Securing dynamic itineraries for mobile agent
applications

Carles Garrigues ™, Sergi Robles, Joan Borrell

Department of Information and Communications Engineering, Autonomous
University of Barcelona, 08193 Bellaterra, Spain

Abstract

In this paper we present a novel mechanism for the protection of dynamic itineraries
for mobile agent applications. Itineraries that are decided as the agent goes are
essential in complex applications based on mobile agents, but no approach has been
presented until now to protect them. We have conceived a cryptographic scheme
for shielding dynamic itineraries from tampering, impersonation and disclosure. By
using trust strategically, our scheme provides a balanced trade-off between flexibility
and security. Our protection scheme has been thought always bearing in mind a
feasible implementation, and thus facilitates the development of applications that
make use of it. An example application based on a real healthcare scenario is also
presented to show its operation.

Key words: Distributed applications; Mobile agents; Dynamic itineraries; Security

1 Introduction

The research carried out on mobile agents has shown the benefits of this tech-
nology for the design and implementation of multiple distributed applications
(Du et al., 2005). The use of mobile agents brings, among other advantages,
autonomy and dynamism to applications. This is motivated by the fact that
this technology allows the design of applications in which the location of com-
ponents is not fixed and determined at the start, but can change dynamically
and adapt to an evolving environment.

* Corresponding author. Tel.: +34-935813577; fax: +34-935814477
Email addresses: carles@deic.uab.es (Carles Garrigues),

sergi.robles@uab.es (Sergi Robles), joan.borrell@uab.es (Joan Borrell).

Preprint submitted to Elsevier 22 October 2012

However, the widespread adoption of this technology has been hampered by
the security issues associated with its implementation. The advances in mo-
bile agent security have provided solutions to many of the problems initially
identified. Nevertheless, some issues still must be addressed, mostly regarding

the protection of agents against malicious platforms (Jansen and Karygiannis,
2000).

Several proposals have been presented to prevent platforms from tampering
with the code carried by the agent or the results generated by its execution. Re-
garding the protection of the agent code, the most widely accepted proposals
are based on protecting the agent itinerary using cryptographic mechanisms.

Our previous research on mobile agents has been mainly focused on the design
of itinerary protection mechanisms (Mir and Borrell, 2002, 2003). Our mech-
anisms introduce the possibility of protecting flexible itineraries, which can
include alternative routes, or routes that can be traversed in any order, etc. In
addition to mobile agent security, we have also worked on applying our agent
protection mechanisms to real scenarios. Our most significant contribution in
this area has been the implementation of an agent-based information gather-
ing system for healthcare institutions (Vieira-Marques et al., 2006). Besides,
we have also worked on simplifying the implementation of applications based
on secure mobile agents. For this purpose, we have implemented a develop-
ment environment that aids the creation of this kind of applications (Garrigues
et al., 2004).

However, despite all the work carried on mobile agent security, current de-
velopments still cannot take advantage of the full functionality provided by
this technology. This is caused by a limitation of current itinerary protection
mechanisms, which are only valid for static itineraries. In a static itinerary,
all the sites visited by the agent are known beforehand. On the other hand,
in a dynamic itinerary, the agent has to discover some sites of its itinerary at
runtime.

Undoubtedly, not supporting dynamic itineraries has become a serious im-
pediment, since we are losing most of the flexibility provided by the mobile
agent paradigm. This is compounded by the fact that most mobile agent ap-
plications are devised using dynamic itineraries. For example, in a medical
environment, we could create an agent-based application to search distributed
e-health services across a set of institutions. However, if these institutions had
to be discovered dynamically by the agent, the itinerary would become dy-
namic, and all the advances made in the security field could not be applied to
this application.

Therefore, in this paper we present a mechanism to enable the implementation
of applications based on secure mobile agents that travel dynamic itineraries.

This will allow us to take advantage of all the flexibility inherent in mobile
agents, without leaving their security aside.

In order to achieve this goal, first of all, we define the basic components of a
mobile agent, so that dynamic itineraries are supported and the implementa-
tion of mobile agent security mechanisms is simplified.

Secondly, we design our protection scheme assuming that some itinerary plat-
forms can be trusted. Protecting dynamic itineraries is unfeasible if all plat-
forms are potentially malicious. Thus, our solution is not naive, as it provides
a good solution for real scenarios. We analyse the security of the proposed
protection scheme, showing that it achieves full protection against tampering,
impersonation and disclosure.

As an example, we present a sample application for healthcare environments,
where the need for dynamic itineraries is clearly recognised. In this example,
mobile agents are used to search for patient medical records that are spread
across different institutions. We carry out an implementation of our proposal
in order to simulate this application, and the results show that mobile agents
are effectively protected, and they can be executed in completely reasonable
times.

Besides, we describe the extensions to our previous work on simplifying the de-
velopment of secure mobile agent applications (Garrigues et al., 2004). These
extensions add support for dynamic itineraries, so that the mechanisms pro-
posed in this paper can be easily implemented. Before introducing our proposal
in detail, the next section describes the different types of agent itineraries and
the approaches presented so far to protect them.

2 Background

Mobile agent itineraries can be implemented in different ways depending on
the relationship between the instructions moving the agent and the tasks exe-
cuted on every platform. The first approach was to merge tasks and migration
instructions into a single code, so that every agent task was followed by a
jump instruction to move the agent to its next destination. When the agent
is implemented in this way, we say that the itinerary is implicit.

In order to improve the readability and reusability of code, explicit itineraries
were later introduced in Wong et al. (1997). In this case, the agent code is
divided in stages, where every stage is usually executed in a different platform,
and the information of all itinerary stages is stored in an separate structure.
The agent code that is common to all platforms accesses this structure to

determine which task has to be executed, and which platform has to be visited
next.

First explicit itineraries were considered to be sequential. In a sequential
itinerary, all platforms are visited one after the other, in the order initially
specified by the programmer. For example, a sequential itinerary could be
that of an agent that orders some flowers first, then buys a ticket for the
theatre and finally reserves a table in a restaurant.

The disadvantage of sequential itineraries is their lack of flexibility. They don’t
allow the programmer to define alternative routes, or routes that can be trav-
elled in any order, etc. In order to overcome this limitation, flexible explicit
itineraries were introduced in Strafer et al. (1998).

Flexible itineraries are constituted by a set of nodes, each of which associated
with a platform and a task. In addition, different node types can be used
to create the agent itinerary. These types allow the programmer to define
the agent route with the same flexibility as he defines the execution flow of
a program. As an example, three node types were defined in Strafer et al.
(1998): the sequence, where only one node is defined right after the current
one; the alternative, where the agent can choose the next destination from a
set of nodes; and the set, where the agent visits all subsequent nodes in any
order.

Nodes are not always associated with a specific location at the time of creating
the itinerary. In many applications, some locations are determined at runtime
and, in this case, we say that the itinerary is dynamic. On the contrary, when
all locations are known beforehand, we say that the itinerary is static. Most
applications using mobile agent technology consider itineraries to be dynamic.
Examples of these applications can be found in many areas: grid computing
(Kuang et al., 2002), data mining (Klusch et al., 2003), network routing (Manvi
and Venkataram, 2007), P2P networks (Lu and Fu, 2006), sensor networks
(Wang and Qi, 2004), intrusion detection systems (Hijazi and Nasser, 2005),
ad-hoc networks (Levy et al., 2005), and others.

All these applications show that mobile agents are a powerful abstraction tool
for the design of complex systems. However, the benefits of this technology
have not been sufficient to stimulate its widespread deployment. One of the
main reasons for this lack of success is that there are many security issues that
must be considered prior to the implementation of mobile agents. In Jansen
and Karygiannis (2000), these problems were classified according to the source
of the attack and the entity being attacked:

e Agents against agents
e Agents against platforms
e Others against platforms

e Platforms against agents

Regarding the first two classes of attacks, mechanisms that provide an accept-
able level of security have already been presented. The most widely accepted
is known as sandbozring (Wahbe et al., 1993), and is based on limiting the
agent accessibility to a closed domain, so that the address space and resources
available to the agent are confined within this domain. With regard to attacks
against platforms, security greatly depends on the mechanisms provided by
the operating system and the good design of associated protocols.

The last class of attacks is, without question, the most difficult to cope with.
Platforms can do anything with the execution of an agent, and preventing
all possible attacks is very difficult, when not impossible. A lot of research
has been carried out on this matter. The proposed solutions include the use
of cooperative agents (Roth, 1998), cryptographic tracing (Vigna, 1997), ob-
fuscated code (Hohl, 1998), secure coprocessors (Yee, 1994), or protected
itineraries (Borrell et al., 1999). From all these techniques, the last one is
the most widely used. The protection of the agent itinerary is based on using
cryptography to protect the initial itinerary and the results generated during
the execution.

Regarding the protection of the computational results, several solutions have
been presented, which ensure that no platform can tamper with the results
generated by another platform (Maggi and Sisto, 2003; Zhou et al., 2004). On
the other hand, the protection of the initial itinerary has also been analysed
in numerous proposals. Proposals such as Mir and Borrell (2002, 2003) allow
the protection of flexible itineraries, whereas Karnik and Tripathi (2001) or
Roth (2002) only consider sequential itineraries.

The mechanisms proposed to protect the agent initial itinerary are based on
including both the agent route and its tasks inside an explicit itinerary. The
structure that contains this itinerary is secured by means of cryptographic op-
erations, which prevent platforms from accessing or modifying the information
associated with other platforms. Obviously, these approaches do not solve all
problems related to malicious platforms. However, in environments like those
presented in Farmer et al. (1996), these approaches are very appropriated.
These environments are characterised by the fact that platforms can compete
with each other, but they are always loyal to the user.

However, the major problem of current solutions for the protection of agent
itineraries is that they do not support dynamic itineraries. As we have pre-
viously mentioned, this seriously hinders the adoption of the mobile agent
technology, because most applications consider itineraries to be dynamic. In
the following sections, we will present our proposal for the protection of dy-
namic itineraries.

3 Dynamic explicit itineraries

In order to protect mobile agents that traverse dynamic itineraries, our pro-
posal considers mobile agents to be comprised of two main components: an
explicit itinerary and a control code that handles this itinerary.

The development of the explicit itinerary is done at two different levels. At a
local level, the programmer has to implement the tasks that must be executed
on every platform. The execution of these tasks starts and ends in the same
platform, which implies that the code must not contain any migration to an-
other platform. At a global level, the programmer has to define the migratory
behaviour of the agent using the different node types available (these will be
explained in the following subsection).

Thus, the explicit itinerary is composed by a set of nodes, each of which has a
task and an execution platform associated with it. This itinerary is stored in
a separate structure that can be protected using cryptographic mechanisms.

In order to move along their route autonomously, agents need a code to manage
their explicit itinerary. In every platform, this code must extract the task to
be executed from the explicit itinerary and determine the destination of the
next migration. We refer to this part of the agent as the control code.

The advantage of dividing the implementation into these two components (ex-
plicit itinerary and control code) is that the control code does not depend on
the specific application being implemented. As a result, this code can be easily
reused in different applications. Besides, the itinerary protection mechanisms
can be also handled by control code, thus relieving platforms from having
to know the protection scheme implemented by every agent. This is espe-
cially useful when agents have different security requirements and protection
schemes.

3.1 New node types

In order to define the agent explicit itinerary at a global level, we have defined
a new set of node types. This new set has been designed to achieve three
objectives: Firstly, it should be a general purpose set, so that most common
applications can be defined using this set. Secondly, it should enable an easy
and flexible creation of itineraries. Finally, it should allow programmers to
define nodes with a dynamic location. It is worth noting that our proposal
is not restricted to the proposed set. New node types can be added in the
future, for example, to meet specific requirements of a certain application,
and this will have no real effect on the proposed protocol. The following is a

brief description of each node type:

Sequence In sequence nodes, the control code executes the local task and
migrates to the platform assigned to the next node.

If In addition to a platform and a local task, the ¢f node has a subitinerary
associated with it. This subitinerary is made up by one or more nodes of
any type. The if local task must include a condition method, which decides
whether or not the subitinerary has to be traversed after the execution of
this task.

Switch The switch node is associated with two or more subitineraries. In
its local task, the switch node includes a condition method, which chooses
which subitinerary must be traversed next.

Set The set node is also associated with two or more subitineraries. In this
case, however, after the execution of the set local task, all subitineraries
are traversed by the agent. This traversal can be done in sequence, one
subitinerary after the other (in any order), or it can be done in parallel, send-
ing a clone of the initial agent to each subitinerary. Whether this traversal
is done in parallel or in sequence will depend on the final implementation.

Loop The loop node has a single subitinerary associated with it. The agent
visits the loop platform and this subsequent subitinerary repeatedly. On
every visit to the loop platform, the local task decides whether or not a new
iteration has to be started.

Discoverer The discoverer node is also associated with a single subitinerary.
The nodes included inside this subitinerary can have the dynamic location
property set. As explained later, setting this property on a node implies that
the platform where this node will be executed is determined at runtime.

In order to represent itineraries graphically, each node type is associated with
a symbol: the sequence node is represented by O, the if node by <, the switch
node by Cl, the set node by <1, the loop node by <, and the discoverer node
by <. To better understand their use, figure 1 shows the representation of an
example itinerary with these symbols.

@/@\@

Nagardl ™

L hD J

Fig. 1. Example of an itinerary represented using our symbols

As this figure shows, every node is associated with a numerical identifier,
which appears inside the node symbol. The name located under each node is
the platform’s hostname, which could be a hospital department identifier, for
example, if we were in a healthcare scenario. Each subitinerary is enclosed by

square brackets (’| |"). As we can see, different nodes can be executed on the
same location (nodes 3 and 6 on platform hB, in this example).

Every node included in the agent itinerary is usually associated with a task
and an execution platform. In a dynamic itinerary, however, some execution
platforms are not known at the time of creating the itinerary. In the next sub-
section, we will see two special properties that enable the definition of dynamic
itineraries: the unchanged location and the dynamic location properties.

3.2 Node special properties

Our proposal includes two special properties for the definition of dynamic
itineraries:

The unchanged location property is used to specify that a node will be executed
on the previous platform visited by the agent. This implies that, when this
property is set on a node, the agent performs no migration and resumes its
execution on the same platform where it was being executed. We will refer to
these nodes as unchanged location nodes.

This property is especially useful when it avoids performing unnecessary mi-
grations. An example of this situation can be seen on figure 2. In this case,
the programmer wants to execute the loop condition method on platform hA
the first time, and then on platform hC subsequent times. By setting the
unchanged location property on loop node 2, the programmer is relieved of
the need to associate the execution of the loop node with a specific location.
Therefore, no migration is needed to evaluate the loop condition method. As
we can see, this property is depicted by replacing the platform’s name by a
left arrow (<), meaning “same as previous”.

5l

o

hD

Fig. 2. Use of the unchanged location property on a loop node

The second special property is the dynamic location property. This property
is used in combination with discoverer nodes in order to specify that a node
will be executed on a location generated at runtime. We will refer to these
nodes as dynamic location nodes.

Dynamic location nodes can only be included inside the subitinerary of a dis-

coverer node. Whenever the agent visits the discoverer node, it decides where
each dynamic location node of the following subitinerary will be executed. In
figure 3, we can see an example itinerary in which node 3 is a discoverer node,
and node 5 has the dynamic location property set.

POl
()~ (&)

hD

Fig. 3. Example using the unchanged and the dynamic location properties

As this figure shows, the dynamic location property is depicted by replac-
ing the platform’s name by the symbol '#};’, where the number k identifies
each location individually. In this case, only one location is generated at each
iteration of the loop (the location of node 5).

The dynamic and the unchanged location properties, in combination with the
set of node types previously presented, allow programmers to define explicit
itineraries containing dynamically generated locations. In the following sub-
section, we will see how these itineraries can be structured to make up an
agent.

3.8 Building the agent

The explicit itinerary can be stored inside the agent in multiple ways. If
no security mechanisms are required for our application, we can arrange the
itinerary information in a structure like the one represented by the following
expression. This expression corresponds to the itinerary of figure 3.

I = [(L my, seq, [[hA, 2]]), (2, ma, loop, [[RB, 3], [AD, 6]]),
(3, mg, discoverer, [[hC,4]]), (4, my, seq, [[#1 ,5]])
(5,ms, seq, [[#1 ,2]]), (6, mg, seq, [null]) }

As this expression shows, the explicit itinerary is structured as a list, where
each element contains the following information: ¢, the node’s numeric iden-
tifier; m;, the task to be executed on node 7; type, the node type; and
[[location;, j] - - - [locationy, k||, the list of locations and identifiers correspond-
ing to subsequent nodes (j - -- k).

When calculating the lists of next locations and identifiers for node 1, we
have taken into account that node 2 has the unchanged location property set.
Therefore, hA is specified as the next location of node 1. The next location of
node 4 and 5 has been defined as ’#;’, because this location is computed at
runtime and it cannot be included in the initial itinerary.

Once the explicit itinerary is built, the control code that manages the agent
execution is created. This control code is executed as soon as the agent is
started by the platform. First of all, it extracts the task assigned to the current
node from the explicit itinerary. Then, after the execution of this task, the
control code determines the next location where the agent has to move.

In order to determine where the agent has to move next, the control code takes
the current node type into account. For example, if the current node is an if,
the control code has to execute a condition method included in the local task
that decides whether or not the following subitinerary has to be traversed.
On the other hand, if the current node is a discoverer, the control code has
to execute a method that calculates the dynamic locations contained in the
following subitinerary. Finally, the control code calls a method that triggers
the agent migration to the next platform.

Thus far, we have seen how a mobile agent can be created from an explicit
itinerary and a control code. In the next section, we will describe our proposal
for the protection of mobile agents, so that the explicit itinerary can include
locations generated at runtime.

4 Itinerary protection

The itinerary protection presented in this work pursues three main objectives:

Integrity Platforms must not be able to modify the agent without this being
detected.

Confidentiality Platforms must not be able to access itinerary information
corresponding to other platforms. If we assume that all platforms are po-
tentially malicious, then ensuring the confidentiality of dynamic itineraries
is unfeasible. Therefore, our solution is a trade-off between providing a com-
pletely secure scheme and enabling the protection of dynamic itineraries.

Authenticity Platforms must be able to verify the identity of the agent
owner.

It is worth noting that our goals do not include the protection of the results
generated during the agent execution. Some proposals have already been pre-
sented providing sound solutions to this problem (Maggi and Sisto, 2003; Zhou

10

et al., 2004).

As mentioned in section 3, our proposal is based on building agents that are
comprised of an explicit itinerary and a control code. Dividing the implementa-
tion into these two components allows agents to manage their own protection
mechanisms, which relieves platforms of having to deal with different agent
protection schemes.

Since the control code is common to all nodes, there is no need to ensure
its confidentiality, although it is very important to guarantee its integrity.
Otherwise, it could be easily modified in order to bypass the security checks
made later on the explicit itinerary.

The integrity of the control code cannot be ensured by the agent itself. This
verification is performed by the agent platform using the approach presented in
Ametller et al. (2004). According to this approach, the following requirements
must be satisfied:

(1) Any data encrypted with the platform’s public key must have a crypto-
graphic hash of the control code attached to it.

(2) Additionally, this data must be signed with a random key. The corre-
sponding public key must be included in the control code.

The integrity of the agent itinerary and control code is verified as follows:

e When decrypting data using the platform’s private key, the agent performs
a call to the platform’s cryptographic service. This service verifies that the
hash of the calling agent’s control code is identical to the hash attached to
the encrypted data.

e When the agent obtains the decrypted data from the platform’s crypto-
graphic service, it verifies the signature of this data using the public key
included in the control code.

These two operations ensure the integrity of the whole agent, including both
the explicit itinerary and the control code. The confidentiality and authenticity
requirements are then achieved by cryptographically protecting the explicit
itinerary. The operations required depend on the node type being protected. In
the next subsection, we will see the protection of static itineraries, constructed
using sequence, if, switch, set and loop node types, and the unchanged location
property. Then, in the following subsection, we will focus on the protection
of dynamic itineraries, which also include discoverer nodes and the dynamic
location property.

11

4.1 Protection of static itineraries

The protection of static itineraries is based on the protocol presented in Mir
and Borrell (2003). The main difference between this and our approach is that
we provide our mobile agents with a control code that manages their own
protection mechanisms.

In order to describe this protection protocol, we will see first how the explicit
itinerary is built, and then we will describe how the corresponding control
code is created.

Regarding the construction of the explicit itinerary, first of all, a random
symmetric key is created for each itinerary node. Thus, the following set of
keys is obtained:

7"‘1 DY rn

where n is the number of itinerary nodes. Next, for each migration from a node
() to any of its successors (j), the transition from i to j (t;;) is generated. If
node j does not have the unchanged location property set, then the transition
t;; is computed as follows:

tij = hy, Pj(Ss(r;))

h; is the hostname of platform j; P; is an asymmetric encryption with the
public key of platform j; and 5, is a signature with the owner’s private key. It
is worth noting that, for integrity purposes, any information encrypted with a
public key is constructed following the approach presented in Ametller et al.
(2004), as mentioned earlier. If node j has the unchanged location property
set, then the transition to this node is computed as follows:

tij = hy, Pi(So(ry))

As this expression shows, the symmetric key r; has to be used in platform h;,
and thus it is encrypted with h;’s public key. Once all transitions ¢;; have been
created, the following expression is computed for every itinerary node:

ei = B, (i, mq type;, [tij, -+ - tij.])
E,, is a symmetric encryption with the key r;; 7 is the node’s numeric identifier;
m; is the task to be executed on this node; type; is its type; and [t;;, - - - ;.]

is the list of transitions from node i to its successors ji - - - Js. If a given node
has no successors, then this list contains just the null element. After all these

12

expressions have been computed, the final explicit itinerary is generated as
follows:

I = to,[er--en)

where tg; = hy, P1(S,(r1)) is the transition required by the agent in the first
platform of the itinerary.

These are the steps required to build the explicit itinerary when it contains
sequence, if, switch, set and loop node types. As an example, the protection
of the itinerary of figure 1 would yield the following expression:

I =to, [Em(L my, set, [tia, t13]), Er, (2, Mo, seq, [tag)),

E?”g (37 ms, Zfa [t347 t35])7 ET4 (47 my, seq, [t45]>7
ET5 (57 ms, seq, [t56])7 Era (67 me, seq, [null]) :|

Now that we have seen how the explicit itinerary is created, we will show how
the control code must be created to handle it.

(1)

(2)

(6)

First of all, the control code must obtain the transition placed at the
beginning of the explicit itinerary (¢;;). For example, in the first itinerary
node, it must obtain the transition ¢o;.

Then, using the platform’s cryptographic service, the control code must
decrypt ¢;; and obtain S,(r;). Note that, before returning this value to
the agent, the platform’s cryptographic service must verify the integrity
of the agent following the approach presented in Ametller et al. (2004),
as mentioned earlier.

Once the signature of r; is verified, the control code must decrypt e;, thus
obtaining (i, m;, type;, [tij, - - - tij.])-

Now, the local task m; must be executed. Taking into account the current
node type, the control code must determine the next itinerary node that
the agent has to execute.

From all transitions ¢;;, - - - t;;,, the control code must select the one cor-
responding to the next itinerary node. This transition must be placed
at the beginning of the protected itinerary, replacing the one previously
obtained.

Finally, the control code must migrate the agent to its next destination.

The procedure presented so far allows the programmer to create the protected
explicit itinerary and its corresponding control code. The itinerary of the re-
sulting mobile agent can include sequence, if, switch, set and loop node types,
and the unchanged location property can be set on any of these nodes.

13

4.2 Protection of dynamic itineraries

In order to create a mobile agent that visits platforms discovered at runtime,
the programmer can use discoverer nodes and the dynamic location property.
The protection of these explicit itineraries is performed following essentially
the same steps described in the previous section, but with the introduction of
some modifications. The most important addition is made to the control code,
which has access to the information of other nodes in some platforms. As we
will see, this implies that we must be able to trust some itinerary platforms,
because otherwise the protection of dynamic itineraries is unfeasible. Let’s
see first how the explicit itinerary is created, and then we will describe the
construction of the control code that manages this itinerary.

First of all, a random symmetric key is created for each itinerary node (rq - -).
Then, the set of transitions ¢;; is generated. If node j does not have the dy-
namic location property set, then ¢;; is computed just like before:

tij = hj, Pi(S,(rj))

On the other hand, if node j has the dynamic location property set, then t;;
is computed as follows:

tij = blank, Py,(S,(r;))

where dp is the discoverer node where the location of node j will be gener-
ated. Due to the fact that the location of node j is unknown, its hostname is
replaced by a special value: “blank”. As this expression shows, the information
of dynamic location nodes is only available to their corresponding discoverer
nodes.

Once all transitions have been generated, the set of expressions e; is generated.
If node j is not a discoverer node, then e; is computed just like before:

e; = B, (i,mg,type;, [tij, - tij,])

On the other hand, if node j is a discoverer node, then e; is computed as
follows:

ei = By (i, [mi,ry o], types, tij)
In this case, m; is the agent task assigned to the discoverer node but, unlike

other agent tasks, this one includes a method that determines the locations
where the following dynamic location nodes will be executed. 7, -- -7, is the

14

set of random symmetric keys used to encrypt nodes v ---w, which are the
predecessors of the dynamic location nodes of the following subitinerary. This
set of symmetric keys, as explained later, is used to dynamically rebuild the
agent itinerary. As discoverer nodes can only have one successor node, this
expression only includes one transition ¢;;.

After all these expressions have been computed, the final explicit itinerary is
generated just like before:

I = to,[er e

As an example, the protection of the explicit itinerary represented in figure 3
would yield the following expression:

I =tn,
{ E, (1,mq, seq, [t12]), Ery (2, Mo, loop, [tas, tas]),
E,,(3,[mg,r4], discoverer, [ts4]), Er, (4, my, seq, [ts)]),
E.. (5, ms, seq, [tsa]), Ere (6, m6, seq, [null]) }

where
t45:blank, P3(SO(T5))
t52:blank, P3<SO(T'2))

Now that we have seen how the explicit itinerary is created, we will show how
the control code must be created to handle it.

(1) First of all, the control code must decrypt e; and obtain
(i, [my, 7y - - - Tw), type;, tij), performing the same operations explained for
static itineraries.

(2) Then, the task m; must be executed, and the control code must obtain
the list of locations where the following dynamic location nodes will be
executed.

(3) For each dynamic location node i, the control code must now rebuild the
transition ¢;,_;,; to this node, and the expression e;_; that contains this
ti—1,. For this purpose, the control code must:

(a) decrypt e;_; using the symmetric key r;_; included in the set 7, - - - 74,
(b) use the new location (h;) previously generated for node i to rebuild
t;—1, as follows:

tic1i = hi, Bi(So(r:))

(c) recompute e;_; using the newly generated transition ;_; ;

15

(4) Finally, the control code must migrate the agent to its next destination.

As an example, a new location for node 5 must be generated in node 3 of
figure 3. Using this new location (hs), the control code must rebuild 45 and
tso as follows:

tas=hs, P5(S,(15))
t52:h57 PS(SO(@))

and then e4 and e; must be recomputed accordingly.

The steps that we have just seen, in combination with those explained for
non-dynamic itineraries, constitute our complete scheme for the protection of
mobile agent itineraries. In the next section, we will analyse the security of
the proposed protocol.

4.8 Security analysis

The proposed protocol ensures the integrity of the agent control code and
explicit itinerary, as this property is guaranteed by the agent-driven protection
approach presented in Ametller et al. (2004) that is used in our protocol. In
addition, the protocol also ensures the agent authenticity, because the explicit
itinerary is encrypted with random symmetric keys that are signed by the
owner. As a result, platforms can verify the authenticity of all the information
included in the explicit itinerary.

The proposed protocol ensures the confidentiality of the explicit itinerary,
preventing platforms from accessing parts of the itinerary assigned to other
platforms. The information of every itinerary node is encrypted with a random
symmetric key that can only be obtained by the appropriate platform, because
it is encrypted with this platform’s public key. The confidentiality of dynamic
location nodes is also ensured during the whole agent execution, despite being
executed on platforms that are discovered at runtime.

The information of dynamic location nodes is initially encrypted with the
public key of their discoverer nodes. When the agent reaches the discoverer
node, it determines where the dynamic location nodes will be executed, and
the corresponding transitions to these nodes are re-encrypted using the public
keys of the newly discovered platforms.

In order to rebuild the agent itinerary at runtime, the control code executed
in discoverer nodes is allowed to access the information of dynamic location
nodes and their predecessors. As platforms have complete control over the

16

agent execution, platforms assigned to discoverer nodes can also access the in-
formation of dynamic location nodes and their predecessors. As a result, these
platforms must be specially trusted by the owner, because the confidentiality
of part of the agent itinerary cannot be guaranteed.

By introducing trusted platforms in the itinerary, we ensure that the code
executed on dynamic locations remains always protected against potentially
malicious platforms. This is of utmost importance, as the code executed on
dynamic locations may include restricted information or sensitive operations.

In order to ensure that the itinerary is always reconstructed in a safe place,
all discoverer nodes can be assigned to the same trusted platform (our home
platform, for example). This means that our proposal supports the protection
of any dynamic itinerary, as long as at least one trusted platform can be
introduced in it.

The proposal we have presented ensures that the itinerary is executed in the
order initially devised by the programmer. This is supported by the fact that
the transition ¢;_; ; required by the agent in node ¢ can only be obtained in node
1—1. Moreover, node i can only be executed on its associated platform, because
the private key of this platform is required to access node i’s information.

The unchanged location property can be set on two consecutive nodes, except
when the first of these two nodes is preceded by multiple nodes. In this case,
it is not possible to determine where the second node will be executed. As
a result, no public key can be used to build the transition from the first
node to the next. This limitation, however, is not actually an issue, since
any concatenation of two nodes with the unchanged location property can be
simplified as a single one. All the programmer has to do is concatenate the
tasks of both nodes into a single one.

The scheme presented in this paper attains the objectives initially established,
but it does not protect agents against replay attacks. In these attacks, the
agent is captured before being executed on a platform and, later, it is resent
to the same platform. This causes the agent to reexecute part of the itinerary.
In order to prevent this attack, the solution presented in Cucurull et al. (2005)
may be implemented, which is based on setting a maximum number of execu-
tions for each platform. The problem of this approach is that the maximum
number of loop iterations must be fixed when the agent is created, and this is
a major constraint for many applications.

17

4.4 Simulation and tests

In order to prove the viability of the proposed protocol in a real applica-
tion, first of all, an implementation has been carried out using the Jade agent
platform (Bellifemine et al., 2003). Then, experiments have been performed
simulating a simple mobile agent-based application. This application shows
the need for protection of dynamic itineraries, and the results of the simula-
tion prove that dynamic itineraries can be effectively protected, and agents
can be executed in completely reasonable times.

The simulated application is based on healthcare institutions where an agent-
based data management system has been implemented (Vieira-Marques et al.,
2006). In these scenarios, we can assume that the check-in process is aided by
an agent platform, which keeps a log of the patients served by the institu-
tion. Besides, each department within the institution has an agent platform
to manage patient records and services performed.

In these environments, mobile agents can be exploited to automate the re-
trieval of patient clinical reports spread across different institutions. Let’s
assume that an accident victim has to undergo an urgent surgical procedure.
Before starting any intervention where blood is involved, doctors have to know
if the patient is HIV or Hepatitis B positive. Performing the required tests is
usually not viable, because it can take days to obtain the results. Since we
cannot rely on patients either to obtain this information, we will use an agent-
based information gathering system.

The application is started by a healthcare professional in the casualty depart-
ment, defining the search criteria in a graphical user interface. This search cri-
teria consists of the patient’s identity, the test results that have to be fetched,
and the authorisation to retrieve this information. Then, the application starts
a mobile agent that, first of all, queries a remote directory service providing in-
formation about healthcare institutions. From this directory, the agent obtains
a list of institutions that offer HIV and Hepatitis B testing services.

Next, the agent visits the check-in agent platform of the first healthcare in-
stitution on the list. If the patient was ever tested for HIV or Hepatitis B
in that institution, the agent migrates to the clinical laboratory agent plat-
form. There, the agent presents the patient’s authorisation and obtains the
test results available. Finally, the agent comes back to its home platform in
the casualty department and delivers the obtained results.

In the case that not all institutions have been visited yet, the agent starts the

whole process again visiting the next healthcare institution in the list. The
final agent itinerary is shown in figure 4.

18

{ #2 }
(Laboratory)
G|

L < #1
/ (Check-in)
M€Y
Casualty

Department

Fig. 4. Itinerary of an agent that automates the retrieval of patient clinical reports

The protection of the explicit itinerary using the scheme presented in this
work prevents potentially malicious platforms from accessing restricted pa-
tient information. More specifically, the authorisation to retrieve the patient’s
test results can only be obtained in the institution where these results are
retrieved. No other institution has access to this authorisation, which is of
utmost importance because it could be used to obtain patient’s clinical data
from other institutions. Besides, the dynamic itinerary is always rebuilt in the
hospital where the agent was created, so that we ensure that this operation
does not pose any security risk. The following expression shows the initial
protected itinerary.

I = ty, [En 1, mq, loop, [t12, null]),
E,,(2,ms, discoverer, [tas]),

Er 37 ms, Zf; [t347 t3l])7
Er4 47 my, seq, [t41]> }

3

(
(
(
(

This simple example shows an environment where locations are generated dy-
namically and platforms might be interested in accessing the code executed
by a mobile agent for their own benefit. In this case, we have used a health-
care scenario, but many others could have been devised involving financial
institutions, travel agencies, airline companies, etc.

In order to validate the proposed protocol, this application has been simulated
by introducing a malicious platform in the agent itinerary. This platform acted
as a dishonest healthcare institution trying to obtain the agent authorisation
to retrieve patient’s clinical data from other institutions. As expected, this
platform was unable to obtain this authorisation, since it was encrypted with
the public key of the appropriate platform where this authorisation had to be
used.

The experiments performed also compared the executions times of a protected

19

agent with an unprotected one, in order to determine if the proposed protection
protocol increased the execution times to overly high values. The agent created
for the tests was given an itinerary with different number of institutions to
visit, and we determined whether or not the itinerary protection resulted in
an exponential increase of the execution times. The evaluation setup used to
make the tests was made up by 3 computers with 2 GHz Intel Pentium(R) IV
processors and 256 MB RAM memory each. These computers were connected
in a laboratory to a 100 MHz Ethernet LAN. Table 1 shows the resulting
execution times.

Table 1
Execution times (ms) for protected and unprotected agents
Num. of institutions: 1 5} 10 50
Unprotected Exec time: 4407 21855 43530 216753
agent Time/node: 1259 1248 1243 1238
Protected Exec time: 5782 28640 57010 283705
agent Time/node: 1652 1636 1628 1621
Increase: 31.20% 31.05% 30.97% 30.89%

As table 1 shows, the execution time increases linearly with the number of
healthcare institutions visited. The execution time of a protected agent is
approximately 30.9 percent higher than that of an unprotected agent. How-
ever, this increase depends largely on the specific application implemented. In
our simulation, the interaction between the agent and the healthcare institu-
tion was implemented as described by Vieira-Marques et al. (2006), and the
time spent handling the agent protection mechanisms significantly impacted
the overall execution time. Other applications could require the agent to exe-
cute a lot more time-consuming tasks, and the time spent handling protection
mechanisms would be negligible.

The increase in the execution time is readily understandable if we take into
account the complexity of the cryptographic protection protocol presented
in this paper. The overhead introduced by the execution of this protocol is
completely acceptable for the simulated application. However, this might not
be the case for other applications. To conclude, we can say that the proposed
protocol provides an effective method for dynamic itinerary protection, and
its implementation is feasible.

20

5 Practical issues

As we have seen in the previous section, the mechanisms used to protect the
agent are not simple. The explicit itinerary must be protected using crypto-
graphic operations, and a control code must be provided to manage the agent
execution. This implies, among other tasks, encrypting and decrypting infor-
mation, handling different node types, making security checks, rebuilding the
itinerary when the agent is executed on discoverer nodes, etc. Therefore, we
can conclude that the generation of a mobile agent from its protected itinerary
and control code can be a rather daunting task.

In order to provide a solution to this problem, a proposal was presented in
Garrigues et al. (2004), which intended to simplify the implementation of
secure mobile agents. This proposal is based on a development environment
made up by four main tools: an Itinerary Designing Tool, which aids the
design and construction of the itinerary; an Agent Builder, which simplifies the
implementation of the security mechanisms and generates the final executable
agent; an Agent Launcher, which provides a client application to introduce
new agents in remote platforms; and a Results Manager, which helps the
programmer to retrieve the results at any time after the end of the agent
execution.

The limitation of this development environment was that it did not support
dynamic itineraries. Still, this was the only work presented to date addressed to
facilitate the creation of secure mobile agents. In this work, we have extended
some of the tools of this environment to support dynamic itineraries. The
modified tools, which are highlighted in figure 5, are the Itinerary Designing
Tool and the Agent Builder. In the following sections, we will describe in detail
the extensions carried out on each one of these tools.

Itinerary
Designing | 'tinerary Agent Executable | Agent
specification [Builder Agent | launcher
Tool IR o neem
f

Architecture
specification

Results Results
— Manager
Programmer

Fig. 5. Tools from Garrigues et al. (2004) that we have extended

/ Agent plat

|

21

5.1 Eztending the Itinerary Designing Tool

The Itinerary Designing Tool (IDT), as the name implies, was devised to aid
the programmer in the creation of the agent itinerary. Its graphical interface is
divided in tabs that allow the programmer to define itinerary nodes, implement
their tasks and see the messages generated by the agent compilation.

The wtinerary definition tab is very similar to a clip art drawing application.
The left side of the window contains a node palette where the programmer can
choose which type of node he wants to include in the itinerary. Once a node
has been placed in the drawing area, a task and a platform can be assigned
to it.

In this work, we have extended this tab to support the specification of dynamic
itineraries. On the one hand, we have modified the palette so that it includes
our set of node types: the sequence, if, switch, set, loop and discoverer. On
the other hand, we have added a context menu to each node, allowing the
programmer to set the unchanged or dynamic location properties on it. In
figure 6, we can see a screenshot where the example itinerary of figure 4 is
being edited on this tab.

File Insert Security Build

e sals]s

linerary Editor r Wanifesl Editor r/ Behaviours Editor r/ Ouiput |

O = Aclive Node
| mame

SE
a casualty
< | Host address
E cec-pra.uab.es
IF !

#3
| Main class
@_‘ nksAgertThanksAgent tlase
B

< #,
| Condition class

SWITCH 1
O casualty

Update

_DISCOV |
ﬁ Ctherclasses

Addd. . | Remove

Attachments

4]

Fig. 6. Itinerary Designing Tool

The tasks that must be executed on a node can be provided in precompiled

22

form or they can be implemented and compiled in the implementation tab.
When the programmer starts editing a ne task on this tab, the IDT gener-
ates a skeleton of the methods that must be implemented. We have adapted
these skeletons to the new set of node types. For example, in the loop node
case, the programmer has to implement the jumpCondition method, which
decides whether or not the agent has to perform a new iteration, and the
nextDynamicPlatform method, which generates the next locations for the
dynamic nodes.

Once nodes and their corresponding tasks have been introduced in the itinerary
definition tab, the programmer generates an itinerary specification. This spec-

ification is an XML document with all the information previously introduced
in the IDT.

Prior to generating this specification, some semantic checks must be performed
if the itinerary contains discoverer nodes, or we have used the unchanged loca-
tion property. The set of checks includes: verifying that the dynamic location
property is only set inside discoverer nodes, verifying that the itinerary initial
node does not have the unchanged location property set, among others. Once
the itinerary specification has been generated, the programmer is ready to use
the Agent Builder.

5.2 FExtending the Agent Builder

The Agent Builder generates the executable mobile agent using the itinerary
specification previously mentioned and a protection scheme that must be
also provided separately. Therefore, the protection scheme is not fixed for all
agents, but varies depending on the security requirements of the application.

The protection scheme is specified in a language specially devised to simplify
the implementation of agent security mechanisms (Garrigues, 2005). In this
work, this language has been slightly modified to support dynamic itineraries.
First of all, we have replaced the set of type identifiers. For example, IF and
DISC are the identifiers for the i¢f and discoverer nodes respectively. Moreover,
we have extended the format of these identifiers, so that the unchanged and
the dynamic location properties are also supported.

A detailed explanation of all the elements of this language is out of the scope
of this document. Only to provide an overview of its semantics, we will men-
tion briefly which operations are carried out by the example code of figure 7.
This code implements our dynamic itinerary protection scheme as described
in section 4.

The first rule generates the private keys associated with each node (using rule

23

GENKEYS), and calls rule ITIN. Rule ITIN protects the information of every
node using rule NODE. Finally, rule NODE builds the expressions E,.(m;,t;;),
using rule TR to generate the transitions Z;;.

ITINERARY = [ITIN([GENKEYS#i])#i]
GENKEYS = KEY#i...e
KEY[SEQ/ALL] = r#i=keygen()
KEY = r#i=keygen() : GENKEYS#sf...sl
ITIN(list) = NODE#i...e
NODE[SEQ/ALL] = sencrypt(r#i, [localCode#i :
[TR(hostName#i)#j 1 1)
NODE = sencrypt(r#i, [localCode#i :
[TR(hostName#i)#sf...s1 1 1)
ITIN(null)#sf...sl
"blank"
[hname :
aencrypt (hname, sign(r#i))]
TR(hname) = [hostName#i :
aencrypt (hostName#i, sign(r#i))]

TR[/DYN] (hname)
TR [/UNL] (hname)

Fig. 7. Specification of the dynamic itinerary protection scheme for the Agent Builder

These lines of code show how the implementation of itinerary protection pro-
tocols is greatly simplified. However, this specification only allows the Agent
Builder to create the protected explicit itinerary. The control code could be
specified using the same language, but this has not been done yet because some
extensions have to be carried out first. Instead, the control code is currently
implemented in native language, Java in our case.

6 Conclusions

Previous approaches on itinerary protection only supported static itineraries
This was a major constraint because mobile agent applications are usually
devised using dynamic itineraries. In this paper, we have presented a novel
scheme for the protection of both static and dynamic itineraries. This enables
the implementation of applications based on secure mobile agents that take
advantage of all the flexibility provided by this paradigm.

Our proposal is based on building mobile agents from an explicit itinerary
and its corresponding control code. The explicit itinerary is protected using
cryptography, and the control code is implemented so that the agent itself
can handle the security measures applied to the itinerary. The advantages of
dividing the implementation into these two components are several: the control
code can be easily reused in different applications, since it does not depend on
the specific application being implemented; platforms are relieved of having

24

to deal with the protection schemes of different agents; and it enables the
implementation of complex protection schemes where the itinerary is rebuilt
dynamically at runtime.

In order to build explicit itineraries, we have defined a new set of node types.
The use of different node types is a key issue of our proposal. First of all, it
allows programmers to define their distributed applications at two different
levels (local —the tasks executed on every platform— and global —the nodes
that make up the itinerary—), which simplifies their designs and implementa-
tions. Furthermore, resulting explicit itineraries are structured in a way that
simplifies the application of protection algorithms.

Traditional protection mechanisms, which only support static itineraries, are
improved by adding some trusted points in the itinerary. This is not a limita-
tion as it could seem at first sight, since trusted platforms are usually found
in real applications. Besides, our approach supports the protection of any dy-
namic itinerary as long as one trusted platform can be introduced in it.

An example application has also been presented, showing how our proposal
can be applied to a healthcare scenario. In this example, agents are created
to search for patient medical records spread across different institutions. In-
stitutions are discovered dynamically and the itinerary is always rebuilt in a
trusted platform —the hospital where the agent was created— so this opera-
tion does not pose any security risk. This application has been simulated in
order to prove that agents are effectively protected, and secure mobile agents
can be executed in reasonable times. The expected increase in execution time
was acceptable for the simulated application, despite representing a 30.9% of
the total execution time. In other applications with higher processing require-
ments, this overhead will likely be negligible.

Implementing applications provided with our security mechanisms is by no
means straightforward. Therefore, we have also extended our previous work
so that it supports the creation of applications based on secure mobile agents
with dynamic itineraries.

Further work will be carried out to extend the Agent Builder specification
language, in order to support the implementation of the control code that
manages our dynamic explicit itineraries. Moreover, future research will be
conducted to protect mobile agents with dynamic itineraries against replay
attacks.

25

Acknowledgements

This work has been funded by the Spanish Ministry of Science and Technology
(MCYT) through the project TIC2003-02041, the Spanish Ministry of Educa-
tion and Science (MEC) through the project TSI2006-03481, and the Catalan
Agency of Research and University Aid Management (AGAUR) through the
project SGR2005-00319. We would also like to thank Dr. Anna Pujibet at
the Primary Care Facility of Barber'ig)% del Vall'l';)%s for her guidance on the
definition of a healthcare application.

References

Ametller, J., Robles, S., Ortega-Ruiz, J. A., 2004. Self-Protected Mobile
Agents. In: Proceedings of the Third International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS ’04). IEEE Computer
Society, pp. 362—-367.

Bellifemine, F., Caire, G., Poggi, A., Rimassa, G., 2003. JADE - A White
Paper. Tech. rep., Telecom Italia Lab, available at http://jade.cselt.it.

Borrell, J., Robles, S., Serra, J., Riera, A., 1999. Securing the Itinerary of
Mobile Agents through a Non-repudiation Protocol. In: Proceedings of the
IEEE Int. Carnahan Conf. on Security Technology. IEEE Computer Society,
pp. 461-464.

Cucurull, J., Ametller, J., Ortega-Ruiz, J. A., Robles, S., Borrell, J., 2005.
Protecting Mobile Agent Loops. In: Mobility Aware Technologies and Ap-
plications. Vol. 3744 of Lecture Notes in Computer Science. Springer-Verlag,
pp. 74-83.

Du, T. C., Li, E. Y., Wei, E., 2005. Mobile agents for a brokering service in
the electronic marketplace. Decision Support Systems 39 (3), 371-383.

Farmer, W. M., Guttman, J. D., Swarup, V., 1996. Security for mobile agents:
Issues and requirements. In: Proceedings of the National Information Sys-
tems Security Conference. pp. 591-597.

Garrigues, C., Setembre 2005. Simplifying the Development of Mobile
Agents Based on Cryptographic Architectures. Master’s thesis, Universitat
Auti;inoma de Barcelona (ETSE).

Garrigues, C., Robles, S., Moratalla, A., Borrell, J., 2004. Building Secure
Mobile Agents using Cryptographic Architectures. In: Proceedings of the
2nd European Workshop on Multi-Agent Systems. pp. 243-254.

Hijazi, A., Nasser, N., 2005. Using Mobile Agents for Intrusion Detection in
Wireless Ad Hoc Networks. In: Proceedings of the 2nd IFIP Int. Conf. on
Wireless and Optical Communications Networks (WOCN ’05). IEEE Com-
puter Society, pp. 362-366.

Hohl, F., 1998. Time Limited Blackbox Security: Protecting Mobile Agents

26

From Malicious Hosts. In: Mobile Agents and Security. Vol. 1419 of Lecture
Notes in Computer Science. Springer-Verlag, pp. 92-113.

Jansen, W., Karygiannis, T., 2000. NIST Special Publication 800-19 - Mobile
Agent Security.

Karnik, N. M., Tripathi, A. R., 2001. Security in the Ajanta mobile agent
system. Software Practice and Experience 31 (4), 301-329.

Klusch, M., Lodi, S., Moro, G., 2003. Agent-Based Distributed Data Min-
ing: The KDEC Scheme. In: Intelligent Information Agents: The AgentLink
Perspective. Vol. 2586 of Lecture Notes in Computer Science. pp. 104-122.

Kuang, H., Bic, L. F., Dillencourt, M. B., 2002. Iterative Grid-Based Com-
puting Using Mobile Agents. In: Proceedings of the Int. Conf. on Parallel
Processing (ICPP ’02). IEEE Computer Society, pp. 109-117.

Levy, R., Carlos, P. S., Teittinen, A., Haynes, L. S., Graff, C. J., 2005. Mobile
agents routing - A survivable ad-hoc routing protocol. In: Proceedings of the
IEEE Military Communications Conference (MILCOM ’05). Vol. 5. IEEE
Computer Society, pp. 2903-2909.

Lu, T., Fu, M., 2006. Using Mobile Agents for Object Sharing in P2P Net-
works. In: Proceedings of the 1st Int. Conf. on Innovative Computing, In-
formation and Control (ICICIC ’06). Vol. 1. IEEE Computer Society, pp.
741-744.

Maggi, P., Sisto, R., 2003. A configurable mobile agent data protection pro-
tocol. In: Proceedings of the Second International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS ’03). ACM Press, pp.
851-858.

Manvi, S. S., Venkataram, P., 2007. Mobile agent based approach for QoS
routing. IET Communications 1 (3), 430-439.

Mir, J., Borrell, J., 2002. Protecting General Flexible Itineraries of Mobile
Agents. In: Proceedings of the 4th Int. Conf. on Information Security and
Cryptology (ICISC ’01). Vol. 2288 of Lecture Notes in Computer Science.
Springer Verlag, pp. 382-396.

Mir, J., Borrell, J., 2003. Protecting Mobile Agent Itineraries. In: Mobile
Agents for Telecommunication Applications (MATA). Vol. 2881 of Lecture
Notes in Computer Science. Springer Verlag, pp. 275-285.

Roth, V., 1998. Secure Recording of Itineraries through Co-operating Agents.
In: Proceedings of the ECOOP Workshops. pp. 297-298.

Roth, V., 2002. Empowering Mobile Software Agents. In: Proc. 6th IEEE
Mobile Agents Conference. Vol. 2535 of Lecture Notes in Computer Science.
Springer Verlag, pp. 47-63.

Strafser, M., Rothermel, K., Maii’;}%fer, C., 1998. Providing Reliable Agents for
Electronic Commerce. In: Proceedings of the International IFIP/GI Work-
ing Conference. Vol. 1402 of Lecture Notes in Computer Science. Springer-
Verlag, pp. 241-253.

Vieira-Marques, P., Robles, S., Cucurull, J., Cruz-Correia, R., Navarro, G.,
Marti’g%, R., 2006. Secure Integration of Distributed Medical Data using
Mobile Agents. IEEE Intelligent Systems 21 (6), 47-54.

27

Vigna, G., 1997. Protecting Mobile Agents through Tracing. In: Proceedings
of the Third International Workshop on Mobile Object Systems.

Wahbe, R., Lucco, S., Anderson, T. E., Graham, S. L., 1993. Efficient Software-
Based Fault Isolation. In: Proceedings of the 14th ACM Symposium on
Operating Systems Principles (SOSP '93). ACM Press, pp. 203-216.

Wang, X., Qi, H., 2004. Mobile agent based progressive multiple target detec-
tion in sensor networks. In: Proceedings of the IEEE Int. Conf. on Acoustics,
Speech, and Signal Processing (ICASSP ’04). Vol. 2. IEEE Computer Soci-
ety, pp. 285-288.

Wong, D., Paciorek, N., Walsh, T., DiCelie, J., Young, M., Peet, B., 1997.
Concordia: An Infrastructure for Collaborating Mobile Agents. In: Mobile
Agents: First International Workshop. Vol. 1219 of Lecture Notes in Com-
puter Science. Springer-Verlag, pp. 86-97.

Yee, B., 1994. Using Secure Coprocessors. Ph.D. thesis, Carnegie Mellon Uni-
versity.

Zhou, J., Onieva, J. A., Lopez, J., 2004. Analysis of a free roaming agent
result-truncation defense scheme. In: Proceedings of the IEEE Int. Conf. on
e-Commerce Technology (CEC ’04). IEEE Computer Society, pp. 221-226.

28

