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Abstract 

Today’s trend to create and share personal content, such as music files, digital photos and digital movies, results in 

an explosive growth of a user’s personal content archive. Managing such an often distributed collection becomes a 

complex and time consuming task, indicating the need for a personal content management system that provides 

storage space transparently, is quality-aware, and is available at any time and at any place to end-users. A key 

feature of such a Personal Content Storage Service (PCSS) is the ability to search worldwide through the dataset of 

personal files. Due to the extremely large size of the dataset of personal content, a centralized solution is no longer 

feasible and an interesting approach for an efficient distributed PCSS implementation is to use a structured peer-to-

peer network, and more in particular a Distributed Hash Table (DHT), providing a logarithmic lookup performance 

(i.e. logarithmic in the number of network nodes). In order to further increase the lookup performance, a caching 

layer is typically used between the application layer and the DHT. These caching strategies are location neutral, 

and typically do not exploit location dependence of request patterns. In this contribution we present the caching 

layer and introduce the cooperative Request Times Distance (RTD) caching algorithm and protocol, which uses 

popularity and distance metrics to increase the lookup performance of requests that exhibit location dependent 

patterns. We present a systematic analysis of the caching framework and compare the cooperative caching 

algorithm to the state-of-the-art Beehive replication strategy. The cooperative RTD caching solution shows that 

when request patterns are more localized, the increase in lookup performance through cooperation is significantly 

better than Beehive. 
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1 Introduction 

The interaction with digital information plays an important role in our daily life. Different websites, such as 

YouTube1 and Flickr2, offer platforms to store and share personal content (e.g. text documents, music files, digital 

photos and personal movies). Due to the explosive growth of the user’s personal content collections, managing those 

archives becomes a complex and time consuming task. Nevertheless, end-users expect that they can access and share 

their personal content from any device, anywhere and at any time. Current systems that offer storage space for 

personal content fail to achieve this in a scalable and quality-aware way, constraints (e.g. on files sizes and formats) 

need to be set on the content in order to cope with the workload. To be able to deal with the future workload, a 

centralized approach is no longer feasible. A Personal Content Storage Service (PCSS) is a networked solution that 

offers storage space to end-users in a transparent manner, which can be accessed from different types of devices 

independent of place and time. Figure 1 presents an architectural view on such a distributed content management 

platform, where users (i.e. clients) are connected to super nodes in the PCSS overlay network. 

 

The PCSS uses a (hybrid) Peer-to-Peer (P2P) architecture to support all necessary operations and the architecture 

is split-up in two high-level components: super nodes and clients. The key functions of the super node component 

(as schematically shown in Figure 1) concern user and content management (including replica management and 
                                                           
1 http://www.youtube.com/ 
2 http://www.flickr.com/ 

 

Figure 1: Overview of the Personal Content Storage Service architecture. 
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indexing), query handling, presence management, security provisioning, monitoring of the underlying P2P network. 

The client component is responsible for advertising shared content as well as retrieving and uploading personal 

content items. For end-users the PCSS acts as a virtual hard disk, as if personal content were accessed using their 

local file system. Additionally, end-users are relieved from cumbersome back-up issues, since the PCSS provides 

data integrity through replication. 

To efficiently lookup personal content references (i.e. through optimal content indexing), this paper presents a 

novel cooperative caching strategy that is able to react on location dependent request patterns and making use of an 

underlying Distributed Hash Table (DHT) infrastructure. A DHT is a (structured) P2P network offering scalable 

lookup with performance and functionally similar to a traditional hash table data structure. The caching strategy 

introduced in this paper is a more adequate and detailed explanation of the base algorithm presented in (Sluijs et al., 

2009). We make a thorough analysis of all parameters that are of concern for the caching framework and compare 

the cooperative caching algorithm with a state-of-the-art replication strategy called Beehive (Ramasubramanian and 

Sirer, 2004).  Beehive is based on a analytical model that finds the minimal replication level for each object such 

that the average lookup performance is a predefined constant number of (overlay) hops. Our solution clearly 

outperforms Beehive in case of (highly) localized request patterns due to the cooperation between caches. 

The article continues in Section 2 with an overview of related work, while Section 3 introduces the caching 

architecture for the PCSS. Section 4 provides the replication and caching algorithms, and both frameworks are 

validated and evaluated by simulations in Section 5. Conclusions and future work are presented in Section 6. 

2 Related work 

Different solutions exist for providing distributed storage of files, ranging from client-server systems (e.g. NFS 

(Callaghan et al., 1995), AFS (Howard et al., 1988) and Coda (Braam, 1998)) over cluster file systems (e.g. Lustre 

(Philip Schwan, 2003), GPFS (Schmuck and Haskin, 2002) and the Google File System (Ghemawat et al., 2003)) to 

global scale Peer-to-Peer (P2P) file systems (e.g. OceanStore (Kubiatowicz et al., 2000), FARSITE (Bolosky et al., 

2007) and Pangaea (Saito and Karamanolis, 2002)). However, none of the distributed file system are designed for 

efficiently handling scattered lookup of personal content items exhibiting locality in their request distributions, 

which is indeed a feature inherent to personal content. 
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Query search in unstructured P2P networks is done using a query flooding mode, using a TTL (Time-To-Live) 

mechanism to prevent overloading the network. In order to improve the efficiency of the query flooding model, 

Wang et al describe a distributed caching mechanism for search results in (Wang et al., 2006). However, using the 

TTL limit implies that personal content stored in such a network has no guarantees to be found, which makes this 

type of search mechanism less suitable for a PCSS. A data structure that guarantees that (even rare) objects that are 

stored in a network always can be located is called a Distributed Hash Table (DHT). A DHT is a structured P2P 

network that offers scalable lookup, similar to a hash table, where the average number of (overlay) per lookup 

request has a complexity of O(log N) with N the number of nodes in the DHT network. Different implementations of 

a DHT already exists, such as Chord (Stoica et al., 2003), Pastry (Rowstron and Druschel, 2001a), and Tapestry 

(Zhao et al., 2004). Various research studies have been performed to improve the lookup performance of DHTs. The 

Beehive (Ramasubramanian and Sirer, 2004) framework enables DHTs to provide an average (i.e. for all stored 

objects in the DHT) lookup performance of O(1) through proactive replication. According to the evaluation made in 

(Ramasubramanian and Sirer, 2004), Beehive outperforms the passive caching technique used by Pastry (Rowstron 

and Druschel, 2001b) in terms of average latency, storage requirements, work load distribution and bandwidth 

consumption. In passive caching, objects are cached along all nodes on a query path (Ramasubramanian and Sirer, 

2004), while Beehive’s replication strategy consists of finding the minimal replication level for each object such that 

the average lookup performance for the system is a constant C number of hops (Ramasubramanian and Sirer, 2004).  

Beehive assumes that there is a global power law (or Zipf-like) popularity distribution and requests are uniformly 

distributed over the network. However, in the scenario of the PCSS it is conceivable that locality exists in request 

patterns (Duarte et al., 2007), which has a major influence on the performance of a caching algorithm and requires a 

less expensive solution than Beehive. 

In (Bhattacharjee et al., 2003) results of queries are cached and are re-used to answer more detailed queries. In 

this way unnecessary duplication of work and data movement is avoided. The results of (conjunctive attribute) 

queries are cached in a view tree and are used later on to resolve queries that contain (parts of) the cached query 

results. Although the view tree tries to avoid duplication of work and data movement, each search query is issued to 

the root (node) of the view tree. This aspect prevents successful deployment of a view tree in a PCSS system, since 

it introduces a single point of failure. 
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Previous studies on caching techniques (Liu and Xu, 2004) or distributed replica placement strategies for Content 

Distribution Networks (CDN) (Kangasharju et al., 2002; Wauters et al., 2005) show that by taking distance metrics 

and content popularity into account, a performance increase is obtained compared to more straightforward heuristics 

such as Least Recently Used (LRU) or Least Frequently Used (LFU). An even larger performance increase can be 

obtained by using cooperative caching (Chae et al., 2002), compared to independent caching. In cooperative caching 

it is important to keep track of (neighbor’s) cache states and as a result of using neighbor caches the load is more 

evenly balanced among the nodes, leading to improved system scalability. The proposed caching strategy uses the 

distance metrics and content popularity, as well as cooperative caching to increase the PCSS lookup performance, 

where references of content are stored that exhibit locality in the distribution of requests over the network. 

3 Caching architecture for DHT performance optimization 

Since the dataset of personal content is extremely large and in order to deal with the future workload, a 

distributed approach to index the personal content collection is a prerequisite for the PCSS. As explained above, a 

Distributed Hash Table (DHT) allows for highly scalable lookup in extremely large distributed datasets. A <key, 

value>-pair is stored into the DHT and every node participating in the DHT is able to efficiently locate values that 

correspond to a certain key. For the PCSS, the key can be a file name, or could alternatively represent tags/keywords 

describing the personal content item. Often, the value represents a link to the location where the content is actually 

stored. To further optimize the content lookup process, typically a caching layer is introduced on top of the DHT 

(e.g. Pastry (Rowstron and Druschel, 2001b) and Beehive (Ramasubramanian and Sirer, 2004)). The caching layer is 

located between the application and DHT layer, and typically stores search results of important requests, as shown in 

Figure 2. 
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In the example of Figure 2, eight nodes span the Chord-based DHT network for storing references to locations of 

personal content. In this paper, Chord is used as DHT implementation, in view of its wide spread use and its 

inclusion in multiple P2P network simulators. The approach taken, however, can be applied to any underlying DHT 

implementation. By using a hash function both content references and nodes can be mapped to a numeric identifier 

space. In Figure 2 we assume that nodes depicted with a higher number have a higher numeric identifier. Each node 

is responsible for storing values belonging to keys, which numeric identifier is between the numeric identifier of the 

preceding DHT-node (excluding) and the numeric identifier of the current node (including). In order to efficiently 

route messages in a DHT, every node keeps a finger table. This finger table maps numeric identifiers to nodes, 

where the distance between the numeric identifier of the current node and the numeric identifiers in the finger table 

increases exponentially. In this way, messages are sent to a node at least half the distance of the key space closer to 

the destination node. When using the same numeric identifier space as the node numbers in Figure 2, the finger table 

of, e.g., node 0 contains mappings to node 1, 2 and node 4. In this way the average (and worst case) number of hops 

for a lookup has a complexity of O(log N), where N is the number of nodes in the DHT network (Stoica et al., 2003). 

When a user requests a personal content object in the PCSS, the DHT is used to lookup the link to the location 

the object is stored. Figure 2 also presents an example of a traditional lookup request, initiated by a user connected 

to node 0. Node 0 forwards the request to the node in its finger table with the numeric identifier closest to and 

 

Figure 2: The Personal Content Storage Service enhances the distributed hash table with a caching architecture 
to increase the lookup performance. 
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smaller than the hash value (i.e. node 4), this process is repeated until the target node is reached (i.e. node 6). 

Finally, the target node replies directly to the requesting node (i.e. node 0). Storing references to object locations 

into a DHT is performed in a similar way, except no reply message is returned. Since the value-part of <key, value>-

pairs are typically locations where (the latest version of) personal content items are stored, no synchronizations need 

to take place. 

To improve the lookup performance, the PCSS provides each node with a relatively small amount of storage 

space (the cache) to temporarily duplicate <key, value>-pairs, obtained from lookup results on the DHT. The cache 

contains a monitoring service component for measuring object popularity and for keeping track of neighbor cache 

information. By storing <key, value>-pairs on average closer to end-users, the average time (measured in number of 

hops) needed for a lookup decreases. Another benefit of the caching architecture is that multiple nodes are able to 

handle lookup request of popular content, which alleviates the hotspot problem (i.e. sudden huge popularity of a 

limited set of content items) enormously. 

4 Cooperative caching and proactive replication mechanisms 

In order to utilize the available cache space on each node efficiently, a caching or replication algorithm is 

mandatory to decide which entry to remove for a more valuable lookup result. The popularity of personal content is 

typically described by a power law (Zipf-like) distribution. This distribution states that some personal content is 

highly popular and the remainder of the content is more or less equally popular. In (1) the Zipf-like probability mass 

function (Breslau et al., 1999) is provided, where M denotes the number of personal content items and  is the 

exponent characterizing the distribution. 

௓ܲ௜௣௙ି௟௜௞௘ሺݔሻ ൌ
஑ିݔ

∑ aି஑୑
ୟୀଵ

 
(1) 

PZipf-like(x) determines the probability that a personal content object having rank x is requested, where x  {1, …, 

M}. This implies that a personal content object having a lower rank (i.e. a larger value for x) is less popular,  > 0. 

Typically for P2P file sharing applications the value of  is between 0.6 and 0.8 (Backx et al., 2002). 

In Section 4.1 the analytical model of Beehive’s proactive replication strategy is explained in detail and in 

Section 4.2 our cooperative caching strategy is introduced. 
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4.1 Beehive: proactive replication 

The replication framework of Beehive (Ramasubramanian and Sirer, 2004) enables a DHT to achieve (on 

average) constant lookup performance for power law (Zipf-like) popularity of stored content. Through proactive 

replication Beehive reduces the average number of (overlay) hops, where copies of stored content are actively 

propagated among multiple nodes in the network.  The goal of Beehive’s replication strategy is to find the maximum 

replication level L for each object such that the average lookup performance for the system is a predefined constant 

number of hops (Ramasubramanian and Sirer, 2004). In order to reach this goal, popular items are replicated to more 

nodes than less popular objects, aiming to minimizing both storage and bandwidth overhead. According to 

(Ramasubramanian and Sirer, 2004), Beehive is a general replication framework that can operate on top of any DHT 

implementation using prefix-routing, such as Chord (Stoica et al., 2003). In Chord-based DHT implementations the 

search space halves in each step of the lookup process (i.e. Chord is a DHT with base 2) and therefore provides 

O(log N) lookup performance, where N is the number of nodes in the DHT network. The main idea of Beehive is 

that the maximum number of hops for a lookup is reduced by h hops if objects are proactively replicated to all nodes 

on all query paths that logically precede the home nodes for the last h hops. A home node is the responsible DHT 

node for storing an object, according to the numeric identifier produced by the hash function of the key.  Beehive 

controls the number of replicas by assigning each stored object a replication level L. The maximum number of 

(overlay) hops, for every node in the DHT, to locate an object on level L equals L. When Chord (i.e. b = 2) is 

considered, each object replicated at level L is stored on ܰ/ܾ௅ ൌ ܰ 2௅⁄  nodes, where N is the number of nodes in 

the DHT. Figure 3 illustrates the replication level mechanism of Beehive. 

 

 

Figure 3: Beehive’s level of replication mechanism, the maximum level L for this situation is three. The lower 
the level for a stored item in the DHT, the more it is replicated to other nodes. The goal is to find the minimal 

replication level for each item such that the average number of (overlay) hops per lookup is constant.
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In Figure 3 a Chord-based DHT network is considered with 8 nodes, which means that the maximum replication 

level ݇ ൌ ଶሺ8ሻ݃݋݈ ൌ 3. All personal content references on level 3 are only stored on the home nodes of the objects. 

On level 2 personal content item references are replicated to 8 2ଶ ൌ 2⁄  nodes, including the home node. The number 

of replicas made on level 1 is 8 2ଵ ൌ 4⁄  and level 0 lets all nodes store a replica of the personal content reference. 

The lookup query inserted at node 0 to lookup a personal content reference that is located on node 7, requires 3 

(overlay) hops when the object is only stored on its home node (i.e. the replication level is 3). When the replication 

level for this object is set to 2, Figure 3 depicts that the number of (overlay) hops is reduced to 2 hops. The 

(maximum) number of hops can be reduced to one hop, when the object has a replication level of 1. When the 

number of hops for the objects has to be 0, all nodes store the object (i.e. replication level 0). In this way each stored 

item in the DHT receives a replication level, based on the popularity of the the item, so that the weighted average of 

the maximum number of hops for a lookup request for a stored item in the DHT matches a predetermined target 

number C. 

Let fi denote the fraction of items replicated at level i or lower (i.e. fk = 1, where k is the maximum replication 

level). When M is the total number of items stored in the DHT, Mf0 most popular objects are replicated at all nodes. 

The number of objects that have a maximum number of i (overlay) hops per lookup request is Mfi – Mfi-1. The 

average storage (i.e. average number of objects stored) on a node for a DHT implemenation with base b is expressed 

whith the following equation (Ramasubramanian and Sirer, 2004): 

ܯ ଴݂ ൅
ሺܯ ଵ݂ െ ଴݂ሻ

ܾ
൅ ⋯൅

ሺܯ ௞݂ െ ௞݂ିଵሻ

ܾ௞
 (2) 

When Q(m) represents the total number of lookup requests to the most popular m items, the number of queries 

that travel a maximum of i (overlay) hops is Q(Mfi) – Q(Mfi-1). The target number of hops C is reached when the 

folling expression is fullfilled on the weighted average of the maximum number of (overlay) hops: 

෍݅ ∙
ܳሺܯ ௜݂ሻ െ ܳሺܯ ௜݂ିଵሻ

ܳሺܯሻ
൑ ܥ

௞

௜ୀଵ

 (3) 

Note that the target number of hops C is the weighted average of the maximum number of (overlay) hops for a 

lookup request for a stored item in the DHT and not the average number of (overlay) hops as considered in 

(Ramasubramanian and Sirer, 2004). Finally, assume that in the optimal solution the problem ଴݂ ൑ ଵ݂ ൑ ⋯ ൑
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݂௞ᇲିଵ ൏ 1, for some ݇′ ൑ ݇. In (Ramasubramanian and Sirer, 2004) this leads, using equation (3), to the following 

closed-form solution that minimizes the (average) storage requirement but satisfying the target number of hops C: 

௜݂
∗ ൌ ቈ

݀௜ ∙ ሺ݇ᇱ െ ሻ′ܥ

1 ൅ ݀ ൅⋯൅ ݀௞
ᇲିଵ
቉

ଵ
ଵିఈ

, ∀0 ൑ ݅ ൏ ݇′ (4) 

Where ݀ ൌ ܾ
భషഀ

ഀ ᇱܥ , ൌ ܥ ∙ ቀ1 െ
ଵ

ெభషഀቁ and α is the parameter describing the (Zipf-like) popularity distribution. 

The value of k’ can be derived by satisfying the condition that fk’-1 < 1, that is, 
ௗೖ

ᇲషభ∙൫௞ᇲି஼ᇱ൯

ଵାௗା⋯ାௗೖ
ᇲషభ

൏ 1. All ௜݂
∗ ൌ 1, ∀݇′ ൑

݅ ൑ ݇. With the closed-form solution of (4) the fraction fi is approximated by ௜݂
∗, to achieve the desired constant 

lookup performance and k’ represents the upper bound for the worst case number of (overlay) hops for a lookup 

request. 

Since the analytical model of Beehive provides the optimal solution to increase the lookup performance, we use 

the analytical model to compare it with our cooperative caching strategy. In the experiments we have assumed that 

the popularity of items is known, such that the replication level can be set for all items. This approach allows to 

investigate the performance after warm-up of the system. 

4.2 RTDc: cooperative caching 

An important concept for the caching algorithm is that locality exists in the request patterns of nodes inserting 

lookup requests. This idea is supported by the research performed by Duarte et al in (Duarte et al., 2007), where 

geographical characterizations of requests patterns are studied for YouTube content. However, until now no 

concrete and generalized probability mass function has been proposed (either based on theoretical or experimental 

grounds) that describes the locality based request distribution. Here, we model locality using a Normal function, 

where the mean is  and  the standard deviation. 

Let PNormal(y) be the probability that a personal content item is requested from node y. Parameter  represents the 

uploading (super) node, since it is conceivable that the (super) node that inserts the personal content object has the 

highest probability to request it. The value  is used to model the locality of requests over the network. A higher 

value of  makes the distribution more uniform, since more neighboring nodes will request the personal content 

item. 
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Basic DHTs use hash functions to map nodes onto the numeric identifier space, which means that nodes are more 

likely to have different neighbors in the DHT than in the actual network topology. Different research studies are 

already performed that address the issue of including physical neighboring nodes as logical neighbors in DHTs 

(Castro et al., 2003; Weiyu et al., 2008), in order to reduce latencies in overlay hops. In (Weiyu et al., 2008) the 

network topology is embedded into the DHT by assigning a locality-aware identifier to each node. In our use case, 

we assume that the DHT is locality-aware, neighbors in the PCSS overlay network map to neighboring nodes in the 

physical network. 

Since we want to reduce the average number of hops needed for a lookup, the caching algorithm we propose 

reacts on both popularity and distance of lookups. The popularity pn,a represents the total number of requests to an 

object a, initiated by node n. The distance dn,a of a personal object a is measured by the number of (overlay) hops 

needed to obtain the lookup result from the requesting node n and the responsible node storing the object. The 

importance In,a for node n to store object a, which is used as a metric in the Request Times Distance (RTD) caching 

algorithm, is calculated as: 

௡,௔ܫ ൌ ௡,௔݌ ൈ ݀௡,௔ 
(5) 

Consequently, the references to personal content objects with the highest importance values for In,a in (5), will be 

stored in the local cache of node n. In (Sluijs et al., 2009) the RTD caching algorithm is extended with a sliding 

window in order to react on  changes in content popularity. By adding a sliding window, only the last T requests that 

arrived in a node are used to determine the popularity of the requested content. However, to compare the caching 

algorithm with the analytical model of Beehive the sliding window size is set to infinite, since the popularity 

distribution of the stored content is constant during each simulation run. 

Since in a Chord-based DHT each node knows its predecessor and successor node on the DHT ring (to be able to 

update finger tables when nodes suddenly join or leave the DHT network) the performance of the caching algorithm 

can be increased by keeping a local copy of both neighbors’ cached keys. In order to keep the storage overhead to a 

minimum, only keys of both direct neighbors are kept locally. This cooperative caching strategy utilizes the 

neighbors’ caches to virtually increase the size of the local cache. In this way, nodes can avoid storing the same 

copies of <key, value>-pairs that can be retrieved from their neighbor, in only one hop. Figure 4 visualizes the 

update protocol for the three possible scenarios of performing a lookup using cooperative caching. In all scenarios 
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the destination node for the lookup is node 6 (i.e. the node responsible for storing the values belonging to the search 

key), the request is initiated from node 0 and the node numbers are used as the numeric identifier space. Figure 4a 

considers the case where the local copies of the cache entries of the neighbor nodes do not contain the search key of 

object a. The scenario in Figure 4b describes the case that the local copy of the cache entry of the neighbor node, in 

this case node 1, contains the search key. And Figure 4c represents the scenario where node 0 wrongly assumes that 

node 1 caches the search key of object a (i.e. in between cache update messages). 

 

When the local copy of the neighbor’s cache does not contain the search key (Figure 4a), the lookup is performed 

as usual. A request message REQ (a) is routed via node 4 to node 6. Node 6 responds by sending the requested value 

using a reply message REP (b). In the case that node 0 decides to cache the lookup value, it updates the local cache 

table of both its neighbor nodes with the cache update message CACHE (c). These nodes then re-compute their 

values of the importance I1,a and I7,a of object a, as the distances d1,a and d7,a are now equal to one hop. No extra 

lookup delay is introduced by this update mechanism. 

In the case that one (or both) of the local copies of the neighbor’s caches contain the search key, the lookup 

request is routed to that neighbor node. In Figure 4b the local copy in node 0 of the cache entries of node 1 has the 

search key, so the request message REQ (d) is forwarded to node 1. When node 1 still has the value of the search 

key in its cache, it updates the popularity p1,a and responds the value using the reply message REP (e). Node 0 again 

decides whether or not to cache locally the lookup value, in the case node 0 keeps the lookup results in its local 

cache it uses the cache update message CACHE (c) to inform the neighbors. 

 

Figure 4: Three scenarios for a lookup using cooperative caching. Scenario (a) describes the case where local 
copies of neighbor cache entries do not contain the search key. In scenario (b), one of the local copies of the 
neighbor’s cache contains the search key and in scenario (c) the situation that the requesting node wrongly 

assumes that its neighbor’s caches the search key is depicted. 
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The situation that node 1 no longer caches the value of the search key and has not sent the corresponding cache 

update message CACHE to its neighbors yet (i.e. it very recently released the value), is illustrated in Figure 4c. The 

lookup message REQ (d) is forwarded by node 1 as usual using the request message REQ (f) via node 5 to node 6. 

Node 6 responds with the value of the search key, using the reply message REP (g). Similar to the other two 

scenarios, node 0 decides whether or not to store the result in its cache by computing the importance I0,a of object a 

(with distance d0,a = 1 if the entry is stored in its neighbor’s cache), and informs the neighbors in case of a cache 

change with the cache update message CACHE (c). Only in the case when a neighbor is contacted erroneously 

because it very recently released the requested value, one extra hop is added to the lookup delay. In all other cases, 

no extra delay is introduced. 

To illustrate the inner working of the RTD caching algorithm, Figure 5 presents the pseudo-code for the methods 

that describe the initiation of a lookup request, receiving a lookup reply and receiving a cache update message. 

Other routines used by the DHT are not changed by the RTD algorithm. 
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When a user initiates a lookup request, the method on line A.01 of Figure 5 is invoked. When the node is already 

storing (or caching) a local copy of the lookup result itself (A.02), the result is returned directly to the user (A.03). 

Otherwise, the node checks whether a neighbor caches the lookup result (A.04) and, if so, the request is then sent to 

that neighbor (A.05). In the case that result is not stored or cached locally, and not available through a neighbor’s 

cache, the request is sent as a traditional DHT lookup (A.08) by using the hash function (A.07) to determine the 

target node. 

A.01 initiateLookupRequest(key) { 
A.02  if(storedOrCachedOnThisNod(key) { 
A.03   return lookup_result; 
A.04  } else if(neighborCachesKey(key)) { 
A.05   sendLookupRequest(neighbor, key); 
A.06  } else { 
A.07   targetNode = hash(key); 
A.08   sendLookupRequest(targetNode, key); 
A.09  } 
A.10 } 
 
B.01 receiveLookupRequest(key) { 
B.02  if(storedOrCachedOnThisNode(key)) { 
B.03   sendLookupResult(key); 
B.04  } else { 
B.05   targetNode = hash(key); 
B.06   sendLookupRequest(targetNode, key); 
B.07  } 
B.08 } 
 
C.01 receiveLookupReply(key, value) { 
C.02  updateCounters(key); 
C.03  if(storedOrCachedOnThisNode(key)) { 
C.04   return; 
C.05  } 
C.06  lowest_importance_value = 
C.07    getLowestImportanceValueofCachedKeys(); 
C.08  lookup_importance_value = calculateImportanceValue(key); 
C.09  if(lookup_importance_value > lowest_importance_value) { 
C.10   removed_key = removeLowestImportanceValueKeyFromCache(); 
C.11   insertNewKeyIntoTheCache(key, value); 
C.12   updateCacheChangeToNeighbors(removed_key, key); 
C.13  } 
C.14 } 
 
D.01 receiveCacheChangeUpdateOfNeighbor(removed_key, key) { 
D.02  neighbor_cache.remove(removed_key); 
D.03  neighbor_cache.add(key); 
D.04 } 

Figure 5: Pseudo-code of the method that handles the reply messages REP of lookup requests. 



 
 

15 
 

Upon receiving a lookup request (B.01), the node replies (B.03) the result to the requesting node when the node 

is storing or caching the lookup result (B.02). In the case the node is not storing or caching the lookup result (in the 

situation of Figure 4c), the request is forwarded (B.06) as usual to the target node (determined by using the hash 

function (B.05)). 

The node initiating the lookup request receives the lookup reply through method C.01. First, the counters that 

measure the popularity of objects and the distance (i.e. overlay hop count) needed to obtain the lookup request are 

updated (C.02), ensuring that the importance values are calculated correctly. In the case where the node already 

stores or caches the lookup result, no further actions need to take place (C.03). Otherwise,  the entry in the local 

cache having the lowest importance value is retrieved (C.06) and the importance value of the lookup result is 

calculated (C.08) using equation (5). When the importance value of the lookup result is larger than the lowest 

importance value (C.09), the entry having the lowest importance value is evicted from the cache (C.10) and replaced 

by the lookup result (C.11). Finally, the neighbors are updated of the local cache change (C.12) using the cache 

update message CACHE. 

When a node receives the cache update message CACHE (D.01), the node removes the old entry (D.02) from the 

local copy of the specific neighbor’s cache entries and adds the new neighbor’s cache entry into the local copy 

(D.03). 

5 Evaluating cooperative caching with proactive replication 

In order to compare the (cooperative) RTD caching algorithm to the analytical model of Beehive, the discrete-

event simulator PlanetSim (Pujol Ahulló et al., 2009) is used. PlanetSim offers a framework to simulate large scale 

overlay services and networks, such as DHTs, and can be extended at the network, overlay or application layer. For 

the validation and evaluation of caching algorithms, we have extended PlanetSim at the application layer with a 

lookup service that can use the RTDc caching algorithm or Beehive’s replication model. An advantage of PlanetSim 

is that it already has an implementation of the DHT lookup protocol Chord (Stoica et al., 2003). For each simulation 

the DHT network is created by PlanetSim and randomly selected <key, value>-pairs are inserted into the network, so 

that every personal content reference is initially stored on only one node. When the replication strategy of Beehive is 

used, all objects are replicated into the caches according to the analytical model of Beehive. When the RTDc 

(cooperative RTD) caching algorithm is used, the sizes of the caches are calculated according to the analytical 
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model of Beehive and are left empty. To initialize (i.e. warm-up) the network properly for RTDc, a startup phase is 

used where search queries enter the network using the cooperative caching algorithm to decide which lookup result 

to cache. After the whole network is initialized properly, search queries are made by the peers according to the 

popularity and locality distribution. The simulation stops when the network reaches a non-equilibrium steady state, 

i.e. when the average number of hops and the cache hit ratio have stabilized. In order to cancel out noise due to 

random fluctuations, the average values over ten independent simulation runs are used. 

In Section 5.1 both algorithms are compared using the traditional uniform distribution of requests over the DHT 

network. The distribution of lookup requests for personal content retrieval is expected to be more localized, 

therefore Beehive is compared with RTDc using the locality in lookup requests in Section 5.2. Finally, section 5.3 

makes a more detailed study of the RTDc caching algorithm, addressing the message overhead of the update 

protocol and the temporal behavior of the RTDc caching framework. 

5.1 Comparing Beehive with RTDc for traditional distribution of lookup requests 

The analytical model of Beehive is used to calculate the replication factor for each personal content reference. 

The solution that Beehive proposes aims to minimize the storage space (i.e. number of personal content references 

stored), while offering a predetermined average number of (overlay) hops per lookup request, where the distribution 

of lookup requests over the network is expected to be uniform. As explained in Section 4.1, the target hops C of 

Beehive is the weighted average of the maximum number of (overlay) hops per item stored in the DHT. Figure 6 

illustrates the relation between the average number of (overlay) hops in relation to the average storage space on a 

node. Three different curves are presented in Figure 6: Beehive calculated analytically (the dots representing the 

simulated results of the weighted average of the maximum number of hops), the simulated average number of hops 

for Beehive and simulated average number of hops for the cooperative RTD caching algorithm. In order to compare 

our caching framework with Beehive, all input parameters are set beforehand and used for each personal content 

item to determine in which replication level it belongs. In the simulation setup the network size N is set to 32 nodes, 

the number of personal content items M is 50 × N, the power law (Zipf-like) popularity distribution parameter α is 

0.6. In order to get representative results for the weighted average of the maximum number of hops for each 

personal content object, a random personal content item is selected and is requested by all nodes in the DHT 

network. 
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As shown in Figure 6, for relatively small caches, Beehive outperforms the RTDc considerably. This due to the 

fact that each node in the DHT makes independent estimations of the popularity distribution. When the cache space 

is relatively small, small mistakes in the estimations of the most important content have a high impact on the 

performance of the caching algorithm. As explained in Section 4.1, the output of Beehive’s analytical model is the 

weighted average of the maximum number of overlay hops per stored item. Therefore, the simulated weighted 

average of the maximum number of hops is plotted onto the analytical curve, which shows the correct working of 

the simulation framework. In order to compare the average number of (overlay) hops for RTDc and Beehive, the 

simulation results of the average number of hops per lookup request for Beehive are used in the remainder of the 

article. 

Figure 7 depicts the number of nodes storing a replica for each personal content item for both the Beehive and 

RTDc strategies, where the personal content items are sorted by their popularity rank (i.e. the smaller the rank, the 

more popular the personal content object). The same simulation results are used as for Figure 6 (i.e. N = 32, M = 50 

× N and α = 0.6), the target average number of hops C for Figure 7a is set to 1.0 and for Figure 7b to 2.0. 

 

Figure 6: Number of hops per lookup request in relation to the average storage per node, for Beehive analytically 
calculated with dots representing simulated results of the weighted average of the maximum number of hops, 

simulated average number of hops for Beehive and simulated average number of hops for the cooperative RTD 
caching algorithm. 
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Figure 7 shows that Beehive replicates a larger fraction of popular content items to more nodes, in order to 

decrease the average number of hops. When the same amount of storage space is provided to the RTDc caching 

framework, the RTDc caching algorithm also tries to cache popular content more often. However, the performance 

increase of RTDc compared to Beehive is lower (as depicted in Figure 6), since RTDc also caches a lot of relatively 

unpopular content. Note that the analytical model of Beehive has a perfect centralized view on content popularity 

beforehand. 

5.2 Comparison between RTDc and Beehive for distributed lookup of personal content 

In Figure 8 the influence on the performance when introducing locality of lookup requests on RTDc is shown, 

when the simulation has reached the non-equilibrium steady state situation. Since the performance of Beehive is not 

affected by the locality distribution of lookups, the average number of hops curve of Beehive (see Figure 6) is 

plotted as a reference. In order to get results for a larger P2P network the network size N is scaled to 256 nodes, the 

number of personal content items M is 50 × N, the power law (Zipf-like) popularity distribution α is 0.6 and the 

locality parameter σ ranges from 1.0 to 10.0. 

 
Figure 7: Relation between the number of caches that store a personal content reference and the popularity rank 

of the personal content reference for the both the model of Beehive as the cooperative RTD caching algorithm. A 
lower rank indicates a higher popularity and in (a) the target number of  hops C is set to 1.0 and in (b) to 2.0.
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Figure 8 illustrates that a higher locality in the request pattern (i.e. a lower value of the locality variance 

parameter σ) increases the lookup performance when RTDc is used. When the cache space is relatively low, a more 

localized requests distribution induces a relatively higher performance gain. 

5.3 Detailed evaluation of the RTDc caching algorithm 

In this section the RTDc caching algorithm is evaluated in more detail in terms of message overhead, and more 

specifically overhead generated by the update protocol described in Section 5.3.1. This is done by inspecting the 

fraction of lookups that uses cooperative information versus standard lookup requests in Section 5.3.2. In addition, 

Section 5.3.3 examines the dynamic behavior of RTDc. Section 5.3.4 investigates the content of caches in terms of 

popularity. 

5.3.1 Message overhead of the update protocol for cooperative caching 

Although the main goal of the caching framework is to reduce the average number of hops required to obtain a 

lookup result, the message overhead created by keeping cache states of neighbors up-to-date should be as a low as 

possible. Therefore, the average number of messages sent (and forwarded) for a lookup request is shown in Figure 9, 

in relation to the network size (Figure 9a and Figure 9b) and the cache size (Figure 9c and Figure 9d). For these 

simulations the network size N is set to 256 nodes, the cache size is 10 items, the number of personal content items 

 
Figure 8: Influence on the performance of introducing locality in lookup request for RTDc with different values 

for the locality variance parameter σ. Since the performance of Beehive is not affected by the locality 
distribution of lookups, the curve representing the average number of hops for Beehive (of Figure 6) is plotted as 

a reference.
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M is 50 × N, the power law (Zipf-like) popularity distribution α is 0.6 and the locality parameter σ is set to 1.0 and 

3.0. 

 

In Figure 9a (σ = 1.0) and Figure 9b (σ = 3.0) the message overhead is depicted in relation to the network size, for 

the situation where no caching is used and the case that every node has a cache size of 10 items. The average amount 

of reply messages for a lookup request is (close to) one (i.e. only requests for items located on the requesting node 

need no lookup reply message REP) and independent of the network size, for the situation where no caching is used. 

When caching is enabled, the average number of reply messages REP per lookup request further reduces, since 

cache hits on the requesting node need no reply message as well and is still independent of the network size (i.e. the 

total number of items and cache size increases linearly with the network size). When the caching framework is used, 

both Figure 9a and Figure 9b show that the average number of sent and forwarded messages to obtain a lookup 

 
Figure 9: Average message overhead for a lookup request in relation to the network size (a: σ = 1.0 and 

b: σ = 3.0) and the cache size (c: σ = 1.0  and d: σ = 3.0). The message overhead is measured by the number of 
reply messages REP, request messages REQ en cache update messages CACHE. The cache size for (a and b) is 

set to 10 entries per node and is compared to the situation no caching is used. The network size of (c and d) is set 
to 256 peers.  
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result (REP plus REQ messages) decreases significantly compared to the situation caching is disabled. The total cost 

(measured in terms of average number of messages for each lookup request, including cache update messages 

CACHE) of the cooperative RTD caching algorithm in Figure 9a and Figure 9b is considerably less than the total 

average cost for a lookup request when no caching is used, for all network sizes. This implies that the cooperative 

caching framework is able to efficiently update cache states to neighbors, without introducing extra network 

overhead. 

When the cache size increases, Figure 9c (σ = 1.0) and Figure 9d (σ = 3.0) illustrate that the average number of 

reply and request messages decreases, since more objects are cached at (multiple) nodes. The message overhead 

created by the update protocol slightly increases when the cache size increases (i.e. the required number of cache 

update messages CACHE), because multiple items of similar popularity are stored in the same cache, which results 

in more cache changes taking place. However, the increase in the average number of cache update messages 

CACHE in Figure 9c and Figure 9d is much smaller than the decrease in average number of reply and request (REP 

plus REQ) messages and therefore has no negative impact on the performance of the caching algorithm. The 

benefits of using the cooperative caching via the cache update protocol are higher than the cost that is introduced to 

keep neighbor cache states up-to-date. 

5.3.2 Fraction of lookup request using cooperative versus standard lookup 

In (Sluijs et al., 2009) we show that using the update protocol to inform neighbors of cache state changes results 

in a performance surplus for the RTD algorithm, since the average number of cache duplicates between neighbors is 

reduced significantly. To understand this performance increase better, Figure 10 depicts the fraction of lookup 

requests that use cooperative information and the fraction performing standard DHT lookups. The same simulation 

setup is used as for Figure 9 (i.e. N = 256, M = 50 × N, α = 0.6, and σ is 1.0 and 3.0). 
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Figure 10a (σ = 1.0) and Figure 10b (σ = 3.0) indicate that when the network size increases, the fraction of lookup 

requests using cooperative information (i.e. a neighbor caches the result of the lookup request) is stable. However, 

when the cache size increases, Figure 10c (σ = 1.0) and Figure 10d (σ = 3.0) illustrate that the fraction of lookup 

requests using cooperative information initially increases and then slightly decreases. The increase can be explained 

by the fact that nodes get more space available to cache lookup results that are also requested often by their 

neighbors. When the cache space increases even further, all nodes can store those lookup results themselves and 

therefore the fraction of lookup requests using cooperative information decreases. In all simulations, the lookup 

requests that use cooperative information successfully find the result at their neighbor (i.e. scenario (c) of Figure 4 

did not occur during the simulation experiments). 

 
Figure 10: The fraction of lookup requests that is performed using standard lookup and the fraction using 

cooperative information is plotted as a function of the network size (a: σ = 1.0 and b: σ = 3.0) and the cache size 
(c: σ = 1.0 and d: σ = 3.0). The cache size for (a and b) is set to 10 items per node and the network size of (b and 

c) is set to 256 peers.
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5.3.3 Temporal behavior of the RTDc caching framework 

Another important aspect of the caching framework is the behavior of cache changes over time. In Figure 11 the 

number of local cache changes over the last 10 lookup requests are shown as a function of the number of lookup 

requests initiated. For each simulation run 10 nodes are randomly chosen that record the moments their cache 

changes, finally, the averages are taken over all nodes together (over ten independent simulation runs). The same 

simulation setup is used as for Figure 9 (i.e. N = 256, M = 50 × N, α = 0.6), with locality variance σ 1.0 and 3.0, and 

a cache size of 10 items for each node. 

 

Figure 11 shows that the average number of cache changes for the first 10 lookup requests is higher when σ is 

lower. During initialization, when σ is larger the chance that a neighboring node initiates a lookup request for a local 

item is larger, therefore the chances are lower that the same item is requested from the local node. Due to this lower 

probability, the average number of cache changes in the first 10 lookup requests are larger when the value σ is 

higher (i.e. the caches start empty, which means that the first 10 distinct requests result in a cache change) and thus 

also requires more lookup request to get a (more or less) stabilized cache change rate. 

When reaching steady state, cache changes regularly take place, with a higher average number of cache changes 

for a smaller value of σ and a larger cache size. When σ is smaller the probability that neighbors request items that 

are popular for a node is smaller (i.e. the distribution of requests gets more localized), and therefore neighbor’s 

caches can be used less often which requires nodes themselves to decide whether to cache an item. A larger cache 

 
Figure 11: Average number of cache changes (over the last 10 requests) in relation to the number of lookup 

requests initiated locally, the cache size is set in (a) at 10 entries and in (b) at 50 entries. 
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size (Figure 11b) indicates that more lookup results are stored locally that have similar importance values. 

Therefore, the average number of cache changes over the last 10 lookup requests is higher for a larger cache size. 

To examine the relative importance of replaced cache entries, Figure 12 depicts the normalized fraction of cache 

removals for each personal content item stored in the PCSS. On the x-axis, the personal content items are ranked 

according to their afterwards calculated rank number (i.e. rank 0 is the locally most important object). The same 

simulation results are used as for Figure 11 (i.e. N = 256, M = 50 × N and α = 0.6). 

 

The optimal solution is to cache the most locally important items at all times (i.e. with highest values for In,a). By 

measuring the frequency that a specific item is located in the cache, the importance of the item for that node can be 

established (automatically taking cached items of neighbors into account). Figure 12 depicts, as expected, that the 

locally most important personal content items are removed less often from the cache than the objects that are just 

slightly less popular. The reason that the fraction of cache removals decreases when the local popularity rank 

decreases further, is that those less important items are sometimes accidentally cached and are removed almost 

instantly. The chance that a less important object is requested decreases according to the personal content rank 

number and therefore the number of cache removals decreases. When the lookup pattern is more location dependent, 

the fraction of cache removals is more concentrated on the locally important personal content items, since the 

probability that a less important item is requested is lower (i.e. a lower value of locality variance σ indicates a higher 

fraction of lookup requests of locally more important items). Figure 12b shows that when the cache size increases, 

the most important items are not removed at all once they are stored locally in a cache. Additionally, cache removals 

 
Figure 12: Normalized fraction of cache removals in relation to the local personal content rank number. In (a) the 

fraction of cache removals is shown for a cache size of 10 items and in (b) the cache size is set to 50 entries. 
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are also more evenly distributed over all items, since there is more cache space to store (more or less) equally 

important lookup results. Most of the cache changes involve two lookup results having a roughly equal importance 

value. 

5.3.4 Fraction of nodes caching locally popular personal content items 

The fraction of nodes caching a specific item in its final cache state is depicted in Figure 13, the location variance 

σ is set to 1.0 (a) and σ is set to 3.0 (b). For each node the local theoretical importance rank is calculated by 

multiplying PZipf-like(x) with PNormal(x), where x is an item stored in the DHT (i.e. the popularity rank does not take 

neighbor values into account). For each item the availability of that item at one (or both) of the neighbors is also 

measured, when the specific item is not stored in the local cache. The same simulation parameters are used as for 

Figure 11 (i.e. N = 256, M = 50 × N and α = 0.6) with a cache size of 10 entries at each node. 

 

Figure 13 shows that on average more than 80% of the nodes are storing the locally most popular object into their 

cache. More than 20% of the nodes store on average their top 10 locally most popular items. In the case that a node 

does not store a top 10 item in its cache, chances are relatively high that one (or both) of the neighbors is caching 

that particular object. When the locality of lookup requests decreases (i.e. the value of locality variance σ increases), 

the chance increases that a neighbor caches a specific item that is not available from the local cache. For the 

situations depicted in Figure 13, more than 60% of all nodes is able to obtain their top 10 local popular items within 

one (overlay) hop. 

 
Figure 13: Relation between the average fraction of nodes (and their neighbors) caching an object and the 

objects, ordered by their local rank (i.e. the smaller the rank number, the more popular the object is on a node 
locally). Part (a) of the figure shows the simulation results for locality variance σ set to 1.0 and (b) the results for 

locality variance σ set to 3.0.
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6 Conclusion and future work 

In order to successfully deploy a Personal Content Storage Service (PCSS), it has to provide storage space to 

end-users transparently, with small access times, and available at any place and at any time. One of the main 

features of a PCSS is the ability to search through the dataset of personal files. To optimize searching times in a 

PCSS, we introduced a caching solution on a Distributed Hash Table (DHT). The scalability of a DHT is increased 

by using the cooperative Requests Times Distance (RTDc) caching algorithm. 

The RTDc caching framework is compared to the state-of-the-art proactive replication framework Beehive. 

When the lookup request distribution over the nodes (participating in the DHT) is uniform, the analytical model of 

Beehive provides a better performance increase compared to our RTDc caching solution. However, the analytical 

model of Beehive has a perfect centralized view on the content popularity beforehand and therefore no performance 

is lost by making small mistakes when estimating the popularity parameters. Furthermore, it is highly conceivable 

that lookup requests are localized (i.e. popularity of objects is different for each node). Unlike the RTDc caching 

framework, Beehive has no mechanism to take advantage of the locality pattern. When locality exists in the request 

distribution of lookup request, the RTDc caching algorithm outperforms Beehive quickly. Besides the comparison 

between the RTDc caching algorithm and Beehive, this paper also presents a more detailed evaluation of RTDc’s 

inner working. We show that the message overhead caused by the update protocol to enable cooperative caching is 

acceptable, since the performance increase (i.e. reduction of the average number of hops needed for a lookup 

request) is higher than the cost the update protocol introduces. Besides that, the simulation results show that more 

than 20% of the nodes store on average their top 10 locally most popular items. When a node does not store a top 10 

item in its cache, the chances are relatively high that one (or both) of the neighbors is caching that particular item. 

Although the proposed solution optimizes the scalable lookup in a DHT, it can only be used for lookup when the 

exact name of the key is known. This deterministic search property introduces limitations on the suitability of using 

a DHT for a PCSS. However, the performance of any existing DHT-based framework offering multiple keyword 

and range queries can already be increased by the proposed framework. Nevertheless, we plan for further research to 

focus on optimizing DHTs by enabling multiple keywords and range query searches, since currently no solution 

exists that fulfils all needs for a PCSS. An issue not addressed in this article is that by reducing the time it takes to 

obtain content locations does not imply that the actual content itself can be accessed quickly. Therefore, we plan to 
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investigate caching/replication algorithms for personal content itself, in order to allow fast access of personal 

content by using a PCSS. 
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