
PUBLISHED IN: JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, VOL. 50, 2015, PP. 92–100 1

A Reliable Multicast Transport Protocol for
Information-Centric Networks

Charilaos Stais, George Xylomenos, Alexios Voulimeneas
Mobile Multimedia Laboratory, Department of Informatics

Athens University of Economics and Business
Athens 10434, Greece

stais@aueb.gr, xgeorge@aueb.gr, avoulimeneas@gmail.com

Abstract—In the past few years, many researchers have argued
that the Internet should transition from its traditional endpoint-
centric architecture to an information-centric paradigm. One
of the advantages of the information-centric model is that the
network can easily aggregate requests for the same content
and serve them via multicast. Indeed, most information-centric
architectures proposed to date offer native support for multicast,
promising a vast improvement in the efficiency of content distri-
bution. However, designing efficient reliable transport protocols
for multicast is a largely open issue, due to the problem of
feedback implosion towards the sender as group size grows.
In this paper we propose RMTPSI, a retransmission-based
reliable error control protocol for multicast communication de-
signed specifically for information-centric networks. We compare
RMTPSI with existing approaches proposed for IP multicast
and evaluate its performance via simulation, showing that our
approach leads to more efficient content distribution and error
recovery than previous solutions.

Index Terms—Information-centric networks, error recovery,
multicast, transport layer

I. INTRODUCTION

We have recently experienced a research drive targeting
new architectures for the future Internet, aiming to improve
the efficiency of large-scale content delivery. Many of these
efforts are based on native multicast support, which has long
been considered the key for efficient content distribution, but
was never widely adopted on the Internet. The design and
implementation of the current Internet architecture leans on the
traditional telephone network where there are only two parties
wishing to communicate. Extending this model to multiparty
communication requires considerable engineering effort and
costs for network operators. Unfortunately, there is no clear
path to multicast adoption aligned with the business models
of network operators [1], hence IP multicast is prevalent only
inside private networks for specific applications, e.g. IPTV
over ADSL networks.

Recent research efforts have tried to move the center of
attention from where the desired information is located to the
information itself, since in most applications users are only
interested in getting the desired content, not in its location.
This direction is evident in Peer-to-Peer (P2P) file sharing,
Content Delivery Networks (CDNs) and cloud computing
services, which generally operate as an overlay to the existing
Internet. A more radical approach is to introduce a clean-slate
Information-Centric Networking (ICN) architecture, focusing

on content rather than the endpoints hosting and consuming it.
By designing a suite of network protocols around information
itself, these proposals aim to better satisfy the requirements
of current and future content distribution applications [2], [3],
[4], [5].

A claimed advantage of the ICN paradigm is that the
network can aggregate requests for the same content and serve
them via multicast, thus boosting the efficiency of content
delivery. While most ICN architectures offer native support
for multicast [6], they have not yet addressed the issue of
designing efficient reliable transport protocols for multicast,
even though considerable work has been performed in this
area for IP multicast. In general, reliable multicast can be
achieved in two ways: sender-driven with acknowledgments as
feedback, and receiver-driven with negative acknowledgments.
In sender-driven protocols the sender eventually becomes a
bottleneck due to acknowledgment implosion as the number
of receivers grows [7]. Therefore, most reliable multicast
protocols are receiver-driven, an approach that we also adopt.
Our work in this area is based on the ICN architecture of
the FP7 EU project PURSUIT [8], referred to as the Pub-
lish/Subscribe Internet (PSI) architecture. We have previously
briefly presented a receiver-driven reliable multicast protocol
for the PSI architecture [9]. In this paper, we present our
Reliable Multicast Transport for PSI (RMTPSI) in detail,
contrast it with Pragmatic General Multicast (PGM) [10], a
reliable multicast transport protocol designed for IP multicast,
and evaluate our protocol’s performance against PGM over
the PSI architecture. Our results show that RMTPSI is more
efficient than PGM, while requiring the same time to complete
a reliable transfer; specifically, RMTPSI requires 2.9% to
10.2% fewer downstream and 3.5% to 12.1% fewer total
transmissions than PGM.

The target application for RMTPSI is fully reliable multicast
delivery, for example, distributing OS patches or antivirus
updates over the network. In these applications each recipient
must receive all data correctly, regardless of how long this may
take. These applications, besides being extremely common,
offer a natural synchronization between senders and receivers:
as updates become available, they are transmitted immediately
to all waiting recipients. In contrast, in applications such
as media distribution, it is either hard to ensure receiver
synchronization (e.g. in video on demand) or mostly reliable
delivery is sufficient (e.g. in live video streaming).



2 PUBLISHED IN: JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, VOL. 50, 2015, PP. 92–100

The structure of this paper is as follows. In Section II we
briefly present the PSI architecture and past work on reliable
multicast transport, while in Section III we present RMTPSI.
Section IV first provides a description of the experimenta-
tion environment and then presents the performance results
obtained. We conclude and discuss our plans for future work
in Section V.

II. BACKGROUND & RELATED WORK

A. The PSI architecture

A publish/subscribe architecture consists of three elements:
publishers, subscribers, and an event notification service, also
known as a Rendez-Vous network, consisting of Rendez-Vous
Points (RVPs) [11]. The publishers are the content owners who
offer their content to potential consumers. To announce content
availability, publishers advertise it to the responsible RVP by
issuing publication messages. The subscribers are the content
consumers who express their interest in specific content items
by issuing subscription messages. Information indicating the
desired content items is included in the publication and sub-
scription messages.

PSI is an instantiation of such a public/subscribe archi-
tecture in a networking context: publishers and subscribers
are located at network nodes and exchange data via publish
and subscribe primitives which are facilitated by a distributed
rendezvous function. Data items are identified by a Scope
Identifier (SId) and a RVP Identifier (RId). The SId identifies a
collection of content items and is mapped to the RVP respon-
sible for this particular collection, possibly via a Distributed
Hash Table [12]. The RId identifies a content item within that
collection and is determined by the publishing application.
The scoping mechanism in PSI is designed to limit access
to content, therefore each scope may have different access
control rules [13].

A subscriber needs to be aware of the SId/RID pair of a
desired content item to issue a subscription message for it.
When a subscription message arrives at the RVP corresponding
to the SId in the subscription, the RVP checks whether
the subscriber can access the scope. If so, it determines
which publishers can satisfy the subscriber’s request and then
communicates with the Topology Manager (TM) to request
a suitable forwarding path from a publisher to the subscriber.
The TM, either a service in the same machine or a stand-alone
server, maintains network topology information discovered via
a link-state routing protocol. The TM can thus calculate a
path between the publisher and the subscriber; when multiple
subscribers are interested in the same content item, a multicast
tree containing all subscribers is calculated.

The path calculated by the TM is described by a Bloom
filter, as in LIPSIN [14]. Bloom filters are probabilistic repre-
sentations of sets where each element is encoded as a string of
zeroes and ones, calculated via a set of hash functions. A set is
represented as the logical OR of all its elements. In PSI, each
link is labeled with one such string in each direction. A Bloom
filter in the header of each packet includes the labels of all the
links that are part of the desired path. When a packet arrives
at a router, the router determines to which of its outgoing

links (possibly, more than one) it will have to forward the
packet, by performing a logical AND between the label of each
link and the in-packet Bloom filter. This technique supports
native multicast, since the Bloom filter in the packet header
may represent an entire multicast tree; the Bloom filter is
simply a set of link labels. Link labels must be unidirectional,
as otherwise packets would loop, hence the encoded paths,
whether unicast or multicast, are also unidirectional.

Publisher

RVP

Subscriber

TM

Fig. 1: Communication steps in the PSI architecture.

Figure 1 summarizes the above procedures. First, a publisher
issues a publication under a certain SId/RId to the correspond-
ing RVP (step 1). A subscriber that is aware of this SId/RId
pair subscribes to it (step 2). After the RVP corresponding to
the requested SId receives the subscription, it communicates
with the TM in order to retrieve a suitable Bloom filter for
data dissemination from the publisher to the subscriber (step
3). Once the RVP gets the Bloom filter, it forwards it to
the publisher (step 4). Finally, the data are delivered to the
subscriber using the Bloom filter (step 5).

B. Wide Area Multicast in PSI

As more elements are added to a Bloom filter, it becomes
more likely that it will match elements not added to it; these
are false positive matches. When Bloom filters are used to
encode routes as in PSI, as more links are added to a route it
is more likely that random links may match them. If such a
link happens to be on the path taken by a packet, the packet
will be needlessly transmitted over that link. The extent of
this problem depends on how many links are encoded into the
set. In [15], the authors argue that the number of ones in the
Bloom filter should not exceed 40% of the total bits, meaning
that with reasonably sized Bloom filters (as they must fit within
packet headers) we cannot represent very large groups or very
long paths.

To scale this scheme to larger multicast groups, we employ
Bloom filter switching at designated relay points (RPs) [16].
RPs are routers that replace the Bloom filter inside a packet
with a new one before forwarding the packet. When a packet
arrives, the RP checks if an entry for the SId/RId pair in the
packet exists and, if so, replaces the Bloom filter in the packet
with a stored one. When the TM constructs the initial Bloom
filter, it pays attention to the ratio of ones in it. If the ratio



PUBLISHED IN: JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, VOL. 50, 2015, PP. 92–100 3

exceeds 40%, it resorts to RPs, selected during a breadth-first
traversal of the multicast tree. The TM therefore constructs
Bloom filters from the publisher to the RPs and from these
RPs to the subscribers or to new RPs, recursively. The RPs
and the Bloom filters are returned to the RVP, which then
notifies the publisher and the RPs.

Publisher
RVP

Subscriber 3

Subscriber 1
Subscriber 2

RP1

RP2
1

4
3

5

2

8

76

MT1

MT3

MT2

0

Fig. 2: A multicast tree with two relay points.

Figure 2 presents an example of this approach. The multicast
tree is broken in three subtrees, MT1 to MT3, connected via
RP1 and RP2. MT1 starts from the publisher and ends at the
two RPs, MT2 starts at RP1 and ends at subscribers 1 and 2,
and MT3 starts at RP2 and ends at subscriber 3. Messages are
initially transmitted by the publisher using the Bloom filter for
MT1. Upon arrival at RP1 (RP2), this Bloom filter is replaced
by the corresponding one for MT2 (MT3). As a result, each RP
needs to store a mapping from a SId/RId pair to a new Bloom
Filter. We are using the SId/RId pair to determine the next
Bloom filter at RPs, so as to allow the Bloom filters between
two RPs to evolve due to link additions and deletions, without
updating the switching information at all RPs.

C. Reliable Multicast

Even though IP multicast was never widely deployed,
considerable work was dedicated to transport layer protocols
for reliable multicast. The Reliable Multicast Transport Proto-
col (RMTP) [17] is a receiver-driven reliable transport scheme
for non-real-time multicast content delivery. It relies on se-
lective acknowledgments (ACKs), possibly indicating multiple
lost packets, which are periodically sent from each receiver
towards the sender. In order to avoid sender implosion due to
ACKs, a set of receivers, called Designated Receivers (DR),
aggregate the ACK state and forward it upstream, to higher
level DRs or to the sender. Subsequently, retransmissions
from the sender are forwarded by each DR towards its group
members and lower level DRs. Retransmissions may be either
multicasted or unicasted, depending on the number of receivers
that have lost a packet. In order to map this scheme to PSI, the
TM should use the DRs as RPs in order to extend the reach of
the multicast tree, but this would lead to suboptimal routing,
due to the need to select actual receivers as RPs; additional

RPs are still needed if there are no receivers at appropriate
points in the multicast tree.

The Scalable Reliable Multicast (SRM) [18] approach on
the other hand relies on the fact that in IP multicast anyone can
send to a multicast group, hence receivers can multicast their
negative acknowledgments (NAKs) for missing data so as to
reach other nodes that could retransmit them. By limiting the
reach of NAKs to a few hops, ideally only nearby receivers
will attempt to respond with the missing data. By randomizing
the response time to these NAKs and locally multicasting
the missing data, the first receiver to respond will silence
all others. This approach does not guarantee reliability and
is very hard to map to PSI, since it relies on bidirectional
multicast trees to allow each receiver to multicast NAKs and
retransmissions. Since in PSI multicasting is unidirectional,
this would require creating separate Bloom filters from each
subscriber to all other nodes within a subtree.

Finally, in the Pragmatic General Multicast (PGM) [10]
approach, a receiver in the multicast group is guaranteed to
either receive all data packets (from their original transmission
or a retransmission), or to be able to detect unrecoverable data
packet loss. PGM relies on NAKs to report missing packets
and a hierarchy of PGM-enabled routers, called Network
Elements (NEs), deployed throughout the multicast tree to
aggregate feedback from the receivers towards the sender.
Essentially, each NE is responsible for the subtree rooted at
itself and extending downstream up to either the receivers or
the downstream NEs. When a packet loss is detected by a
receiver in PGM, it unicasts a NAK towards its parent NE
after a random waiting period. The parent NE on reception
of the NAK multicasts a NAK Confirmation (NCF) to its
subtree, so as to suppress NAKs for the same lost packet from
other receivers. The NE then pushes the NAK towards its own
parent, which in turn multicasts an NCF to its own tree, and
so on, until the NAK reaches the source, at which point the
missing packet is retransmitted downstream. Only NEs that
have received a NAK for this packet forward it downstream,
therefore retransmissions only reach subtrees where at least
one receiver has reported that packet to be lost. To further
reduce the number of NAKs, an NE can create NAK packets
which indicate multiple missing packets, thus aggregating
individual NAKs.

PGM can be easily mapped to the PSI architecture, by sim-
ply using the RPs as the NEs. The only additional requirement
is to provide each receiver and RP with a Bloom filter for
reaching its parent RP or the publisher, so as to transmit
NAKs; NCFs and retransmissions can reuse the multicast
Bloom filter used for the original packet transmissions. While
PGM in its pure form is most appropriate for semi-reliable
continuous data transmission, with minor modifications it can
be made to operate in fully reliable mode. Since PGM is a
more sophisticated version of RMTP, adding NAK suppression
via NCFs, we focus below on comparing our approach with
PGM only. PGM has several other features, such as support for
retransmissions from local caching nodes, recovery based on
forward error correction and congestion control. These features
will not concern us further, as they can be integrated to our
own error control scheme in the same manner as with PGM.



4 PUBLISHED IN: JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, VOL. 50, 2015, PP. 92–100

III. MULTICAST ERROR CONTROL FOR PSI

A. Overview

RMTPSI is most similar to PGM, in that it uses selected
routers on the multicast tree, as opposed to the DRs in RMTP,
to aggregate feedback and control the propagation of retrans-
missions. To minimize the nodes that need to manage multicast
state, in place of the NEs used in PGM we reuse the multicast
relay points (RPs) mandated by the forwarding architecture of
PSI when trees grow large (see Section II-B). As a result, each
multicast subtree created by the TM independently manages
the error recovery process, thus avoiding feedback implosion
at the original receiver.

RMTPSI operates in three phases: communication setup,
where the multicast subtrees are created and the appropriate
Bloom filters are distributed, initial content distribution, where
the publisher sends the entire content and collects aggregate
feedback, and recovery, which may involve one or more cycles
of initiating retransmissions and collecting new aggregate
feedback, until all subscribers have completed the download
successfully. We elaborate on these phases in the following
subsections.

B. Communication setup

In the communication setup phase, the TM creates the
multicast delivery tree, splits it into subtrees, creates the
appropriate Bloom filters and distributes them to the RPs. As
already mentioned, Bloom filters operate only in one direction,
therefore we need separate Bloom filters in order to return
feedback from the subscribers towards the publisher. We there-
fore modified the TM to calculate not only downstream Bloom
filters from the root to the leaves of each multicast subtree, but
also upstream filters, by simply ORing the link labels for the
reverse direction of the tree; these upstream filters represent
a tree from all leaves towards the root, therefore they can be
used to send upstream messages from any leaf to the root. The
advantage of this approach is that only a single Bloom filter
needs to be created and communicated to all the receivers in
the subtree. The creation of the subtrees is performed via a
breadth-first traversal of the overall tree; when the Bloom filter
for a subtree contains enough 1’s, the subtree stops there and
an RP is created. Since the same number of links is entered
in both the forward and reverse Bloom filters, the number of
1’s and the false positive probability is roughly the same in
both directions.

The set of forward and reverse Bloom filters for the pub-
lisher and each RP are then sent to the RVP, which in turn
sends to the publisher and each RP both a downstream Bloom
filter, used for data forwarding, and an upstream Bloom filter,
used for feedback within its own subtree. The publisher then
sends a setup message to initiate the content distribution; this
message includes the upstream Bloom filter that should be
used for feedback within its subtree and a round counter set
to zero. Upon reception of this message, each RP stores the
upstream Bloom filter used to reach its parent. Then, the RP
switches the Bloom filter in the packet with the one it received
from the RVP and forwards the setup message, encapsulating
inside it the upstream Bloom filter that should be used by its

own children for feedback. At the end of this process, each
RP knows the Bloom filter needed to reach its children (from
the original message of the RVP) and each RP and receiver
knows the Bloom filter needed to reach its parent (from the
setup message from the parent) for a specific SId/RId pair.

Publisher
RVP

Subscriber 3

Subscriber 1
Subscriber 2

1

4
3

5

2

8

76

0

Init (FPub,RPub)

Init (FRP1,RRP1)

Init (FRP2,RRP2)

RP1 RP2

(a) Initialization messages from RVP.

Publisher
RVP

Subscriber 3

Subscriber 1
Subscriber 2

1

4
3

5

2

8

76

0

Setup (FPub,RPub)

Setup (FRP1,RRP1)

Setup (FRP2,RRP2)

RP1

RP2

(b) Setup messages from publisher.

Fig. 3: Communication setup in RMTPSI.

Figure 3 explains how the communication setup phase
works, using the same example as in Figure 2. The RVP
first sends a pair of filters (FPub, RPub) to the publisher, a
pair (FRP1, RRP1) to RP1 and another pair (FRP2, RRP2)
to RP2, to initialize their state, as shown in Figure 3a. The
setup message from the publisher is then forwarded using
FPub and encapsulating RPub. When it reaches RP1 through
the path {0,1} and RP2 through the path {0,2}, each RP
stores RPub as its feedback filter to the publisher. Then the
message is forwarded from RP1 using FRP1 and encapsulating



PUBLISHED IN: JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, VOL. 50, 2015, PP. 92–100 5

RRP1 and from RP2 using FRP2 and encapsulating RRP2,
as shown in Figure 3b. Each receiver, upon reception of this
message, stores the filter encapsulated inside the message to
be later used for feedback. In this way, the multicast tree
from publisher to subscribers is divided into three smaller
ones (MT1-MT3), and each node knows the downstream and
upstream Bloom filters needed for protocol operation.

If a setup message is lost, some of the RPs and subscribers
forming the leaves of the subtree where the message was lost
will not receive an upstream Bloom filter to reach the publisher
or the RP at the root of their subtree. As a result, while RPs
will still be able to forward and subscribers will be still able to
receive data packets, as these only rely on the forward Bloom
filters distributed by the RVP, they will not be able to generate
feedback. However, RMTPSI will still operate correctly in this
case (see Section III-D).

C. Initial content distribution

After setup completes, the publisher starts sending the data
packets, inserting in each header the round counter from the
setup message. At each RP, the SId/RId in the packet is looked
up and the Bloom filter is replaced with the one needed to
reach the next RPs and/or subscribers. For example, in Figure 3
RP1 would replace FPub with FRP1.

When a subscriber detects that a packet has been lost (based
on sequence numbers) or corrupted (based on checksums),
it uses the upstream Bloom filter to return a NAK message
to its upstream RP, also inserting the round counter in the
header. The receiver then enters the missing packet and round
counter in a list of pending packets, so as to be able to detect
when the transmission is complete. The RP also enters the
missing packet and its round counter in a pending packet
list, but instead of passing the NAK upstream, it holds it
for a specified interval waiting for more NAKs to come. If
additional NAKs, either for the same or for different packets,
arrive at the RP during the waiting period, they are recorded in
the pending packet list and combined into a single NAK which
is forwarded upstream, by using the corresponding upstream
Bloom filter. Finally, the publisher also enters the information
from the NAKs it receives in a pending packet list.

Each RP uses the pending packet list in order to later
forward recovery data only where needed and to avoid re-
laying NAKs for packets that have already been NAKed. For
example, say that in Figure 3 RP1 receives a NAK from one
of the receivers in its subtree. If a NAK for this packet has
not already been received, the packet will be entered in the
pending packet list. After the waiting interval, the NAK will
be forwarded to the publisher, possibly aggregated with other
NAKs. When the publisher later retransmits the missing packet
using its forward Bloom filter, the retransmission will reach
both RP1 and RP2, but only RP1 will forward it in its subtree
as the packet is in its pending list, while RP2 will drop it.

D. Recovery

When the publisher finishes the initial content distribution,
it waits for a specified period of time in order to allow nodes
that have received the entire transmission to leave the multicast

group and the TM to issue new Bloom filter pairs wherever
needed. The publisher then sends a new setup message with the
round counter increased by one, so as to distinguish packets
from different recovery cycles. This message lets subscribers
know that the current round has finished, allowing them to
detect any packets that were lost at the end of the current
round; these packets will be requested as part of the next
round. In addition, the setup message updates the upstream
Bloom filters throughout the multicast tree, as shown in
Figure 3b.

Then, a retransmission round begins, with the publisher
transmitting all packets for which NAKs have been received,
based on its pending packet list. Each RP only forwards
in its subtree the packets for which it has received NAKs,
as recorded in its own pending packet list. As packets are
retransmitted by the publisher and the RPs, the corresponding
entries in their pending packet lists are cleared; the same
takes place at each receiver as missing packets arrive. Again,
receivers send NAKs for missing packets, which are aggre-
gated as previously explained. Both data and NAK packets
use the round counter from the most recent setup message.
This procedure (setup, transmission, feedback) is repeated at
the end of every round, until the download completes at all
receivers. A receiver knows that its download is done when
a round completes and its pending packet list is empty. Since
subscribers leave the multicast group when done, the tree will
eventually be torn down, thus concluding the transfer.

Consider now what happens if a setup message is lost in
a subtree. The leaves of that subtree, whether they are RPs
or subscribers, will not be able to transmit NAKs upstream
but, since they are still able to receive (and forward, if they
are RPs) data packets, they can simply note that they have
not sent a NAK for some packets in their pending packet
list. When a new setup message arrives in a following round,
they can send these pending NAKs at that point. Since the
multicast tree is only torn down when all receivers leave
the multicast group, the publisher will keep generating setup
messages until the transmission is complete, even if it has
received no NAKs in a round (presumably, due to missing
setup messages or NAKs). As a result, missing setup messages
will be eventually repaired, RPs and subscribers will send their
NAKs, and RMTPSI will work correctly.

E. A detailed example

Consider again the network shown in Figure 2 and assume
that the publisher generates 5 packets, numbered 1 to 5, as
shown in Figure 4a. Packet 1 is lost over link 0, hence RP1
and RP2 only receive packets 2, 3, 4 and 5. RP1 transmits these
packets to subscriber 1 and subscriber 2, but packet 3 is lost
over link 6, hence subscriber 1 ends up with packets 2, 4 and 5
and subscriber 2 with packets 2, 3, 4 and 5. RP2 also transmits
the same packets, but packet 4 is lost over link 8, hence
subscriber 3 ends up with packets 2, 3 and 5. Subscriber 1 thus
generates NAKs for packets 1 and 3, subscriber 2 generates
a NAK for packet 1 and subscriber 3 generates NAKs for
packets 1 and 4, as shown in Figure 4b. RP1 combines the
NAKs from subscriber 1 and subscriber 2 to an aggregated



6 PUBLISHED IN: JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, VOL. 50, 2015, PP. 92–100

Publisher
RVP

Subscriber 3

Subscriber 1
Subscriber 2

RP1

RP2

1

4
3

5

2

8

76

0

Data: 1,2,3,4,5

Data: 2,3,4,5

Data: 2,3,4,5

Data: 2,4,5 Data: 2,3,4,5

Data: 2,3,5

(a) Data packets sent and received.

Publisher
RVP

Subscriber 3

Subscriber 1
Subscriber 2

RP1

RP2

1

4
3

5

2

8

76

0

NAK: 1,3,4

NAK: 1,3

NAK: 1,4

NAK: 1,3 NAK: 1

NAK: 1,4

(b) NAKs sent and received.

Fig. 4: An example of data transmission and recovery.

NAK for packets 1 and 3, while RP2 combines the NAKs
from subscriber 3 to an aggregated NAK for packets 1 and 4.
As a result, the publisher will receive NAKs for packets 1, 3
and 4, which it will retransmit towards RP1 and RP2. RP1 will
only forward packets 1 and 3 to its subtree, while RP2 will
only forward packets 1 and 4 in its subtree. Note that RP1
drops packet 4, RP2 drops packet 3 and subscriber 3 drops
packet 3, as they have not asked for them. All subscribers
will now leave the multicast group, as they have no pending
packets, and the tree will be torn down, thus completing the
transmission.

As a further example, assume that the retransmission of
packet 4 in the previous example was lost again. Since no
later messages will arrive, subscriber 3 will not generate a
NAK for packet 4 in this round. However, since subscriber 3
still has pending packets, it will not leave the multicast group
and the tree will not be torn down. Eventually, the publisher
will send a setup message with a new round counter, making
subscriber 3 aware that packet 4 was lost again during the
previous round. Subscriber 3 will thus send a new NAK for
packet 4 with the current round number, and the publisher will
eventually retransmit packet 4 during the next round.

F. Comparison with PGM

As mentioned above, RMTPSI is most similar to PGM, in
that feedback is aggregated in tree nodes, effectively splitting
the multicast distribution tree into subtrees. While in PGM a
single IP multicast address is used for the entire tree and the
subtrees are used only for feedback aggregation purposes, in
our approach we reuse the RPs mandated by the forwarding
architecture for this purpose. Also, while in PGM NAKs
are sent via unicast to the upstream aggregation point, we
instead use reverse Bloom filters to achieve the same result,
since our forwarding architecture is based on source routing.
Essentially, these modifications are required to map PGM from
IP multicast to the PSI forwarding architecture.

A more significant difference is the way feedback is ag-
gregated. In PGM, the RP attempts to suppress further NAKs
for a packet by multicasting an NCF, while in RMTPSI each
receiver sends NAKs for all missing packets to its upstream
RP; there is no NAK suppression within a subtree. If the loss
probability is similar for all links in a subtree, it is unlikely
that many receivers will lose the same packet, therefore it is
wasteful to multicast an NCF to the entire subtree for each
loss; even if another NAK for the same packet is sent, the
multicast NCF may still be more costly, as it crosses all links
in the subtree. Another difference is that PGM sends new data
interspersed with retransmissions, eventually giving up on lost
packets, while RMTPSI retransmits packets in rounds until
all have been received. This reflects the fact that RMTPSI
is designed for fully reliable transmission, while PGM is
geared towards mostly reliable transfers. Since in each round
some group members depart, the number of links that each
retransmitted packet crosses in RMTPSI is generally lower
than that of PGM.

IV. EXPERIMENTATION AND EVALUATION

A. Simulator Setup

In order to evaluate the performance of RMTPSI against
PGM, we used extensive simulations over NS-3 [19], where
the entire PSI architecture was implemented, including Bloom
filter-based forwarding [14] and wide-area multicasting based
on RPs [16]. We simulated a scenario where a single pub-
lisher distributes the desired content (e.g. an OS patch or an
antivirus update) to a large set of subscribers. The content
size is 20 MB, composed of 20.000 data packets with a
payload of 1 KB each. We used randomly generated scale-free
network topologies of 200 and 500 routers (generated with the
Barabási-Albert algorithm [20]) with 50 and 100 subscribers
attached to randomly chosen routers, leading to an average
of 15.6 and 28.6 RPs, respectively; smaller topologies can be
handled without RPs. Each scenario was executed 7 times,
with different random positions of attachment to the network
for the publisher, resulting in a different tree being generated
and different RPs being chosen each time.

We assumed that all losses were random, i.e. packets were
independently lost with the same probability in each link;
we did not model the correlated losses usually associated
with congestion. The values for the link loss probability were
chosen experimentally, so that in each topology the average



PUBLISHED IN: JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, VOL. 50, 2015, PP. 92–100 7

loss rate reported to the publisher would be 3, 6, 9 or 12%.
Packet losses affected both data packets and NAKs, but not
the initialization packets from the RVP to the publisher and
RPs, which are beyond the scope of our work.

Concerning the PGM protocol, all its features described
above have been implemented for the PSI architecture, using
RPs to extend the size of the multicast trees and reverse
Bloom filters for feedback. PGM uses these RPs as NEs,
hence RMTPSI and PGM employ the same multicast trees
and subtrees. When a PGM subscriber notices a loss, it picks
a random interval from 0 to 1000 ms before sending a NAK,
while RMTPSI subscribers send their NAKs immediately.
When a NAK is received, the RP in both PGM and RMTPSI
waits for 70 ms before passing it upstream, aggregating all
NAKs received in the meantime into a single NAK. In order
to make PGM fully reliable, each subscriber starts a 500 ms
timer upon sending a NAK, waiting for an NCF. If the timer
expires before an NCF arrives, the NAK is retransmitted and
the timer is restarted. Upon arrival of an NCF, the subscriber
starts a new 500 ms timer, waiting for the missing packet.
If the timer expires before the packet arrives, the NAK is
retransmitted and the timer is restarted, until the packet is
eventually received.

B. Experimental Results

Our first metric is the total number of packets transmitted
in the publisher to subscriber direction, for both the initial
data distribution and the recovery phases; we count all single
hop packet transmissions, that is, a multicast transmission
from the publisher or an RP that crosses a tree with n links
counts as n transmissions. We did not include the setup
messages as they represent a negligible fraction of the total:
only one setup message crosses each link in every round,
compared to 20.000 data packets sent in the first round only.
Figure 5 presents this metric for RMTPSI and PGM, for the
200 and 500 router topologies (the x-axis is in thousands).
The size of the network changes the number of total packet
transmissions required, as there are both more receivers and
more intermediate routers in the larger topology, but the overall
trends are the same: RMTPSI requires 2.9% to 10.2% fewer
downstream transmissions than PGM, with higher benefits as
the loss rate grows.

In order to isolate the performance of the recovery mech-
anism, in Figure 6 we show the total number of packets
transmitted in the publisher to subscriber direction only for
error recovery purposes, that is, the retransmissions and, in
the case of PGM, the NCFs. Again the trends are very similar
for both topologies, although the benefits from RMTPSI are far
more evident when the regular data transmissions are removed:
RMTPSI requires 50.1% to 53.2% fewer recovery packets
in the downstream direction than PGM, a nearly constant
reduction across the range of loss rates tested.

The reason for this big gap can be understood by Figure 7,
which shows the number of packets sent directly by the
publisher for recovery purposes only. While PGM retransmits
roughly the same number of data packets as RMTPSI when
NCFs are excluded, the NCFs roughly double the downstream

 1700

 1750

 1800

 1850

 1900

 1950

 2000

 2050

 2100

3% 6% 9% 12%

P
ac

ke
ts

 S
en

t (
th

ou
sa

nd
s)

Packet Loss Rate

RMTPSI
PGM

(a) 200 routers

 3400

 3500

 3600

 3700

 3800

 3900

 4000

 4100

 4200

3% 6% 9% 12%

P
ac

ke
ts

 S
en

t (
th

ou
sa

nd
s)

Packet Loss Rate

RMTPSI
PGM

(b) 500 routers

Fig. 5: Number of packets sent downstream by all network
elements.

recovery traffic. In PGM, the first NAK for each packet in
a subtree triggers an NCF; in most cases, only one leaf of
the subtree will have lost that packet, even at the highest
loss rates tested in our simulations. As a result, the number
of NCFs is roughly equal to the number of NAKs and the
number of retransmissions, thus the number of packets sent
for recovery purposes nearly doubles in PGM. The same holds
for all routers, thus explaining the large difference in favor of
RMTPSI in Figure 6.

Since error recovery also requires traffic in the upstream
direction, in Figure 8, we show the total number of packets
transmitted in both the downstream and upstream directions;
again, we count all single hop packet transmissions, as in
Figure 5, but this time we also include NAKs. Upstream
traffic is equal to 6.7% to 24.8% of the downstream traffic for
RMTPSI (7.2% to 27% for PGM), representing a considerable
overhead in terms of packets, especially as loss rates grow.
RMTPSI requires 3.5% to 12.1% fewer packet transmissions
than PGM in both directions, a higher improvement than when
only downstream transmissions are counted.

The increased savings with RMTPSI when both directions
are taken into account can be explained by Figure 9, which
shows how NAK aggregation performs in PGM and RMTPSI;
specifically, the figure shows how many NAKs are transmitted
by all subscribers and how many NAKs are finally received
by the publisher. The reason for the larger number of NAKs
generated by the subscribers in PGM is NAK retransmissions



8 PUBLISHED IN: JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, VOL. 50, 2015, PP. 92–100

 0

 50

 100

 150

 200

 250

 300

 350

 400

3% 6% 9% 12%

P
ac

ke
ts

 S
en

t (
th

ou
sa

nd
s)

Packet Loss Rate

RMTPSI
PGM

(a) 200 routers

 100

 200

 300

 400

 500

 600

 700

 800

 900

3% 6% 9% 12%

P
ac

ke
ts

 S
en

t (
th

ou
sa

nd
s)

Packet Loss Rate

RMTPSI
PGM

(b) 500 routers

Fig. 6: Number of recovery packets sent downstream by all
network elements.

due to timer expirations, when either the NCF or the missing
packet is not received on time. Since in PGM both NCF and
retransmitted data packets compete with regular data packet
transmissions, these delays can be quite large. To reduce
NAK retransmissions as much as possible in PGM, in the
experiments reported here we increased the timeout delay up to
the point where the download duration started to increase. On
the other hand, in RMTPSI there is no need for timeouts: if a
missing packet has not been received by the end of the round in
which the corresponding NAK was sent, a new NAK is sent for
that packet in the next round, thus NAKs are retransmitted only
when necessary. On the other hand, PGM is more effective
than RMTPSI in aggregating these NAKs, since fewer NAKs
reach the publisher. Despite this fact, the total number of NAK
transmissions is smaller in RMTPSI, as shown above. We also
notice that aggregation is more efficient in the larger network
topology. This is because a larger network leads to larger trees
and the insertion of more relay points. By increasing the points
where NAKs are aggregated, both mechanisms work more
efficiently.

Finally, we measured the time needed for both mechanisms
to complete the transmission to all subscribers, including
recovery. While we expected that our approach would need
more time to complete than PGM due to our recovery round
structure, we observed that both approaches were ending
almost simultaneously in all cases. This happens because the
publisher in PGM has to interrupt the data transmission in

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

3% 6% 9% 12%

P
ac

ke
ts

 S
en

t

Packet Loss Rate

RMTPSI
PGM (no NCFs)

PGM

(a) 200 routers

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

3% 6% 9% 12%

P
ac

ke
ts

 S
en

t

Packet Loss Rate

RMTPSI
PGM (no NCFs)

PGM

(b) 500 routers

Fig. 7: Number of recovery packets sent downstream by the
publisher.

order to send NCFs and retransmissions in parallel with new
data; in addition, as noted above, in PGM many NAKs are
retransmitted due to timeouts, thus further reducing the useful
throughput of PGM as packets are needlessly retransmitted.
RMTPSI in contrast always sends at full speed, since NAKs
are gathered during one round and their retransmissions are
taking place in the next round; NAKs are retransmitted only
after the end of a round. In all our tests, full recovery in
RMTPSI required two rounds of retransmissions, with three
rounds needed only in a few of the repetitions at the highest
loss rate.

V. CONCLUSION AND FUTURE WORK

In this paper we presented an approach for multicast error
control for the reliable, on-demand, delivery of information
over a network supporting native multicast, using relay points
to extend the reach of the source-routing mechanism used. Our
RMTPSI scheme is based on feedback aggregation towards
the sender via the relay points and multicast retransmissions
of lost data. We explored the performance of RMTPSI through
simulations using detailed message exchanges, focusing on its
feedback aggregation features. Our results indicate that the ag-
gregation mechanism effectively prevents feedback implosion,
especially in larger graphs.

RMTPSI is loosely based on PGM, originally proposed
for IP multicast, adapted to operate over the native multicast
support of the PSI architecture. Rather than selecting arbitrary



PUBLISHED IN: JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, VOL. 50, 2015, PP. 92–100 9

 1800

 1900

 2000

 2100

 2200

 2300

 2400

 2500

 2600

 2700

3% 6% 9% 12%

P
ac

ke
ts

 S
en

t (
th

ou
sa

nd
s)

Packet Loss Rate

RMTPSI
PGM

(a) 200 routers

 3600

 3800

 4000

 4200

 4400

 4600

 4800

 5000

 5200

 5400

3% 6% 9% 12%

P
ac

ke
ts

 S
en

t (
th

ou
sa

nd
s)

Packet Loss Rate

RMTPSI
PGM

(b) 500 routers

Fig. 8: Total packets transmitted by all network elements.

routers for feedback aggregation as in PGM, RMTPSI uses
the forwarding relays required to scale Bloom filters to large
multicast groups for this role. RMTPSI targets fully reliable
distribution, thus operating in a series of transmission and
retransmission rounds, unlike PGM which targets mostly re-
liable distribution, thus mixing new data and retransmissions.
RMTPSI does not rely on feedback suppression via multicast-
ing NAK confirmations, as PGM does. Most of the extensions
proposed to PGM however [10] are compatible with our work.
Our results show that RMTPSI is more efficient than PGM,
while requiring the same time to complete a reliable transfer
as PGM; specifically, RMTPSI requires 2.9% to 10.2% fewer
downstream transmissions and 3.5% to 12.1% fewer total
transmissions than PGM.

Future work includes an investigation of the delay interval
that a relay point should wait for NAK aggregation, which
represents a tradeoff between feedback traffic and completion
time. We also plan to couple the error control scheme of
RMTPSI with an efficient solution for hierarchical congestion
control over the PSI architecture. Finally, we are planning
to examine the effectiveness of caching at relay points in
order to enable local retransmissions of lost data, another idea
borrowed from PGM.

ACKNOWLEDGEMENTS

This research has beenco-financed by the European
Union (European Social Fund–ESF) and Greek national

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

3% 6% 9% 12%

P
ac

ke
ts

 S
en

t/R
ec

ei
ve

d

Packet Loss Rate

RMTPSI NAKs sent
PGM NAKs sent

RMTPSI NAKs received
PGM NAKs received

(a) 200 routers

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

3% 6% 9% 12%

P
ac

ke
ts

 S
en

t/R
ec

ei
ve

d

Packet Loss Rate

RMTPSI NAKs sent
PGM NAKs sent

RMTPSI NAKs received
PGM NAKs received

(b) 500 routers

Fig. 9: Total NAKs sent by subscribers and received by
publisher.

funds through the Operational Program “EducationandLifelon-
gLearning” of the National Strategic Reference Framework
(NSRF) – Research Funding Program: THALIS – Athens
University of Economics and Business – DISFER.

REFERENCES

[1] C. Diot, B. Levine, B. Lyles, H. Kassem, and D. Balensiefen, “Deploy-
ment issues for the IP multicast service and architecture,” IEEE Network,
pp. 78 –88, 2000.

[2] M. Caesar, T. Condie, J. Kannan, K. Lakshminarayanan, I. Stoica, and
S. Shenker, “ROFL: routing on flat labels,” in Proc. of the 2006 ACM
SIGCOMM, 2006, pp. 363–374.

[3] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim,
S. Shenker, and I. Stoica, “A data-oriented (and beyond) network
architecture,” in Proc. of the 2007 ACM SIGCOMM, 2007, pp. 181–
192.

[4] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proc. of the 2009
ACM CoNEXT, 2009, pp. 1–12.

[5] G. Parisis, D. Trossen, and D. Syrivelis, “Implementation and evaluation
of an information-centric network,” in Proc. of the 2013 IFIP Network-
ing, 2013, pp. 1–9.

[6] G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilopou-
los, X. Vasilakos, K. V. Katsaros, and G. C. Polyzos, “A survey
of information-centric networking research,” Communications Surveys
Tutorials, IEEE, vol. 16, no. 2, pp. 1024–1049, 2014.

[7] S. Pingali, D. Towsley, and J. F. Kurose, “A comparison of sender-
initiated and receiver-initiated reliable multicast protocols,” in Proc. of
the 1994 ACM SIGMETRICS, 1994, pp. 221–230.

[8] PURSUIT Project, “Home page,” www.fp7-pursuit.eu, 2013.
[9] C. Stais, A. Voulimeneas, and G. Xylomenos, “Towards an error control

sceme for a publish/subscribe network,” in Proc. of the 2013 IEEE ICC,
2013, pp. 3743 –3747.



10 PUBLISHED IN: JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, VOL. 50, 2015, PP. 92–100

[10] J. Gemmell, T. Montgomery, T. Speakman, and J. Crowcroft, “The PGM
reliable multicast protocol,” IEEE Network, vol. 17, no. 1, pp. 16 – 22,
2003.

[11] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of publish/subscribe,” ACM Computing Surveys, vol. 35, pp.
114–131, 2003.

[12] K. V. Katsaros, N. Fotiou, X. Vasilakos, C. N. Ververidis, C. Tsilopoulos,
G. Xylomenos, and G. C. Polyzos, “On inter-domain name resolution
for information-centric networks,” in Proc. of the 2012 IFIP Networking,
2012, pp. 13–26.

[13] G. Xylomenos, X. Vasilakos, C. Tsilopoulos, V. A. Siris, and G. C.
Polyzos, “Caching and mobility support in a publish-subscribe Internet
architecture,” IEEE Communications, vol. 50, no. 7, pp. 52–58, 2012.

[14] P. Jokela, A. Zahemszky, S. Arianfar, P. Nikander, and C. Esteve,
“LIPSIN: line speed publish/subscribe internetworking,” in Proc. of the
2009 ACM SIGCOMM, 2009, pp. 195–206.

[15] M. Sarela, C. E. Rothenberg, T. Aura, A. Zahemszky, P. Nikander, , and
J. Ott, “Forwarding anomalies in Bloom filter-based multicast,” in Proc.
of the 2011 IEEE INFOCOM, 2011, pp. 2399 –2407.

[16] C. Tsilopoulos and G. Xylomenos, “Scaling Bloom filter-based multicast
via filter switching,” in Proc. of the 2013 IEEE ISCC, 2013, pp. 548
–553.

[17] J. Lin and S. Paul, “RMTP: a reliable multicast transport protocol,” in
Proc. of the 1996 IEEE INFOCOM, 1996, pp. 1414–1424.

[18] S. Floyd, V. Jacobson, S. McCanne, C.-G. Liu, and L. Zhang, “A
reliable multicast framework for light-weight sessions and application
level framing,” in Proc. of the 1995 ACM SIGCOMM, 1995, pp. 342–
356.

[19] NS-3 Simulator, “Home page,” www.nsnam.org, 2013.
[20] A. Barabási and R. Albert, “Emergence of scaling in random networks,”

Science, vol. 286, pp. 509 –512, 1999.


