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Abstract

CRESS (Communication Representation Employing Systematic Specification) is
introduced as notation, a methodology and a toolset for service development. The
article focuses on rigorous development of composite grid services, with particular
emphasis on the principles behind the methodology. A straightforward graphical nota-
tion is used to describe grid services. These are then automatically specified, analysed
and implemented. Analysis includes formal verification of desirable service properties,
formal validation of test scenarios, testing of implementation functionality, and evalu-
ation of implementation performance. The case study that illustrates the approach is
document content analysis to compare two pieces of text. This involves two composite
services supported by two partner services. The usability of the service design notation
is assessed, and a comparison is made of the approach with similar ones. These show
that the CRESSapproach to developing services is usable and more complete than other
comparable approaches.
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1. Introduction

1.1. Objectives
The overall goal of this work is an integrated methodology for developing a wide

variety of services. A case study is presented of developing composite grid services,
but the approach has also been used to create telephony services, interactive voice ser-
vices, device services and composite web services. The grid [11] has emerged as an
important approach to distributed computing. Much like the electricity grid, a com-
puting grid provides computational capacity on demand. Grid services can be seen
as an extension of web services, with features such as dynamic service selection and
distributed resource access.
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Communications services are of increasing importance to industry and are there-
fore becoming quality-critical. The authors believe that practical formal methods such
as described in this paper will make a useful contribution to service quality. The metho-
dology described in this article covers service description and specification, verifica-
tion and validation, implementation, testing and performance evaluation. In industrial
practice, service development tends to be pragmatic: services are designed, coded and
tested using traditional (and manual) software engineering techniques. However, online
services are becoming increasingly mission-critical in many applications. Services are
often combined with others for B2B communication (Business-to-Business). The ser-
vices can be complex, concurrent, and risk unexpected interference. There is a strong
need for techniques that deliver dependable services exhibiting desired properties, cou-
pled with automatic code generation to turn these into reality.

Formal approaches are not so common in industry, except in a few specialised
application areas such as safety-critical systems. The authors have tried to automate the
methodology as far as possible and to make it accessible to non-specialists. Although
researchers have aimed at improving service development, they have generally tackled
only certain aspects of design and in ways that require detailed technical knowledge.

This article describes CRESS(Communication Representation Employing System-
atic Specification). CRESSoffers a notation for services, a methodology for service
development, and a comprehensive toolset. Currently CRESShandles services in seven
different domains, and supports code generation for five different languages. The foun-
dational work in [33] introduced a notation for telephony features. This was subse-
quently adapted in [34] to describe web services and in [31] to describe grid services.
The service development methodology has recently been rounded out with capabilities
for convenient formal verification and implementation evaluation. Relative to previous
publications on CRESS, this article covers the complete methodology, grid applications,
development principles, and practical formal verification and validation.

1.2. Structure of The Article
Section 2 gives the technical background to the work, placing CRESS in context.

Related work is described on specifying, implementing and testing composite web and
grid services.

Section 3 explains service development with CRESS. The methodology is illus-
trated with respect to grid service development, including the subset of CRESSused in
this article. The techniques for formal verification and formal validation are discussed.

Section 4 describes a case study that makes use of grid services. A document
matching service makes use of a scoring service to compare texts for similarity. The
diagrammatic service descriptions are automatically specified, verified and validated.
Once confidence has been built in the service design, it is automatically implemented
and deployed. In a final step, the implementation is automatically evaluated for correct
functional behaviour and adequate performance.

Section 5 evaluates usability of the CRESSnotation and compares CRESSto similar
approaches. Section 6 rounds off the article with a summary of the approach.
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2. Background

2.1. Modelling Services with CRESS

A service is an abstraction of the functionality provided by an application. SOA
(Service Oriented Architecture) has become popular as a means of creating systems
from loosely coupled components. A service offers a black-box, interface-oriented
view of application functionality. As well as dealing with individual services, SOA also
supports composing services into new ones. This offers new business opportunities, but
with the added complexity of having to integrate a number of services seamlessly.

Service composition is also called service orchestration or workflow definition. A
survey of workflow languages and an assessment of standards in this area are given by
[28]. WS-BPEL (Web Services Business Process Execution Logic [2]) is a widely used
standard for achieving this. BPEL provides the logic that links calls of individual ser-
vices. Service choreography, e.g. WSCDL (Web Services Choreography Description
Language), is a complementary approach that describes how services interact with each
other rather than how their combined execution is achieved.

A composite service is a ‘business process’ that exchanges messages with partner
services. A business process is itself a service with respect to its users. Services have
communication ports where operations are invoked. An unsuccessful operation gives
rise to a fault that may need compensation to undo prior work.

BPMN (Business Process Modeling Notation [4]) is a graphical notation for de-
scribing business processes in general. It is relevant here because it can be mapped to
BPEL and thus to web service composition. Compared to CRESS, BPMN supports a
wider range of capabilities. However, this means that BPMN is a much more complex
notation. It also lacks the capabilities of formal analysis conferred by CRESS. Fur-
thermore, modelling composite services is only one of many applications of CRESS,
whereas BPMN is specialised for business processes.

The original grid architecture was OGSI (Open Grid Service Infrastructure), with
extensions to WSDL (Web Services Description Language). Grid services now make
use of resources through WSRF (Web Services Resource Framework) and also employ
GSI (Grid Security Infrastructure). Many researchers have investigatedweb services,
but CRESSis one of few methodologies that supportgrid services.

CRESSrespects the principles of SOA and service composition. The emphasis of
this article is on formal aspects, here using LOTOS (Language Of Temporal Ordering
Specification [17]). LOTOS is a standardised formal language that was originally de-
signed for specifying networked and distributed systems, but has found application in
many other areas. LOTOS is a process algebra combined with algebraic data types that
supports concurrency, verification, validation and application-defined data types.

CRESSis appropriate for domains that can be modelled as a flow of activities; this
encompasses a broad range of applications. CRESS is not particularly designed for
real-time aspects, though there is some support for time and timers. This potential lim-
itation mainly depends on the underlying formalism used. However, the LOTOS tools
used with CRESSsupport timing and stochastic extensions. Where the implementa-
tion language supports time directly, CRESScan make use of this. CRESS is also not
strongly oriented towards performance evaluation. Stochastic aspects (e.g. probabilis-
tic behaviour) are not supported.
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CRESSsupports formal verification (i.e. proof) and formal validation (i.e. rigorous
testing). Formal verification requires a finite state space to be practicable, often requir-
ing data type values to be constrained in some way. Formal validation does not have
this limitation.

CRESSdiffers from other approaches in a number of respects:

• Most approaches deal with the design of just one kind of service (e.g. voice,
web). CRESSuses a common set of techniques and tools to support the design
of many different kinds of services.

• Most approaches handle only part of service development (e.g. analysis or test-
ing). CRESSprovides a complete methodology that covers service description,
specification, analysis, implementation, testing and performance.

• Other approaches typically need expert knowledge (e.g. formal methods, spe-
cialised software). Thanks to a high degree of automation, CRESScovers many
aspects of development with minimal effort by the service designer.

• Comparable approaches often use non-standard techniques. CRESSemphasises
the use of standards, with the advantages of wide acceptance, availability of
reference and tutorial material, tool support, and attractiveness to industry.

• Although many approaches support the design ofweb services, CRESSsupports
the design ofgrid services as well.

• Formal approaches often abstract services to make them tractable, handling only
simple types such as booleans and integers. CRESSsupports a full range of data
types and data structures that are likely to be required in realistic services.

2.2. Specifying Composite Services
The SENSORIA project (Software Engineering for Service-Oriented Overlay Com-

puters [27]) has studied a number of aspects of service design, including larger case
studies using web service orchestration. UML (Unified Modeling Notation) is used
to describe service structure, evolution and activities. A number of process calculi
were created for modelling web services [38]. These are coupled with techniques for
functional or performance analysis. UML has also been been used in [18] to describe
web services at a high level, e.g. using activity diagrams or state diagrams. These are
translated into FSP (Finite State Processes) for model checking to find deadlocks or
problems with synchronisation. Although the use of UML agrees with the authors’
preference for standards, the above formalisms for analysis are not standard (unlike
LOTOS). CRESSalso tries to support a methodology, techniques and compact toolset
that do not require specialised knowledge.

LTSA-WS (Labelled Transition System Analyser for Web Services [10]) is a finite
state approach to specifying web services. Abstract service scenarios and actual service
implementations are generated through behavioural models in the form of state transi-
tion systems. Verification and validation are performed by comparing the two systems.
The approach is restricted in its handling of data types. CRESSdiffers in generating
the formal model and the implementation from a single abstract description, and in
allowing arbitrary data types.
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PROPOLS(Property Specification Pattern Ontology Language for Service Compo-
sition [39]) is a pattern-based specification language for temporal business rules. A
behavioural model combines rules using their respective finite state automata. The
process model can then, in principle, be transformed into BPEL. The approach does
not, however, deal with data types. CRESSdiffers in generating both the specification
and the implementation from the same description, dealing fully with data.

WSAT (Web Services Analysis Tool [12]) is used to analyse and verify composite
web services, particularly focusing on asynchronous communication. Specifications
are translated into Promela and model checked using SPIN. WSAT is able to verify
synchronisability and realisability. However, the tool does not support the full range of
capabilities found in BPEL (e.g. error handling and compensation).

[7, 9] automate translation between BPEL and LOTOS. CRESSdiffers in that no
specification is required of either BPEL or LOTOS. Instead a graphical notation, acces-
sible to the non-specialist, supports abstract service descriptions that are translated into
BPEL and LOTOSautomatically.

jABC (Java Application Building Center [29]) allows services to be created with re-
usable building blocks. The approach supports automates specification and verification.
Mapping to BPMN and BPEL is also possible, including support for web services.

StAC (Structured Activity Compensation [6]) is a process algebra that has been
used to specify the orchestration of long-running transactions. This can be used with
the B notation to allow specification of data types. Most of BPEL can be translated into
StaC, but the emphasis is on reasoning about transactions rather than support for BPEL.
[20] also focuses on verifying web transactions, but is even further from BPEL.

2.3. Implementing Composite Services
Pragmatic aspects of web service implementation are well supported through pack-

ages such as ActiveBPEL [1] and Oracle BPEL Process Manager. Grid services are
implemented by Globus [14], OMII (Open Middleware Infrastructure Institute), etc.
The OMII-BPEL project [37] support scientific workflows using an adaptation of Ac-
tiveBPEL. Distinctive features include support for security and for long-running pro-
cesses.

JOpera [24] was conceived mainly for orchestrating web services, though its appli-
cability for grid services has also been investigated. JOpera claims greater flexibility
and convenience than BPEL. Taverna [23] was developed for web services, particularly
for workflows in bioinformatics. The underlying language SCUFL (Simple Concep-
tual Unified Flow Language) is intended to be multi-purpose, including applications in
grid computing. However, the authors believe that conformance to the widely accepted
BPEL standard is desirable for acceptance.

2.4. Testing Composite Services
[3] gives a comprehensive overview of techniques for testing web services. Some

aspects of this derive from work on test case generation, such as in protocol confor-
mance testing. Model-based testing uses some kind of formal model of the system to
derive rigorous tests. Of particular relevance to this article are techniques based on LO-
TOS (e.g. [32]). Because others have worked on test case generation, CRESScan build
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Figure 1: CRESSMethodology

on this. That is, CRESS focuses on convenient representation and execution of test
cases. CRESSalso offer a unique advantage: the same scenarios are used to validate a
specificationand its implementation.

[22] maps BPEL to PEPA (Performance Evaluation Process Algebra). Stochastic
aspects are not defined by BPEL and have to be added manually. The approach extends
WSDL with estimated latency attributes for each operation. The PEPA workbench
then calculates the throughout of the model. Fault handling is not addressed by the
approach, and factors such as communication cost and load are not considered.

3. CRESSApproach

3.1. Service Development with CRESS

Figure 1 shows the overall methodology for CRESS(Communication Representa-
tion Employing Systematic Specification [36]). All the major elements in the metho-
dology are due to the authors, though use is made of third-party tools for BPEL and
LOTOS. It is not feasible in this article to give a full description of the methodology
and its applications. Interested readers can find a more detailed discussion in [30].

Services are described manually using the CRESSgraphical notation. Several gra-
phical editors are supported, but the preferred one is CHIVE (CRESSHome-Grown In-
teractive Visual Editor,www.cs.stir.ac.uk/~kjt/ software/graph/chive.html). Diagrams
are automatically translated into a formal specification that describes one or more ser-
vices. The core CRESS notation is independent of the application domain and the
verification language. In this article, grid services are translated to LOTOS for formal
analysis. The meaning of a CRESSdiagram is given denotationally through its repre-
sentation in LOTOS(which has a formal semantics).

Business processes are automatically specified in full from their CRESSdiagrams,
but only outline specifications can be generated of partner services. This is sufficient to
prove useful properties of a service design, such as correct use of interfaces. However,
for fuller analysis it is desirable for the developer to provide complete specifications of
partner services. These are automatically imported by CRESSand combined with the
process specifications.
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Properties a specification should respect are defined manually in CLOVE. Cer-
tain properties such as deadlock freedom, livelock freedom and guaranteed termina-
tion are automatically handled and do not need explicit definition. Application-specific
properties have to be specified by hand, though it will be seen that CLOVE simplifies
the process for non-technical users. Additional work is required prior to verification
with the CADP toolset (Construction and Analysis of Distributed Programs [13, 16]).
For example, CADP does not handle parameterised (‘formal’) types in LOTOS and
needs annotations to specify how data types should be realised. The LOTOSgenerated
by CRESS is automatically annotated for CADP, allowing automated verification of
CLOVE properties.

CLOVE is independent of how exactly properties are checked. In this article, grid
service properties are automatically translated intoµ-calculus [5] and model checked.
The meaning of a CLOVE property is given denotationally by its representation inµ-
calculus (which has a formal semantics). Results from verification are presented in a
way that is meaningful to the non-technical user. Although the procedure makes use
of techniques such as on-the-fly and compositional verification, state space explosion
often limits what is practical (a common issue with all model-checking techniques).

For this reason, formal validation is also supported as it copes with large (even in-
finite) state spaces. As a form of testing, validation is necessarily incomplete – but it
complements what is possible through verification. The LOTOS specifications gener-
ated by CRESScan be used immediately for formal validation of test scenarios with the
LOLA tool (LOTOSLaboratory [25]).

Test scenarios are created manually using MUSTARD (Multiple-Use Scenario Test
and Refusal Description [35],www.cs.stir.ac.uk/~kjt/ research/mustard.html).In this ar-
ticle, test scenarios for grid services are automatically translated into LOTOS and for-
mally validated. The meaning of a MUSTARD test is given by its denotation in LOTOS.

The result of verification and validation is a service description in which the de-
veloper can have a high degree of confidence. The penultimate step is automatic gen-
eration and deployment of operational code. For grid services, this involves creating
BPEL, WSDL and deployment descriptors. It would seem that the rigorous methodo-
logy ought to deliver dependable implementations. However, various issues can arise in
deployment. For example, performance limitations may require implementation tun-
ing, and the implementation may not operate as expected due to resource conflicts.
The methodology therefore has a final step to evaluate performance of the actual im-
plementation. This re-uses the test scenarios that were formally validated against the
specification, giving a confidence check on functionality and performance under load.

3.2. Notation for Grid Services
A CRESSdiagram is a directed graph that shows the flow of activities. Numbered

nodes in a CRESSdiagram define inputs and outputs (communication with other ser-
vices) or actions (internal to the service). In an orchestrated service, an activity can
terminate successfully or can fail (due to a fault). Branches in a CRESSdiagram nor-
mally reflect alternatives, but parallel paths can also be defined. Although BPEL has
separate constructs for sequence, iteration and graph-like flows, CRESSmodels these
in a uniform way.
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Construct Meaning

(diagram:)?name a variable or fault name defined by a particular
diagram (the current diagram if no prefix is given)

service.port.operation an operation for the given service and port

name(.variable)? |
.variable

a fault name with optional variable or just a fault
variable

/ variable <− value an assignment associated with an arc or node

Catch fault how to handle a fault; a fault unmatched in the current
scope is sought in higher-level scopes

Compensate used after a fault to undo previous work by calling
compensation handlers in reverse order of activities

Compensation undoes work due to a fault; enabled once the
corresponding activity completes successfully

Fork introduces parallel paths; may be nested to any depth

Invoke operation output
(input faults*)?

one-way for output, or two-way for output and input;
potential faults are declared statically (but happen
dynamically)

Join condition matches aFork ; an explicit join condition refers to
termination of prior activities, e.g. ‘1 && (2|| 3)’

Receiveoperation input an initialReceivecreates a new process instance,
being matched by aReply for the same operation

Reply operation
(output | fault)

typically provides an output response at the end of a
business process, though a fault may also be signalled

Terminate ends a process abruptly

Table 1: Summary of CRESSConstructs used in Article (‘?’ optional, ‘*’ zero or more, ‘|’ choice)

The subset of CRESSactivities appearing in this article is explained in table 1, with
concrete examples appearing in sections 4.4 and 4.5. (CRESSsupports a wider range
of constructs than is described here.)

In a CRESSservice diagram, arcs (service flow) join nodes (activities) shown as
ellipses. CRESSarcs and nodes may have associated assignments. Arcs may be labelled
with expression guards (alternative choices) or event guards (conditional on events
occurring).

As an example, figure 2 shows part of an online loan service. Node 1 performs
a Receivefor servicelender, port loan, operationquote, and inputrequest. If the
requested amount is 10000 or more, the request is copied into variableproposal (arc
from node 1 to 2). Theapprover service is then asked to approve the loan request,
resulting in the loanrate or a refusal with someerror value (node 2). Otherwise, the
assessor service is asked to perform a full assessment of the loan request, resulting in
a risk assessment (node 3).

A CRESSrule box is shown as a rounded rectangle. It defines (among other things)
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Figure 2: CRESSNotation Example

simple variables, structured variables and their types, and subsidiary diagrams. The
format isUsesdeclarations / diagrams. A type name precedes the variable(s) of that
type. Simple variables have the types used in XML.

As an example, figure 3 shows some of the definitions for a document content
analysis service.Float length and String reason are simple variables.Reference
words is an endpoint reference to a service resource (a list of analysed words). CRESS

can also define structured types. Here,scores is a structure containing alength field
(a float) and afrequency field (an array of string elements calledword). These fields
might be accessed asscores.length or scores.frequency[3].

Figure 3: CRESSRule Box Example

A BPEL handler deals with faults and events. In BPEL a handler may be defined
inside any scope of a process, but in CRESSthe scopes are implicit. As a consequence,
event handlers may only be global or associated with anInvoke. (This is a small
restriction that accords with common BPEL practice anyway.)

3.3. Formal Verification
CLOVE (CRESSLanguage Oriented Verification Environment,www.cs.stir.ac.uk/

~kjt/ research/clove.html) is a language for expressing desirable system properties for
any application domain or specification language. Properties can be translated into
multiple languages (µ-calculus in this article). The Patterns project has catalogued
common verification properties; an online repository [26] gives example mappings to
several temporal logics. Most properties apply to five scopes:global (always applies),
before (some event),after (some event),between(always applies), andafter until
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Construct Meaning
′string a literal string

?type a wild card for any value of the given type

\pattern a regular expression; ‘\?type’ prefixes a pattern
value that is later referenced by number ‘\n’

service.port.operation a grid service operation

always(behaviour) all specification paths respect the behaviour

choice(behaviour...) alternative choices among behaviours

exists(behaviour) some specification path respects the behaviour

property (name,behaviour) a property to be verified

response(scope,behaviour) a response to some request, e.g. aglobal one that
applies to all behaviours

signal(operation,parameters) an input or output action

Table 2: Summary of CLOVE Constructs used in Article

(from one event to another). Pattern mappings have been created forµ-calculus (www.
inrialpes.fr/vasy/cadp/resources/evaluator/rafmc.html). The subset of CLOVE con-
structs used in this article is summarised in table 2 and illustrated concretely in sec-
tion 4.6.2.

Verification checks that desired properties are respected by a specification. Coun-
terexamples that contradict a property can be generated by the analysis. Verification
can analyse the entire behaviour, whereas validation is less general. A model is auto-
matically generated from the specification as an LTS (Labelled Transition System) that
is then checked against the desired properties.

As an example, figure 4 defines a property to be satisfied by the lender service.
The property describes a global service response (i.e. in all circumstances). If a loan
quotation request is made with any proposal details, the service must give one of two
quotation responses: a number as the loan rate, or a refusal fault with some reason as a
string.

property (Any_ Loan_ Response,
response(global,

signal(lender.loan.quote,?Proposal),
choice(

signal(lender.loan.quote,?Number),
signal(lender.loan.quote,Refusal,?String))))

Figure 4: CLOVE Example

The CADP toolset (Construction and Analysis of Distributed Programs [13, 16])
uses finite-state model checking to verify specifications. A LOTOS specification is
automatically translated by CADP into C code that is executed to generate the system
LTS. CRESSautomates the annotation of data types for CADP to generate the model.
CADP verifies properties specified in RAFMC (Regular Alternation-Free Mu Calculus
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[21]), a logic that expresses temporal properties including data values and also supports
regular expressions.

Properties are automatically verified under control of the CLOVE tool. The auto-
mated translation turns data value enumerations into C and properties intoµ-calculus.
CADP supports on-the-fly verification with the EVALUATOR tool, managing systems
with a large state space by constructing and exploring the state space incrementally.
CLOVE uses EVALUATOR to verify the translatedµ-calculus properties, with the C
code and annotated LOTOSas inputs. For the non-specialist, verification outcomes are
shown in CLOVE terms. If a property does not hold, counterexamples are provided.
Common properties (e.g. deadlock, livelock, termination) are automatically checked.

Compositional verification is used to avoid state space explosion through divide-
and-conquer. A large specification is automatically divided into smaller behaviours that
are then composed. The CADP language SVL (Script Verification Language) is used
by CLOVE for compositional verification tasks. This is automated for CRESS-generated
specifications by identifying behavioural units. A composed service is divided into its
service partners (recursively if they are business processes themselves).

3.4. Formal Validation
MUSTARD (Multiple-Use Scenario Test and Refusal Description [35],www.cs.stir.

ac.uk/~kjt/ research/mustard.html) is a language for expressing test scenarios for any
application domain or specification language. The same tests can be translated into
multiple languages (LOTOSand BPEL in this article). MUSTARD supports acceptance
tests (the system behaves as expected) and refusal tests (the system refuses undesirable
behaviour). MUSTARD also supports a variety of test behaviours: sequential or concur-
rent, deterministic or non-deterministic, modular, conditional or dependent on certain
features, and using test fixtures (putting the system into a known state).

The subset of MUSTARD constructs used in this article is summarised in table 3
and illustrated concretely in section 4.6.3. MUSTARD is intentionally similar in style
to CLOVE in order to facilitate learning and usage. A complete test scenario is defined
recursively by combining simpler behaviours. The most basic behaviours areread and
send, with most other constructs being combinators that build on these.

As an example, figure 5 gives a test to be satisfied by the lender service. The test
must successfully be able to make a loan quotation request for a particular person,
address and loan amount. However, as the amount is too large for this applicant, the
response must be a refusal with reason ‘loan unacceptable’.

test(Lots_ Exceeds_ 15000,
succeed(

send(lender.loan.quote,Proposal(′Ian Carey,′Croydon England,15000.)),
read(lender.loan.quote,Refusal,′loan unacceptable)))

Figure 5: MUSTARD Example

MUSTARD scenarios are validated by translating them into a target language (e.g.
LOTOS) and then combining them with the specification to be validated. A language-
specific tool (LOLA for LOTOS) then explores the state space of this test composition.
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Construct Meaning
′string a literal string

?type a wild card for any value of the given type

service.port.operation a grid service operation

interleave(behaviour,...) concurrent execution of behaviours
offer(behaviour,...) the system offers a choice of alternative behaviours

read(signal,parameters) inputs a signal from the system

send(signal,parameters) outputs a signal to the system

sequence(behaviour,...) sequential behaviour with abrupt termination

succeed(behaviour,...) sequential behaviour with successful termination

test(name,behaviour) a test scenario for the given name and behaviour

Table 3: Summary of MUSTARD Constructs used in This Article

Since scenarios always have finite behaviour, a scenario can be validated efficiently.
Tests that fail are diagnosed and presented for the non-specialist in MUSTARD terms.

Much as for verification, specifications can be shown through validation to have
desirable properties. Particular properties can be validated, e.g. the specification reacts
in this way tothat input. However, properties cannot be validated in general for classes
of inputs. Properties like safety, liveness and starvation freedom also cannot be proven.
However, validation is practicable when verification is not due to state space explosion.

4. Case Study – Document Content Analysis

This section presents a case study that uses grid services to perform document
content analysis. Development begins with graphical description of the services. A
formal specification is then automatically generated, verified and validated. Finally, a
running implementation is automatically generated, deployed and evaluated.

4.1. Support for Grid Services
Grid services are an extension of web services. Differences include the following.

CRESSsupports all these aspects, and so is appropriate for grid services.

• Although both kinds of service have interfaces defined by WSDL (Web Services
Description Language), grid services use extensions such for services properties.
These are required for the grid service partners in the case study of this section.

• Grid services typically make use of resources through WSRF (Web Services
Resource Framework [15]). These are identified through endpoint references and
a particular addressing standard. Resources and endpoint references are used in
this case study.

• Grid services can use dynamic partner binding. This means that a partner of a
business process need not be fixed at design time. Rather, the partner is selected
at run time (perhaps in response to selection criteria such as location, cost and

12



reputation). Although dynamic partners do not appear in this case study, they
have been used by the authors for other services. CRESS handles these quite
simply: a dynamic partner instance is an endpoint reference that is assigned to a
Partner variable.

• Grid services often make use of GSI (Grid Security Infrastructure) to ensure that
communication and access are secured. Grid security is not required in this case
study, but has been used by the authors for other services. The CRESSconfig-
uration diagram (not illustrated in this article) defines the key characteristics of
services. For a secure service, this gives the necessary credentials (typically user-
name and password). CRESSalso supportsCertificate variables corresponding
to the X.509 certificates that are widely used for security. These can be passed
to a service for authentication or for credential delegation.

4.2. Content Analysis
Document content analysis (e.g. [19]) is used for many purposes such as investi-

gating disputed authorship of a document, analysing different versions of a document,
or comparing two documents for plagiarism. This is a rich field, so only a simplified
version is given to illustrate how orchestrated grid services can be used. In this article,
documents are compared for similarity using the following two metrics that lie in the
range [0, 1]. For both of these, identical documents have a ‘distance’ of 0. Documents
with a ‘distance’ of 1 are maximally different.

Clause Length: The average number of words per clause is computed for each docu-
ment. Suppose the numbers are 6 and 8. The ‘distance’ between the documents
is the difference between these divided by the larger value:8−6

8
, i.e. 0.25.

Word Frequency: Instances of each word are counted (disregarding common words)
and the words are placed in order of decreasing frequency. This gives an ordered
list for each document (truncated to some practical limit such as 50 words). The
‘distance’ between the two word lists is then computed from the relative positions
of each word in the two lists (counting the first as 0). Suppose ‘grid’ is the second
most frequent word in one list (i.e. position 1) but the fourth most frequent in the
other (i.e. position 3). The distance for this word is the difference between their
positions:3 − 1, i.e. 2. If a word in one list does not appear in the other list, its
position is considered to be at the end of that list. Thus if ‘grid’ were in position 1
of one list but not in the other list (of size 50), the distance would be50 − 1 or
49. The total distance between two word vectors is the sum of the distances for
all the individual words, normalised to yield a value between 0 and 1.

Figure 6 shows the call structure for this example. The user invokes the matcher
with two documents to be compared. This calls the parser to parse the documents, the
scorer to compare them, and the counter to compute the similarity metrics.

4.3. Partner Services
The main services use external partner grid services that could exist already, or

should be developed separately because they are generally useful:
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User Matcher Scorer

Counter

Parser

Figure 6: Call Structure for Document Content Analysis

Counter: This calculates the two metrics that compare documents. Theclause oper-
ation computes the average clause length. Theword operation determines the
words in decreasing frequency. Thedistance operation computes the metrics
explained above from the raw clause and word information.

Parser: This handles word lists for a document. Theparse operation takes a document
as a string of text and splits it up into words (consecutive letters and possibly
digits), disregarding white space. Consecutive punctuation marks (e.g. ‘:-’) are
also grouped as ‘words’. Like many grid services, the parser holds its results in
persistent storage and just returns an endpoint reference for the word list. The
delete operation removes a stored word list.

4.4. Scorer Service
The scorer is a composite service that supports the main content analysis; its CRESS

description appears in figure 7. The rule-box to the bottom right of the figure defines
types and variables. The raw data iswords (a reference to the documents being anal-
ysed). The result isscores (a structure containing the clause and frequency metrics).
These variables are supplemented byfrequency (an ordered word list),length (average
clause length) andreason (for a fault).

Initially the scorer receives a request to perform ascore operation on the words list
(node 1). Since calculating the two distance metrics may be time-consuming, each is
computed concurrently (node 2). In one parallel branch, the counter service is invoked
to calculate the average clause length (node 3). In another parallel branch, a different
instance of the counter service is invoked to determine words in decreasing order of
frequency (node 4). Where both paths converge at node 5, nodes 3 and 4 must have
produced a successful result (‘3 && 4’). The two metrics are combined into one record
(arc leading to node 6). Finally, the scores are returned by the scorer to its caller
(node 6).

The scorer must allow for the counter process faulting. For example, the word list
may be empty or may contain only spaces. Both invocations of the counter statically
state that acounterError may occur (node 3 and 4). If this happens, the fault is caught
(arc leading to node 7). The scorer then returns the faultreason to its caller (node 7)
and terminates (node 8).

4.5. Matcher Service
The matcher offers the primary content analysis service to the user. Its CRESS

description appears in figure 8. The rule-box at the bottom right again defines types
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Figure 7: CRESSDescription of The Scorer Service

and variables. The raw data istexts (text strings containing the two documents). The
analysis yieldsmetrics (clause length and word frequency distances). These variables
are supplemented byresults (metric scores for the two documents),words1 andwords2
(references to the two word lists). The final entry in the rule-box ‘/ scorer’ indicates
that the matcher depends on the scorer diagram; dependencies on partner services are
not shown as they are automatically inferred by CRESS.

Initially the matcher receives a request to perform thematch operation on the texts
(node 1). Since the documents are independent and may be large, their metrics are
computed separately on two parallel paths (node 2). For simplicity the similar parallel
code is repeated explicitly, but could be commoned up. Each starts by setting the
relevant text (text1/text2 on the arc leading to node 3/4). The parser is invoked to
create a word list from a document (node 3/4). The word lists are held by the parser,
and returned as endpoint references (words1/words2). The scorer is then invoked to
compute the metrics (scores1/scores2 in node 6/7). The word lists have now served
their purpose and are deleted (node 9/10). The converging paths from nodes 9 and
10 must both be successful (‘9 && 10’ in node 11). The separately computed scores
are combined (arc leading to node 12) and passed to the counter to compute distances
(node 12). The matcher returns the resulting metrics to its caller (node 13).
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Figure 8: CRESSDescription of The Matcher service

The matcher allows for faults in the services it calls: an invocation of the parser or
the scorer may fail. Any such fault is caught (arc leading to node 14). The use of a fault
variable (reason) without a fault name means that only a fault value is required: either
parserError or scorerError is caught. Compensation is invoked by the fault handler to
undo any actions that have been taken (node 14). The matcher returns the fault to its
caller (node 15) and terminates (node 16).

Compensation may be needed after invoking an external partner, since this is of-
ten where work needs to be undone after a fault. The parser invocations to store data
(node 3/4) make permanent changes and so have associated compensation: the corre-
sponding word list is deleted (node 5/8). A compensation handler is enabled once its
associated activity completes. If compensation is invoked without an explicit scope
(node 14), compensation handlers are invoked in reverse order (most recent first). If
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property (Any_ Metric_ Response,
response(global,

signal(matcher.text.match,?Texts),
choice(

signal(matcher.text.match,?Metrics),
signal(matcher.text.match,MatcherError,?String))))

property (Specific_ Texts,
response(global,

signal(matcher.text.match,
Texts(′Let sleeping dogs lie,′At night all cats are gray)),

signal(matcher.text.match,Metrics(0.333333,1.0))))

property (Same_ Texts,
exists(

signal(matcher.text.match,Texts(\?String,\1)),
always(signal(matcher.text.match,Metrics(0.0,0.0)))))

Figure 9: Example CLOVE Verification Properties

one parser invocation succeeds but the other fails, only the former will be compensated.
The matcher service orchestrates the use of two external partner services (counter

and parser) as well as the scorer service (figure 7). In turn, the scorer service orches-
trates further operations of the counter partner. Although four services now have to
cooperate, the user of the matcher service sees it as a whole. This is a major advantage,
because the detailed design of the service is then hidden.

A key question is whether the services work together smoothly, or whether there
are interoperability problems. Even though this is a comparatively small example, it
will be appreciated that there are many possibilities for error. It is very easy to make
a mistake when calling a service, for example supplying an integer where a float is
expected. With more complex data types as in this example, incompatibility is a bigger
issue. Deadlock is a risk, as are more subtle problems due to semantic incompatibilities
among the services. For these reasons, it is highly desirable to embed grid service
development within a rigorous methodology.

4.6. Specification and Analysis
4.6.1. Automated Formalisation

The diagrams in figures 7 and 8 are automatically combined and translated into a
LOTOS specification; the translation strategy is described in the early work of [34].
The details are not given here as they are likely to interest only LOTOSexperts. How-
ever, the case study files can be found atwww.cs.stir.ac.uk/~kjt/ software/download/
gs-examples.zip.

The service designer chooses LOTOS as the target language and clicksRealise in
the CRESSdiagram editor. This generates 1339 lines of LOTOScode: 21 processes and
24 data types, not including the library of data types for grid services.

17



4.6.2. Automated Verification
The CLOVE notation and approach for formal verification were described in sec-

tion 3.3. Figure 9 (explained below) gives examples of CLOVE properties that are
verified against the case study services. The service designer chooses LOTOS as the
target language and clicksVerify in the CRESSdiagram editor. The following is an
extract of verification results:

Generating properties for SCORER ... CPU Time (Real Time)
Generating graph for SCORER ... 22.1 secs (57.0 secs)
Verifying SCORER Livelock Freedom ... 6.2 secs (10.0 secs)
Verifying SCORER Initials Safety ... 6.2 secs ( 7.0 secs)
Verifying SCORER Always Exit ... 6.0 secs ( 7.0 secs)

Generating properties for MATCHER ... CPU Time (Real Time)
Generating graph for MATCHER ... 22.4 secs ( 1.7 mins)
Verifying MATCHER Any Metric Response ... 6.4 secs ( 7.0 secs)
Verifying MATCHER Specific Texts ... 6.3 secs ( 8.0 secs)
Verifying MATCHER Same Texts ... 6.3 secs ( 7.0 secs)

Since verification requires a finite and manageable state space, free values in the
specification must be constrained (typically those provided by the user to the system).
The following CLOVE defines values of theString type used for document contents:

literals(strings,
′A stitch in time saves nine,′At night all cats are gray,′Barking dogs seldom bite, ...)

These are, of course, just small pieces of text used to check key properties of the spec-
ification. In practice, document comparison is performed with much larger texts. Al-
though not required in this case study, data is often defined by regular expressions to
allow a compact representation of a wide range of values. Like CRESS, CLOVE also
supports values of structured types – though enumerated structures do not happen to be
required in this case study. Values are automatically translated by CRESSinto C to save
manual coding (which is tedious for complex data types). CADP uses the enumerated
values when generating the state space.

In figure 9, Any_ Metric_ Response verifies a global response property: all be-
haviours of the service must result in a given response to some request. Here, the
request asks for a match of some unspecified pair of texts (?Texts). The response
must be a choice of some metrics (?Metrics) or a matcher fault with some string value
(MatcherError, ?String). The following example,Specific_ Texts, is again a global re-
sponse property. This states that the service will give particular results (clause metric
0.333333, word metric 1.0) for a certain pair of texts. Finally,Same_ Texts verifies that
the same pair of texts will give a clause metric of 0.0 and a word metric of 0.0 (indicat-
ing identical texts). This makes use of the regular expression that is saved for the first
text (\?String) and then re-used for the second text (\1).

As an example, theAny_ Metric_ Response property is automatically translated into
the followingµ-calculus:

[ true* . ′MATCHER !TEXT !MATCH !TEXTS (.*) ′ ]
mu X. (<true> true and [not(((′MATCHER !TEXT !MATCH !METRICS (.*) ′) or

((′MATCHER !TEXT !MATCH !MATCHERERROR
!"[−a−zA−Z0−9%ˆ&*=+{}@ ∼#\\<>.\t]*" ′)))) ] X)
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test(No_ Clauses,
succeed(

send(matcher.text.match,′Each day we see,′),
offer(

read(matcher.text.match,matcherError,′No Clauses),
read(matcher.text.match,matcherError,′No Words))))

test(All_ Shared,
succeed(

send(matcher.text.match,
Texts(′Sator Arepo Tenet Opera Rotas,′Arepo Sator Opera Rotas Tenet)),

read(matcher.text.match,Metrics(0.0,0.4))))

test(Concurrent_ Use,
succeed(

interleave(
sequence(

send(matcher.text.match,Texts(′Go West,′West Side Story)),
read(matcher.text.match,Metrics(0.333,0.727))),

sequence(
send(matcher.text.match,

Texts(′Each day we see,′Round our ship terns and sea swallows)),
read(matcher.text.match,Metrics(0.428,1.0)))))

Figure 10: Example MUSTARD Validation Scenarios

A typical formal approach to verification requires the designer to write properties like
this. Evidently,µ-calculus is much more impenetrable than the CLOVE syntax, hence
the value of higher-level property description using CLOVE.

If a property does not hold, a counter-example is automatically displayed in CLOVE

form. This helps the designer to see why the specification does not behave as expected
and to correct the problem.

Compositional verification (i.e. proving things in smaller pieces) is desirable for
larger specifications such as the case study in this article. CLOVE automatically gener-
ates a script to perform compositional verification of the matcher. This is broken down
into the scorer (composed in turn with the counter and the parser). The script generates
the state space against which the translatedµ-calculus properties are verified.

4.6.3. Automated Validation
The MUSTARD notation and approach for formal validation were described in sec-

tion 3.4. Figure 10 (explained below) gives examples of MUSTARD scenarios to be
validated against the case study services. The service designer chooses LOTOS as the
target language and clicksValidate in the CRESSdiagram editor. The following is an
extract of validation results:

Test MATCHER No Clauses ... Pass 0.7 secs
Test MATCHER All Shared ... Pass 0.6 secs
Test MATCHER Concurrent Use ... Pass 1.5 secs
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In figure 10,No_ Clauses checks for correct error handling behaviour. If the second
text is empty, the matcher should report an error (either reason ‘No Clauses’ or ‘No
Words’). All_ Shared checks for the case of two texts with the same words in a different
order. The clause metric should be 0.0, while the frequency metric should be 0.4 due to
the different ordering.Concurrent_ Use exercises two concurrent calls of the matcher.

If a scenario fails its test, the behaviour up to the point of failure is displayed. This
helps the designer to see why the specification does not behave as expected and to
correct the problem.

4.7. Implementation and Evaluation
4.7.1. Automated Implementation and Deployment

Once verification and/or validation have been completed, a high degree of confi-
dence has been obtained in the service design. The diagrams in figures 7 and 8 are
then automatically combined, translated into a BPEL implementation, and deployed.
The translation strategy is described in [34]. The details are not given here as they are
likely to interest only BPEL experts, but the case study files can be found atwww.cs.
stir.ac.uk/~kjt/ software/download/gs-examples.zip.

The service designer chooses BPEL as the target language and clicksRealise in the
CRESSdiagram editor. For the implementation, CRESSgenerates 9031 lines of source
code and 68 source files. The large amount of code reflects the complexity of creating
grid services, which need interface definitions and catalogues, deployment descriptors,
property files, type classes, service and partner code, etc. The matcher and scorer are
automatically compiled and deployed to ActiveBPEL [1] as the engine used to execute
orchestrated grid services, while the counter and parser are automatically compiled and
deployed to Globus [14] as the container for grid partner services.

4.7.2. Automated Implementation Evaluation
Implementation performance is evaluated by thesame MUSTARD scenarios as used

to validate the specification. The service designer chooses BPEL as the target language
and clicksValidate in the CRESSdiagram editor. This time the scenarios are translated
into a form suitable for validating BPEL and are executed against the implementation
by MINT (MUSTARD Interpreter). This evaluates consistency of service response times
and pinpoints bottlenecks. When the authors performed this evaluation, it highlighted
resource limitations in the Tomcat container that runs ActiveBPEL and required tuning
for better performance.

Implementation validation is similar to specification validation (see section 4.6.3).
However, additional results are produced if performance tests are requested. These
can be executed sequentially (for checking consistent implementation behaviour) or in
parallel (for loading the service). Additional statistics on test performance are reported,
e.g. the averages and standard deviations of test execution times.

5. Evaluation

5.1. Usability of The CRESS Notation
Although CRESS describes services with a simple graphical notation, this does

not necessarily mean that it is usable. A mixed empirical evaluation was therefore

20



conducted to check the following hypothesis: someone with experience of software
development, with 45 minutes of training on the approach and the CRESS diagram
editor, can define small services (up to five activities), with 80% accuracy, in at most
15 minutes per service.

Five software developers were recruited without previous experience of the CRESS

approach: two female, three male, average age 25 (range 22 to 31). The participants
were given written instructions to follow in their own time, without training or advice
from the authors. A copy of the CRESSeditor was provided for local installation, along
with a ‘palette’ of typical symbols used in constructing services.

The first part of the instructions gave a three-page explanation of the approach and
the CRESSeditor, including three diagrams that the participants were asked to study
and then to reproduce themselves using the diagram editor. 45 minutes was suggested
as appropriate for this phase, though no time limit was imposed.

In the next part of the instructions, the participants were given five specific tasks
to perform. Each task required a service diagram to be drawn (somewhat different
from the examples), based on a natural language description. The participants were
asked to record how long tasks took, and to save their diagrams on completion (or
after 15 minutes if a task was not completed). The participants were asked to rate five
statements about the approach on a five-point Likert scale. They were also given the
opportunity to provide a free-form qualitative evaluation of the exercise.

All collected information was submitted by email. Task times and questionnaire
answers were collected and analysed. Participant attempts at service diagrams were
scored, comparing these against previously created sample solutions. Each possible
element was given one mark (e.g. number, name, activity and parameters for a diagram
node). This resulted in a percentage score for the accuracy of each diagram.

The participants spent an average of 34 minutes (range 10 to 60) on the familiarisa-
tion phase. This compares well with the expectation of 45 minutes. The shortest period
(10 minutes) may reflect this participant’s preference for learning by doing rather than
extended prior study. Overall, participants completed the five service designs in an
average of 5.7 minutes per task, with an average accuracy of 88% (compared to the
hypothesis of 15 minutes and 80%).

The commonest errors in diagrams were omitting a node number (which two partic-
ipants reasonably argued should be irrelevant or automatically generated), and simple
syntax errors (such as using ‘/’ rather than ‘\’ before an assignment). In fact this was a
knowingly demanding evaluation:

• The participants were given only a short written briefing and not an extended
technical manual or training course. They had no opportunity for classroom
instruction or one-to-one advice before undertaking the formal evaluation. This
was deliberate, to see how readily the approach could be used with minimal
instruction.

• Participants were asked to create diagrams without any way of machine-checking
for errors. The full CRESS toolset (as opposed to the diagram editor) does, of
course, check for syntactic and static semantic correctness. Indeed, all the syn-
tax errors in the participant diagrams would have been readily identified and
corrected in this way. Not providing the full CRESStoolset was again a delib-
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erate decision, in order to discover the extent to which the approach exhibited
syntactic idiosyncrasies that would trip up novices.

Participants were asked to rate five statements about the approach on a scale from
1 (strongly disagree) to 5 (strongly agree):

Statement 1: I was able to create the service diagrams without too much difficulty:
average score 3.8 (range 3 to 4).

Statement 2: I found it fairly straightforward to translate the English descriptions
into diagrams: average score 3.2 (range 1 to 4).

Statement 3: I found it fairly straightforward to create and edit diagrams using
CRESSeditor: average score 3.6 (range 3 to 4).

Statement 4: I think the approach would be usable by people with experience of
software development: average score 4.0 (range 3 to 5).

Statement 5: I think the approach could be useful in practice for developing
services: average score 3.2 (range 2 to 5).

The rating of statement 1 suggests that the approach is usable by the planned type
of user (software developers), though the diagram editor could benefit from some tech-
nical improvements. The authors had expected statement 2 to be least agreed with,
since significant mental effort is required to translate a natural language requirement
into any formal representation (including programming languages). Like statement 1,
the scoring of statement 3 offers encouragement – though improvements to the diagram
editor are desirable. The evaluation of statement 4 suggests that an appropriate class of
user has been targeted. Based on the accompanying free-form comments, the lack of a
more positive response to statement 5 appears to reflect the need for improvements in
the diagram editor rather than doubt over the general approach.

Given the short time that the participants spent in familiarisation (average 34 min-
utes), their performance was impressive. Although the limited number of participants
does not allow statistically valid conclusions, the results of the evaluation are encour-
aging and favour the stated hypothesis.

In their free-form comments, the participants also provided valuable feedback on
how the approach could be improved. In some cases the observations arose from the
shortness of the written briefing, e.g. it was not mentioned that the editor indicated
page boundaries with gray lines, and the syntax of assignments and conditions was
only briefly illustrated. These points can readily be addressed through more extended
training notes. Concrete suggestions to be considered include automatic node number-
ing, and use of a toolbox with typical grid service symbols.

5.2. Comparison with Other Approaches
5.2.1. General Capabilities

Implementation-oriented approaches like JOpera [24] and OMII-BPEL [8] support
most of the constructs required by grid service orchestration, but they are generally not
rigorous. BUnit (the BPEL analogue of JUnit for Java) offers a degree of systematic
testing in ActiveBPEL.
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Construct WSAT Ferrara PEPA LTSA CRESS

Basic Activities ! ! ! ! !
Structured Activities ! ! ! ! !
Scoped Activities !% !% !% !%
Data Handling ! ! !
Dynamism !
Process Interaction ! ! !
Grid Services !
BPEL V1.1 ! ! ! ! !
BPEL V2.0 !

Table 4: Support of Service Orchestration Constructs (see text for explanation)

Some approaches have a rigorous aspect, though the degree of rigour varies. Since
rigour is a key claim of CRESS, a comparison has been made with approaches that
also support rigorous development. Of the techniques discussed in section 2.2, the
following are the most directly relevant (though they are mostly forweb services):
WSAT (Web Services Analysis Tool [12], the work of Ferrara (translation of BPEL to
LOTOS[9]), PEPA [22], and LTSA-WS (Labelled Transition System Analyser for Web
Services [10]). Specifically, these have been compared with respect to coverage of
orchestration, support for interacting processes, the level of abstraction, formalisation,
verification, validation, implementation, deployment, and testing.

Few researchers have worked on complete methodologies for designinggrid ser-
vices. As a result, there is no standard example for a comparison of CRESSwith other
approaches. Instead, an example commonly used byweb service developers has been
chosen. This is a loan approval service [2] that offers online loans at a rate depending
on the risk assessment.

5.2.2. Service Orchestration Coverage
Table 4 gives a comparison showing the coverage of BPEL constructs in the ap-

proaches considered. Here,!means full support,!%means partial support, and blank
means no support. The coverage of constructs is based on that stated by authors of the
related work.

The lender service does not require some orchestration constructs, such as com-
pensation and correlation. Basic activities include service input and output. Structured
activities include alternatives, iteration, sequences and flows. Scoped activities include
error, event and compensation handling. Data handling refers to data types, variables,
assignments and expressions. Dynamism means that partner services can be chosen or
changed at run time. Interaction allows multiple BPEL processes to interact with each
other. Support for grid services is indicated. Finally, orchestration constructs may be
supported from BPEL version 1.1 or 2.0.
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Phase WSAT Ferrara PEPA LTSA CRESS

Abstraction ! !
Specification ! ! ! ! !
Verification ! !% ! !
Validation ! !
Implementation ! ! !
Testing !
Performance ! !%

Table 5: Support of Service Development Phases (see text for explanation)

5.2.3. Service Development Support
Table 5 compares the approaches with regard to coverage of grid services, abstrac-

tion, formal specification, formal verification, formal validation, implementation, test-
ing and performance analysis. Although several approaches directly handle rigorous
analysis, they differ in the extent and ease that this is supported.

WSAT has automated support only for translating BPEL into Promela for verifica-
tion. The WSAT developers manually created two properties in Linear Temporal Logic
and verified these using the SPIN model checker.

Ferrara’s approach automates the translation between a LOTOSspecification and a
BPEL implementation. However, there is no automated tool support for verification.
There are also only general hints about how this might be achieved, such as checking
for bisimulation.

LTSA-WS abstracts the underlying techniques and tools in an effort to simplify and
make analysis more accessible. This was achieved by using high-level notations, auto-
mated specification and analysis. LTSA-WS uses UML for design, specifically MSCs
(Message Sequence Charts). Deadlock freedom can be checked for the Labelled Tran-
sition System created from BPEL code. Trace equivalence is automatically checked
between models created from the MSCs and BPEL. Other properties have to be man-
ually specified (e.g. request-response, safety). Although not demonstrated in [10] for
the lender, the automated check of trace equivalence can detect errors such as interface
incompatibilities. Validation is performed interactively and manually by animating the
model. Analysis does not deal with data semantics. There is also no support for imple-
mentation validation.

The PEPA approach deals with translation and annotation from BPEL and WSDL
to PEPA. Performance evaluation can then be performed with respect to latency and
execution times. However the analysis does not focus on functionality. [22] also does
not demonstrate how the approach helped to improve service quality.

CRESSallows verification of properties much as WSAT does, but the CRESSappr-
oach is more complete through the use of typical data values. In addition, there is
support for abstract property specification and tool automation which WSAT does not
provide. CRESSprovides verification templates for well-known property patterns. The
underlying temporal logic syntax is hidden, and realistic data values are supported by
verification.
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Depending on the specific data values, the time and state space for verification can
vary widely. Verification with CRESS takes comparable times to WSAT. Properties
of the lender service are typically verified by CRESS in minutes, for a range of 2000
distinct numbers and 5 distinct strings in loan requests. Due to wide variations in
data inputs, this requires a state space with 104,000 states, 204,000 transitions and
50,000 transition labels. CRESSvalidation is automated for a range of scenarios that
can include realistic data values.

The CRESSapproach has been found in practice [30] to detect interesting errors
in both specifications and implementations. Implementation validation uses black-box
testing and load testing, neither of which is supported in the other approaches cited.
Formal performance analysis in the style of PEPA is not currently supported, although
it would be possible as a future extension since CADP supports this for LOTOS.

6. Conclusion

The CRESSnotation, methodology and tools have been discussed, with a focus on
formal aspects. Document content analysis case study has been used to illustrate the
approach. The methodology supports automated specification, analysis and implemen-
tation.

Graphical descriptions of grid services are automatically translated into LOTOS.
Specification properties expressed using CLOVE are then model checked. This hides
the underlying complexities ofµ-calculus and CADP from the service developer. To
complement verification, formal validation uses scenarios expressed in MUSTARD.
This hides the underlying complexities of LOTOS and LOLA. CLOVE and MUSTARD

are abstract, language-independentand more straightforward for the non-specialist than
the underlying formalisms. After confidence has been built in the service design, an
implementation is automatically built and deployed. The same MUSTARD scenarios
can then be used to evaluate the performance of the implementation.

From the designer’s point of view, development mainly requires drawing flow dia-
grams that describe services. This provides a convenient route to service implementa-
tion if only service creation is needed. As has been seen, CRESSautomates the creation
and deployment of a large amount of implementation code. However, this code would
then have to be debugged in conventional ways.

With some additional effort it is possible to do much better. Implementation and
performance testing can be automated through MUSTARD by defining test scenarios
in a reasonably straightforward language. For the same effort, the service design can
then be evaluated at a much earlier stage by validating the specification. This allows
problems to be discovered much earlier during development.

However, testing can cover only a limited portion of a design. General properties
(e.g. deadlock/livelock freedom, termination) can be verified by CLOVE without hav-
ing to write any definitions. With additional work on defining desirable service prop-
erties, the design can be verified more thoroughly. This gives much wider coverage by
checking general properties of the design rather than just specific scenarios. Although
CLOVE is more accessible to non-specialists than the underlying formal techniques, it
is acknowledged that formulating appropriate properties does need experience. For-
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tunately CLOVE was able to build on the knowledge codified by the Patterns project
about properties that are most likely to be useful in practice.

A modest evaluation of the CRESSnotation has assessed its usability and found it
to be satisfactory. In future work, the usability of CLOVE and MUSTARD notation will
also be evaluated. Service development with CRESShas also been compared to other
approaches and found to cover a wider range of capabilities.

Although this article has considered only grid services and formalisation using LO-
TOS, CRESSdeals with other service domains (e.g. voice, device, web) and their asso-
ciated languages (e.g. Call Processing Language, Specification and Description Lan-
guage, VoiceXML). CRESStherefore offers a general-purpose approach to delivering
verified and validated services.
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