc̆enko-Pastur equation of the Spearman’s correlation matrix is

m =
1√

(1 − y − yzm − z)2 − 4ρ2
1(1 − y − yzm)2

.

Solving the equation and using the inversion formula of the Stiejtjes transformation, we can get the LSDs. The LSD
of Kendall’s correlation matrix can be found in the Proposition 4.2 of Li et al. [17]. Fig 2 shows the theoretical LSDs
and the empirical distributions based on 100 replications for Σ = Σ(0.5).
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Fig. 2: The limiting spectral distributions of sample covariance matrix, Pearson’s correlation matrix, Spearman’s correlation matrix and Kendall’s
correlation matrix where X1, . . . ,Xn, i.i.d. ∼ N (0,Σ(0.5)).

In summary, under mild conditions, the Pearson’s correlation matrix shares the same properties of the sample
covariance matrix. For rank-based correlation matrix, the Spearman’s rho has the generalized Marc̆enko-Pastur law
with the population covariance 6/π arcsin(Σ/2) and the Kendall’s tau is equivalent to a sample covariance matrix with
the population covariance matrix Σ2 plus a deterministic covariance matrix Σ3.
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6. Appendix

We first collect several important lemmas.

Lemma 1 (Grothendieck’s identity). Consider a bi-variate normal distribution:(
z1
z2

)
∼ N

{ (0
0

)
,

(
1 ρ
ρ 1

) }
,

where ρ ∈ [−1, 1]. Then, E{sign(z1)sign(z2)} = 4E{I(z1, z2 > 0)} − 1 = 2 arcsin ρ/π.

Lemma 2 (Esscher [9]). Consider a multivariate normal distribution
z1
z2
z3
z4

 ∼ N



0
0
0
0

 ,


1 1/2 ρ ρ/2
1/2 1 ρ/2 ρ
ρ ρ/2 1 1/2
ρ/2 ρ 1/2 1




where ρ ∈ (−1, 1). Then,

E
4∏

j=1

sign(z j) = (
2
π

arcsin ρ)2 − (
2
π

arcsin ρ/2)2 +
1
9
. (14)

Lemma 3. For any x ∈ [0, 1], 2 arcsin(x/2) ≤ arcsin(x) ≤ 3 arcsin(x/2) and 2x/π ≤ 2 arcsin(x)/π ≤ x.

Lemma 4. Assuming X1, . . . ,Xn, i.i.d. ∼ N(0,Σ), where Σii = 1, we have E(Ai j) = E(Ai) = 0 and

cov(Ai j) = Σ1 =
2
π

arcsin(Σ), cov(Ai) = Σ2 =
2
π

arcsin(Σ/2).

Lemma 5. Assume X1, . . . ,Xn, i.i.d. ∼ N(0,Σ), where Σii = 1, we have

var(A>12A13) ≥ var(A>12A1) ≥ var(A>1 A1)

and

var(A>12A13) = tr(Σ2
1) − tr(Σ2

2). (15)

Proof of Lemma 5. Firstly, it is easy to see E(A12A>13) = E(A12A>1 ) = E(A1A>1 ) = Σ2, which yields E(A>12A13) =

E(A>12A1) = E(A>1 A1) = tr(Σ2) = p/3. To derive the inequality of variances, we use the Hoeffding decomposition

var(A>12A13) = E{A>12A13 − tr(Σ2)}2 =E{A>12A13 − A>12A1 + A>12A1 − tr(Σ2)}2

= E(A>12A13 − A>12A1)2 + var(A>12A1) + 2E(A>12A13 − A>12A1)(A>12A1 − tr(Σ2))

= E(A>12A13 − A>12A1)2 + var(A>12A1) ≥ var(A>12A1),

and similarly

var(A>12A1) = E(A>12A1 − A>1 A1)2 + var(A>1 A1) + 2E(A>12A1 − A>1 A1)(A>1 A1 − tr(Σ2))

= E(A>12A1 − A>1 A1)2 + var(A>1 A1) ≥ var(A>1 A1).

The calculation of var(A>12A13) can be found in the proof of Lemma A 3.2 of Li et al. [17]. The proof of Lemma 5 is
completed. �
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Proof of Proposition 2. Here we prove Proposition 2 and Proposition 1 is a special case of Proposition 2 by setting
Σ = I.

Noting R> = (R1, . . . ,Rn), we have

E{
1
n

R>R} =
1
n

n∑
i=1

RiR>i = E{R1R>1 }, E{
1
p

RR>} =
1
p
E

(
R>i R j

)
n×n

.

By the formula (2),

Ri =

√
3

n2 − 1

∑
k,i

Aik,

and we have

E(R1R>1 ) =
3

n2 − 1

n∑
l,m=2

E{A1lA>1m} =
3

n2 − 1
{(n − 1)cov(A12) + (n − 1)(n − 2)cov(A1)}

=
3

n + 1
(Σ1 + (n − 2)Σ2) .

Next, we calculate E(R>i R j). When j = i,

E(R>i Ri) = tr
{
E(R1R>1 )

}
=

3
n + 1

(tr(Σ1) + (n − 2)tr(Σ2)) =
3

n + 1

(
p +

n − 2
3

p
)

= p.

For i , j,

E(R>i R j) =
3

n2 − 1
E

∑
l,i

Ail

>
∑

m, j

A jm

 =
3

n2 − 1
E

∑
l,i,m, j

A>il A jm

=
3

n2 − 1

E∑
m, j

A>i jA jm + E
∑
m,i, j

A>imA jm + E
∑

l,i,l, j

A>il A ji


=

3
n2 − 1

(−(n − 2)tr(Σ2) − tr(Σ1) + (n − 2)tr(Σ2) − (n − 2)tr(Σ2)) = −
3

n2 − 1

(
p +

n − 2
3

p
)

= −
p

n − 1
.

Thus

E{
1
p

RR>} =
n

n − 1
(In −

1
n

1n1>n ).

The proof is completed. �

Proof of Theorem 1. Recall that

ρ̃n −Wn =
3

n(n − 1)(n − 2)

∗∑
i, j,k

(
Ai jA>ik − AiA>i

)
.

For i, j, k, defining the kernel function φ(i, j, k) = Ai jA>ik − AiA>i and the symmetric kernel function

ψ(i, j, k) =
1
6

∑
(i′, j′,k′)=π(i, j,k)

φ(i′, j′, k′),

we have

ρ̃n −Wn =
18

n(n − 1)(n − 2)

∑
i< j<k

ψ(i, j, k).

12



By the symmetric properties of U-statistics, we can get

1
9
E{

(
ρ̃n −Wn

)> (
ρ̃n −Wn

)
} =

6
n(n − 1)(n − 2)

∑
i< j<k

E{ψ(1, 2, 3)>ψ(i, j, k)}

=
6

n(n − 1)(n − 2)
E{ψ(1, 2, 3)>ψ(1, 2, 3)} +

18(n − 3)
n(n − 1)(n − 2)

E{ψ(1, 2, 3)>ψ(1, 2, 4)}

+
18(n − 3)(n − 4)
2n(n − 1)(n − 2)

E{ψ(1, 2, 3)>ψ(1, 4, 5)}. (16)

Next, we bound these terms. For the first term, we have

E ‖φ(1, 2, 3)‖22 = Etr
(
A12A>13 − A1A>1

) (
A13A>12 − A1A>1

)
= E{(A>12A12)(A>13A13)} − E(A>1 A1)2 ≤ p2

and then

E‖ψ(1, 2, 3)‖22 = E

∥∥∥∥∥∥∥∥1
6

∑
(i, j,k)=π(1,2,3)

φ(i, j, k)

∥∥∥∥∥∥∥∥
2

2

≤
1
6

∑
(i, j,k)=π(1,2,3)

E ‖φ(i, j, k)‖22 = E ‖φ(1, 2, 3)‖22 ≤ p2. (17)

For the second term,

E{ψ(1, 2, 3)>ψ(1, 2, 4)} ≤
{
E‖ψ(1, 2, 3)‖22

}1/2 {
E‖ψ(1, 2, 4)‖22

}1/2
= E‖ψ(1, 2, 3)‖22 ≤ p2. (18)

For the third term, we have the conditional expectation

E{φ(1, 2, 3) | X1} = E{φ(1, 3, 2) | X1} = 0, E{φ(2, 1, 3) | X1} = E{φ(3, 1, 2) | X1} = E{A21A>2 − Σ2 | X1},

E{φ(2, 3, 1) | X1} = E{φ(3, 2, 1) | X1} = E{A2A>21 − Σ2 | X1},

and then

E{ψ(1, 2, 3) | X1} =
1
3
E{(A2A>21 − Σ2) + (A21A>2 − Σ2) | X1}.

Thus,

E{ψ(1, 2, 3)>ψ(1, 4, 5)} =
1
9
Etr{(A2A>21 − Σ2) + (A21A>2 − Σ2)}{(A3A>31 − Σ2) + (A31A>3 − Σ2)}

=
2
9
{E(A>21A3)(A>31A2) + E(A>21A31)(A>2 A3) − 4tr(Σ2

2)}

≤
1
9
{E(A>21A3)2 + E(A>31A2)2 + 2E(A>21A31 − tr(Σ2))(A>2 A3)} −

8
9

tr(Σ2
2)

≤
1
9
{E(A>21A3)2 + E(A>31A2)2} +

2
9
{var(A>12A13)}1/2{var(A>2 A3)}1/2 −

8
9

tr(Σ2
2)

=
2
9

tr(Σ1Σ2) +
2
9
{tr(Σ2

1) − tr(Σ2
2)}1/2{tr(Σ2

2)}1/2 −
8
9

tr(Σ2
2).

Together with Lemmas 3 and 5, we can get

E{ψ(1, 2, 3)>ψ(1, 4, 5)} ≤ {
6
9

+
2
√

8
9
−

8
9
}tr(Σ2

2) ≤
1
2

tr(Σ2
2). (19)

Finally, combining (16)- (19), we conclude that

1
9
E{

(
ρ̃n −Wn

)> (
ρ̃n −Wn

)
} ≤

6 + 18(n − 3)
n(n − 1)(n − 2)

p2 +
9(n − 3)(n − 4)
n(n − 1)(n − 2)

{tr(Σ2
2)}.

13



By Corollary A.41 of Bai and Silverstein [1],

L3
(
F ρ̃n , FWn

)
≤

1
p
‖ρ̃n −Wn‖

2
2

which yields EL3
(
F ρ̃n , FWn

)
→ 0 and then

L
(
F ρ̃n , FWn

)
→ 0, in probability.

The proof is completed. �

Proof of Proposition 4. Since

ρn =
3

n + 1
τn −

3
n + 1

ρ̃n + ρ̃n,

by Corollary A.41 of Bai and Silverstein [1],

L3
(
Fρn , F ρ̃n

)
≤

1
p
‖ρn − ρ̃n‖

2
2 ≤

18
n2 p
‖τn‖

2
2 +

18
n2 p
‖ρ̃n‖

2
2.

Noting τn is a correlation matrix, we have ‖τn‖∞ ≤ 1 and then ‖τn‖
2
2 ≤ p2.

Similarly, we can show ‖ρ̃n‖
2
2 ≤ 9p2. Thus L

(
Fρn , F ρ̃n

)
→ 0. Together with Theorem 1, the claim follows. �

Proof of Theorem 2. Recall

R =

√
12

n2 − 1

(
ri j −

n + 1
2

)
n×p

=

√
12n2

n2 − 1

(
F̂ j(xi j) −

n + 1
2n

)
n×p

and ρn = 1
n R>R. Writing

R̃ =

√
12n2

n2 − 1

(
F j(xi j) −

n + 1
2n

)
n×p

,

by Corollary A.42 of Bai and Silverstein [1], we have

L4
(
Fρn , F

1
n R̃>R̃

)
≤

2
p2

{
tr

(
ρn +

1
n

R̃>R̃
)} {

1
n
‖R − R̃‖22

}
≤

20
np
‖R − R̃‖22,

where we use the facts tr(ρn) = p and

tr
(

1
n

R̃>R̃
)
≤ p‖R̃‖2∞ ≤

12n2 p
n2 − 1

(
n + 1

2n

)2

≤ 9p, (n ≥ 2).

Noting

1
np
‖R − R̃‖22 ≤

12n2

n2 − 1
max

i, j
|F̂ j(xi j) − F j(xi j)|2 ≤

12n2

n2 − 1
max

j

{
sup
x∈R
|F̂ j(x) − F j(x)|2

}
=

12n2

n2 − 1

{
max

j
‖F̂ j(x) − F j(x)‖∞

}2

,

we need to control ‖F̂ j(x)−F j(x)‖∞, j ∈ {1, . . . , p} simultaneously. Thus, we shall use the Dvoretzky–Kiefer–Wolfowitz
(DKW) inequality which provides a refined result of the classical Glivenko–Cantelli Theorem. By DKW inequality,
∀ε > 0,

Pr
(
‖F̂ j(x) − F j(x)‖∞ ≥ ε

)
≤ 2e−2nε2
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which yields

Pr
(
max

j
‖F̂ j(x) − F j(x)‖∞ ≥ ε

)
≤

p∑
j=1

Pr
(
‖F̂ j(x) − F j(x)‖∞ ≥ ε

)
≤ 2pe−2nε2

.

Since p/n→ y, we have 2pe−nε2
≤ 1 for large enough n and then

∞∑
n=1

2pe−2nε2
=

∞∑
n=1

{2pe−nε2
} · e−nε2

< ∞.

By the Borel–Cantelli Lemma, we obtain

max
j
‖F̂ j(x) − F j(x)‖∞ → 0, almost surely,

and then

L
(
Fρn , F

1
n R̃>R̃

)
→ 0, almost surely. (20)

Next, we bound the difference between R̃>R̃/n and Wn = 3
∑n

i=1 AiA>i /n. Noting

R̃ =

√
12n2

n2 − 1

(
F j(xi j) −

n + 1
2n

)
n×p

and

√
3(A1, . . . ,An)> =

√
12

(
F j(xi j) −

1
2

)
n×p

,

we can get

∥∥∥∥R̃ −
√

3(A1, . . . ,An)>
∥∥∥∥
∞
≤ 2
√

3

∣∣∣∣∣∣∣
√

n2

n2 − 1
− 1

∣∣∣∣∣∣∣ +
√

3

∣∣∣∣∣∣ n + 1
√

n2 − 1
− 1

∣∣∣∣∣∣→ 0.

Using Corollary A.42 of Bai and Silverstein [1] again, we have L4
(
FWn , F

1
n R̃>R̃

)
→ 0. Combined with (20), we

conclude that

L
(
Fρn , FWn

)
→ 0, almost surely.

The proof is completed. �

Proof of Theorem 3. Since A1, . . . ,An are i.i.d., we can apply Theorem 1.1 of Bai and Zhou [2]. It is sufficient to
check assumption 1 of their theorem, i.e., for any non-random p × p matrix B,

1
p2 var

(
A>1 BA1

)
→ 0.

Noting Ai = 2Φ(Xi)−1 where Φ(·) is differentiable, the Gaussian Poincaré inequality together with ‖Σ‖ ≤ C can yield
the above conclusion. A detailed proof can be found in Lemma 3.3 of [17]. The proof is completed. �
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