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Abstract

In various applications with large spatial regions, the relationship between

the response variable and the covariates is expected to exhibit complex spatial

patterns. We propose a spatially clustered varying coefficient model, where

the regression coefficients are allowed to vary smoothly within each cluster but

change abruptly across the boundaries of adjacent clusters, and we develop

a unified approach for simultaneous coefficient estimation and cluster identi-

fication. The varying coefficients are approximated by penalized splines, and

the clusters are identified through a fused concave penalty on differences in

neighboring locations, where the spatial neighbors are specified by the min-

imum spanning tree (MST). The optimization is solved efficiently based on

the alternating direction method of multipliers, utilizing the sparsity structure

from MST. Furthermore, we establish the oracle property of the proposed

method considering the structure of MST. Numerical studies show that the

proposed method can efficiently incorporate spatial neighborhood information
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and automatically detect possible spatially clustered patterns in the regression

coefficients. An empirical study in oceanography illustrates that the proposed

method is promising to provide informative results.

Keywords: Augmented Lagrangian; Concave penalty; Minimum spanning tree; P -spline.

1 Introduction

With the development of remote sensors, satellites and geographic software, spatial data

from large region are increasingly collected in recent years. For instance, in the motivating

water mass analysis in Section 5, the data are collected over Southern Hemisphere’s oceans,

and we aim to investigate the complex relationship between temperature and salinity (T-S

relationship) over this large region, which plays an important role in the ocean current and

global climate system (Emery, 2001; Nandi et al., 2004). To model the T-S relationship over

this large region, we have at least two main challenges. First, the Southern Hemisphere’s

oceans consist of several water masses, and due to the nonlinear nature of geophysical

fluid dynamics (Vallis, 2006), the T-S relationship is likely to change rapidly across the

narrow boundaries (termed as fronts in geoscience) between adjacent water masses (Li

and Sang, 2019). This phenomenon is ubiquitous in the ocean and the atmosphere, and it

automatically leads to a spatially clustered pattern in the T-S relationship. Second, each

valid water mass generally occupies a big region (Emery, 2001), though not as large as

the whole Southern Hemisphere’s oceans. The regression coefficients within a big region

usually vary across different locations (Propastin et al., 2008; Noresah and Ruslan, 2009),

thus the T-S relationship is expected to vary within each water mass.

Existing literature only partially deals with the first or the second challenge mentioned
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above. To model the relationship between the response variable and covariates over a

region of interest, spatial regression models (Cressie, 1993) and spatial generalized linear

regression models (Diggle et al., 1998) are widely used, where the coefficients of explanatory

variables are usually assumed to be constant over the whole region. However, such constant

assumption is known to be restrictive over a large region, where the regression coefficients

are expected to vary (Finley, 2011), and/or possibly form spatially clustered pattern (Li

and Sang, 2019). Among the existing literature, many methods were developed to capture

the spatially-varying pattern of the regression coefficients, i.e., address the second challenge,

while literature addressing the first challenge is relatively sparse. To capture the spatially-

varying pattern in the second challenge, the geographically weighted regression (GWR)

(Fotheringham et al., 2003) and spatially-varying coefficient models (SVC) (Gelfand et al.,

2003) are two popular methods. The GWR fits a local weighted regression model at each

observation, where the weight matrix is defined by a kernel function. In the SVC method,

spatially-varying coefficients are modeled as a multivariate spatial Gaussian process and

then fitted into the Bayesian framework with some prior distributions. Other methods

to capture the spatially-varying pattern can be found in Opsomer et al. (2008), Lu et al.

(2009), Sangalli et al. (2013), Mu et al. (2018). The main drawback of these methods is

that they can not deal with the possible spatially clustered pattern, i.e., the first challenge,

which may appear in practice (Talley, 2011). Limited work has been done on capturing the

spatially clustered pattern in the first challenge. Recently, Li and Sang (2019) developed a

spatially clustered coefficient (SCC) regression, which uses fused LASSO (Tibshirani, 1996,

least absolute shrinkage and selection operator) to automatically detect spatially clustered

patterns in the regression coefficients. However, the SCC method requires that the values

of regression coefficients to be constant within each cluster, thus fails to address the second
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challenge. Such constant restriction can lead to massive identified clusters when the true

regression coefficients vary within each cluster, see the simulation studies in Section 4.2. In

the motivating water mass analysis in Section 5, the SCC method also identifies massive

clusters in the T-S relationship, strongly suggesting that the T-S relationship may vary

within each cluster, see Figure 4(ii) in Section 5 for more details.

In this paper, we propose a spatially clustered varying coefficient model (SCVCM) to

address both challenges discussed above, which can not only model the spatially clustered

pattern, but also allow spatially-varying relationship between the response and the co-

variates within each subregion. To address the SCVCM, we adopt the penalized splines

(P-splines) to model the spatially-varying coefficients, and apply fused penalties to en-

courage homogeneity between spline coefficient vectors at any two locations connected in

an edge set, so that the spatially clustered pattern can be detected. The selection of the

edge set should incorporate spatial neighborhood information of regression coefficients, i.e.,

coefficients at proximate locations are likely to be similar, possibly resulting from similar

conditions for small area (Finley, 2011). Inspired by Li and Sang (2019), we use mini-

mum spanning tree (MST) to construct the edge set, where two locations are connected by

the edge only when they are close in space, so that the spatial neighborhood information

is utilized. Moreover, the number of corresponding penalized terms based on MST is

small. Utilizing such property, we develop an efficient algorithm to solve the optimization

problem, based on the alternating direction method of multipliers (ADMM). Furthermore,

in our theoretical investigation, we establish the oracle property of the proposed method

considering the structure of MST; namely, for any two locations connected by MST, the

proposed method works as well as we know whether they belong the same cluster or not. To

our best knowledge, such theoretical results are novel, providing important insights about
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the influence of MST on cluster recovering, see details in Section 3, and they may provide

theoretical support when applying MST to other various models in the future.

Compared to the most relevant SCC method in Li and Sang (2019), the proposed ap-

proach has the following major differences and advantages. First, the proposed approach

relaxes the constant restriction on the relationship between the response and covariates

within each subregion, allowing spatial variability within each subregion, which is more

reasonable in investigating the T-S relationship as discussed above the third paragraph, as

well as other applications, see Wheeler and Waller (2009) and references therein. More-

over, it is worth to point out that, within each subregion, the SCVCM degenerates to a

commonly-used spatially-varying model (Fotheringham et al., 2003), but the SCC model

degenerates to a simple linear regression model, which is often unreasonable in spatial

analysis (Lloyd, 2010). Second, the SCC method is based on the fused LASSO penalty,

which may not be able to correctly recover the clusters (Leng et al., 2006). In the proposed

method, the penalties are taken to be some commonly-used concave penalties, say SCAD

(Fan and Li, 2001, smoothly clipped absolute deviation) and MCP (Zhang et al., 2010,

minimax concave penalty), which are known to result in better performance than LASSO

in cluster recovering. Lastly, we establish the oracle property considering the structure of

MST, which provides important insights about the influence of MST on cluster recovering.

The proposed approach can be regarded as a model-based clustering method, which

aims at detecting the spatially clustered pattern. Among the literature, Ma and Huang

(2017), Zhang et al. (2019a) and Zhang et al. (2019b) proposed to identify subgroups for

subjects, e.g., patients. All these methods are based on pairwise fused penalties, which are

not suitable for the spatial data as pairwise construction totally ignores the spatial neigh-

borhood information, resulting in massive redundant penalties. Tibshirani et al. (2005)
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estimated homogeneous effects of covariates, based on fused penalties on successive differ-

ences of regression coefficients, which is not applicable to spatial data, as they do not have

a natural order. Ke et al. (2015) also pursued the homogeneous effects of covariates by

adopting fused penalties based on a coefficient order from preliminary estimates, which are

estimated from independent replicates, usually unavailable for spatial data.

The rest of the paper is organized as follows. We present SCVCM, its estimating

method, and a computationally efficient algorithm in Section 2, the asymptotic properties

in Section 3. We assess the finite sample performance of the proposed method by extensive

simulation studies in Section 4, and apply the proposed method to the water mass analysis

in Section 5. Technical details are provided in the online Supplement.

2 Model and method

2.1 Background

Suppose the spatial data {(X(si), y(si)), i = 1, · · · , n} are observed at locations s1, · · · , sn
∈ D, whereD ⊂ R2 is the region of interest, and the covariatesX(si) = (x1(si), · · · , xp(si))T

with x1(si) = 1. These locations are assumed to be fixed, which is a feature of common

spatial data, such as geostatistical data and lattice data (Schabenberger and Gotway, 2017).

A commonly-used spatially-varying regression model (Fotheringham et al., 2003; Opsomer

et al., 2008) is

y(si) =

p∑
k=1

xk(si)βk(si) + ε(si), (1)

where the regression coefficient βk(si) is the value of a smooth function βk(s) at location

si, and {ε(si)}ni=1 are independent random errors with mean 0 and variance σ2; the spatial

dependence in model (1) is usually assumed to be captured through the spatially-varying

intercept (Finley, 2011). However, the model (1) does not consider the possible spatially
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clustered pattern, which exists in many applications (Talley, 2011).

2.2 SCVCM and its estimation

In this paper, we propose SCVCM to model the spatially clustered pattern. Let

{D1
k, · · · ,D

Gk
k } represent the Gk disjoint subregions for the k-th covariate, satisfying D =

D1
k ∪ · · · ∪ D

Gk
k , k = 1, · · · , p. Then, SCVCM is defined as

y(si) =

p∑
k=1

Gk∑
gk=1

xk(si)β
gk
k (si)I(si ∈ Dgkk ) + ε(si), (2)

where I(·) is the indicator function, and βgkk (si) is the value at location si of an unknown

smooth function βgkk (s) over Dgkk . The assumption of ε(si) is the same as in model (1).

Model (2) is a generalization of the model (1), allowing spatially clustered patterns for

regression coefficients, which has two important features. (i) Similar to model (1), it allows

the associations between the response and covariates to exhibit smooth variation within

each subregion. (ii) It allows the investigation of different clustered patterns in different

regression coefficients.

We start from an ideal case, where {Dgkk , gk = 1, · · · , Gk}, k = 1, · · · , p, are known.

To estimate βgkk (s) , s ∈ Dgkk , we adopt the P -spline method, which is popular for mod-

eling smooth variations in the context of spatial statistics (Ruppert et al., 2003). To be

specific, in the context of P -splines, it assumes that βgkk (s) , s ∈ Dgkk , can be approxi-

mated sufficiently well by (agkk )TB(s), where agkk ∈ RL is the spline coefficient vector, and

B(s) = (B1(s), · · · , BL(s))T is the basis function vector constructed by a large number of

knot locations, see details in Section 2.3.2. As is commonly done in the P -spline context

(Ruppert et al., 2003; Opsomer et al., 2008), we assume that L is large and fixed, and

the lack-of-fit error βgkk (s) − (agkk )TB(s) is negligible uniformly over s ∈ Dgkk , so that we

can simply take βgkk (s) = (agkk )TB(s). Then, estimating βgkk (s) for s ∈ Dgkk is equivalent
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to estimate agkk . Moreover, we prove that, dT1B(s) 6= dT2B(s) for some s ∈ Dgkk , if and

only if d1 6= d2; see Lemma S.1 in Section S2 of the online Supplement. Such property of

uniqueness guarantees that, model (2) can be uniquely transformed into

y(si) =

p∑
k=1

Gk∑
gk=1

xk(si)B(si)
Tagkk I(si ∈ Dgkk ) + ε(si). (3)

In practice, neither the number of subregions Gk nor the specific subregion Dgkk is known.

Denote ak,i as the spline coefficient vector for k-th covariate at location si, k = 1, · · · , p,

i = 1, · · · , n. From model (3), we know that ak,i’s are the same for all si ∈ Dgkk . To utilize

such information, we should encourage homogeneity between spline coefficient vectors,

which motivates to minimize the following objective function,

1

2n

n∑
i=1

{y(si)−
p∑

k=1

xk(si)B(si)
Tak,i}2

+

p∑
k=1

∑
(i,j)∈E

Pλk (‖ak,i − ak,j‖2)︸ ︷︷ ︸
clustering penalty

+

p∑
k=1

%k

n∑
i=1

aTk,iHak,i︸ ︷︷ ︸
smoothing penalty

,
(4)

where ‖ · ‖2 represents the L2-norm, Pλk(·) is a penalty function for cluster identification,

H is a diagonal matrix determined by the basis functions we choose, and {λk, %k}pk=1

are tuning parameters determining the strength of penalization. In (4), the smoothing

penalty is usually adopted in the context of P -splines to address the overparameterized

issue because of large L, and the clustering penalty is used to encourage homogeneity for

the spline coefficient vectors, whose corresponding locations are connected by an edge in

E. The edges considered in this paper are undirected, i.e., the edge (i, j) equals (j, i). The

selection of penalty function Pλk(·), the construction of the basis functions B(·), the edge

set E, and the selection of tuning parameters {λk, %k}pk=1, are four important ingredients
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of (4), which are discussed in Section 2.3. Denote the spline coefficient estimates as âk,i,

then β̂gkk (si) = (âk,i)
TB(si). Without causing ambiguity, we simply denote the procedure

of minimizing (4) as SCVC.

2.3 Implementation details

2.3.1 Selection of fused penalty function

Among existing literature, LASSO (Tibshirani, 1996), SCAD (Fan and Li, 2001) and

MCP (Zhang et al., 2010) are commonly-used penalty functions encouraging sparsity:

LASSO : Pλ(t) = λ|t|; MCP : Pλ,γ(t) = (λ|t| − t2

2γ
)I(|t| ≤ γλ) + 1

2
γλ2I(|t| > γλ), γ > 1;

SCAD : Pλ,γ(t) = λ|t|I(|t| ≤ λ) + 2γλ|t|−t2−λ2
2(γ−1)

I(λ < |t| < γλ) + λ2(γ+1)
2

I(|t| ≥ γλ), γ > 2.

LASSO assigns large penalties to large values of t, thus tends to underestimate t, and may

not be able to correctly recover the true groups (Leng et al., 2006). To remedy this flaw,

SCAD and MCP adopt some concave functions that converge to constants as t increases,

which can produce unbiased estimates and are more suitable for identifying the true groups

(Ma and Huang, 2017). Hence, we adopt these concave penalty functions in (4).

2.3.2 Selection of basis functions

The commonly used tensor product spline basis functions are not suitable for spatial

data, because the number of its basis functions is huge, which leads to extensive computa-

tional burden and numerical instability (Crainiceanu et al., 2007; Opsomer et al., 2008).

To address the accompanied issue of tensor product splines, we use low rank radial

basis functions (Ruppert et al., 2003). To be specific, for s = (s1, s2)T ∈ R2 and the knots

κl ∈ R2, l = 1, · · · , L1, the low rank radial basis function vector are

1, s1, s2, C(‖s− κ1‖2), · · · , C(‖s− κL1‖2), (5)
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where C(r) is a real-valued function; a common choice is C(r) = r2log r, which corresponds

to the thin plate spline. The number of radial basis functions is L1 + 3, which is much

smaller than that of the tensor product splines. To unify the magnitude of the elements

in (5), similar with Li et al. (2020), we normalize the low rank radial basis function vector

(5), through dividing each element of (5) by the mean of its corresponding absolute values

calculated over all observed locations. With the radial basis functions, the corresponding

diagonal matrix H in (4) is usually taken to be H = diag(0T3 ,1
T
L1

), where 03 is a three-

dimensional zero vector, and 1L1 is a L1-dimensional vector of ones. Moreover, we take

L1 = max{20,min(n/4, 40)}, see similar choice in Ruppert et al. (2003).

The remaining problem is how to select the knots κl ∈ R2, l = 1, · · · , L1. In a one-

dimensional problem, the knots are usually taken to be equidistant or according to the

sample quantiles. However, in the two-dimensional scenario, the equispaced choice tends

to waste a lot of knots, and the sample quantile selection does not have a straightforward

extension to the two-dimensional space (Ruppert et al., 2003). Following Ruppert et al.

(2003) and Opsomer et al. (2008), we select the knots by the space filling designs (SFD), in

which the knots are closest to the sample locations under the maximal separation principle

(Johnson et al., 1990). Using the SFD can avoid wasting knots and ensure the coverage of

sample locations. The cover.design function in R package Fields can implement the SFD.

2.3.3 Construction of the edge set E

Construction of the edge set E should utilize the spatial neighborhood information

of regression coefficients, i.e., coefficients at proximate locations are likely to be similar,

possibly resulting from similar conditions for small area (Finley, 2011). Thus, it is preferable

to construct E, such that only proximate locations are connected, rather than connecting
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two locations even when they are distant from each other (Ma and Huang, 2017).

We use the minimum spanning tree (MST) following Li and Sang (2019). Suppose that

we have an undirected graph G = (V,E0) with a weight function d(e), which assigns a

weight to each edge e in the edge set E0, and V is the set of vertices. In this paper, we

take d(e) to be the length of edge e in Euclidean space, V to be the observed locations,

and E0 to be the edge set by pairwise construction. A spanning tree T = (V,E) is an

undirected subgraph of G, i.e., E ⊂ E0, which connects all vertices with no cycles and a

minimum number of edges. The MST is defined as the spanning tree, whose total edge

weight
∑

e∈E d(e) is minimal among all the spanning trees. Thus, MST only connects

the proximate locations, utilizing the spatial neighborhood information. Moreover, MST

enjoys two additional advantages. First, it leads to the connectivity of all data points,

thus the overfitting issue due to isolated locations, would not happen. Second, the number

of edges in MST is |V| − 1 ( |V| is the number of vertices in V), which is far less than

that of pairwise construction. Such property allows us to develop an efficient algorithm to

minimize (4), through utilizing some sparsity structures, see more details in Section 2.4.

The graphminspantree function in Matlab can be used to find the MST.

REMARK 1. We briefly discuss how the edge set E constructed by MST influences the

cluster identification, and a formal discussion will be presented in Section 3. Given n fixed

locations, for any specific subregion in (2), say D1
1, MST either connects all the locations

in D1
1, resulting in one group, or divides D1

1 into several groups, where the locations within

each group are connected by MST but different groups are not connected. By (4), for the

former case, all the locations in D1
1 are expected to be assigned into the same cluster because

they are connected; for the latter case, only those connected locations will be assigned into

the same cluster, thus D1
1 will be divided into more than one clusters.
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2.3.4 Choices of λk and %k

To select the tuning parameters {λk, %k}pk=1, we adopt the Bayesian information crite-

rion (BIC). Given {λk, %k}pk=1, we assume that {M̂g∗k
k , g

∗
k = 1, · · · , Ĝ∗k} are the identified

clusters, which is a partition of {1, · · · , n}, and Ĝ∗k is the number of identified clusters.

Within each subgroup, the estimated spline coefficient vectors âk,i are equal; see the ex-

plicit definition of M̂1
k, · · · ,M̂

Ĝ∗k
k in Section 3.1. Without loss of generality, we assume

that M̂1
k = {1, · · · , n1

k}, M̂2
k = {n1

k + 1, · · · , n2
k}, · · · ,M̂

Ĝ∗k
k = {nĜ

∗
k−1

k + 1, · · · , n}, where

1 ≤ n1
k < n2

k < · · · < n
Ĝ∗k−1

k < n, and let XĜ∗ = (X1

Ĝ∗1
, · · · ,Xp

Ĝ∗p
), where

Xk
Ĝ∗k

=



xk(s1)B(s1)T · · · 0T...
...

xk(sn1
k
)B(sn1

k
)T · · · 0T...

. . .
...

0T · · · xk

(
s
n
Ĝ∗
k
−1

k +1

)
B

(
s
n
Ĝ∗
k
−1

k +1

)T
...

...
0T · · · xk(sn)B(sn)T


, k = 1, · · · , p.

Following Tibshirani et al. (2012), the BIC criterion is defined as

BIC({λk, %k}pk=1) = n log

[
1

n

n∑
i=1

{
y(si)−

p∑
k=1

xk(si)B(si)
T âk,i

}2
]

+ df ∗ log n,

where df = tr
{
XĜ∗(X

T
Ĝ∗
XĜ∗ + 2nH̃)−1XT

Ĝ∗

}
, H̃ = diag(%1H̃1, · · · , %pH̃p) and H̃k =

diag
{
n1
kH , (n2

k − n1
k)H , · · · , (n− nĜ

∗
k−1

k )H
}

, k = 1, · · · , p.

The remaining problem is to find suitable {λk, %k}pk=1, which minimize BIC({λk, %k}pk=1).

An intuitive way is to search over a sequence of grid points. However, noticing the number

of tuning parameters is greater than one, we need to search a large number of grid points

to get a decent result. To address this, we use the NelderMead method (Singer and Nelder,

2009) to minimize BIC({λk, %k}pk=1), see details in Section S3 of the online Supplement,
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and a brief description is given as follows. It is a direct search method, thus is suitable

for minimizing BIC({λk, %k}pk=1) whose derivatives are unknown. It tries to decrease the

function values through a sequence of simplexes, and typically requires only one function

evaluation in each iteration step. Moreover, it can give significant improvements in the first

few iterations and quickly produce satisfactory results (Singer and Nelder, 2009), because it

replaces the worst vertex in the simplex with a better one in each iteration step. According

to our experience, minimizing BIC({λk, %k}pk=1) with the NelderMead method generally

converges within 50 iterations, which means that no more than 50 function evaluations are

needed in total, far less than the number of function evaluations using the grid search.

2.4 Computational algorithm

Directly minimizing the objective function (4) is challenging, because the penalty func-

tion is not separable in ak,i’s. We reparameterize (4) by introducing a new set of parameters

ηk,ij = ak,i − ak,j. Then, minimizing (4) is equivalent to

min S(a,η)=
1

2n

n∑
i=1

{y(si)−
p∑

k=1

xk(si)B(si)
Tak,i}2+

p∑
k=1

∑
(i,j)∈E

Pλk (‖ηk,ij‖2)+

p∑
k=1

%k

n∑
i=1

aTk,iHak,i,

s.t. ak,i − ak,j − ηk,ij = 0, (i, j) ∈ E, (6)

where a = (aT1 , · · · ,aTp )T , ak = (aTk,1, · · · ,aTk,n)T , k = 1, · · · , p, and η = (ηT1 , · · · ,ηTp )T ,

ηk = {ηTk,ij, (i, j) ∈ E}T . The above constrained optimization problem can be further

converted to an augmented one,

min S(a,η) +
θ

2

p∑
k=1

∑
(i,j)∈E

‖ak,i − ak,j − ηk,ij‖2
2, s.t. ak,i − ak,j − ηk,ij = 0, (i, j) ∈ E, (7)

where θ is a positive fixed parameter; see discussion of θ in Remark 2. Problems (6) and

(7) are equivalent, because the quadratic penalty is zero when the constraints are satisfied.

To solve the constrained problem (7), we use the Lagrangian method, by minimizing
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L(a,η,υ) = S(a,η) +
θ

2

p∑
k=1

∑
(i,j)∈E

‖ak,i − ak,j − ηk,ij‖22 +

p∑
k=1

∑
(i,j)∈E

υTk,ij (ak,i − ak,j − ηk,ij) , (8)

where the dual variables υ = (υT1 , · · · ,υTp )T , υk = {υTk,ij, (i, j) ∈ E}T , k = 1, · · · , p, are

the Lagrange multipliers. The expression (8) is usually called the augmented Lagrangian

for (6) (Boyd et al., 2011).

We now present the computational algorithm based on ADMM for minimizing (8).

Step 0. Initialize η(0) = 0 and υ(0) = 0.

Step 1. Given (η(m),υ(m)), we update a by solving ∂L(a,η(m),υ(m))/∂a = 0, as

a(m+1) = Π−1
[
n−1BTY +

p∑
k=1

∑
(i,j)∈E

(ek,i − ek,j){θη(m)
k,ij − υ

(m)
k,ij}

]
, (9)

where Π = n−1BTB+θ{
∑p

k=1

∑
(i,j)∈E(ek,i−ek,j)(ek,i−ek,j)T}+2H , Y = (y(s1), · · · , y(sn))T ,

B = (B1, · · · ,Bp), H = diag(H1, · · · ,Hp),

Bk =

 xk(s1)B(s1)T · · · 0T...
. . .

...
0T · · · xk(sn)B(sn)T


n×nL

, Hk = %k

 H · · · 0...
. . .

...
0 · · · H


nL×nL

,

k = 1, · · · , p, and ek,i represents an npL × L matrix, where the (g, l)-th element of

ek,i is e
(g,l)
k,i , equal to 1 if g = l + (k − 1)nL+ (i− 1)L, 1 ≤ l ≤ L, and 0 otherwise.

Step 2. Given (a(m+1),υ(m)), we update ηk,ij by minimizing

1

2
(δ

(m)
k,ij − ηk,ij)

T (δ
(m)
k,ij − ηk,ij) +

1

θ
Pλk (‖ηk,ij‖2) , (10)

where δ
(m)
k,ij = a

(m+1)
k,i − a(m+1)

k,j + 1
θ
υ

(m)
k,ij . When Pλk(·) is the MCP or SCAD penalty,

the minimizer of (10) has a simple closed-form expression as following:

• MCP: η
(m+1)
k,ij = γ

γ−1
M(δ

(m)
k,ij ,

λ1
θ

)I(‖δ(m)
k,ij‖2 ≤ γλ1

θ
) + δ

(m)
k,ij I(‖δ(m)

k,ij‖2 >
γλ1
θ

), where

M(z, t) = (1− t
‖z‖2 )+z;
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• SCAD: η
(m+1)
k,ij = M(δ

(m)
k,ij ,

λ1
θ

)I(‖δ(m)
k,ij‖2 ≤ 2λ1

θ
) + γ−1

γ−2
M(δ

(m)
k,ij ,

γλ1
(γ−1)θ

)I(2λ1
θ
≤

‖δ(m)
k,ij‖2 ≤ γλ1

θ
) + δ

(m)
k,ij I(‖δ(m)

k,ij‖2 >
γλ1
θ

).

Step 3. Update υk,ij as

υ
(m+1)
k,ij = υ

(m)
k,ij + θ

{
a

(m+1)
k,i − a(m+1)

k,j − η(m+1)
k,ij

}
. (11)

Repeat Steps 1-3 until a stopping rule is met, and denote the final estimates as â, η̂, υ̂.

In non-convex optimization, it is important to assign appropriate initial values to obtain

a good solution. As shown in Step 0, we choose to initialize the ADMM algorithm with

η(0) = 0 and υ(0) = 0, which is a common choice (Lv et al., 2020) and provides decent

results in the simulation studies of Section 4.

The updates from (10)-(11) are efficient, and the main computational burden con-

centrates on (9), which solves a linear system of equations, i.e., Πa(m+1) = ζ, where

ζ = n−1BTY +
∑p

k=1

∑
(i,j)∈E(ek,i − ek,j){θη(m)

k,ij − υ
(m)
k,ij}. Because E constructed by MST

contains n−1 edges, the npL×npL matrix Π is quite sparse, with proportion of non-zero el-

ements at most 1
n

+ 5
npL

. Such sparse linear system can be solved efficiently, through storing

Π in a compressed, sparse, column-oriented format, which is implemented by sparseMa-

trix in R package Matrix. Then, the linear system can be solved efficiently by the function

solve( Π, ζ, sparse=TRUE) in R package Matrix.

When E is obtained by pairwise construction, the spatial neighborhood information

is not utilized, resulting in lots of redundant penalties with the number of n(n − 1)/2,

which is far larger than n − 1, the number of penalty terms when utilizing the spatial

neighborhood information to construct E through MST. It is widely known that, solving

the optimization problem with n(n−1)/2 penalties is almost infeasible when n is relatively
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large, say n ≥ 300. Thus, pairwise construction can not be applied to the motivating water

mass analysis in Section 5, where n = 5130.

REMARK 2. Similar with Ma and Huang (2017), we track the algorithm based on the

primal residual R(m+1) = {(a(m+1)
k,i − a(m+1)

k,j − η(m+1)
k,ij )T , (i, j) ∈ E, k = 1, · · · , p}T , and

the dual residual S(m+1) = θ
∑p

k=1

∑
(i,j)∈E(ek,i − ek,j){η(m+1)

k,ij − η(m)
k,ij}. The algorithm

is terminated when ‖R(m+1)‖2 ≤ δr and ‖S(m+1)‖2 ≤ δs for some small positive values

δr and δs. For a fixed m, according to Boyd et al. (2011), larger θ usually results in

smaller ‖R(m+1)‖2 and larger ‖S(m+1)‖2. Our numerical experience suggests that, θ = 1

is a decent choice, for which both ‖R(m+1)‖2 and ‖S(m+1)‖2 reach small values within a

moderate number of iterations. Such value of θ is also adopted in Ma and Huang (2017).

3 Asymptotic properties

In this section, we first introduce the definition of true clusters considering the structure

of EMST (the edge set constructed by MST), and we name these new clusters as “spatial

neighborhood true clusters”, abbreviated as “SpaNeigh true clusters”. We will

explain the reason for this name at the beginning of Section 3.1. Then, we study the

oracle property of the SCVC method with EMST; namely, it works as well as the SpaNeigh

true clusters are known. Finally, we deduce the minimum signal difference requirement for

recovering SpaNeigh true clusters.

3.1 Definition of the SpaNeigh true clusters

As discussed in Remark 1, the structure of EMST plays an important role in cluster

identification. Accordingly, we first give the definition of true clusters considering the

structure of EMST, i.e., SpaNeigh true clusters, and the definition of identified clusters from

the SCVC method with EMST. By the definition in the following, we will see that, SpaNeigh
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true clusters exactly describe the oracle information in Section 1, i.e., for any two locations

connected by MST, we know whether they belong to the same subregion or not. Based

on the fact that MST only connects proximate locations, SpaNeigh true clusters actually

describe the oracle information about whether the location and its neighbors belong to the

same subregion or not, and this is the reason for its name. To our best knowledge, it is the

first time to consider the influence of the structure of EMST on cluster identification.

Let {a0
k,i}ni=1 represent the true values of the spline coefficient vectors, then from model

(3), there are Gk distinct values agkk , where a0
k,i = agkk for si ∈ Dgkk , gk = 1, · · · , Gk. Define

Ggkk = {i : a0
k,i = agkk , 1 ≤ i ≤ n}, or equivalently, Ggkk = {i : si ∈ Dgkk }, then {G1

k , · · · ,G
Gk
k }

forms a partition of {1, · · · , n}, representing the true clusters for k-th covariate without

considering the structure of EMST. Considering the structure of EMST, we give the definition

of the SpaNeigh true clusters by the following two steps, where the new cluster is either

equal to one of Ggkk , or a subset, depending on EMST.

1. For a given gk ∈ {1, · · · , Gk}, if for any two locations si1 , si2 in Ggkk , i.e., i1, i2 ∈ Ggkk ,

there always exists a path made up of an edge/some edges in Egkk = {(i, j) : (i, j) ∈

EMST, and i, j ∈ Ggkk }, such that si1 and si2 are connected, then we reserve Ggkk as

one cluster. Otherwise, we form a partition of Ggkk , denoted as Ggkk,f , f = 1, · · · , Fk,

for some positive integer Fk, satisfying that for any two locations in Ggkk,f , they are

connected through a path, made up of an edge/some edges in Egkk,f = {(i, j) : (i, j) ∈

EMST, and i, j ∈ Ggkk,f}. Meanwhile, for any two locations si3 ∈ G
gk
k,f , si4 ∈ G

gk
k,f ′

and f 6= f ′, the corresponding edge (i3, i4) /∈ EMST; for example, {s1, s2} are not

connected with {s3, s4} through EMST in Figure 1 (b), so that they are divided into

two clusters though they are in the same subregion.

2. Repeating the above step for gk = 1, · · · , Gk, we obtain either Ggkk or Ggkk,1, · · · ,G
gk
k,Fk

.
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We redefine these subgroups as {Mg∗k
k }

G∗k
g∗k=1, and they are the SpaNeigh true clusters

for k-th covariate, where G∗k ≥ Gk is the number of new clusters. A concrete example

in the paragraph above Theorem 1 is provided to further illustrate {Mg∗k
k }

G∗k
g∗k=1.

For the identified clusters, we assume that there are Ĝk distinct values in {âk,i}ni=1, de-

noted as âgkk , gk = 1, · · · , Ĝk. As a counterpart of the SpaNeigh true clusters, the identified

clusters from the SCVC method with EMST, are obtained from the above two steps by re-

placing a0
k,i with âk,i, a

gk
k with âgkk , and Gk with Ĝk. We denote them as {M̂1

k, · · · ,M̂
Ĝ∗k
k },

where Ĝ∗k ≥ Ĝk is the number of identified clusters from the SCVC method with EMST.

By definition, the SpaNeigh true clusterMg∗k
k is a subset of Ggkk for some gk ∈ {1, · · · , Gk},

g∗k = 1, · · · , G∗k, and {M1
k, · · · ,M

G∗k
k } exactly describes the oracle information in Sec-

tion 1, i.e., for any two locations connected by MST, we know whether they belong to

the same subregion or not. Based on the fact that MST only connects proximate loca-

tions, {M1
k, · · · ,M

G∗k
k } actually describes the oracle information about whether the lo-

cation and its neighbors belong to the same subregion or not. However, {G1
k , · · · ,G

Gk
k }

describes the oracle information, that for any two locations even they are distant from each

other, we know whether they belong to the same subregion or not. Under the frame-

work of spatial data, people may not care whether two locations belong to the same

subregion if they are distant from each other, and just want to know whether the loca-

tion and its neighbors can be assigned into the same cluster. From that point of view,

people may only need to recover {M1
k, · · · ,M

G∗k
k } instead of {G1

k , · · · ,G
Gk
k }. Moreover,

we use a concrete example for further illustration, see Figure 1. In Figure 1(a), the lo-

cations within subregion D1
k (or D2

k, or D3
k) are relatively close to each other, so that

all of them are connected by MST. Then, we have Gk = G∗k = 3 and {G1
k , · · · ,G

Gk
k }

= {M1
k, · · · ,M

G∗k
k } = {{1, 2, 3, 4}, {5, 6, 7}, {8, 9}}. In Figure 1(b), within subregion D1

k,
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the location set {1, 2} is distant from the location set {3, 4}, so that MST does not connect

them. Then, we have G∗k = 4 with {M1
k, · · · ,M

G∗k
k } = {{1, 2}, {3, 4}, {5, 6, 7}, {8, 9}}, and

Gk = 3 with {G1
k , · · · ,G

Gk
k } = {{1, 2, 3, 4}, {5, 6, 7}, {8, 9}}. For the former situation where

{G1
k , · · · ,G

Gk
k } = {M1

k, · · · ,M
G∗k
k }, we call it “MST-equal”; for the latter situation where

{G1
k , · · · ,G

Gk
k } 6= {M1

k, · · · ,M
G∗k
k }, we call it “MST-unequal”.

Theorem 1. Under EMST, the sets of SpaNeigh true clusters {M1
k, · · · ,M

G∗k
k } and identified

clusters {M̂1
k, · · · ,M̂

Ĝ∗k
k }, are existing and unique, k = 1, · · · , p.

REMARK 3. As discussed in Section 2.3.3, MST is influenced by the definition of dis-

tance, and so is {M1
k, · · · ,M

G∗k
k }. Different distance metrics essentially reflect different

beliefs on the spatial neighborhood information, because they determine the similarity be-

tween locations. For instance, two locations, which are close to each other under Euclidean

distance, can be distant from each other under other distances, such as, geodesic distance,

see Wang and Ranalli (2007). Thus, for a specific problem, a proper distance leads to

proper use of spatial neighborhood information, thus the corresponding {M1
k, · · · ,M

G∗k
k }

based on such distance may be more reasonable. Euclidean distance adopted in this paper

is widely used in spatial analysis, when the shape of a domain is regular. When the shape

of a domain is irregular with complex boundaries or interior gaps and holes, geodesic dis-

tance, that is, the length of the shortest path within the domain between two points, may

more accurately reflect the spatial neighborhood information than Euclidean distance, as it

considers the complex shape of the domain, see details in Wang and Ranalli (2007).
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(a) (b)

Figure 1: EMST consists of within/between-subregion (solid/dashed) connections.

3.2 Oracle properties of the SCVC method with EMST

When the SpaNeigh true clusters, i.e., M1
k, · · · ,M

G∗k
k , k = 1, · · · , p, are known, the

oracle estimator for a = (aT1 , · · · ,aTp )T is

âor = arg min
ak∈N kG , k=1,··· ,p

1

2n

n∑
i=1

{y(si)−
p∑

k=1

xk(si)B
T (si)ak,i}2 +

p∑
k=1

%k

n∑
i=1

aTk,iHak,i, (12)

where N k
G is the subspace of RnL, defined as

N k
G = {ak = (aTk,1, · · · ,aTk,n)T ∈ RnL : ak,i = ak,j for any i, j ∈Mg∗k

k , 1 ≤ g∗k ≤ G∗k}.

Let a0 be the true value of a, %̃ = max
1≤k≤p

%k, |Mmin| = min
1≤k≤p,1≤g∗k≤G

∗
k

|Mg∗k
k | and |Mmax| =

max
1≤k≤p,1≤g∗k≤G

∗
k

|Mg∗k
k |, where |Mg∗k

k | is the number of elements inMg∗k
k . For any numbers an > 0

and bn > 0, let an � bn represent limn→∞an/bn = c for some c > 0, and an >> bn represent

a−1
n bn = o(1). For any s× t matrix A = (Aij)

s,t
i=1,j=1, denote ‖A‖∞ = max

1≤i≤s

∑t
j=1 |Aij|.

Theorem 2. Under the Assumptions (A1)-(A6) in the online Supplement, if |Mmin|

>>
√∑p

k=1G
∗
k

√
n log n and %̃ <<

√
log n/(

√
n|Mmax| ‖a0‖∞), we have

‖âor − a0‖∞ ≤ rn,
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with probability approaching one, where rn �
√∑p

k=1G
∗
k

√
n log n/|Mmin|.

REMARK 4. Let G∗max = max
1≤k≤p

G∗k, by the condition |Mmin| >>
√∑p

k=1 G
∗
k

√
n log n

in Theorem 2, we have G∗max
3/2
√
n log n << n, thus the maximum number of true clusters

need to satisfy G∗max << (n/ log n)1/3.

Now we consider the theoretical properties of the SCVC method with EMST, in terms

of cluster identification and coefficient estimation. It is expected that, the signal difference

between different clusters plays an important role, which is measured by the difference of

the true spline coefficient vectors in different groups, and larger signal difference makes

it easier for true cluster recovering. For k-th covariate, we define the minimum signal

difference under the structure of EMST as

ϑk = min
i ∈Mg

k, j ∈M
g′

k , g 6= g′,

(i, j) ∈ EMST.

‖a0
k,i − a0

k,j‖2, k = 1, · · · , p. (13)

Therefore, to make ϑk > 0, we only require that the true spline coefficient vector pairs

a0
k,i and a0

k,j are different, if the corresponding locations si and sj belong to two proximate

different subregions. Take the case in Figure 1(b) as an example, we have ϑk = min
(i,j)∈{(2,5),(7,8)}

‖a0
k,i − a0

k,j‖2. More discussion about ϑk can be found in Remark 5.

Theorem 3. Suppose that the assumptions in Theorem 2 hold, %̃ <<
√

log n/{n(‖a0‖∞
+rn)}, ϑk >> λk and

λk >> max
1≤g∗k≤G

∗
k

{rn, |M
g∗k
k |
√

log n/n}, k = 1, · · · , p.

Then, there exists a local minimizer â of the objective function (4) with EMST, satisfying

P (â = âor)→ 1.

21



Theorem 3 shows that, the oracle estimator âor is a local minimizer of the objec-

tive function (4) with EMST, with probability approaching one. By the definition of

{M̂1
k, · · · ,M̂

Ĝ∗k
k }, we have the following corollary.

Corollary 1. Suppose the assumptions in Theorem 3 hold, we have

P
(
{M̂1

k, · · · ,M̂
Ĝ∗k
k } = {M1

k, · · · ,M
G∗k
k }
)
→ 1, k = 1, · · · , p.

Corollary 1 shows that, the SCVC method with EMST can identify the SpaNeigh true

clusters {M1
k, · · · ,M

G∗k
k } with probability approaching one.

REMARK 5. We discussed the minimum signal difference ϑk in Theorem 3. From the

conditions ϑk >> λk and λk >> max
1≤g∗k≤G

∗
k

{rn, |M
g∗k
k |
√

log n/n}, we have

ϑk >> max
1≤g∗k≤G

∗
k

{rn, |M
g∗k
k |
√

log n/n}, k = 1, · · · , p.

Suppose |Mmin| � |Mmax|,

(i) when n1/5 << G∗k << n1/3(log n)−1/3, then rn >> |Mg∗k
k |
√

log n/n, we have the

minimum signal difference satisfying ϑk >> rn;

(ii) when 0 < G∗k << n1/5, then rn << |M
g∗k
k |
√

log n/n, so we need ϑk >> |M
g∗k
k |
√

log n/n,

and if the number of clusters is fixed, we have ϑk >>
√

log n, see a similar rate in

Ke et al. (2015).

4 Simulation studies

We present two simulation studies to illustrate the finite-sample performance of SCVC

method, based on the SCAD penalty with γ = 3.7 (Fan and Li, 2001; Zou and Li, 2008).

Results based on MCP are similar and thus omitted. In the first study, we consider constant
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clustered coefficients, i.e., the coefficients remain constant within each cluster. In the second

study, the true coefficients are clustered, varying smoothly within each cluster.

In each study, we consider two different spatially clustered patterns in the square domain

[0, 1]×[0, 1], made up of 1000 locations. Based on these locations, we generate the covariates

as x1(si) ≡ 1 and {x2(si)}1000
i=1 as realizations of a spatial Gaussian process with mean zero

and covariance function Cov{x(si), x(sj)} = exp(−‖si − sj‖/φ), where φ is the range

parameter, and φ = 0.1, 1 correspond to weak and strong spatial correlations. Based on

these locations and covariates, the data generating process is

y(si) = x1(si)β1(si) + x2(si)β2(si) + ε(si), i = 1, · · · , 1000,

where ε(si)
i.i.d.∼ N(0, 0.12), and we run 100 replicates to examine the behavior of SCVC in

parameter estimation and cluster identification.

For comparison, we include the SCC (Li and Sang, 2019), the GWR (Fotheringham

et al., 2003) method, and the common P -spline estimator (PSE) which is obtained by

assuming the spline coefficient vectors in (4) are the same for any locations. The SCC can

deal with the spatially clustered pattern with constant regression coefficients within each

subregion, while the GWR and the PSE can deal with the scenario when the regression

coefficients vary smoothly over the whole region. Moreover, we also include the method

by replacing the LASSO penalty in SCC with the SCAD penalty, and name it as “SCC*”.

The algorithm and code provided by Li and Sang (2019) can not deal with SCC*, and we

modify the ADMM algorithm in Section 2.4 to implement SCC*. Because the optimization

problem for SCC* is non-convex, we try many types of initial values, such as zero, random

initial values and initial values from the SCC estimates, and find that the initial values

from the SCC estimates result in the best performance of SCC* among these types of

initial values. Thus, for comparison purpose, we report the results of SCC* with the initial
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values from the SCC estimates. To quantify the performance of each method, we consider

three criteria. (i) MSEβk : the mean-squared error for k-th covariate, defined as

MSEβk =
1

n

n∑
i=1

{β̂k(si)− βk(si)}2, k = 1, 2.

(ii) RIk: the rand index for k-th covariate, a commonly used criterion in clustering analysis,

which measures the percentage of correct identifications, defined as

RIk =
TPk + TNk

TPk + FPk + FNk + TNk

, k = 1, 2.

TPk/FPk (true positive/false positive) is the number of location pairs from different subre-

gions assigned to different clusters/the same cluster; TNk/FNk (true negative/false nega-

tive) is the number of pairs from the same subregion assigned to the same cluster/different

clusters. Higher values of RIk indicate better agreement of the identified clusters with the

true subregions. (iii) ICk: the number of identified clusters for k-th covariate. All these

criteria are averaged over 100 replicates.

The tuning parameters in SCVC, SCC, SCC*, and PSE are chosen by BIC, and for the

GWR, we employ an exponential kernel function with optimal bandwidth chosen by the

cross-validation. The SCC and GWR are realized by the code from Li and Sang (2019),

SCC* by modifying the ADMM algorithm in Section 2.4, and PSE by its closed expression.

4.1 Study 1: Constant clustered coefficients

The true regression coefficients {βk(si)}2
k=1 in this study are spatially clustered and

remain constant within each cluster, i.e., the SCC model is the true model. Moreover,

two different spatially clustered patterns are considered, as shown in Figure 2(a). The

spatially clustered patterns in the left two panels of Figure 2(a) represent MST-equal, i.e.,

{G1
k , · · · ,G

Gk
k } = {M1

k, · · · ,M
G∗k
k }, k = 1, 2; the spatially clustered patterns in the right
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two panels of Figure 2(a) represent MST-unequal, i.e., {G1
k , · · · ,G

Gk
k } 6= {M1

k, · · · ,M
G∗k
k },

k = 1, 2. Details about generating these two different clustered patterns in Figure 2 can be

found in Section S4 of the online Supplement.

Table 1 compares the MSE, RI, and IC for SCVC, SCC, GWR, SCC*, and PSE, with

patterns specified either by MST-equal or MST-unequal in Figures 2(a). The results in

Table 1 suggest that the SCVC generally outperforms the SCC, GWR, and PSE. First, the

MSEs of SCVC are smaller than those of SCC, GWR, and PSE. Second, SCVC gives a more

reasonable number of identified clusters than SCC. Third, SCVC results in higher RI values

than SCC. One possible explanation is that, compared to the SCAD penalty in the SCVC,

the LASSO penalty in the SCC tends to result in a larger number of identified clusters

and lower efficiency for estimation. This explanation is supported by the results of SCC*,

which generally show better performance than SCC due to utilizing SCAD penalty. Now

we compare the results of SCVC and SCC*, where both methods utilize SCAD penalty.

For cluster identification, both methods produce similar results. For coefficient estimation,

SCVC performs better than SCC for the estimation of β1(si) under MST-equal (or MST-

unequal) with weak correlation; for the rest cases, SCVC and SCC* perform similarly or

SCC* performs slightly better. One possible reason for the underperformance of SCC* in

some cases is the sensitivity of SCC* to the initial value. If setting the initial values as

the true values, the infeasible SCC* uniformly outperforms SCVC for coefficient estimation

and cluster identification, see Section S5 in the online Supplement.

4.2 Study 2: Smooth-varying clustered coefficients

In this study, the sample locations and clusters are the same as those in Study 1, except

that the coefficients within each cluster are smooth-varying, see Figure 2(b). The left two

and right two panels in Figure 2(b) represent MST-equal and MST-unequal, respectively.
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(a) Constant clustered coefficients

(b) Smooth-varying clustered coefficients

Figure 2: The points/colors represent the locations/coefficient values, and the solid lines

represent the edges in MST. From the top left cluster to the bottom right one: in (a), β2(s)

equals 1, -1, 0.5, -0.5, respectively, and β1(s) equals -0.5, 1, -1, 0.5, respectively; in (b),

with s = (sh, sv) and shv = sh + sv, β2(s) equals 1 + s2
hv, −1 + s2

hv, 0.5 + s2
hv, −0.5 + s2

hv,

respectively, and β1(s) equals −0.5 + s1.5
hv , 1 + s2

hv, −1 + s1.7
hv , 0.5 + s1.5

hv , respectively.
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Table 1: Summary of Study 1, with constant coefficient within each cluster.

Pattern Correlation Methods MSEβ2 MSEβ1 RI2 RI1 IC2 IC1

SCVC 0.021 0.010 99.72 99.96 5.84 4.48

(0.001) (0.001) (0.02) (0.01) (0.04) (0.05)

SCC 0.029 0.079 86.04 78.69 20.65 20.51

(0.001) (0.001) (0.43) (0.25) (0.33) (0.34)

weak SCC* 0.024 0.090 99.37 99.60 7.00 4.00

(0.001) (0.001) (0.00) (0.00) (0.00) (0.00)

GWR 0.199 0.214 - - - -

(0.004) (0.004) - - - -

PSE 0.855 0.907 - - - -

MST-equal (0.002) (0.003) - - - -

SCVC 0.086 0.099 99.58 98.46 4.49 4.19

(0.006) (0.013) (0.15) (0.29) (0.06) (0.04)

SCC 0.197 0.288 75.15 73.26 45.03 39.19

(0.004) (0.005) (0.14) (0.17) (0.59) (0.39)

strong SCC* 0.050 0.130 99.14 99.05 8.00 8.00

(0.001) (0.001) (0.00) (0.00) (0.00) (0.00)

GWR 1.364 1.932 - - - -

(0.023) (0.043) - - - -

PSE 1.741 1.505 - - - -

(0.009) (0.008) - - - -

SCVC 0.096 0.054 85.51 87.77 8.26 12.78

(0.002) (0.003) (0.01) (0.02) (0.17) (0.07)

SCC 0.118 0.200 78.59 78.59 49.03 42.35

(0.001) (0.002) (0.13) (0.13) (0.64) (0.55)

weak SCC* 0.130 0.155 85.11 87.72 11.00 12.82

(0.001) (0.001) (0.00) (0.00) (0.00) (0.04)

GWR 0.447 0.707 - - - -

MST-unequal (0.003) (0.004) - - - -

PSE 1.088 1.386 - - - -

(0.002) (0.003) - - - -

SCVC 0.850 2.307 81.22 82.66 6.78 8.79

(0.024) (0.075) (0.15) (0.15) (0.10) (0.25)

SCC 1.321 4.067 77.60 75.86 67.76 40.22

(0.018) (0.057) (0.14) (0.07) (1.24) (0.79)

strong SCC* 0.926 2.732 81.37 84.06 26.26 14.69

(0.004) (0.001) (0.03) (0.03) (0.10) (0.07)

GWR 4.450 3.024 - - - -

(0.137) (0.043) - - - -

PSE 2.494 2.715 - - - -

(0.008) (0.018) - - - -

SCVC: spatially clustered varying coefficient method; SCC: spatially clustered coefficient regression based on LASSO; SCC*:

spatially clustered coefficient regression based on SCAD; GWR: geographically weighted regression; PSE: P -spline estimator.

MSEβk/RIk/ICk: mean squared error (×10)/rand index (×100)/number of identified clusters, for k-th covariate, k = 1, 2. Values

in the parentheses are the standard errors. Note that GWR and PSE can not identify clusters.
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Table 2 summarizes the comparison of the five methods under two different spatially

clustered patterns, i.e., MST-equal and MST-unequal. In this scenario, the assumptions

for SCC, SCC*, GWR, and PSE are violated, thus SCVC performs much better. First,

SCVC clearly outperforms SCC, SCC*, GWR, and PSE for coefficient estimation, with

considerably smaller MSE in all settings. Second, SCVC yields a reasonable number of

clusters, while SCC and SCC* lead to a much larger number of clusters. The main reason

is that, the SCC and SCC* require the coefficients to be constant within each cluster, thus

lead to more clusters when the true coefficients are varying. Last, SCVC results in much

higher RI values than SCC and SCC*, suggesting better agreement of the clusters.

Additional simulations with the true coefficients smooth over the whole region, i.e.,

the assumption made in GWR and PSE holds, are provided in Section S6 of the online

Supplement. The corresponding results show PSE performs slightly better than SCVC,

and SCVC performs better than other remaining methods, see detailed discussion there.

5 Water Mass Analysis

In oceanography, water masses detection is important, as it strongly affects the ocean

current and global climate system (Nandi et al., 2004; Talley, 2011). The water masses

are usually identified through the T-S relationship, because the T-S relationship is likely

to change rapidly across the narrow boundaries (termed as fronts in geoscience) between

adjacent fluid masses (Li and Sang, 2019). To study the T-S relationship and meanwhile

detect different water masses, we apply the proposed SCVC method. For comparison, the

SCC, SCC*, GWR, and PSE methods are also included. The implementation of these five

methods is the same as that in the simulation studies.

The data set contains 5130 observations of temperature and salinity in the Southern

Hemisphere, along 25◦W between 60◦S and the equator (0◦), see Figure 3. This data set can
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Table 2: Summary of Study 2, with smooth-varying coefficients within each cluster.

Pattern Correlation Methods MSEβ2 MSEβ1 RI2 RI1 IC2 IC1

SCVC 0.025 0.011 99.73 99.91 5.60 5.00

(0.001) (0.001) (0.02) (0.01) (0.06) (0.00)

SCC 0.279 0.348 68.22 68.26 151.08 120.60

(0.008) (0.009) (0.06) (0.05) (2.68) (1.74)

weak SCC* 0.254 0.390 70.26 75.28 53.34 35.15

(0.001) (0.001) (0.03) (0.02) (0.14) (0.11)

GWR 0.235 0.256 - - - -

(0.005) (0.005) - - - -

PSE 0.828 0.854 - - - -

MST-equal (0.002) (0.002) - - - -

SCVC 0.085 0.083 98.71 99.30 4.61 4.11

(0.009) (0.011) (0.27) (0.21) (0.07) (0.03)

SCC 1.663 1.611 69.36 68.91 131.49 101.80

(0.027) (0.031) (0.04) (0.05) (2.18) (1.30)

strong SCC* 1.456 1.300 70.52 75.34 49.92 45.50

(0.009) (0.009) (0.04) (0.02) (0.12) (0.16)

GWR 1.906 2.887 - - - -

(0.024) (0.049) - - - -

PSE 1.681 1.437 - - - -

(0.008) (0.008) - - - -

SCVC 0.071 0.062 85.47 84.73 8.04 8.86

(0.001) (0.002) (0.02) (0.01) (0.02) (0.07)

SCC 0.349 0.579 71.90 72.43 172.80 124.43

(0.008) (0.009) (0.06) (0.05) (2.68) (1.74)

weak SCC* 0.352 0.528 73.83 75.90 57.21 63.36

(0.001) (0.002) (0.01) (0.01) (0.11) (0.15)

GWR 0.515 0.836 - - - -

(0.003) (0.005) - - - -

PSE 1.107 1.447 - - - -

MST-unequal (0.002) (0.003) - - - -

SCVC 0.580 1.390 81.17 81.97 6.79 7.38

(0.020) (0.064) (0.17) (0.21) (0.11) (0.12)

SCC 2.226 4.312 72.18 73.94 170.86 83.16

(0.025) (0.049) (0.02) (0.08) (1.82) (0.94)

strong SCC* 1.972 3.907 73.61 79.03 53.58 26.95

(0.005) (0.013) (0.01) (0.01) (0.14) (0.04)

GWR 4.989 4.387 - - - -

(0.131) (0.047) - - - -

PSE 2.485 2.705 - - - -

(0.008) (0.018) - - - -

SCVC: spatially clustered varying coefficient method; SCC: spatially clustered coefficient regression based on LASSO; SCC*:

spatially clustered coefficient regression based on SCAD; GWR: geographically weighted regression; PSE: P -spline estimator.

MSEβk/RIk/ICk: mean squared error (×10)/rand index (×100)/number of identified clusters, for k-th covariate, k = 1, 2. Values

in the parentheses are the standard errors. Note that GWR and PSE can not identify clusters.
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be obtained from the World Atlas 2013, version 2 (WOA 13 V2), archived at the National

Oceanographic Data Center (https://www.nodc.noaa.gov/OC5/woa13/). From Figure 3,

we find that the temperature is generally higher in the upper ocean and at lower latitudes,

as a result of solar radiation, while the spatial structure of salinity is more complicated.

Figure 3: Spatial distributions of (a) temperature(◦C) and (b) salinity(PSU) along 25◦W.

To study the T-S relationship, we consider the following regression model,

Sa(si) = Te(si)β(si) + β0(si) + ε(si),

where Sa(si) is the salinity at location si = (sih, siv), |sih| represents the horizontal distance

(km) to the equator, and |siv| is the vertical distance (km) to the sea surface; Te(si) is

the temperature, β(si) measures the T-S relationship of interest, β0(si) is the intercept.

Notice the magnitude of depth and width of the ocean are quite different, leading to strong

anisotropy. To alleviate this, a common practice in oceanic studies (Vallis, 2017) is to

replace si by (sih/H, siv/V ), where H(V ) is the horizontal (vertical) length of the ocean.

Figure 4(i) shows the estimated coefficient β(si) from SCVC, SCC, SCC*, GWR and

PSE. First, for the results from SCVC, the value of β(si) is generally higher when the

location si is closer to the equator, which is possibly due to the fact that the salinity in

Figure 3 is generally higher for the locations closer to the equator. Moreover, the value of

β(si) is negative when the location si is between 45◦S and 60◦S, with depth from 0m to
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−700m. One possible explanation is, the salinity is quite low for this area, as observed in

Figure 3. Second, for the results from SCC and SCC*, the estimated coefficient β(si) is

lower between 30◦S and 0◦ than that of SCVC, and the negative values of β(si) between

45◦S and 60◦S do not form a clear cluster. Moreover, it can be observed that, the estimated

coefficients are more likely to vary even in a small area (there are many such areas, and we

circle some of them in Figure 4(i)-(b)), indicating its assumption of constancy within each

subregion is violated. Third, for the results from GWR, the estimated coefficient β(si) is

quite noisy, even in the abyssal ocean, which is not consistent with the fluid dynamics,

because over such a short distance in the abyssal ocean, there is no dynamical process that

can lead to changes of the T-S relationship (Talley, 2011). Lastly, for the results from PSE,

the estimated coefficient β(si) is generally positive/negative between 45◦S and 60◦S, with

depth from 0m to −500m/ −4000m to −5000m, which are opposite to the results of other

methods, and inconsistent with the fact that the salinity is quite low for the former area

(indicating negative T-S relationship) and relatively high for the latter area, see Figure 3.

Figure 4(ii) shows a clearer comparison of SCVC, SCC and SCC* in clusters’ detection.

The clustered patterns from SCC and SCC* are quite noisy, and fail to identify the wa-

ter masses. Using the SCVC method instead, we obtain a much clearer clustered pattern

shown in Figure 4(ii)-(a). First, from the bottom of the ocean to the surface, the num-

ber of identified clusters increases. This is consistent with the properties of salinity and

temperature, whose variation is more severe near the sea surface (Emery, 2001). Second,

the largest cluster between 60◦ S and 0◦, with depth from around −2000m to −5500m,

corresponds to the North Atlantic Deep Water (Emery, 2001), which is essential to the

Atlantic Meridional Overturning Circulation (AMOC) (Schmittner et al., 2007). Last, the

cluster between 60◦S and 45◦S, with depth from 0m to −700m, corresponds to the Antarctic
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Surface Water (Florindo and Siegert, 2008), whose salinity is quite low, see Figure 3.

Supplementary Materials

Online Supplement contains the technical assumptions, technical proofs of Theorems 1-

3, the NelderMead algorithm for minimizing BIC({λk, %k}pk=1), how to generate the spatially

clustered pattern in the simulation studies, the results of SCC* with the initial values set

as the true values, and additional simulation studies with smooth-varying coefficients.

Acknowledgments

This work is partially supported by National Natural Science Foundation of China

grants 11671096, 11690013, 11731011 and 11871376.

32



(i)

(ii)

Figure 4: Five figures in (i) represent the T-S relationship β(si) estimated by (a) SCVC,

(b) SCC, (c) SCC*, (d) GWR and (e) PSE, where the colors in (i) represent the values

of β(si); circles in (b) contain some small areas where the estimated coefficients from SCC

vary. Three figures in (ii) represent the clustered pattern of estimated β(si) from (a) SCVC,

(b) SCC and (c) SCC*, where different colors in (ii) represent different clusters.
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Supplementary to “Spatially Clustered Varying

Coefficient Model”

The online Supplementary Materials contain the technical assumptions, technical proofs

of Theorems 1-3, the NelderMead algorithm for minimizing BIC({λk, %k}pk=1), how to gen-

erate the spatially clustered pattern in the simulation studies, the results of SCC* with the

initial values set as the true values, and additional simulation studies with smooth-varying

coefficients.

S1 Technical assumptions

For any s × t matrix A = (Aij)
s,t
i=1,j=1, denote ‖A‖1 = max

1≤j≤t

∑s
i=1 |Aij|. Denote Z̃k =

(Z̃k1, · · · , Z̃kL) ∈ Rn×Ln, Z̃kl = diag(Zk
l,1, · · · , Zk

l,n) ∈ Rn×n, l = 1, · · · , L, k = 1, · · · , p, where

Zk
l,i = xk(si)Bl(si) ∈ R, i = 1, · · · , n. For t ∈ R and t = (t1, · · · , tL)T ∈ RL, denote

ρk(t) = λ−1
k Pλk(t) and ρ̄k,l(‖t‖2) = ρ′k(‖t‖2)Sgn(tl/‖t‖2), l = 1, · · · , L,

where Sgn(tl/‖t‖2) = tl/‖t‖2 for ‖t‖2 6= 0; for ‖t‖2 = 0, (Sgn(t1/‖t‖2), . . . , Sgn(tL/‖t‖2))T

is any vector with L2 norm less than 1. For any square matrix C, λmin(C) and λmax(C)

represent the smallest and largest eigenvalues of C, respectively.

We recall the definition of N k
G in the beginning of Section 3.2 of main paper here, that

is,

N k
G = {ak = (aTk,1, · · · ,aTk,n)T ∈ RnL : ak,i = ak,j for any i, j ∈Mg∗k

k , 1 ≤ g∗k ≤ G∗k}.

For ak ∈ N k
G , let α̃k,g∗k = (α̃1

k,g∗k
, · · · , α̃Lk,g∗k)

T ∈ RL, where α̃k,g∗k = ak,i, ∀i ∈ M
g∗k
k . Denote

αk = (αTk,1, · · · ,αTk,L)T ∈ RLG∗k , k = 1, · · · , p, where αk,l = (α̃lk,1, · · · , α̃lk,G∗k)
T ∈ RG∗k ,
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l = 1, · · · , L. According to the definition of âor = ((âor
1 )T , · · · , (âor

p )T )T in Section 3.2 of

the main paper, the oracle estimator for α = (αT1 , · · · ,αTp )T ∈ RL(
∑p
k=1G

∗
k) is

α̂or = arg min
α∈RL(

∑p
k=1

G∗
k
)

1

2n
‖Y −Zα‖2

2 +αTΠα, (S.1)

where Z = (Z1, · · · ,Zp), Zk = (Zk1, · · · ,ZkL) ∈ Rn×LG∗k and Zkl = Z̃kl Λk ∈ Rn×G∗k , l =

1, · · · , L, with Λk = {Λi g∗k
} being the n×G∗k matrix with Λi g∗k

= 1 for i ∈ Mg∗k
k and

Λi g∗k
= 0 otherwise; Π = diag(%1Π1, · · · , %pΠp), where Πk = diag(h11Λ̃k, · · · , hLLΛ̃k)

∈ RLG∗k , Λ̃k = ΛT
kΛk = diag(|M1

k|, · · · , |M
G∗k
k |), with |Mg∗k

k | be the number of elements in

Mg∗k
k , k = 1, · · · , p, and hll is the l−th diagonal element of H with hll = 0, l = 1, 2, 3 and

hll = 1, l = 4, · · · , L.

We make the following assumptions.

(A1) λmin(ZTZ) ≥ C1|Mmin| for a positive constant C1.

(A2) Let Zkl,g∗k be the g∗k−th column of Zkl , and assume ‖Zkl,g∗k‖2 ≤ C2

√
|Mg∗k

k |, k = 1, · · · , p,

g∗k = 1, · · · , G∗k, for some positive constant C2 ≥ 1.

(A3) ‖Z̃kl ‖∞ < C3, k = 1, · · · , p, l = 1, · · · , L, for some positive constant C3.

(A4) For any k ∈ {1, · · · , p}, Pλk(t), i.e., the penalty function in (4) of the main paper, is

a symmetric function of t, which is nondecreasing and concave in t ∈ [0, ∞). There

exists a positive constant a0 such that ρk(t) is constant for all t ≥ a0λk, and ρk(0) = 0,

ρ′k(t) exists and is continuous except for a finite number of t and ρ′k(0+) = 1.

(A5) The noise vector ε = {ε(s1), · · · , ε(sn)}T has sub-Gaussian tails such that P (|aTε| >

‖a‖2x) ≤ 2exp(−c1x
2) for any vector a ∈ Rn and x > 0, where 0 < c1 <∞.

(A6) Each subregion Dgkk contains a open set, gk = 1, · · · , Gk, k = 1, · · · , p.
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Assumptions (A1)-(A3) are regular conditions in the context of subgroup analysis. As-

sumption (A1) is similar with Assumption (C1) in Ma and Huang (2017). Assumptions

(A2)-(A3) can be easily satisfied under infill domain. It is because, under infill domain,

all the locations si, i = 1, · · · , n, are within a bounded domain, indicating that Bl(si),

l = 1, · · · , L are bounded. Thus, Assumptions (A2)-(A3) are satisfied, when the covariate

xk(si), i = 1, · · · , n are bounded. Assumption (A4) are satisfied for common concave penal-

ties such as MCP and SCAD. Assumption (A5) is commonly assumed in high-dimensional

settings. Assumption (A6) is quite weak, indicating that the area of each subregion is not

zero.

S2 Technical proofs

LEMMA S.1. For the basis functions B(s) defined in Section 2.3.2, we have, dT1B(s) 6=

dT2B(s) for some s ∈ Dgkk , if and only if d1 6= d2.

Proof of Lemma S.1. First, we prove that, if dT1B(s) 6= dT2B(s) for some s ∈ Dgkk ,

we have d1 6= d2. This is obvious.

Second, we prove that, if d1 6= d2, we have dT1B(s) 6= dT2B(s) for some s over Dgkk .

It is equivalent to prove that, if dT1B(s) = dT2B(s) for all s over Dgkk , we have d1 = d2.

Noticing the basis functions B(s), defined in Section 2.3.2, are analytic over D, according

to the uniqueness of analytic continuation and Assumption (A6), we know that, dT1B(s) =

dT2B(s) for all s over Dgkk , if and only if, dT1B(s) = dT2B(s) for all s over D. Thus, we

only need to prove that, if dT1B(s) = dT2B(s) for all s over D, we have d1 = d2. By

dT1B(s) = dT2B(s) over D, we have

dT1

∫
D
B(s)B(s)Tds = dT2

∫
D
B(s)B(s)Tds. (S.2)
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Because for valid basis functions, it is the basic requirement that
∫
DB(s)B(s)Tds is pos-

itive definite, see Zhou et al. (1998). Thus, by multiplying its inverse matrix in both sides

of (S.2), we have d1 = d2. Proof is completed. �

Proof of Theorem 1. To prove that the set of true clusters {M1
k, · · · ,M

G∗k
k } exists

and is unique, we only need to prove that for the Ggkk , in which not all the location pairs

can be connected through a path, made up of the edges in Egkk , the partition Ggkk,1, · · · ,G
gk
k,Fk

exists and is unique.

For the proof of existence, we randomly select a starting location si, i ∈ Ggkk , then

through the edges in Egkk , we can find the location index set L1 containing i, satisfying that,

for any two locations si1 and si2 , i1 ∈ L1, i2 ∈ L1, they are connected by a path, made up of

edges in EL1 = {(i, j) : (i, j) ∈ EMST, and i, j ∈ L1}, and for any two locations si3 , i3 ∈ L1,

and si4 , i4 ∈ G
gk
k \ L1, they satisfy the edge (i3, i4) /∈ EMST. Similarly, we can construct L2

by randomly selecting a starting location si5 , i5 ∈ G
gk
k \L1. Repeat the constructing process

until Ggkk = L1 ∪ · · · ∪ LFk , and let Ggkk,f = Lf , f = 1, · · · , Fk. By the constructing process,

we have that, for any two locations in Ggkk,f , f = 1 · · · , Fk, they are connected by a path,

made up of some edges in Egkk,f = {(i, j) : (i, j) ∈ EMST, and i, j ∈ Ggkk,f}; meanwhile, for

any two locations si ∈ Ggkk,f , sj ∈ G
gk
k,f ′ and f 6= f ′, the corresponding edge (i, j) /∈ EMST;

Thus, the existence is proved.

For the proof of uniqueness, it is equivalent to prove that for any starting locations

si, i ∈ Ggkk , the resulting partition is still L1, · · · ,LFk with repeating the above process.

Thus, we only need to prove that, for the starting point si, i ∈ Lf , f ∈ {1, · · · , Fk}, by the

above process, the first partition is Lf . The proof is quite straightforward by the property

of Lf , thus is omitted here.

From the above discussion, proof is completed. Moreover, the proof for the existence
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and uniqueness of the set of estimated clusters {M̂1
k, · · · ,M̂

Ĝ∗k
k } is similar, thus is omitted.

�

Proof of Theorem 2: According to (S.1), we have

α̂or = (ZTZ + 2nΠ)−1ZTY .

Let Ω = ZTZ, and α0 represent the true value of α, then

α̂or −α0 = {Ω + 2nΠ}−1ZTε+
{

(Ω + 2nΠ)−1 −Ω−1
}

Ωα0 := I1 + I2. (S.3)

For I1, we have

‖I1‖∞ ≤ ‖{Ω + 2nΠ}−1 ‖∞‖ZTε‖∞. (S.4)

By Assumption (A1), we have ‖(Ω+nλ2Π)−1‖∞ ≤
√
L(
∑p

k=1G
∗
k)C

−1
1 |Mmin|−1. Moreover,

for some constant c > 0,

P (‖ZTε‖∞ > c
√
nlogn) ≤

p∑
k=1

P (‖(Zk)Tε‖∞ > c
√
nlogn),

and by Assumptions (A2) and (A5),

P (‖(Zk)Tε‖∞ > c
√
nlogn) ≤

L∑
l=1

P (‖(Zkl )Tε‖∞ > c
√
nlogn)

≤
L∑
l=1

G∗k∑
g∗k=1

P (|
∑
i∈M

g∗
k
k

Zk
l,iεi| > c

√
nlogn)

≤
L∑
l

G∗k∑
g∗k=1

P (|
∑
i∈M

g∗
k
k

Zk
l,iεi| > cC−1

2

√√√√ ∑
i∈M

g∗
k
k

(Zk
l,i)

2
√

logn)

≤ 2L (

p∑
k=1

G∗k) exp(−c2c1C
−2
2 logn). (S.5)
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By (S.5), taking c = c
−1/2
1 C2, we have

P (‖ZTε‖∞ > c
√
nlogn) ≤ 2pL(

∑p
k=1 G

∗
k)

n
.

Therefore, by (S.4), with probability at least 1− 2pL(
∑p

k=1G
∗
k)/n,

‖I1‖∞ ≤

√√√√L(

p∑
k=1

G∗k)C
−1
1 |Mmin|−1c

−1/2
1 C2

√
nlogn. (S.6)

For I2, according to A−1 −B−1 = B−1(B −A)A−1 for any invertible matrices A and

B, we have

‖I2‖∞ = ‖
{
Ω−1 − (Ω + 2nΠ)−1}Ωα0‖∞ = ‖ (Ω + 2nΠ)−1 (2nΠ)α0‖∞

≤‖ (Ω + 2nΠ)−1 ‖∞‖2nΠ‖∞‖α0‖∞ ≤

√√√√L(

p∑
k=1

G∗k)C
−1
1 |Mmin|−12n%̃|Mmax| ‖α0‖∞,

(S.7)

where the second inequality comes from the definition of Π.

Combing (S.3), (S.6) and (S.7), with probability at least 1− 2pL(
∑p

k=1 G
∗
k)/n, we have

‖α̂or −α0‖∞ ≤ rn,

where rn =
√
L(
∑p

k=1G
∗
k)C

−1
1 |Mmin|−1{c−1/2

1 C2

√
nlogn + 2n%̃|Mmax| ‖α0‖∞}. Proof is

completed. �.

Proof of Theorem 3: We first introduce some notations which are frequently used

in this proof. For 1 ≤ g∗k < g∗k
′ ≤ G∗k, let Cg∗kg

∗
k
′ = {(i, j) ∈ EMST : i ∈ Mg∗k

k and j ∈

Mg∗k
′

k , or i ∈ Mg∗k
′

k and j ∈ Mg∗k
k }, and |Cg∗kg

∗
k
′| denote the number of elements in Cg∗kg

∗
k
′ .

Let FkG be the subspace of Rn, defined as

FkG = {b = (b1, · · · , bn)T ∈ Rn : bi = bj, for any i, j ∈Mg∗k
k , 1 ≤ g∗k ≤ G∗k}.
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Introducing the mapping Tk : FkG → RG∗k , where Tk(b) is the G∗k−dimensional vector,

and its g∗k−th coordinate equals to the common value of bi for i ∈ Mg∗k
k , denoted as b

g∗k
k .

Note that Tk is a bijection and T−1
k is well-defined. Let T ∗k : Rn → RG∗k be the mapping

such that T ∗k (b) = {|Mg∗k
k |−1

∑
i∈M

g∗
k
k

bi}
G∗k
g∗k=1. It is easy to see that, for b ∈ FkG , we have

T ∗k (b) = Tk(b) = (b1
k, · · · , b

G∗k
k )T . These mappings act as a bridge in the proving process to

link a and α, where a is the unknown parameter vector in the objective function (4) of

the SCVC in the main paper, and α is the unknown vector in the oracle procedure (S.1).

In the following part, there are many new notations based on a and α, we summarize

them in this paragraph. Let alk,i be the l−th element of ak,i, l = 1, · · · , L, where ak,i,

k = 1, · · · , p, i = 1, · · · , n, is the spline coefficient vector in (4) of the main paper. Consider

the following matrix,

a1
k,1, a

2
k,1, · · · , aLk,1,

a1
k,2, a

2
k,2, · · · , aLk,2,

...

a1
k,n, a

2
k,n, · · · , aLk,n.

(S.8)

Then, ak,i is the i−th row of matrix (S.8). We define the l−th column of matrix (S.8) as ãk,l,

i.e., ãk,l = (alk,1, · · · , alk,n)T , l = 1, · · · , L. By the definition below (6) in the main paper,

we have a = (aT1 , · · · ,aTp )T , ak = (aTk,1, · · · ,aTk,n)T , k = 1, · · · , p. Similarly, we define

ã = (ãT1 , · · · , ãTp )T , where ãk = (ãTk,1, · · · , ãTk,L)T , k = 1, · · · , p. Thus, ã is a permutation

of elements in a. Furthermore, we let ã∗k,l = T−1
k (T ∗k (ãk,l)), which actually replaces each

element in ãk,l with the average over the corresponding SpaNeigh true cluster. We then

denote ã∗k = {(ã∗k,1)T , · · · , (ã∗k,L)T}T , k = 1, · · · , p, and ã∗ = ((ã∗1)T , · · · , (ã∗p)T )T . Same as

the relationship between a and ã, we can define a∗ based on ã∗. Same as the relationship

between ak/ak,i and a, we can define a∗k and a∗k,i based on a∗, i.e., a∗ = ((a∗1)T , · · · , (a∗p)T )T

7



and a∗k = (a∗k,1
T , · · · ,a∗k,nT )T , k = 1, · · · , p. Now we recall the definition of α above

(S.1), the definition of α is essentially based on a with knowing the information of the

SpaNeigh true clusters. For ak ∈ N k
G , let α̃k,g∗k = (α̃1

k,g∗k
, · · · , α̃Lk,g∗k)

T ∈ RL, where α̃k,g∗k =

ak,i, ∀i ∈ M
g∗k
k . Then, we denote αk,l = (α̃lk,1, · · · , α̃lk,G∗k)

T , l = 1, · · · , L, and let αk =

(αTk,1, · · · ,αTk,L)T , k = 1, · · · , p, and α = (αT1 , · · · ,αTp )T . Moreover, whenever adding zero

in the superscript of a symbol, it represents the corresponding true value, for example, α0

is the true value of α.

Based on the above notations, we can write the objective function (4) of the SCVC with

EMST in the main paper, in a compact form. Let

Ln(ã) =
1

2n
‖Y − Z̃ã‖2

2 + ãTΠ∗ã, Pn(ã) =

p∑
k=1

λk
∑

(i,j)∈EMST

ρk (‖ak,i − ak,j‖2),

LGn(α) =
1

2n
‖Y −Zα‖2

2 +αTΠα, P Gn (α) =

p∑
k=1

λk
∑

|Cg∗
k
g∗
k
′ | 6= 0

1 ≤ g∗k < g∗k
′ ≤ G∗k

|Cg∗kg
∗
k
′|ρk

(
‖α̃k,g∗k − α̃k,g∗k′‖2

)
,

where Π∗ = diag(%1Π
∗
1, · · · , %pΠ∗p), Π∗k = diag(h11, · · · , h11︸ ︷︷ ︸

n

, · · · , hLL, · · · , hLL︸ ︷︷ ︸
n

) ∈ RnL,

k = 1, · · · , p, and Z̃ = (Z̃1, · · · , Z̃p). Define

Qn(ã) = Ln(ã) + Pn(ã) and QGn(α) = LGn(α) + P Gn (α).

Then, Qn(ã) is the compact form of the objective function (4) of the SCVC with EMST in

the main paper, and QGn(α) is defined based on Qn(ã) for technical purpose.

We illustrate the relationship between Qn(ã) and QGn(α). For every ãk,l ∈ FkG , l =

1, · · · , L, denote Tk(ãk) = (Tk(ãk,1)T , · · · , Tk(ãk,L)T )T , and T (ã) = (T1(ã1)T , · · · ,Tp(ãp)T )T .

By routine calculation, we have P Gn (T (ã)) = Pn(ã). Moreover, for every αk,l ∈ RG∗k ,

k = 1, · · · , p, denote

8



T−1
k (αk) = (T−1

k (αk,1)T , · · · , T−1
k (αk,L)T )T and T−1(α) = (T−1

1 (α1)T , · · · ,T−1
p (αp)

T )T ,

then we can obtain Pn(T−1(α)) = P Gn (α). Hence,

Qn(ã) = QGn(T (ã)), Qn(T−1(α)) = QGn(α). (S.9)

Considering the neighborhood of ã0 (true value of ã),

Θn =
{
ã ∈ RpnL : ‖{ã− ã0‖∞ ≤ rn

}
.

By Theorem 2, there is an event E1 satisfying P (E1) ≥ 1 − 2pL(
∑p

k=1 G
∗
k)/n, and on the

event E1,

‖ˆ̃a
or
− ã0‖∞ ≤ rn, (S.10)

where ˆ̃a
or

is the corresponding permutation of âor, and âor can be found in (12) of the

main paper. Accordingly, on the event E1, we have ˆ̃a
or
∈ Θn.

By the following two steps, we show that, with probability approaching one, ˆ̃a
or

is a

strictly local minimizer of Qn(ã), i.e., the objective function (4) of the SCVC with EMST

in the main paper. To prove this, we use Qn(ã∗) to link Qn(ˆ̃a
or

) with Qn(ã).

(i) On the event E1, for any ã ∈ Θn,

Qn(ã∗) > Qn(ˆ̃a
or

), if ã∗ 6= ˆ̃a
or
.

(ii) There is an event E2 such that P (E2) > 1− 2n−1. On the event E1 ∩E2, there exists

Bn, a neighborhood of ˆ̃a
or

, such that

Qn(ã) ≥ Qn(ã∗), ∀ ã ∈ Θn ∩ Bn.

By the above two steps, on the event E1 ∩ E2, we have Qn(ã) > Qn(ˆ̃a
or

) for any

ã ∈ Θn ∩ Bn and ã 6= ˆ̃a
or

.Hence, ˆ̃a
or

is a strict local minimizer of Qn(ã) on the event

E1 ∩ E2 with P (E1 ∩ E2) ≥ 1− 2pL(
∑p

k=1 G
∗
k)/n− 2n−1.
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Now we prove the result in (i). We first show that P Gn (T ∗(ã)) = Cn for any ã ∈

Θn, where Cn is a constant independent of ã, T ∗(ã) = (T ∗1 (ã1)T , · · · ,T ∗p(ãp)T )T , and

T ∗k (ãk) = (T ∗k (ãk,1)T , · · · , T ∗k (ãk,L)T )T , k = 1, · · · , p. For α ∈ {T ∗(ã) : ã ∈ Θn}, by the

definition of P Gn (α) and Assumption (A4), to prove P Gn (T ∗(ã)) = Cn, it is sufficient to

prove ‖α̃k,g∗k − α̃k,g∗k′‖2 > a0λk for any 1 ≤ g∗k < g∗k
′ ≤ G∗k and |Cg∗kg

∗
k
′| 6= 0, where the

positive constant a0 can be found in Assumption (A4). Noticing

‖α̃k,g∗k − α̃k,g∗k′‖2 ≥ L−1/2‖α̃k,g∗k − α̃k,g∗k′‖1

≥ L−1/2(‖α̃0
k,g∗k
− α̃0

k,g∗k
′‖1 − 2L‖α−α0‖∞)

≥ L−1/2(‖α̃0
k,g∗k
− α̃0

k,g∗k
′‖2 − 2L‖α−α0‖∞),

(S.11)

and

‖α−α0‖∞ = max
1 ≤ k ≤ p, 1 ≤ l ≤ L,

1 ≤ g∗k ≤ G
∗
k

|α̃lk,g∗k − α̃
l,0
k,g∗k
| = max

1 ≤ k ≤ p, 1 ≤ l ≤ L,

1 ≤ g∗k ≤ G
∗
k

∣∣∣ ∑
i∈M

g∗
k
k

alk,i − a
l,0
k,i

|Mg∗k
k |

∣∣∣
≤ max

1 ≤ k ≤ p, 1 ≤ l ≤ L,

1 ≤ g∗k ≤ G
∗
k

{max
i∈M

g∗
k
k

|alk,i − a
l,0
k,i|} = ‖ã− ã0‖∞ ≤ rn,

(S.12)

so that ‖α̃k,g∗k − α̃k,g∗k′‖2 ≥ L−1/2(ϑk − 2Lrn) > a0λk, following the assumption ϑk >>

2
√
La0λk >> rn. Thus, for any ã ∈ Θn, we have P Gn (T ∗(ã)) = Cn, so QGn(T ∗(ã)) =

LGn(T ∗(ã))+Cn. Moreover, on the event E1, we have ˆ̃a
or
∈ Θn by (S.10), so P Gn (α̂or) = Cn.

Since α̂or is the unique global minimizer of LGn(α), then LGn(T ∗(ã)) > LGn(α̂or) for T ∗(ã) 6=

α̂or. Thus, on the event E1, QGn(T ∗(ã)) > QGn(α̂or). Following (S.9), it is straightforward

to obtain Qn(ã∗) > Qn(ˆ̃a
or

) for ã∗ 6= ˆ̃a
or

. The result in (i) is proved.

Then, we prove (ii). Let

Bn =
{
ã ∈ RpnL : ‖ã− ˆ̃a

or
‖2 ≤ tn

}
,
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where {tn} is a positive sequence. For ã ∈ Θn ∩ Bn, by Taylor expansion, we have

Qn(ã)−Qn(ã∗) = I3 + I4,

where

I3 = − 1

n

p∑
k=1

L∑
l=1

(
Y −

p∑
k=1

L∑
l=1

Z̃kl ãmk,l

)T

(Z̃kl )T (ãk,l−ã∗k,l)+2

p∑
k=1

%k

L∑
l=1

hll(ã
m
k,l)

T (ãk,l−ã∗k,l),

and

I4 =

p∑
k=1

n∑
i=1

∂Pn(ãm)

∂ak,i
(ak,i − a∗k,i),

where ãmk,l = πãk,l + (1− π)ã∗k,l, and ãm = πã+ (1− π)ã∗ for some π ∈ (0, 1).

For I4, by the definition of Pn(ãm), we have

I4 =

p∑
k=1

λk
∑

(i,j)∈EMST

ρ̄k(‖amk,i − amk,j‖2)T{(ak,i − a∗k,i)− (ak,j − a∗k,j)},

where ρ̄k(‖amk,i−amk,j‖2) =
(
ρ̄k,1(‖amk,i − amk,j‖2), · · · , ρ̄k,L(‖amk,i − amk,j‖2)

)T
, the definition of

ρ̄k,l(·), l = 1, · · · , L, is given in the beginning of Section S1, and amk,i = πak,i + (1− π)a∗k,i,

i = 1, · · · , n. When i, j ∈ Mg∗k
k for any g∗k ∈ {1, · · · , G∗k}, we know a∗k,i = a∗k,j, hence

amk,i − amk,j = π(ak,i − ak,j). Then,

I4 =

p∑
k=1

λk

G∗k∑
g∗k=1

∑
(i,j)∈EMST, i,j∈M

g∗
k
k

ρ′k(‖amk,i − amk,j‖2)‖ak,i − ak,j‖2

+

p∑
k=1

λk
∑

i, j /∈Mg∗k
k , g∗k = 1, · · · , G∗k,

(i, j) ∈ EMST

ρ̄k(‖amk,i − amk,j‖2)T{(ak,i − a∗k,i)− (ak,j − a∗k,j)}.

Similar with the proving process in (S.11), for (i, j) ∈ EMST, i, j /∈ M
g∗k
k , g

∗
k = 1, · · · , G∗k,

k = 1, · · · , p, we can obtain ‖amk,i−amk,j‖2 > a0λk, thus ρ̄k(‖amk,i−amk,j‖2) = 0 by Assumption
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(A4). Hence,

I4 =

p∑
k=1

λk

G∗k∑
g∗k=1

∑
(i,j)∈EMST, i,j∈M

g∗
k
k

ρ′k(‖amk,i − amk,j‖2)‖ak,i − ak,j‖2. (S.13)

Similar with the proof of (S.12), we have ‖a∗ − âor‖∞ ≤ ‖a − âor‖∞. Then, for (i, j) ∈

EMST, i, j ∈M
g∗k
k ,

‖amk,i − amk,j‖2 ≤ ‖amk,i − amk,j‖1 ≤ 2L‖am − a∗‖∞ ≤ 2L‖a− a∗‖∞

≤ 4L‖a− âor‖∞ ≤ 4Ltn.

Therefore, ρ′k(‖amk,i − amk,j‖2) ≥ ρ′k(4Ltn) by the concavity of ρk(·). According to (S.13),

I4 ≥
p∑

k=1

λkρ
′
k(4Ltn)

G∗k∑
g∗k=1

∑
(i,j)∈EMST, i,j∈M

g∗
k
k

‖ak,i − ak,j‖2.

For every i∗, j∗ ∈ Mg∗k
k , according to the definition of Mg∗k

k , we know there is a path i∗ =

p1 → p2 → · · · → pM = j∗, connecting i∗ and j∗, where (pm−1, pm) ∈ Ẽg
∗
k
k , m = 2, · · · ,M ,

and Ẽg
∗
k
k = {(i, j) : (i, j) ∈ EMST, and i, j ∈ Mg∗k

k }. Moreover, we can always let the path

satisfy that {pm}M1 are mutually unequal, otherwise suppose pm1 = pm2 , m1 < m2, the path

after deleting pm1+1 → · · · → pm2 still can connect i∗, j∗. Therefore, for every i∗, j∗ ∈Mg∗k
k ,

‖ak,i∗ − ak,j∗‖2 ≤
∑

(i,j)∈EMST, i,j∈M
g∗
k
k

‖ak,i − ak,j‖2

=⇒
∑

i<j, i,j∈M
g∗
k
k

‖ak,i − ak,j‖2 ≤
|Mg∗k

k |(|M
g∗k
k | − 1)

2

∑
(i,j)∈EMST, i,j∈M

g∗
k
k

‖ak,i − ak,j‖2.

Hence,

I4 ≥
p∑

k=1

λkρ
′
k(4Ltn)

G∗k∑
g∗k=1

2

|Mg∗k
k |(|M

g∗k
k | − 1)

∑
i<j, i,j∈M

g∗
k
k

‖ak,i − ak,j‖2. (S.14)
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Now we consider I3. Denote W k
l = (wk1,l, · · · , wkn,l)T = −Z̃kl

(
Y −

∑p
k=1

∑L
l=1 Z̃kl ãmk,l

)
+

2n%khllã
m
k,l. Then, we have

I3 =
1

n

p∑
k=1

L∑
l=1

(W k
l )T (ãk,l − ã∗k,l) =

1

n

p∑
k=1

L∑
l=1

G∗k∑
g∗k=1

∑
i∈M

g∗
k
k

wki,l(a
l
k,i − a

l,∗
k,i)

=
1

n

p∑
k=1

L∑
l=1

G∗k∑
g∗k=1

∑
i∈M

g∗
k
k

wki,l

(
alk,i −

1

|Mg∗k
k |

∑
j∈M

g∗
k
k

alk,j

)

=
1

n

p∑
k=1

L∑
l=1

G∗k∑
g∗k=1

∑
i,j∈M

g∗
k
k

wki,l

|Mg∗k
k |

(
alk,i − alk,j

)

=
1

n

p∑
k=1

L∑
l=1

G∗k∑
g∗k=1

∑
i<j, i,j∈M

g∗
k
k

wki,l

|Mg∗k
k |

(
alk,i − alk,j

)
+

1

n

p∑
k=1

L∑
l=1

G∗k∑
g∗k=1

∑
i<j, i,j∈M

g∗
k
k

wkj,l

|Mg∗k
k |

(
alk,j − alk,i

)

=
1

n

p∑
k=1

L∑
l=1

G∗k∑
g∗k=1

∑
i<j, i,j∈M

g∗
k
k

wki,l − wkj,l
|Mg∗k

k |

(
alk,i − alk,j

)
.

Hence,

|I3| ≤
1

n
max

1 ≤ k ≤ p, 1 ≤ l ≤ L

1 ≤ i, j ≤ n

|wki,l − wkj,l|
p∑

k=1

G∗k∑
g∗k=1

√
L

|Mg∗k
k |

∑
i<j, i,j∈M

g∗
k
k

‖ak,i − ak,j‖2.
(S.15)

Moreover, for any k ∈ {1, · · · , p} and l ∈ {1, · · · , L},

max
1≤i,j≤n

|wki,l − wkj,l| ≤ 2‖W k
l ‖∞

≤ 2‖Z̃kl ‖∞
{
‖ε‖∞ +

p∑
k=1

L∑
l=1

‖Z̃kl ‖∞‖ãmk,l − ã0
k,l‖∞

}
+ 2n%k‖ãmk,l‖∞.

(S.16)

Similar with the proof of (S.12), we have ‖ã∗k,l − ã0
k,l‖∞ ≤ ‖ãk,l − ã0

k,l‖∞, so that

‖ãmk,l − ã0
k,l‖∞ ≤ π‖ãk,l − ã0

k,l‖∞ + (1− π)‖ã∗k,l − ã0
k,l‖∞ ≤ ‖ã− ã0‖∞ ≤ rn. (S.17)
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Then,

‖ãmk,l‖∞ ≤ ‖ã0
k,l‖∞ + rn ≤ ‖a0‖∞ + rn. (S.18)

By Assumption (A5),

P (‖ε‖∞ >

√
2c−1

1

√
log n) ≤ 2n−1. (S.19)

Thus, there is an event E2 such that P (Ec
2) ≤ 2n−1, and on the event E1 ∩ E2, by (S.16)-

(S.19) and Assumption (A3), we have

max
1 ≤ k ≤ p, 1 ≤ l ≤ L

1 ≤ i, j ≤ n

|wki,l − wkj,l| ≤ 2C3

{√
2c−1

1

√
log n+ pLC3rn

}
+ 2n%̃(‖a0‖∞ + rn) = ψn.

Combining (S.15), we have

|I3| ≤
ψn
n

p∑
k=1

G∗k∑
g∗k=1

√
L

|Mg∗k
k |

∑
i<j, i,j∈M

g∗
k
k

‖ak,i − ak,j‖2. (S.20)

Let tn = o(1), then ρ′k(4Ltn)→ 1. Thus, by (S.14) and (S.20), under the rate assumption

of λk and %k in Theorem 3, we have

Qn(ã)−Qn(ã∗) = I3 + I4

≥
p∑

k=1

G∗k∑
g∗k=1

{
2λkρ

′
k(4Ltn)

|Mg∗k
k |(|M

g∗k
k | − 1)

− ψn
√
L

n|Mg∗k
k |

} ∑
i<j, i,j∈M

g∗
k
k

‖ak,i − ak,j‖2 ≥ 0.

The result in (ii) is proved. Together with the result in (i), proof is completed. �

S3 The NelderMead algorithm

Following Singer and Nelder (2009), the NelderMead algorithm for minimizing BIC

({λk, %k}pk=1) contains the following steps.
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Step 1. Initial simplex.

The initial simplex S is constructed by generating 2p+1 vertices, i.e., xj = (λj1, · · · , λjp, %
j
1, · · · , %jp),

j = 0, · · · , 2p. The common method for generating xj is

xj = x0 + hjej, j = 1, · · · , 2p,

where hj ∈ R is the step size, and ej ∈ R2p is the unit vector with j−th element

equal to one, others equal to zero. A decent choice of x0 and hj can be obtained by

comparing the value of objective function over a small number of grid. To be specific,

we calculate the BIC values over a small number of grid, and take the x0 as the point

corresponding to the smallest BIC value, and h = (h1, · · · , h2p)
T can take the value

with magnitude being the same as x0, such as h = x0/2.

Step 2. Ordering.

Order according to the values at these vertices:

BIC(x(0)) ≤ BIC(x(1)) ≤ · · · ≤ BIC(x(2p)),

where x(j) is the corresponding vertex with (j + 1)-th smallest BIC value. If x(j),

j = 0, · · · , 2p are close to each other, terminate the algorithm, and take x(0) as the

minimizer of the objective function. If not, let xc = 1
2p

∑2p−1
j=0 x(j).

Step 3. Reflection.

Compute reflected point xr = xc + α(xc − x(2p)) with α > 0. If the reflected point

satisfies BIC(x(0)) ≤ BIC(xr) < BIC(x(2p−1)), then obtain a new simplex by replacing

the worst point x(2p) with the reflected point xr, and go to Step 2.
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Step 4. Expansion.

If the reflected point satisfies BIC(xr) < BIC(x(0)), then compute the expanded point

xe = xc + γ(xr − xc) with γ > 1. If BIC(xe) < BIC(xr), then obtain a new simplex

by replacing the worst point x(2p) with the expanded point xe, and go to Step 2, else

obtain a new simplex by replacing the worst point x(2p) with the reflected point xr,

and go to Step 2.

Step 5. Contraction.

If the reflected point satisfies BIC(xr) ≥ BIC(x(2p−1)), then compute the contracted

point xt = xc + ρ(x(2p) − xc) with 0 < ρ ≤ 0.5. If the contracted point satisfies

BIC(xt) < BIC(x(2p)), then obtain a new simplex by replacing the worst point x(2p)

with the contracted point xt, and go to Step 2.

Step 6. Shrink.

If the contracted point satisfies BIC(xt) ≥ BIC(x(2p)), then obtain a new simplex by

replacing x(j) with x(0) + σ(x(j) − x(0)), j = 1, · · · , 2p, and go to Step 2.

The standard values, used in most implementations are α = 1, γ = 2, ρ = 0.5 and

σ = 0.5.

S4 Generate spatially clustered pattern

Here, we take the spatially clustered patterns of β2(s) in Figure 2(a) of the main paper

as an example, to demonstrate how to generate spatially clustered patterns of MST-equal

and MST-unequal.

For the MST-equal pattern of β2(s) in Figure 2(a), we construct it through following

steps,
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Step 1. Randomly generate a location (s1, s2), where s1 and s2 are from [0, 1] uniform

distribution.

Step 2. Compute the distance from (s1, s2) to three lines y = x + 0.5, y = x and

y = x− 0.5, respectively. Denote them as d1, d2 and d3.

Step 3. Set a tolerance parameter δ = 0.02, if min(d1, d2, d3) ≥ δ, keep this location,

otherwise abandon it.

Step 4. Repeat Step 1-3 until the number of locations reaches 1000, then we form

four clusters based on these 1000 locations, which is defined by {si : s2 > s1 + 0.5},

{si : s1 + 0.5 ≥ s2 > s1}, {si : s1 ≥ s2 > s1 − 0.5} and {si : s1 − 0.5 ≥ s2}. And the

values of β2(s) in these four clusters are 1, -1, 0.5, -0.5, respectively.

The tolerance parameter δ controls the minimum distance between different proximate

clusters, which can be easily observed in Figure 2 of the main paper. As discussed in Section

2.3.3 of the main paper, MST only connects the proximate locations. Thus, if δ is relatively

large, i.e., the minimum distance between different proximate clusters is relatively large,

all the locations within the same cluster are more likely to be connected through the edges

of MST, resulting in the MST-equal pattern; if δ is relatively small, some locations may

be isolated from its belonging cluster and connected to a different cluster due to closer

distance. In the Step 3 above, we set the tolerance parameter δ = 0.02 to generate the

MST-equal pattern. To generate the MST-unequal pattern, we set δ = 0.01 and details are

given as follows.

For the MST-unequal pattern of β2(s) in Figure 2(a), we construct it through following

steps,

Step* 1. The same as Step 1.
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Step* 2. The same as Step 2.

Step* 3. Set a tolerance parameter δ = 0.01, if min(d1, d2, d3) ≥ δ, keep this location,

otherwise abandon it.

Step* 4. Repeat Step* 1-3 until the number of locations reaches 1000. We form four

clusters of β2(s) by following two steps. First, divide these 1000 locations into four

parts, that is, {si : s2 > s1 + 0.5}, {si : s1 + 0.5 ≥ s2 > s1}, {si : s1 ≥ s2 > s1 − 0.5}

and {si : s1 − 0.5 ≥ s2}, and the values of β2(s) in these four parts are 1, -1, 0.5,

-0.5, respectively. Second, based on these four parts, we can obtain the corresponding

Mg∗k
k , g∗k = 1, · · · , G∗k. For some g∗k,1 ∈ {1, · · · , G∗k}, the sample size in Mg∗k,1

k may be

one or two, which violates the theoretical requirement of the sample size in Mg∗k,1
k .

Thus, we form four clusters ( locations in the same cluster have the same value of

β2(s)), through replacing the value of β2(si), i ∈ M
g∗k,1
k with the value of β2(sj),

j ∈Mg∗k,2
k , g∗k,2 ∈ {1, · · · , G∗k} , where the sample size ofMg∗k,2

k is relatively large, and

Mg∗k,1
k and Mg∗k,2

k are connected by the edge of MST.

S5 Simulation study: SCC* with the initial values set

as the true values

The setting of this simulation study is the same as that in Section 4.1 of the main

paper. Table S1 summarizes the results of the infeasible SCC* with the initial values set

as the true values. Compared to the results of Table 1 in the main paper, the infeasible

SCC* gives uniformly better performance than SCVC, SCC, GWR, PSE, and SCC* with

the initial values set by the SCC estimates. It is because the SCC model is the true model

and the initial values are set as the true values.
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Table S1: The summarized results of SCC* under Study 1 in the main paper (the SCC

model is the true model in Study 1), with the initial values set as the true values.

Pattern Correlation MSEβ2 MSEβ1 RI2 RI1 IC2 IC1

weak 0.0004 0.0004 100.00 100.00 4 4

MST-equal (0.0000) (0.0000) (0.00) (0.00) (0.00) (0.00)

strong 0.0008 0.0008 100.00 100.00 4 4

(0.0001) (0.0001) (0.00) (0.00) (0.00) (0.00)

weak 0.0008 0.0012 85.75 88.18 7 8

MST-unequal (0.0001) (0.0001) (0.00) (0.00) (0.00) (0.00)

strong 0.0018 0.0041 85.75 88.18 7 8

(0.0001) (0.0001) (0.00) (0.00) (0.00) (0.00)

SCC*: spatially clustered coefficient regression based on SCAD. MSEβk : mean squared error

(×10) for k-th covariate, k = 1, 2; RIk: rand index (×100) for k-th covariate; ICk: the number

of identified clusters for k-th covariate. Values in the parentheses are the standard errors.
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S6 Simulation study: Smooth-varying coefficients

The true regression coefficients {βk(si)}2
k=1 in this study are smooth over the whole

region, i.e., the assumption made in GWR and PSE holds, see Figure S1. Other settings

are the same as those in Section 4 of the main paper.

Table S2 summarizes the results of the five methods. SCVC performs slightly worse than

PSE and better than other methods. This is because the assumption made in PSE holds

under this setting. It is worth to point out that PSE performs much better than GWR,

although the assumption in GWR also holds under this setting. One possible explanation

is that the PSE is based on a global smoothing method, which utilizes all the information

of samples, however the GWR is based on a local smoothing method, and only a small

number of samples are used for estimation.
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