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Abstract

In the area of Wireless Sensor Networks (WSNs), improving energy efficiency and network lifetime is one of
the most important and challenging issues. Most of the considered WSNs are formed by nodes with limited
resources, in which each node plays dual rule of both sensing the environment and relaying traffic to the sink from
other nodes. On the one hand, the nodes need to stay alive as long as possible by achieving energy efficiency. On
the other hand, they have to provide the required service. This conflict of interest makes game theory very useful
in WSNs. Moreover, the nodes usually have to make decisions with very limited information about the state of the
network. Game theory has been used recently in a remarkable amount of research in this area. In this survey, we
review the most recent papers about using game theory in WSNs to achieve a trade-off between maximizing the
network lifetime and providing the required service. The paper contains a complete taxonomy of games applied to
this specific research problem. It summarizes and compares the different published proposals along with tables and
statistical charts showing in which domains game theory has been applied recently. Overall, the paper will give
researchers a clear view of the newest trends in this research area, underlining its main challenges and hopefully
fostering discussions and new research directions.

Keywords: Wireless sensor networks; Game theory; Energy efficiency; Network lifetime

1. Introduction

Wireless Sensor Networks (WSNs) have met a
growing interest in the last decade due to their applica-
bility to a large class of contexts, such as environment
monitoring, object tracking, traffic control, and health5

applications, among others. Since it is usually diffi-
cult and costly to replace faulty sensors once they are
deployed, reducing the energy consumption in WSNs
is of paramount importance in order to maximize the
network lifetime [1]. The lifetime of a sensor network10

is defined as the time until any or a given number of
sensors in the network dies.

This research area has drawn a lot of attention in the
last few years with many researchers developing solu-
tions to extend nodes’ battery life as much as possible.15

A survey that offers a comprehensive view of energy-
saving solutions in WSNs while taking applications’
requirements into consideration is presented in [2]. It
presents a novel classification of energy-conservation
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schemes at different layers. The proposed taxonomy20

of energy-saving mechanisms is summarized as fol-
lows: radio optimization, data reduction, sleep/wakeup
schemes, energy-efficient routing and energy repletion.
So far, different approaches and mathematical meth-
ods have been used to characterize this problem, rang-25

ing from computational intelligence and optimization
methods to game theory. However, the main challenge
is represented in the trade-off between energy conser-
vation and Quality of Service (QoS) which makes the
problem of energy conservation more complicated.30

Game theory [3], which has been mainly studied
and applied in economics, politics and sociology, has
recently emerged as an useful tool in analyzing mod-
ern wireless networks since it provides analytical tools
to model interactions among entities with conflict-35

ing interests that compete for the limited network re-
sources (i.e., energy and/or bandwidth). Like resource-
constrained nodes in a wireless network that might -for
instance- decide not to forward packets in order to pre-
serve their own battery [4]. In some cases, nodes may40

seek to optimize the overall network performance. In
other cases, nodes may behave maliciously, seeking to
ruin network performance for other users [5]. Game
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theory offers a wide range of formulations and models
that can be used to optimize node-level operations, as45

well as network-wide performance in a flexible man-
ner [6]. In addition, game theory allows us to model
scenarios in which there is no centralized entity with a
full picture of network conditions [5].

There are some previously published surveys in the50

literature about using game theory in WSNs [6, 7] and
in ad hoc networks [8]. However, the main difference
between these surveys and this one is that none of the
previous surveys has explicitly considered or identi-
fied the energy efficiency and lifetime maximization55

problems in WSNs. For example, [7] surveys the use
of game theory in WSNs in general, without focusing
on energy efficiency. [6] surveys the amount of work
done using game theory in WSNs before 2008, focus-
ing on two main domains energy efficiency and secu-60

rity. However, there are a considerable amount of re-
search and valuable developments in this area in the
last few years that non of these surveys covers. In ad-
dition, in this survey we cover proposals that use var-
ious game theory concepts and models which are not65

mentioned in previous surveys like Bargaining games,
Bayesian Nash Equilibrium, the core, and correlated
equilibrium, among others.

This paper provides a survey of recent research stud-
ies employing game theory to improve energy con-70

servation and prolong the network lifetime in WSNs.
The paper first presents a brief overview about WSNs
in Section 2. Then, a categorization for game theory
models with non-cooperative, cooperative, and cooper-
ation enforcement games as the top main categories, is75

presented in Section 3. Later, the literature is surveyed
at four levels: i) Power Control and Medium Access
Control (MAC) in Section 4, ii) Routing and Cluster-
ing in Section 5, iii) Coverage and Topology Control
in Section 6, and iv) Data Aggregation, Security, Task80

Allocation and Energy Harvesting in Section 7. Each
level is further divided into three parts based on the
applications of non-cooperative, cooperative and co-
operation enforcement games. In each level the papers
are summarized in a table which illustrates the class85

of game, game solution strategies and energy savings
methods used. Besides, the articles in the tables are or-
dered according to the year of publication. The survey
is completed with the conclusions in Section 8. The
paper will give to the reader a brief but comprehensive90

view of the state of the art in all aspects of this research
area, and shed the light on its main current challenges
and future trends. We also hope it will foster discus-
sion and new research ideas among researchers, pro-
viding them with a clear description of the state of the95

art. Fig 1 summarizes the organization and the struc-
ture of the survey.

Paper Structure

Section 1: Introduction

Section 2: Wireless Sensor Networks

Section 3: Game Theory in WSNs

Section 4:

Power Control

MAC

Section 5:

Routing

Clustering

Section 6:

Coverage

Topology Control

Section 7:

Data Aggregation

Security

Task Allocation

Energy Harvesting

Section 8: Conclusion

Introduction

Non-cooperative
Games

Cooperative Games

Cooperation En-
forcement Games

Discussion and
Future Directions

Figure 1: The organization of the paper

2. Wireless Sensor Networks (WSNs)

A Wireless Sensor Network (WSN) is a wireless
network where all or most of its nodes have sensors100

(ranging from scalar sensors that can sense temper-
ature or relative humidity to video cameras). Sen-
sor network is typically formed by a large number of
small in size, low-cost, battery-powered and resource-
constrained nodes that might be randomly disposed or105

strategically placed all over the region of interest in or-
der to perform certain tasks like monitoring, detecting
events, generating reports and communicating, likely
via multi-hop wireless links, with one or more destina-
tion nodes -that will collect the sensed information and110

possibly perform specific requests for certain sensed
data- called sinks.

In some scenarios, when multiple surrounding nodes
detect the same event, one of them generates a final re-
port after collaborating with the other nodes. The sink115

can process the report and possibly send it out through
either high-quality wireless or wired links to external
centers for further processing. Nodes are static most
of the time, whereas mobile nodes can be deployed ac-
cording to application requirements. A sink can also be120

either static or mobile, and one or several sinks could
be deployed together within the same network.

The topology of sensor networks could be classified
as a: (i) flat topology, where nodes are all of the same
level and behave according to same rules (i.e., generat-125

ing and forwarding data), (ii) cluster-based topology,
where there are different categories of sensor nodes
(SNs), and cluster heads (CHs). SNs communicate
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mainly or exclusively to its CH -usually the CH clos-
est to itself. That divides the network region in clusters130

and the CHs perform all inter-cluster communications
and might aggregate its cluster data before sending it
to other CHs or to the sink.

Typically, a flat topology is used in homogeneous
networks, where all nodes have the same capabilities.135

Cluster topologies are used in heterogeneous networks,
as cluster heads have more capabilities in terms of en-
ergy, communication and processing power. The use
of these higher-capacity nodes can greatly increase the
network reliability and lifetime but imposes additional140

cost and challenges like deciding how many and how
they should be deployed, and in most cases require
specific routing protocols. The reader can refer to
[1, 9, 10] for further reading about WSNs.

3. Game theory in Wireless Sensor Networks145

Game theory has been applied intensively in wire-
less networks in the last decade. Previous work done
in this area shows that it enables an intelligent behavior
in challenging environments. The book entitled ”Game
Theory for Wireless Engineers” [5], presents game the-150

oretic models and their application to modern wireless
networks. A survey that demonstrates how game the-
ory could be effectively applied in wireless networks
is provided in [11]. It explains what are the best fields
under the different OSI layers for applying game the-155

ory.
Game theory is considered a preferable approach

for WSNs -in comparison with other types of wire-
less networks- for the following reasons. Firstly, so-
lutions designed for WSNs should be fully or par-160

tially distributed. Secondly, nodes in WSNs are typ-
ically resource-constrained, fixed, and homogeneous
in terms of battery life and other hardware resources.
Hence, nodes have conflicting interests between con-
serving energy in order to maximize the lifetime of165

the network, and between providing the required QoS.
However, researchers still have some challenges in se-
lecting the appropriate game model and defining the
utility function for each specific problem. This is be-
cause these models need to guarantee that the sys-170

tem converges to a desirable solution within reasonable
time.

The following subsections will provide a brief
overview about the various classifications and the dif-
ferent concepts of game theory which are illustrated in175

Fig. 2.

3.1. Main Classification of Games

In general, games have been classified in different
ways in the literature. The main classification of game
theory divides the games into two main classes Non-180

cooperative games and Cooperative games. In this

survey we add a new class to that classification: Coop-
eration Enforcement games. We found that there is a
significant number of articles that fall under this class,
thus we hope that it will provide to the reader with a185

good understanding of game theory models. In the fol-
lowing subsections we describe the different concepts
in each class with examples. Table 1 will guide the
readers through the proposals that use these concepts
in WSNs.190

3.1.1. Non-cooperative Games
This class of games focuses on each player’s indi-

vidual utility rather than the utility of the whole net-
work. In non-cooperative games individual players
may act selfishly (i.e., deviate alone from a proposed195

solution if it is in their own interest, and do not co-
ordinate their actions with the other players). In this
context, nodes in an energy constraint multi-hop wire-
less network will probably act selfishly for the follow-
ing reason: from a node’s point of view, forwarding200

the incoming packets affects its own resources. There-
fore, it may not be of the node’s interest to forward all
the incoming packets. In contrast, if it rejects forward-
ing other’s packets, it will negatively affect network
connectivity. This dilemma is called the Forwarder’s205

Dilemma [4]. Nevertheless, when nodes belong to dif-
ferent authorities or clusters, it may be preferable to
look for their interest. The technical report presented
in [4] carefully explains how situations of this kind can
be modeled by making use of game theory.210

In general, a game consists of two components: i)
participants called players, in our scenario a set of a
wireless nodes N = {n1, . . . , nN}, where N = |N| is
the number of nodes participating in the game, ii) a set
of available actions for each player called strategies215

S = {s1, . . . , sS } (e.g., the decision to forward pack-
ets or not), and iii) an associated amount of benefit
or gain which each player receives at the end of the
game, called payoff or utilityU = {u1, . . . , uU}, which
is a function that measures the degree of satisfaction220

for each available strategy in terms of the considered
performance metrics (e.g., energy, delay, target signal-
to-noise ratio). Each player try to choose his best avail-
able action (i.e., the one which give a player the highest
payoff, called best response). The best action for any225

given player depends, in general, on the other players’
actions. So when choosing an action a player must
have in mind the actions the other players will choose.

Nash equilibrium (NE) is a central solution concept
in game theory. It captures the notion of a stable solu-
tion, from which no single player can individually im-
prove his welfare by deviating [3]. Formally, a strategy
vector s ∈ S is said to be a Nash Equilibrium if for any
player i, and for each of its strategies s′i ∈ S, we have
that:

ui(si, s−i) ≥ ui(s′i , s−i)

3



Nash equilibrium represents a certain stable operating
point that is robust to unilateral deviations. It is not230

necessarily the best operating point from a social per-
spective and for the WSNs, but it is at least the one
which all players agree on. Nash theorem says that
every finite game in strategic form has a Nash equi-
librium in either mixed or pure strategies [12]. In the235

previous example (the Forwarder’s Dilemma game),
the Nash equilibrium point is when each node (player)
drops other nodes’ packets. A game has a Nash equi-
librium in a pure strategy, when each player determin-
istically plays his chosen strategy. When players are240

allowed to randomize and each player picks a certain
probability distribution over his set of strategies, such
a choice is called mixed strategy.

One method for identifying the desired Nash equi-
librium point in a game, and ensuring that the solution245

maximizes the utilities for both players is to compare
strategy profiles using the concept of Pareto-optimality
[4]. In a Pareto-optimal strategy profile, the payoff of
a given player can not be increased without decreas-
ing the payoff of at least one other player. A game can250

have several Pareto-optimal strategy profiles, and it is
important to note that a Pareto-optimal strategy pro-
file is not necessarily a Nash equilibrium. In the For-
warder’s Dilemma example, the strategy profile when
both nodes forward packets of each other is Pareto-255

optimal, but not a Nash equilibrium.
Potential games [3, 13] are games that admit a po-

tential function, which in turn can be used to prove that
the best-response dynamics converge to an equilibrium
point. Potential games pose many interesting prop-260

erties. For example, a pure Nash equilibrium always
exists. Potential games can be classified into Exact
Potential Game (EPG), when a given player switches
from an action to another, the change in the potential
function equals the change in the utility of that player,265

and Ordinal Potential Game (OPG), when the changes
in the potential function and the changes in the utility
of that player are positive.

3.1.2. Cooperative Games
In contrast, cooperative games consider the utility270

of all players with the goal of maximizing the entire
network’s pay-off while maintaining fairness. The ob-
jective of cooperative game theory is to study ways to
sustain cooperation among agents willing to cooperate.
The main question is how the benefits and the costs of275

a joint effort can be divided among participants, taking
into account individual and group incentives, as well
as various fairness properties [3].

Cooperative game theory is also known as coali-
tional game theory. A coalitional game theory is280

designed to model situations in which players form
groups (i.e., coalitions) rather than acting individually.
A central notion in coalitional game theory is the no-
tion of the core. The core is the set of payoff alloca-

tions that guarantees that no group of players has an285

incentive to leave its coalition to form another coali-
tion. Therefore, if we can find a core in a coalitional
game, no coalition will break away, and it will choose
the action that all of its members prefer. In addition, by
repeating the coalitional game, a certain ”stable” state290

is achieved, where no player can improve its utility in
the following repetitions [5]. However, the core solu-
tion can suffer from some drawbacks, like having an
unfair allocation and being difficult to achieve, among
others.295

The other solution concept for coalitional game the-
ory is Shapley value [14], which is one of the efficient
solutions that are used in many proposals included in
this survey. However, the complexity of calculating
the Shapley value increases with the number of play-300

ers, therefore it is recommended only for cases where
the number of players is low.

Another widely applicable concept of cooperative
games is bargaining games. The bargaining problem
studies a situation where two or more players need to305

select one of the many possible outcomes of a joint
collaboration. For example, players try to come to an
agreement on a fair resource sharing inside a cluster. If
the individuals reach an agreement, both of them can
gain a higher benefit than playing the game without co-310

operation. The solution of this type of games is called
Nash Bargaining Solution (NBS) [3, 15], in which no
action taken by one of the individuals is imposed with-
out the consent of the other.

The main difficulty of cooperative games is that315

nodes require to perform some extra computations and
agreements between each other. However, the reader
will find through the survey that when cooperative
games are used, they usually give to the nodes a fair
utility, allowing a noticeable improvement in energy320

conservation.

3.1.3. Cooperation Enforcement Games
This class considers players that would normally be-

have selfishly but they are enforced to cooperate, while
still striving to maximize their outcomes from the325

game. Cooperation enforcement mechanisms are also
designed to encourage greater cooperation by individ-
uals. As we previously mentioned, in multi-hop wire-
less networks, each node serves as a source/destination
for traffic as well as a router to forward packets. Apply-330

ing game theory in such environments raises the fol-
lowing question: What are the incentives for nodes to
cooperate, particularly when there may be natural dis-
incentives such as higher energy consumption? Incen-
tive mechanisms fall under this class. They are gener-335

ally divided in two schemes: reputation-based systems
and credit-based systems [3, 11]. In credit-based sys-
tems, cooperation is induced by means of payments
received every time a node relays or forwards a packet,
and such credit can later be used by these nodes to en-340

4



Games

Non-cooperative Games

Nash Equilibrium

Cooperative Games

Coalitional
Games

Core Shapley
value

Bargaining
Games

NBS

Cooperation
Enforcement Games

Incentive
Mechanisms

Credit-
based

(payments)

Reputation-
based

Mechanism
Design

(e.g. Auctions)

Correlated
Equilibrium

(a)

Games

With Complete
Information

With Incomplete
Information

Bayesian Games

Bayesian Nash
Equilibrium (BNE)

Mechanism Desing

(b)

Games

Static
Games

Dynamic
Games

(c)

Figure 2: Taxonomy of games and the different methods to solve them, (a) cooperative, non-cooperative or cooperation
enforcement games, (b) with complete information or with incomplete information, (c) static or dynamic games

courage others to cooperate. In reputation-based sys-
tems, each node assigns a reputation value to all other
nodes it contacts with. As a node’s reputation de-
creases, its neighbors may refuse to perform services
for it, leading to its gradual exclusion from the net-345

work. Nodes decide independently the extent of their
cooperation with the network, trying to balance their
reputation (too little cooperation might lead a node to
become an untrustworthy node) and resource consider-
ations (too much cooperation may lead to a fast battery350

depletion).
Mechanism design [3, 5] is another branch which

aims to enforce cooperation between nodes, and de-
sign games that have dominant strategy solutions lead-
ing to a desirable outcome (either socially desirable, or355

desirable for the mechanism designer). The idea is to
run an algorithm in an environment with multiple own-
ers of resources. This algorithm takes into account the
preferences of the different owners. Indeed, the larger
goal of mechanism design is often to design mecha-360

nisms in which the selfish behavior of players leads
to such socially optimal outcome. Mechanism design

could be with money (auctions), like Vickery-Clarke-
Groves mechanisms [3], or without money, like House
Allocation problem [3]. It is analogous to Bayesian365

games [3] in terms of privacy of owners information,
but mechanism design makes the solution of a game
much simpler.

Correlated equilibrium [16] is a solution method in
which it is preferable for a player to follow an exter-370

nal correlation device, such as a trusted game coordi-
nator. The traffic light example in [3] illustrates the
idea. Imagine when two players drive up to the same
intersection at the same time. If both attempt to cross,
the result is a fatal traffic accident. In Nash equilib-375

rium, players choose their strategies independently. In
contrast, in a correlated equilibrium, a coordinator can
choose the strategies for both players. For example,
the coordinator can randomly let one of the two play-
ers cross with a certain probability. The player who380

is told to stop has a zero payoff, but he knows that at-
tempting to cross will cause a traffic accident. Corre-
lated equilibrium requires joint computation of strate-
gies. In general, it is easier to computer those joint

5



Table 1: Various game theory concepts and techniques used through the survey

Game Theory Concept References

NE-best response dynamics [21],[24],[25],[26],[28],[76],[100],[115],[139]

Repeated game [21],[48],[50],[68],[96],[97],[98],[100],[105],[125],[157]

Incomplete information [21],[23],[69],[105],[113],[114],[136],[153],[154],[156]

Bayesian NE [23],[68],[113],[117]

Dynamic game [66],[69],[76],[113]

Static game [113]

Mixed strategy NE [49],[55],[57],[69],[136],[138],[139],[157]

Pure strategy NE [22],[76],[79],[125]

Potential game [28],[62],[100],[109],[112],[114],[116],[119]

Shapley value [31],[34],[67],[80],[81],[82]

Core [29],[32]

Pareto optimality [51],[109],[114]

Nash Bargaining Solution (NBS) [51],[73],[104]

Incentive mechanisms [68],[69],[83],[105],[140],[141],[142],[153],[157]

Mechanism design [83],[85],[153],[154],[156]

Cost sharing game [80],[81]

Extensive form [69]

Backward induction [66],[158]

Evolutionary game [136],[139]

strategies, and finding a correlated equilibrium is poly-385

nomially solvable. However, finding an ”optimal” cor-
related equilibrium is computationally hard [3]. Be-
sides, it needs a third party to observe and control the
interaction of players.

3.2. Other Classifications390

Game theory also classifies games according to
other criteria, such that if games are static or dynamic.
In static games, we assume that there exists only one
time step, which means that players move their strategy
simultaneously without any knowledge of what other395

players are going to play. In dynamic games, players
move their strategy in predetermined order, meaning
that the move of one player is conditioned by the move
of the previous players (i.e., the second mover knows
the move of the first mover before making his deci-400

sion).
Moreover, a game could also be classified into two

categories: a game with complete information and a
game with incomplete information. In a complete in-
formation game, each player has all the knowledge405

about others’ characteristics, strategy spaces, payoffs,
and so forth, but all these information are not neces-
sarily available in an incomplete information game. In
games with incomplete information, the overhead re-
sulting from information exchange is reduced, because410

each player predicts the strategies of other players. The
resulting Nash equilibrium of this class of games is
usually called Bayesian Nash equilibrium (BNE) [3].

Table 1 contains an index that helps the reader to
find where the different types of games and the various415

game theory concepts are used through the survey.

4. Power Control and Medium Access Control
(MAC)

4.1. Power Control

The main sources of energy consumption in WSNs420

are sensing, processing and communication. Among
them, communication is the one that consumes more
energy. Hence transmission at optimal power level is
of paramount importance. The optimal transmit power
level is the power level which reduces the interference,425

increases the successful packet transmission and pro-
vides the desired QoS. A large variety of schemes
for power control issues in WSNs have been proposed.
They have been surveyed in [17].

However, topology control solutions which use430

static transmission power, transmission range, and link
quality, might not be effective in the real world. To
address this issue, many distributed non-game theo-
retic algorithms have been proposed in the literature
for dynamically adjusting transmission power level on435

each single node. In [18], a dynamic algorithm that
considers the network lifetime as an essential met-
ric using heuristics is proposed. A distributed al-
gorithm that is based on geometric-programming for
solving the power control problem is presented in440

[19]. A lightweight Adaptive Transmission Power
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Control (ATPC) algorithm for WSNs is proposed in
[20]. In ATPC, each node builds a model for each of
its neighbors, describing the correlation between trans-
mission power and link quality. This model employs a445

feedback-based transmission power control algorithm
to dynamically maintain the link quality of individual
links over time.

Game theory provides helpful distributed mecha-
nisms that allow for each single node to interact with450

its neighbors, and adjust its transmission power with-
out the need of complete information about them. Ta-
ble 2 lists the latest articles that use game theory in this
domain. The papers are summarized and discussed in
the following subsections.455

4.1.1. Non-cooperative Games
In [21], a non-cooperative game with incomplete in-

formation is formulated to solve the distributed power
control problem in WSNs. This proposal suggests ’not
to transmit’ at a certain game iteration when channel460

conditions are poor. The investigation for the exis-
tence of NE is done for two different cases, with fixed
channel conditions, and with varying channel condi-
tions using best response dynamics. It is observed
that there exists a transmission power threshold and465

channel quality threshold that the nodes must com-
ply with in order to achieve NE. Moreover, using re-
peated games, nodes follow the transmission strate-
gies to achieve NE even without presence of any third
party enforcement. A system that would allow only fi-470

nite number of discrete power levels is considered. A
metric called distortion factor is defined to investigate
the performance of such system and compare it with
systems that would allow any continuous power level.
This work also proposes a technique to find the power475

levels at which a node should transmit in order to max-
imize its utility and minimize the distortion. The re-
sults show that this algorithm achieves the best possi-
ble payoff/utility for the sensor nodes by consuming
less power.480

The power control game proposed in [22] is based
on Code Division Multiple Access (CDMA) communi-
cation. It is observed that the cluster head (CH) mem-
bers structure in WSNs is similar to the base station ter-
minal structure of CDMA. The difference here is that
the utility function of the game considers the node’s
residual energy, and is given by:

ui(pi, p−i) = µ log2(1 + SINRi) − c(pi)

Both the pricing c(pi) and system model Signal Inter-
ference plus Noise Ratio (SINRi) depends on the resid-
ual energy of node i, as follows:

ui(pi, p−i) = µlog2(1 + G
hi pi

Emax
Ei∑N

j=1 j,i hi pi
Emax

Ei
+ δ2

) − λhi pi
Emax

Ei

where G is the gain of spread spectrum, Ei and Emax
are the residual energy and the maximum energy of485

node i, respectively,
∑N

j=1 j,i hi pi is the sum of inter-
ferences node i receives, δ2 denotes the thermal noise
power of the channel, λ is a dynamic adjust pricing
factor, and µ is an income coefficient.

The existence and uniqueness of the NE is proved.490

Simulation results show that after considering the
nodes’ residual energy, path gain, and transmission
power factors on the design of the pricing function, the
performance of the power control game significantly
improves, reducing the total transmission power effi-495

ciency, saving node energy and prolonging the network
lifetime efficiently.

In [23], sensors are powered solely using renewable
energy to replenish its stored energy. Each sensor con-
siders its varying energy state as private information.500

The existence of BNE is proved. The BNE strategy
of each sensor can be implemented using a thresh-
old. If the energy state exceeds the energy thresh-
old, the sensor transmits with a fixed power, other-
wise, the sensor waits. This study shows how each505

sensor determines its threshold to maximize its util-
ity function. The equilibrium of this Bayesian game
model is compared with three different models: i) dis-
tributed perfect-information model, ii) a centralized
system, and iii) a random-transmission model. The re-510

sults show that the Bayesian model has a performance
similar to the perfect-information model, but with a
lower overhead, making the Bayesian model more suit-
able for real applications.

In a scenario with multiple sources and with multi-
ple receiving clusters, all the sources send their infor-
mation simultaneously towards the cluster heads. Si-
multaneous transmission causes interference at each
receiving cluster which reduces the Signal Interference
plus Noise Ratio (SINR). Higher transmission power
results in higher SINR, but increases the energy con-
sumption and the interference to other receiving clus-
ter heads. For this reason, a non-cooperative power
control game is proposed in [24], where each sen-
sor chooses its minimum transmission power indepen-
dently to minimize its own cost in order to achieve a
target SINR at the cluster head of the receiving clus-
ter. The game can be expressed as the following cost
minimization problem:

min
Pi

Ji(Pi, γi) = min
Pi

biPi + ci(γtar − γi)2

where Pi = [0, Pmax] is the possible range of transmis-515

sion power (i.e., strategy values) for the ith user, Pmax

is the maximum allowed power for transmission, and
Ji is the cost for player i. bi and ci are constant non-
negative weighting factors. γtar is the target SINR at
cluster i, and it is the same for all clusters. The exis-520

tence of an equilibrium is proved, and the cost function
has a minimum at the NE. Therefore, no player can
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Table 2: Proposals in WSN Power Control (Subsection 4.1)

Article Year Class of Game Game Techniques Method of Energy Savings

[21] 2010 Non-cooperative NE, best response, repeated game
with incomplete information

a distributed power control mechanism according to
different channel conditions

[22] 2010 Non-cooperative NE the SINR model takes into account the residual energy
of nodes

[23] 2011 Non-cooperative Bayesian Nash equilibrium (BNE),
incomplete information

an energy efficient power control with reduced over-
head

[24] 2012 Non-cooperative NE, best response optimization of the transmission power independently
to achieve a target SINR

[25] 2012 Non-cooperative NE, best response a game with an energy efficient convergence algorithm
(NPC) to converge quickly to the NE point

[26] 2012 Non-cooperative NE, best response the computational and sensing energy are taken into
account in the energy consumption model

[28] 2014 Non-cooperative Ordinal Potential Game, best re-
sponse

a joint channel allocation and power control game to
reduce both the energy consumption and the interfer-
ence

[29] 2008 Cooperative coalition, core, repeated game, De-
ferred Acceptance Procedure (DAP)

maximizing the number of bits that can be transmitted
per Watt of the consumed power

[31] 2010 Cooperative coalition, Shapley value a fair allocation of power among collaborating nodes
in fusion center based WSNs

[32] 2011 Cooperative coalition, core optimizing the transmission power of a group, and
choosing the best group in terms of power conserva-
tion

[34] 2013 Cooperative coalition, Shapley a fair distribution of the total cooperative cost among
sources, and trade-off between energy efficiency and
end-to-end delay

benefit by deviating from the NE. Bounds on source
power at NE are also proved. Performance analysis
is done using computer simulation, which illustrates525

the influence of interference and distance between the
source and the target cluster on the NE. Finding Pareto
optimality is considered a potential future investigation
for this proposal.

The work presented in [25] claims that previous530

works on power control in WSNs did not focus on the
system convergence. From this perspective, this pro-
posal focuses on constructing a non-cooperative game
model with a convergence algorithm, called NPC, that
guides nodes to converge quickly to the NE point.535

Power consumption is taken as the cost for the game
model. The game is decentralized and the information
of each node can not be known by the others. There-
fore, the best response choice is used to achieve the
NE. Then, the system convergence to the NE point540

is evaluated and guaranteed using the NPC algorithm.
The NPC algorithm shows a remarkable optimization
in energy efficiency and convergence speed, without
accessing the profile of the others.

In [26], a Game theory based Energy-efficient Power
control Strategy (GEPS) is proposed for cognitive sen-
sor networks. In cognitive sensor networks, unlicensed
users (secondary) share a common spectrum with li-
censed users (primary). Each user wants to maximize
its utility function under interference temperature con-

straints as follows:

max
pi

B log(1 + SINRi)
pi + α

s.t.
n∑

i=1

hi pi ≤ M

where pi is the power allocation of user i, B is the545

available wireless spectrum bandwidth, M is the in-
terference temperature limit, which is described as a
threshold of total received power at the primary user.
hi is the link gain between a secondary user i and the
primary user. Both the computational and sensing en-550

ergy, α, are taken into account in the energy consump-
tion model. Simulations are done for testing the en-
ergy efficiency of the power control game. It can be
found that under some conditions this game is a super-
modular game [3], which means it has good conver-555

gence properties to the NE point using the best re-
sponse algorithm. GEPS outperforms the Game-based
QoS-oriented Power allocation Strategy (GQPS) [27]
in terms of energy efficiency and system utility (i.e.,
the average value of cognitive users’ utilities). How-560

ever, as the number of users increases, the system
utility in GEPS decreases dramatically, while it keeps
nearly unchanged in GOPS.

A Joint Channel Allocation and Power Control
Game Algorithm (JCAPGA) is proposed in [28].565

Power control is used to reduce the network energy
consumption, and channel allocation is used to reduce
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the network interference (generated by other transmit-
ting and receiving nodes). However, selecting different
channels affects the node power. Therefore, this pa-570

per aims to optimize the network performance through
collaboratively controlling the two techniques. Nodes’
transmission power, the network interference, and the
residual energy of nodes are taken as the model param-
eters. The node with low residual energy will choose a575

lower transmission power. The model is proved to be
an OPG in order to ensure NE. The best response strat-
egy is considered to improve the convergence speed.
Simulation results show that, in JCAPGA the channel
allocation is uniform, the network interference is low,580

and the energy consumption is balanced.

4.1.2. Cooperative Games
A repeated coalitional game is presented in [29].

The motivation is that each node can likely obtain bet-
ter utility by forming groups and controlling its power
cooperatively rather than individually. Nodes compete
with the others trying to enhance their own power ef-
ficiency subject to QoS constraints. In this work, it is
preferable to maximize the number of bits that can be
transmitted per Watt of the consumed power with re-
spect to SINR, rather than to maximize the through-
put, according to the definition of power efficiency
[30]. The problem is modeled as two-sided one-to-one
matching game, in which an owner is matched with
a single non-owner in order to help the non-owner to
achieve improved power efficiency. Then, the game
is repeated using the Deferred Acceptance Procedure
(DAP) [3]. This technique produces a single matching
in the core at each repetition until reaching a certain
”stable” state. The optimal power efficiency is com-
puted in each step via a non-linear optimization prob-
lem, as the following:

max ui =
ri∑

s∈S pi,s

Subject to:∑
s∈S

pis ≤ Pmax
i for all i ∈ N

Ti ≤ T max
i for all i ∈ V

λi ≤ ri/Λi for all i ∈ V

with ri = B
∑

s∈S log2(1+SINRi,s), where ri is the trans-
mission rate at sensor i, and B is the bandwidth of each585

subcarrier. The parameters are: the set of sensors (V),
the set of idle subcarriers (S) that are detected as not
allocated to primary users, the transmission power con-
straint of sensor i (Pmax

i ), and the transmission delay
constraint of sensor i (T max

i ). The variables are: sensor590

i’s transmission power over subcarrier s (pi,s), and the
average transmission delay (Ti), including queueing
delay per packet considering an M/M/1 queue. Sim-
ulation results show that the matching in the core im-

proves the total power efficiency more than the social595

optimal, though it is less fair.
In [31], tools from cooperative game theory are used

to develop a formal analytical framework for fair allo-
cation of power among collaborating nodes in a Fusion
Center (FC) based WSNs. The goal is to achieve a se-600

quential estimation task, while at the same time max-
imizing the overall network lifetime. The concept of
the Shapley value is used to achieve a fair power al-
location among distributed nodes. Simulation results
show that the proposed solution achieves the target es-605

timation quality at the FC, and at the same time the
lifetime of the overall sensor network is increased.

The proposed algorithm allows nodes to choose the
best group in their coverage area in terms of power
conservation using coalitional game theory.610

A cooperative game is proposed in [32] to optimize
data transmission of a group (not a single node) by
forming coalitions. A mobile node may move to a
new location to join a desirable group. It requests the
group leader first. Then, the group leader evaluates the615

benefit of group membership for the node using coali-
tional game theory. If the membership is beneficial,
the leader sends an invitation to the node. The node
itself may receive many invitations and can choose the
best group in their coverage area by comparing its own620

utility with the offered one. The correctness of the pro-
posed protocol is proved by searching for failures in it,
through evaluating all possible behaviors of sensors us-
ing the Maude tool [33]. The work proves that the core
is not empty and simulation results show that any node625

could always save more energy by joining a group.
In [34], a power control solution based on the trade-

off between energy efficiency and end-to-end delay
is presented. A cooperative coalitional game is pro-
posed to obtain a power control solution that achieves630

a fair distribution of the total cost among sources. It is
observed that the additional energy cost function and
the delay cost function are continuously differentiable
(i.e., minimizing the delay is achieved by minimizing
the remaining energy level). Each source node seeks635

to minimize its utility function of discounted sum of
transmission power increase cost and source-to-sink
delay cost. Shapley value is used as a solution of
the cooperative allocation game. The results illustrate
the impact of delay and energy cost parameters on the640

energy consumption associated to different coalitions.
They show that selecting a larger coalition is better
than a smaller one in cooperative games.

4.1.3. Discussion and Future Directions
From the previously reviewed proposals, we notice645

that non-cooperative games have been preferably used
for energy efficiency in power control problems. This
is because sensor nodes do not use any information
about the separate transmission power level strategies
taken by other nodes, which means that control packets650
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are greatly reduced (see [21, 23, 25]). There are differ-
ent opinions about: i) which class of games and solu-
tion concepts are more appropriate, ii) how to save en-
ergy, iii) and how to converge to a stable NE point (see
NPC [25], super-modular [26], and DAP [29]). Some655

of proposals take into account the channel conditions
to save energy [21], while others like [22] consider
nodes’ residual energy in the utility function. How-
ever, proposals like [29] say that it is more important
to maximize the number of bits that can be transmitted660

per Watt of the consumed power, while [26] takes com-
putational and sensing energy also into account in the
energy model. A collaborative control of both channel
allocation and power control is taken into account in
[28]. In [24], a cluster-based WSN with multiple re-665

ceiving clusters is studied. [32] cares about optimizing
data transmissions of a group. The trade-off between
energy efficiency and end-to-end delay are taken into
account in [34, 29]. [34] achieves a fair distribution of
the total cooperative cost among sources. It is worth670

noting that not all the proposals evaluate the perfor-
mance of their proposed solutions or algorithms. Only
[32, 21] do.

As a conclusion, we notice that there is not one sin-
gle strategy or one class of games which is considered675

a general solution for saving energy in this domain.
The applied mechanism depends on different factors
like the network scenario, if it is applicable in real
cases or not, and QoS constraints, among others. In
the future work, game theory models could be applied680

to address the issues of power control mechanisms in
energy harvesting WSNs.

4.2. MAC
Reducing energy consumption is a challenge when

designing a MAC protocol for WSNs. Idle listening,685

collision, and overhearing are the major sources of en-
ergy consumption in a WSN [35].

Recent proposals in this domain take the energy ef-
ficiency of a node as the main goal to solve. For exam-
ple, in order to achieve low power operation in random690

access MAC schemes, X-MAC [36] introduces a series
of short preamble packets, instead of one long pream-
ble as in B-MAC [37]. In synchronized schemes, T-
MAC [38] allows an adaptive length of the active peri-
ods instead of fixed sleep/active cycles as proposed in695

S-MAC [39]. L-MAC [40] is a Time Division Multi-
ple Access (TDMA)-based scheme that organizes time
into frames and eliminates the channel access by pre-
cisely scheduling who is allowed to transmit in each
slot. Z-MAC [41] is a hybrid MAC protocol that com-700

bines some of the best features of the TDMA and
Carrier Sense Multiple Access (CSMA). Z-MAC im-
proves energy efficiency by achieving high channel uti-
lization and enhancing contention resolution. Compre-
hensive studies which analyze and compare the differ-705

ent MAC protocols for WSNs are presented in [35, 42].

Finally, LWT-MAC [43] is an adaptive MAC protocol
suitable to be enhanced using game theory approaches.
It combines an unscheduled channel access, based on
low power listening, with an opportunistic scheduled710

wake up after transmissions mechanism.
It is clear that each node has a direct influence on

its neighboring nodes while accessing the channel.
These interactions between nodes lead researchers to
introduce the concept of game theory in the design of715

MAC protocols in order to improve energy efficiency
as well as the end-to-end delay in a decentralized man-
ner. Game theory has been applied in contention free
schemes, showing that it could save energy by de-
creasing collisions (e.g., Multiple Access Game [44],720

[45]). In the following subsections, we present and
discuss the latest contributions in MAC schemes using
game theory for energy savings purposes. The con-
sidered proposals in this survey are summarized in Ta-
ble 3. Notice that game theory has been also consid-725

ered to prevent node’s misbehavior at MAC layer. For
instance, in CSMA/CA MAC protocols, some nodes
may use different backoff parameters to get more band-
width than the other honest contenders [46, 47]. How-
ever, since those papers do not focus on energy effi-730

ciency issues, we we do not overview them in details.

4.2.1. Non-cooperative Games
A simplified Game-theoretic Constraint Optimiza-

tion scheme (G-ConOpt) is presented in [48], in which
its performance is optimized in an energy efficiency735

manner. In G-ConOpt, time is divided into super-
frames and every super-frame has two parts: an active
part and a sleeping part. During the active part, each
node plays a game and contends for the channel. Dur-
ing the sleeping part, each node turns off its radio to740

preserve energy. The durations of the active and sleep-
ing parts are adjusted according to the estimated game
state too. Firstly, a node estimates the current state
of the game, defined as the number of its active op-
ponents n. Secondly, the node adjusts its equilibrium745

strategy, the minimum Contention Window (CWmin),
to the estimated number of its opponents n. It is not
needed to compute the optimal value of CWmin. The
final value of CW is the optimal one, and the best strat-
egy for a player is to set CWmin=CW/2. That is to750

say, GConOpt would not cause any more energy con-
sumption. Power consumption and energy efficiency
of GConOpt is compared with S-MAC and CSMA by
simulation. Results indicate that the power consump-
tion in both S-MAC and CSMA is almost constant, and755

increases adaptively in GConOpt with the increasing
of the traffic loads. Energy efficiency in GConOpt is
higher than in S-MAC and CSMA.

In [49], a MAC scheme based on p-persistent slot-
ted ALOHA and constructed a simple non-cooperative760

game is proposed in order to determine the value of
the channel attempt probability p. Firstly, general-
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Table 3: Proposals in WSN Medium Access Control (MAC) (Subsection 4.2)

Article Year Class of Game Scheme Game Techniques Method of Energy Savings

[48] 2009 Non-cooperative mixed based
(scheduling &
contention)

history-based estima-
tion, infinitely repeated

adjusting the transmission probability and
the sleeping time of a node according to the
number of its opponents

[49] 2010 Non-cooperative contention based mixed strategy NE optimizing the channel attempt probability
taking energy consumption into account

[50] 2013 Non-cooperative scheduling based NE, repeated game optimizing the sleep interval between con-
secutive wake-ups (duty cycle control)

[51] 2007 Cooperative scheduling based NE, Pareto optimality,
bargaining game

determining the optimal sleep and wakeup
probabilities

ized payoffs were designed to reflect the costs of en-
ergy consumption and throughput deterioration. Next,
NE is found in a closed form. Each player then has765

only two pure strategies: to always attempt to deliver
a packet, and to never attempt it. However, the NE is
the mixed one. Using the NE, the effect of the payoffs
on the stability of a sensor network is investigated. It is
observed that the set of feasible values of the payoff for770

saving energy shrinks as the traffic load per leaf node
increases.

It is observed that the higher/lower the duty cycle,
the higher/lower the energy consumption at receiving
nodes, and the lower/higher the energy consumption
at transmitting nodes are. Thus, a Non-cooperative
Duty-cycle Control Game (R-NDCG) for reducing the
idle-listening time is proposed in [50]. It aims at op-
timizing the sleep interval between consecutive wake-
ups for random asynchronous wakeup MAC protocols.
In this MAC scheme, the sender waits for a beacon
signal from the receiver before starting to transmit.
Since each sender receives beacon signals from sev-
eral nodes, the data are routed on multiple paths. In this
context, an optimization framework for minimizing the
energy waste of the most power-hungry node is pre-
sented. Firstly an analytic model that predicts nodes’
energy consumption is derived. Then, the model is
used as a part of the optimization process. At the trans-
mitter, the transmission energy model represents the
sum of the energy spent to deliver data packets, and
the energy spent to listen to the channel before a bea-
con signal is received and the contention is won. At
the receiver, it is the sum of the total energy consump-
tion due to data packet reception, the energy spent for
beacon signal transmission, and the amount of energy
consumed between the generation of the beacon signal
and the reception of the packet. The objective function,
the minimization of energy waste of the most power-
hungry node, contains sums and products of rational
terms. Thus, it is neither linear nor convex. Therefore
a multi-start local search is presented first for solving
the problem. The obtained solution was considered
as a comparison benchmark for assessing the overall
performance of the game theoretic approach. Then, a
game theory based solution is proposed as follows: Let

G = [{N}, {R}, {C(i)
s (.)}] denote the NDCG, whereN is

the set of the nodes, R is the set of strategies, and C(i)
s (.)

is the cost function of user i. Each user i selects a bea-
con rate r(i)

s ∈ R, which corresponds to the outcome of
the game in terms of selected beacon signal rate (i.e.,
the duty-cycle). In the NDCG, each user minimizes his
own cost function in a distributed way. Formally, the
NDCG game can be expressed as:

arg min[Ci
sr

(i)
s ];∀u(i)

s ∈ N

The cost function of the proposed game represents a
trade-off between a node’s energy and the energy of
any node belonging to a set of nodes producing data775

traffic towards node i. Since users act selfishly, the
equilibrium point is not necessarily the best operat-
ing point from a social point of view. However, it is
proved via simulations that the NE of the distributed
game achieves a desirable result.780

4.2.2. Cooperative Games
In [51], an optimal energy savings mechanism for a

sensor node is presented. It uses a sleep and wakeup
strategy for energy conservation. The node switches to
sleep mode if channel quality is bad and switches to785

the active mode, from the listen and sleep modes, with
probability Pactive,listen and Pactive,sleep, respectively, at
the beginning of periodic time intervals. The strategy
for the first player is to select Pactive,sleep. For the second
player the strategy is to select Pactive,listen. Payoff for790

the first player is the packet blocking probability Pblock
(due to the sleep mode), and for the second player the
packet dropping probability Pdrop (due to buffer over-
flow). This strategy results in a trade-off between Pdrop
and Pblock. A bargaining game is formulated to deter-795

mine those probabilities under energy constraints. A
NE, which is Pareto optimal, is obtained as the solu-
tion of this game in order to obtain the optimal sleep
and wakeup probabilities. The solution basically elim-
inates the selfishness of nodes that try to conserve en-800

ergy at the expense of high Pblock.

4.2.3. Discussion and Future Directions
We can infer from the presented proposals and Ta-

ble 3, that game theory has been applied to address the
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energy efficiency in different MAC schemes, schedul-805

ing based [50, 51], contention based [49], and mixed
(scheduling and contention based) [48]. Although the
number of proposals in this domain is limited, we be-
lieve that they are sufficient to break the ice in this
domain. In a contention based scheme [49], a non-810

cooperative game is used to determine the value of
the attempt probability p. Most of the scheduling-
based MAC schemes focus on the optimization of the
active and the sleeping intervals, which helps in sav-
ing energy and increasing the network lifetime (see815

[48, 50, 51]).
We mention that non-cooperative games are prefer-

ably used. Only one proposal uses cooperative games
with a Nash bargaining solution. However many is-
sues still need to be addressed in this domain. For ex-820

ample, the use of game theory for energy efficiency
in contention free MAC schemes (e.g., TDMA), Hy-
brid MAC schemes, high data rate applications, and
multi-channel MAC protocols are recommended for
future work. Moreover, game theory tools are suit-825

able to solve some problems in receiver initiated MAC
protocols. For example, in this class of MAC proto-
cols the sender waits for a beacon from its intended
receiver before starting the transmission of data. If
the time between sending two consecutive beacons in-830

creases (i.e., the receiver is saving energy), the proba-
bility that many senders will send to the same receiver
and collide will also increase, which affects the energy
level of other nodes in the network. Game theory pro-
vides tools to solve this trade-off problem and achieve835

both a social and a local optimum solution at the same
time. Game theory may also be suitable for cross layer
designs (e.g., to investigate how the design of MAC
layer affects the network layer).

5. Routing and Clustering840

5.1. Routing

Routing refers to determining a path for a message
from a source node to a destination node. The routing
problem is an attractive research area in WSNs. Gener-
ally, when attempting to optimize this problem, a lot of845

metrics should be taken into consideration. For model-
ing the cost of a transmission, some parameters at each
node are considered. For example, the distance (i.e.,
delay and power consumption are proportional to it),
remaining energy, and transmission rate of each link,850

etc. Thus, a good candidate model should take these
parameters into account and consider the distributed
nature of WSNs.

Since most of the routing protocols developed for
wired networks pursue the attainment of high QoS,855

they are impractical in WSNs. Thus, different non-
game theory approaches have been done for energy
aware routing in WSNs. Computational Intelligence

(CI) based approaches have been widely applied in
the domain of energy aware routing. Such approaches860

are usually based on Reinforcement Learning (RL),
Swarm Intelligence (SW), Genetic Algorithms (GAs)
or Neural Networks (NNs). These approaches are
surveyed and briefly explained in [52, 53]. How-
ever, these approaches are generally based on meta-865

heuristics which do not necessarily converge to an ex-
act or an optimal result, and are usually centralized (ex-
cept reinforcement learning, see [53]). Besides, an of-
fline learning phase, like GAs or offline NNs, can nei-
ther cope with changing properties of the network, nor870

provide an energy efficient routing scheme. Ant-based
routing is a flexible technique, but generates a lot of
additional traffic because of the forward and backward
ants moving through the network.

Game theory has been successfully applied to dif-875

ferent WSNs’ routing and load balancing problems
that consider energy efficiency and network lifetime
maximization as main goals. Issues such as the pres-
ence of selfish nodes in a network have been analyzed
using game theory based, for instance, on incentive880

mechanisms. The idea behind these models is that for
each successfully delivered data packet, the destina-
tion node pays a credit or modify the reputation of the
source in all intermediate nodes that participate in the
routing game. However, each data packet transmission885

has a cost for each node that participates in the route.
This cost is a function of the three previously men-
tioned parameters. Nodes -wanting to maximize their
profit- will accept to be part of the path if its profit is
not negative [54].890

In this subsection, we summarize the latest contri-
butions in this domain. The considered proposals are
summarized in Table 4.

5.1.1. Non-cooperative Games
In [55], a Game Theoretic distributed Energy Bal-

ance Routing (GTEBR) algorithm is proposed to pro-
long the network lifetime. It allows a node to make
decisions whether to take part in the routes by consid-
ering its residual energy and other factors in order to
make the whole network’s energy consumption more
balanced. In this game, each node’s strategy space is
S i = {0, 1}, the value 0 means that a node i chooses the
strategy not relaying the data from its former hop node,
and the value 1 means the opposite. A sensor node is
modeled as having a mixed strategy, which means that
a node can transmit the data with probability pT and
be silent with probability 1 − pT . The probability pT

is defined as a function of the residual energy Er,i and
actual payoff Pa,i:

pTi(Pa,i, Er,i)

The existence of NE is proved and the algorithm895

is compared with Maximum Energy Minimum Hops
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Table 4: Proposals in WSN Routing (Section 5.1)

Article Year Algorithm Game Class Game Techniques Method of Energy Savings

[55] 2007 GTEBR Non-cooperative mixed strategy NE helping nodes to make decisions whether to take
part in the routes according to their residual en-
ergy

[57] 2009 VGTR Non-cooperative mixed strategy NE, action re-
sults awareness

an energy efficient of Data Routing Tree (DRT)
construction, minimize network segmentation, ro-
tate the selection of a node’s next hop

[62] 2010 DSR-G Non-cooperative ordinal potential game choosing reliable routes that prolong the network
lifetime

[64] 2011 HDBR Non-cooperative Stackelberg model, local infor-
mation

constructing energy balanced routing trees

[66] 2012 SGEAR Non-cooperative dynamic game, backward in-
duction

taking the residual energy of nodes and the energy
consumption of paths into consideration

[67] 2011 - Cooperative coalition, absorption coeffi-
cient, Shapley value

considering the proportion of sent data and the
proportion of forwarded data when making deci-
sions

[68] 2008 - Cooperation Enforcement infinite repeated game, incen-
tive mechanism (reputation-
based)

packets transmission efficiency is taken into ac-
count when a node decide whether to forward
packets or not.

[69] 2009 - Cooperation Enforcement dynamic Bayesian game, in-
complete info, incentive mech-
anism (credit-based), extensive
form, pure and mixed BNE

helping nodes to decide energy-aware paths

Routing (MEMHR) [56]. Simulation results show that
the residual energy distribution is higher and the net-
work lifetime is longer in GTEBR than in MEMHR.
However, GTEBR exhibits a higher average hops900

which increases the delay.
In [57], game theory is used for efficiently construct-

ing a Data Routing Tree (DRT) with the aim to prolong
the lifetime of the entire WSN by minimizing the net-
work segmentation. The resulting protocol is called905

Versatile Game Theoretic Routing Protocol (VGTR).
In the protocol the energy is expressed differently. In-
stead of expressing it with an absolute representation
(i.e., using Joules), a time derivative representing the
amount of remaining lifetime is used based on past910

workload. The algorithm induces an energy-aware
and efficient collaborative behavior to the nodes. The
nodes predict the results of their actions and rotate the
selection of their next hop in a calculated way. The
rotation is achieved using the payoff function. A node915

will assign a high probability to a neighboring node
(i.e., next hop) that will extend its life time. The per-
formance of VGTR in terms of energy consumption
outperforms Directed Diffusion (DD) [58], and Sim-
ple Energy Efficiency Routing (SEER) [59]. Both En-920

ergy Aware Routing (EAR) [60] and VGTR attempt to
balance the load between multiple paths. In addition,
VGTR nodes are able to detect hot-paths and critical
nodes and to minimize their utilization. In compari-
son with Low-Energy Adaptive Clustering Hierarchy925

(LEACH) [61], VGTR has a higher rate of node deaths
which means that LEACH outperforms VGTR in pro-
longing the network lifetime.

In [62], a reliable routing model against selfish
nodes is proposed. The nodes should choose reliable

routes that prolong the network lifetime. When the
distance between a node and the sink is fixed, the node
should transmit to a distant neighbor in order to save
total network energy. Moreover, sending to a closer
neighbor, increases the total number of hops to the
sink, which also affects the reliability. For improving
the reliability of transmission, shorter paths are pre-
ferred. However, it creates some hot areas in which
nodes die quickly. To solve this contradiction, game
theory is used. Besides, the NE point is reached after
proving that the game is an OPG. The utility function
proposed considers four factors. It is defined as fol-
lows:

ui(p) = ci(p) + ri(p) − pi(p) − hi(p)

where hi(p) is the collision utility, pi(p) is transmission
power, and ci(p) is the connectivity utility:

ci(p) = ci(pi, p−i) = (1 − f (arean))/ f (area)

where f (arean) is the area of the free region, f (area) is
the whole monitoring area of the sensor network, and
ri(p) is the reliability utility:

ri(p) = ri(pi, p−i) = Nbri − 1/Di

where Nbri(pi) is the number of node i’s neighbors
within transmission power pi, and Di is the probability930

of dropping packets. This model is applied over Dy-
namic Source Routing (DSR) protocol [63] and named
as DSR-G. Results show that after applying game the-
ory the selfish nodes have less impact in DSR-G than
DSR.935

In [64], Heterogeneous Balanced Data Routing
(HDBR) is presented. It is a game theoretical dis-
tributed algorithm aiming to construct energy balanced
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routing trees in heterogeneous WSNs. It considers
Stackelberg model [4] for the game. In this model,940

nodes with parent role are leaders of the game and
nodes with child role are followers. Utility functions
use local information of nodes. Parents have coopera-
tive behavior, while children have selfish behavior try-
ing to gain more individual utility. Leaders make de-945

cisions before the followers, since they can predict the
followers’ decisions. The behavior of the parents in-
fluences the behavior of the children, so that even with
selfish actions of children as followers, they still con-
tribute to the global benefit of the game (i.e., construct-950

ing a balanced tree for the entire network). Parents also
try to decrease the load of other adjacent parents which
are two hop away nodes at the same level. HDBR not
only considers the amount of data each node has to
transmit, but also bandwidth and delay as balancing955

criteria. HBDR outperforms the cumulative algorithm,
proposed in [65], in prolonging the lifetime of WSNs.
However, such a proposal still need to be compared
with other protocols in order to make a more accurate
evaluation.960

A Sub-Game Energy Aware Routing (SGEAR) is
presented in [66]. The scheme is based on the fact that
the optimization problem of routing could be mapped
into a dynamic game problem, and thus, could be
solved using Backward Induction method [4]. SGEAR965

takes the residual energy of the nodes and the energy
consumption of the path into consideration. Compared
with energy-aware routing, SGEAR can provide stable
routes and optimize energy consumption of the whole
network. Moreover, the algorithm is suitable for being970

combined with scheduling based scheme for prolong-
ing the lifetime of WSNs.

5.1.2. Cooperative Games
In [67], a data transfer strategy is proposed to re-

duce the energy consumption of a WSN by forming975

coalitions. The idea is to consider ”the proportion of
sent data and the proportion of forwarded data”. The
coalitions are formed based on a Markov process. The
concept of absorption coefficient is proposed to mea-
sure the coalitional profiles. Then, the Shapley value980

is used to share the coalitions’ payoff. NE is used here
to determine the coalitions’ approximate data transfer
strategies of the formed coalitions. However, finding
the exact NE in this proposal is a NP problem. Thus,
a genetic algorithm is given to calculate it approxi-985

mately. Finally, the energy consumption of nodes in
both when they work alone and when they cooperate
is compared. Simulation results show that nodes con-
sume less energy when they cooperate.

5.1.3. Cooperation Enforcement Games990

A self-learning repeated-game for cooperation en-
forcement between randomly deployed nodes with lo-
cal information only is proposed in [68]. This frame-

work is applied in the case that nodes may not know
how to cooperate even if they are willing to do so.
The node’s utility is quantified as its own packet trans-
mission efficiency, which is defined as the ratio of the
power for successful self-generated traffic over the to-
tal power used for self-generated traffic and packets
forwarding. The goal of the node is to maximize the
long-term average efficiency. The stage utility function
for node i can be represented as:

U(i)(ai, a−i) =
P(i)

s,good

P(i)
s + P(i)

f

where ai is node i’s packet forwarding probability, a−i

is the other nodes’ forwarding probability, Ps,good is the
power consumed in successful (good) transmission of
node i own packets to its destination, P f is the power
consumed in forwarding other nodes’ packets, and Ps995

is the power consumed in transmitting node i own
packets. In this game the nodes/players do not know
when the game ends (i.e., infinitely repeated game).
Unlike the one-time game, a repeated game allows a
strategy to be related to the past moves and results in1000

reputation and retribution effects. Therefore, any coop-
erative equilibrium that is more efficient than the NE
of the one stage game can be sustained, and any de-
viation causes a punishment from other nodes in the
future. The second step utilizes a learning algorithm to1005

achieve the desired efficient cooperative equilibrium.
The two proposed steps are applied iteratively until no
more efficient cooperation point can be achieved. The
proposed game is able to enforce cooperation among
selfish nodes. Nodes will not have incentive to lie be-1010

cause lying nodes will be detected using majority vot-
ing.

In [69], the source/forwarder problem is formulated
as a dynamic Bayesian game with incomplete informa-
tion. This game is played by every node participating1015

in the packet delivery, thereby helping the nodes to de-
cide energy-aware paths toward a sink. The factors,
such as energy, location (related to mobility), and co-
operation between sensors, are taken into account in
this work. In addition, each sensor is unaware of the1020

energy state of its neighboring sensors. The update
system is based on Bayesian game theory. It improves
the efficiency of path selection and minimizes the need
of instantaneous updates about local sensors’ energy.

A two-player Bayesian game is modeled. One1025

player is a sensor node, denoted by i (source). The
other player is a one-hop neighbor j of the source i.
In Fig. 3, N represents an entity the decides j’s type.
Source i with the belief B0 that forwarder j’s energy
level is sufficient has two pure strategies: forwarding1030

H packets, or discarding the packets and remain in idle
mode. The work proves that the strategy combination
(i plays ”sleep mode” if j is energy constrained but
plays ”send H packets” if j has sufficient energy, j
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Figure 3: Extensive form of Bayesian game

plays ”not forward”, when B0 is low) is a pure BNE1035

strategy. In contrast, when B0 is high, a mixed strat-
egy approach is presented to analyze BNE. The co-
operation of the forwarder j (i.e., playing ”forward”
or ”not forward”) is decided according to its payoff.
Cooperation between the sensors can not be taken for1040

granted, thereby cooperation enforcement represented
by a credit-based incentive mechanism is defined in the
game. A sensor will earn a reward R if it forwards a
packet for a neighboring sensor, where R > 0. All
the mathematical formulations of j’s payoff in the the1045

six different cases, illustrated in Fig. 3, are further de-
scribed in [69]. Simulation results show that the pro-
posal enhances the network lifetime, compared to the
techniques such as Flood and AODV [70], by select-
ing the delivery path based on a sensor’s energy. The1050

proposed work has the lowest remaining energy distri-
bution since it has the longest operation time due to the
distribution of traffic loads/energy cost among different
nodes.

5.1.4. Discussion and Future Directions1055

All the reviewed proposals in this domain are con-
centrated in some common issues. For example, in
constructing or determining the energy aware paths,
helping nodes in making decisions weather to take a
part in routes or not (selfishness problem arises here),1060

or handling with nodes selfish behavior, in order to
achieve a fair residual energy distribution which pro-
longs the network lifetime. The proposals differ from
each others in the game class used, or the solution pro-
posed. For instance, GTEBR [55] takes the residual1065

energy of nodes as a main metric, while in [69], three
factors are taken into account: energy, location, and co-
operation between sensors. DSR-G [62] chooses reli-
able routes to prolong the network lifetime. The utility
function of DSR-G considers four factors: collision,1070

transmission power, reliability, and connectivity. In
HDBR [64] the amount of data, bandwidth and delay
are also considered as balancing criteria. In contrast,
the energy in VGTR [57] is expressed using a time
derivative the represents the amount of remaining life-1075

time of a node on past workload is more informative.
The reason is that the amount of energy alone does not

always convey a practical meaning, as the value of en-
ergy is dependent on additional factors. In VGTR, the
selection of a next hop is rotated to achieve energy bal-1080

anced routing. It is worth mentioning that [69] consid-
ers WSNs’ scenarios that allow mobility but it has a
low remaining energy distribution.

In [69, 64], nodes depend on local information only,
which reduces overhead. Both [68] and [69] use1085

cooperation enforcement mechanisms to encourage a
node’s neighbor to forward its packets by employing
a punishment and reputation-based scheme [68] or by
giving rewards (credit-based system) [69]. It is worth
noting that the usage of incentive mechanisms is very1090

useful in this domain.
Computational intelligence is used in [67, 68] to

reach a desired equilibrium with reduced complexity.
Again, the usage of non-cooperative games outper-
forms other classes of games due to its simplicity and1095

reduced overhead.
Received signal strength (link quality) is an impor-

tant metric when identifying the best possible routes.
Adding this metric to the cost function should be con-
sidered in the future design. Furthermore, although1100

HDBR handles heterogeneous WSNs scenarios, the
work in this direction still needs more efforts to study
how the existence heterogeneous nodes affects the
routing decisions and the overall performance of the
WSN. Game theory has been also used to address en-1105

ergy savings in data aggregation based routing proto-
cols which will be discussed later, in Subsection 5.1.

5.2. Clustering

Cluster formation is one of the early proposed meth-
ods for energy efficient operation in WSNs. It lim-1110

its the scope of inter-clusters interactions to cluster
heads and avoids redundant exchange of messages
among nodes, while reducing the size of the routing
table stored at each individual node. Cluster head se-
lection process has a significant effect on the WSN1115

performance. However, since it is a NP-hard prob-
lem, many heuristic methods, like LEACH, TEEN [71]
and APTEEN [72], have been presented to solve it.
They focus on balancing the energy consumption of
nodes by dynamically changing cluster heads. How-1120

ever, these methods do not always guarantee an en-
ergy efficient operation during the whole lifetime of
network. In fact, the most commonly used clustering
schemes that are based on LEACH, are usually quite
inefficient from network lifetime maximization point1125

of view. This is because If any member inside a cluster
dies, this typically should not affect the lifetime of the
cluster, since it does not influence the transmission of
other nodes [73]. Moreover, LEACH requires that all
clusters perform direct transmission to the sink. Solu-1130

tions proposed for multi-hop flat WSNs are not always
feasible in cluster-based WSNs.
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Table 5: Proposals in WSN Clustering (Section 5.2)

Article Year Algorithm Game Class Game Techniques Method of Energy Savings

[76] 2012 DEGRA Non-cooperative NE, best response, perfect info,
pure strategy, dynamic game

taking the residual energy and average energy con-
sumption of neighbors into consideration in the
cluster head selection process

[77] 2012 GTC Non-cooperative win-stay, lose-shift an energy efficient cluster size determination

[79] 2012 - Non-cooperative NE a fair transmission load assignment between cluster
members

[80] 2010 - Cooperative coalition, Shapley value, cost-
sharing game

the residual energy and the transmission distance
are taken into consideration when forming coali-
tions

[73] 2012 - Cooperative NBS a fair resource allocation between clusters by mod-
eling the utility of cluster members as their lifetime

[81] 2012 CSGC Cooperative coalition, Shapley value, cost
sharing game

the CHs share only the cost of common affairs
among CHs in inter-cluster transmission

[82] 2013 - Cooperative Coalitions, Shapley axioms optimizing the coalition formation under control-
lable QoS constraints, and exploiting the correlated
data

[83] 2011 - Cooperation Enforcement Auction mechanism, incentive electing the node with the most energy remaining
as a CH, and encouraging selfish nodes to behave
honestly by providing incentives

[85] 2013 AASA Cooperation Enforcement Auction mechanism the CH activates only the nodes in the predicted re-
gion of the target, while the rest of nodes remain in
sleeping mode, then an auction mechanism is used
in the election of CH to reduce energy

Different Computational Intelligence (CI) ap-
proaches have also been proposed for energy aware
cluster-based WSNs. Most of these approaches has1135

been classified and discussed in [53]. Energy Hole
Avoidance problem is also a crucial routing and clus-
tering problem [74, 75]. This problem appears when
nodes closer to the sink have to transmit more packets
than those far from it, as it depletes their batteries first,1140

hence leaving a hole near the sink and partitioning the
whole network. Uneven clustering is one of the meth-
ods proposed for load balancing in order to avoid such
a situation. In this method, a smaller cluster radius near
the sink and a larger cluster radius away from the sink1145

are defined, respectively.
Game theory is a suitable mathematical tool for

optimizing energy-efficient clustering approaches in
WSNs due to the various and distributed models that
it offers (e.g., coalitional games). In the following sub-1150

sections, we present and discuss the latest proposals
that use game theory in this domain. The proposals are
further summarized in Table 5.

5.2.1. Non-cooperative Games
A Density-based Energy efficient Game-theoretic1155

Routing Algorithm (DEGRA) is presented in [76] for
solving the conflict between an individual node and the
entire network. The goal is to improve the cluster head
selection process. DEGRA sets a utility function to
determine the CH based on nodes’ density. The pro-1160

posal takes both the residual energy of a node and the
average energy consumption of its neighbors into con-
sideration. The CH selection problem is regarded as a
k-stage dynamic game. Every player knows the utili-

ties and strategies available to other players and each1165

chooses its strategy based on the observation of pre-
vious stages. Thus, the game is a finite complete and
perfect information game. The game has a pure strat-
egy NE (i.e., every player is playing a best response to
the strategy choices of its opponents) for each stage.1170

Besides, all stages constitute a subgame perfect NE of
the dynamic game. Simulation results show that DE-
GRA consumes less energy than LEACH due to the
effective determination and distribution of CHs.

Game Theoretic Clustering (GTC) [77] is an energy-1175

aware distributed algorithm proposed to adaptively de-
termine suitable cluster sizes by tuning the width of
nodes’ regions. GTC consists of two parts: the load
balancing algorithm, called LBA, and a cluster forma-
tion using the Win-Stay, Lose-Shift (WSLS) strategy.1180

WSLS is based on the principle that if the most recent
payoff is high, the same choice will be repeated, other-
wise the choice will be changed [78]. Using WSLS,
nodes at different locations can adapt their trans-
mission ranges for ”cluster-formation-announcement”1185

rather than the constant ranges fixed at the beginning.
Regions closer to the sink have smaller width, thus
CHs at different hop distances could achieve similar
energy consumption levels. Simulation results show
that the network lifetime is extended when WSLS is1190

adopted. Those results are specially significant when
the node density is high. This is because that the CH
role can be rotated among more nodes. The weakness
of GTC is that it assumes there is only one CH in each
region which limits its applicability.1195

To achieve energy fairness, the transmission load
should be distributed among sensors such that, regard-
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less of a sensor’s working conditions, no sensor node
should be unfairly overburdened. In [79], the transmis-
sion load assignment in WSNs is modeled as a game.1200

This work focuses on a cluster-based and surveillance-
oriented sensor network. In fact, one report from a
sensor in the cluster is enough to trigger the response
of the surveillance system, and the other nodes can
conserve their energy by just keeping silent. The key1205

motivation of this work is to determine which sensor
is going to report to the sink. The problem can be
more complicated when it considers the heterogene-
ity of sensors. NE of the energy balancing game is
derived. The NE solution can also meet the QoS re-1210

quirements.

5.2.2. Cooperative Games
To balance energy consumption of nodes and max-

imize the network lifetime, a cooperative game the-
oretic model for clustering algorithms is proposed in1215

[80]. The selfish behavior of nodes in non-cooperative
games expedites network partition and results in an un-
fair residual energy distribution in them. Thus, the al-
gorithm poses conditions for forming coalitions, con-
sidering the residual energy, transmission distance, and1220

the number of nodes in a cluster. The nodes have to
trade-off both individual cost and network-wide cost.
Therefore, a cost sharing game is considered. Shapley
value is chosen as a solution that assigns a single cost
allocation to the cost sharing game. Compared with1225

other algorithms, this clustering scheme prolongs the
network lifetime, reduces transmission time, and regu-
lates the area of clusters to achieve energy efficiency.

In [73], a fair resource management approach for
WSNs with a clustering scheme based on a bargain-
ing game is proposed. The proposal assumes that each
clusters has the same number of cluster members. The
NBS is applied by modeling the utility of cluster mem-
bers as their lifetime. The lifetime of a cluster member
i allocated to a time slot n to communicate with its CH
at a transmission rate ri(n) can be derived as follows:

τi(n) =
Ei

pi(n)
=

|hii(n)|2

Ii(n)(2ri(n)/Wi(n) − 1)

where E is the total battery energy, pi(n) is the trans-
mission power of cluster member i, τi(n) is the lifetime1230

of a cluster member i, which depends on the power
strategy of cluster members in a time slot n, Wi(n) is the
bandwidth, hii(n) is the channel gain of the link from
a cluster member i to its CH which belongs to cluster
i, and Ii(n) is the total interference and noise power at1235

the CH, which belongs to cluster i during slot n. It is
proved that the set of the achievable utilities of NBS is
a convex set. An optimal point can be found (i.e., the
NBS is unique). The algorithm is centralized and it is
valid only for single-hop transmission schemes.1240

A Cost Sharing Game-based Clustering (CSGC)
[81] is a cooperative game that is used to solve the CH

selection process. The paper presents a bi-directional
cooperative clustering model, where cluster members
cooperate in inter-cluster and intra-cluster transmis-1245

sions. Similar to [80], a cost sharing game-based CH
selection scheme is proposed to achieve an efficient
management of clusters. For the purpose of simplic-
ity and reducing the burden on CHs, the cost that CHs
share does not contain data transmission cost. CHs1250

share only the cost of common affairs among other
CHs (i.e., broadcasting information, launching clus-
ter, synchronization, among others). A fair cost allo-
cation is obtained through the use of Shapley value.
CHs that join cost sharing are robust in residual en-1255

ergy and position. Besides, in case of dynamic clus-
tering, CSGC can adapt the CH selection process to
the changing constraints like the node position and the
residual energy. The results show that CSGC outper-
forms LEACH on network lifetime, transmission ca-1260

pacity, and energy efficiency.
In [82], a scheme that employs a small number of

nodes with computing power and large batteries, called
”representatives”, to optimize the coalition formation
under controllable QoS constraints is proposed. The1265

representatives may act either as local sinks, or as co-
ordinators of operations performed either by sensors
or by coalitions. The number and density distribution
of representatives critically affect the overall network
design. The spatial correlation of the data gathered1270

is also exploited to formulate a cooperation scheme
that reduces drastically the number of transmissions to
save energy. The WSN lifetime maximization prob-
lem is accordingly transformed into a coalition forma-
tion game of three phases initialization, optimization,1275

and steady-state phase. In order to save energy dur-
ing the initialization phase, nodes interact only with
their neighbors. The optimization of the initial coali-
tion formation must be accomplished by the repre-
sentatives. The proposed coalition formation satisfies1280

Shapley axioms, and fairness in each coalition is guar-
anteed. Nodes belong to different coalitions generally
have different coalitional values. The performance of
such an approach is examined and compared to other
clustering schemes. This proposal prolongs the life-1285

time of WSNs. The lifetime could be further extended
by increasing the number of representatives. However,
as the number of representatives increases, over parti-
tioning will occur more frequently, reducing the aggre-
gate benefit from coalition formation.1290

5.2.3. Cooperation Enforcement Games
The CH selection process is based on electing the

node with the highest remaining energy within a clus-
ter. The problem appears when there exist selfish nodes
which lie about their remaining energy to avoid be-1295

ing elected. A solution based on an auction mecha-
nism is proposed in [83]. It works as follows: Firstly,
the nodes with the highest remaining energy is al-
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ways elected as the cluster head. Secondly, the mecha-
nism encourages selfish nodes to behave honestly by1300

providing incentives. Therefore, truth-telling is al-
ways the dominant strategy of nodes. The mechanism
is derived from (Quality Assignment Vickrey-Groves-
Clarke) QA-VCG [84] -an efficient multi-attributes
procurement combinatorial auction model. The pro-1305

posal can effectively prolong the overall network life-
time. Moreover, it can be used in Intrusion Detection
System (IDS).

Auction-based Adaptive Sensor Activation (AASA)
[85] is an energy efficient algorithm for target tracking1310

in WSNs. The cluster formation process consists of
a prediction method and an auction mechanism. The
auction mechanism is introduced in the cluster forma-
tion process to reduce energy. The CH predicts the
next location of the target and activate the nodes in1315

the Predicted Region (PR). The rest of nodes remain
in sleeping mode. Then, the CH acts as the auction-
eer and the nodes in PR act as bidders. Each bidder
evaluates the received task and responds the CH with
a bid. CH ranks the bids to choose appropriate sensor1320

nodes for tracking. The node with the biggest bid is se-
lected as the next CH, and other appropriate nodes are
chosen to be the members of the next cluster. In this
work, the auction mechanism is performed only when
the distance between next predicted location and previ-1325

ous predicted location is larger than a certain threshold
dthr. An improved algorithm is proposed to estimate
the location of a target. The target detection error is
taken into account. Adaptive sensor activation algo-
rithm is proposed to make a trade-off between energy1330

efficiency and tracking quality. The relation between
both factors is illustrated by simulation results. More-
over, when the quality of tracking is high, the number
of detecting nodes is reduced to save energy, otherwise
the number is increased to avoid missing a target. This1335

is achieved by dynamically adjusting the radius of PR
and the number of cluster’s members according to cur-
rent tracking quality. AASA achieves energy efficient
performance and prolongs the network lifetime.

5.2.4. Discussion and Future Directions1340

Most of the proposals in this domain are proposed
for finding an energy efficient solution for one of
the following clustering problems: i) CH selection
[76, 83, 81], ii) cluster size [77], and iii) transmission
power load balancing (fair residual energy distribution)1345

between cluster members [79, 80, 73].
DEGRA [76] takes both the residual energy of a

node and the average energy consumption of its neigh-
bors into consideration. However, DEGRA losses ef-
ficiency when the number of members in clusters in-1350

creases. An auction mechanism is proposed in [85]
for the cluster formation process in order to reduce en-
ergy. The CH predicts the next location of the target
and activates nodes in the predicted region, while the

rest of nodes remain in sleeping mode. In [83], the pro-1355

posed mechanism encourages selfish nodes to behave
honestly by providing incentives in the CH selection
process. The algorithm proposed in [73] is centralized,
and it is not recommended for multi-hop transmissions.
The contribution of CSGC [81] is that it presents a1360

bidirectional cooperative clustering model, where clus-
ter members cooperate in inter-cluster and intra-cluster
transmissions. Overall, we can clearly notice that the
nature of cluster-based WSNs is more suitable to be
solved by using cooperative games, due to the formu-1365

lation of coalitions and clusters.
In the future, specifying which nodes should be

placed in the same cluster is a problem that could be
addressed using game theory. Moreover, energy hole
avoidance problem has been covered only by [77] us-1370

ing a distributed non-cooperative game. Therefore,
more efforts should be allocated to this important prob-
lem.

6. Coverage and Topology Control

6.1. Coverage1375

The coverage control problem is defined by answer-
ing a fundamental question: how well do the sensors
observe the physical space. This problem has been
previously formulated in several ways. The investiga-
tion of coverage problems in WSNs is conducted in1380

[86, 87].
In general, there exists a strong relationship between

coverage and lifetime in WSNs. Unfortunately, im-
proving one of these metrics comes at the expense of
the other. A strategy that is commonly employed to1385

achieve these two conflicting goals is to schedule only
few nodes to be awake at any given point of time. This
way the network lifetime is extended without com-
promising the coverage requirements. Therefore, the
key challenge here is to design those scheduling al-1390

gorithms based only on local information, aiming to
achieve near optimal performance.

The set k-cover algorithm is an energy efficient cov-
erage solution, whose goal is to determine whether ev-
ery point in the service area is covered by at least k1395

sensors subject to lifetime requirements. However, the
existing set k-cover algorithms [88, 89, 90] are central-
ized, and can not adapt to large-scale sensor network
applications. Moreover, in [89, 90] it is proved that this
problem is an NP-complete problem. There are some1400

heuristic algorithms in the literature to find the cover
sets. For example, [91] proposes a polynomial-time
algorithm in terms of the number of sensors. The al-
gorithm can be easily transformed into distributed pro-
tocols. Worst and best case coverage are also a well-1405

known problem which is discussed in [86]. In [92],
an efficient distributed algorithm to find an optimum
best-coverage-path with the least energy consumption
is presented.
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Table 6: Proposals in WSN Coverage (Subsection 6.1)

Article Year Game Class Distributed/Centralized Game Techniques Method of Energy Savings
[93] 2007 Non-cooperative/Cooperative Distributed NE, regret strategy maximizing the area coverage subject

to a lifetime guarantee
[95] 2008 Non-cooperative Distributed NE maximizing the area coverage subject

to a lifetime guarantee
[96] 2009 Non-cooperative Distributed NE, repeated game maximizing the area coverage subject

to a lifetime guarantee
[97] 2008 Non-cooperative/Cooperative Centralized NE, repeated game adjusting the coverage range of nodes

while controlling the transmission
power

[98] 2009 Non-cooperative Distributed repeated game optimizing the transmission range dy-
namically in order to save energy

[100] 2013 Non-cooperative Distributed best response, exact poten-
tial game, repeated game

optimizing the area coverage while
minimizing energy costs

[104] 2010 Cooperative Distributed Kalai-Smordinsky bargain-
ing solution

a compromise model for both energy
conservation and sensing accuracy

[105] 2013 Cooperation Enforcement Distributed repeated game, incomplete
info, incentive mechanism
(reputation-based)

optimizing the network coverage tak-
ing the energy efficiency and the selfish
behavior into account

The use of game theory could be helpful for tack-1410

ling this challenging problem, and in finding efficient
and distributed solutions. Table 6 lists the latest work
that use game theory in this domain. The considered
proposals are discussed in the following subsections.

6.1.1. Non-cooperative Games1415

In [93], the Distributed, Robust and Asynchronous
Coverage (DRACo) algorithm is presented. Its goal is
to solve the set k-cover problem in order to provide the
maximum possible coverage subject to lifetime con-
straints. It is assumed that N = |N| nodes are ran-
domly scattered in a field of area A with sensing and
communicating range Rs and Rc, respectively. Every
node belongs to one of k disjoint sets. Time is slot-
ted and most of energy is consumed during the active
slots. Nodes are scheduled to be active over a schedule
of length k, such that in each slot i, nodes belonging to
set i are active. Therefore, the lifetime of the network is
proportional to k. Given such a schedule, the objective
is to determine the optimal k partition of N , such that
the average coverage is maximized. The optimization
problem is formed as follows:

max C(s) =
1
k

N∑
i=1

Ci(s)

s.t. s ∈ S

where S = {s1, s2, ...sN} represents a partition of N
into k cover sets (i.e., S is the set of all possible k-
covers). C(s) is the coverage metric which depends on
the topology of the network, the sensing range Rs of
the nodes, and on k. A key challenge is to achieve this1420

partition in a distributed manner with purely local in-
formation and yet provide near optimal coverage. For
a node i, which has chosen a slot si, if all of its sens-
ing region is covered by other, then node i is redundant

Figure 4: The payoff of node i is the red area

in slot i. Therefore, if node i switches to a slot where1425

there is region covered only by node i, the coverage
performance would be improved (see Fig. 4). The con-
cept called ”the regret of a node”, defined in graphical
games [94], is used. The game converges to NE in a
purely distributed way. Moreover, DRACo is robust1430

to network dynamics and can converge even when ex-
ecuted asynchronously. The simulations indicate that
the convergence speed of DRACo is almost constant
with the number of nodes N and k.

The work done in [95] is an extension of [93]. It1435

proposes synchronous and asynchronous algorithms,
which converge to pure NE. Moreover, it analyzes the
optimality and complexity of pure NE in the coverage
game via the price of anarchy [3]. It is proved that, the
ratio between the optimal coverage and the worst case1440

NE coverage, is upper bounded and depends on the
maximum number of nodes which cover any point in
the NE solution. It is also proved that finding the pure
NE in the general coverage game is PLS-complete. Ex-
tensive simulations show that, the NE coverage perfor-1445

mance is very close to the optimal coverage and the
convergence speed is sub-linear. Even under the noisy
environment, the algorithms can still converge to the
NE point.

19



In [96], [93] is further extended, addressing the same1450

problem by proposing a distributed algorithm. In [95],
the maximum coverage set algorithm is proposed and
[96] utilizes the maximum coverage set as the upper
limit of the coverage set division. On the basis of this
maximum, it takes the node Minimum Layer Over-1455

lapping Subfields (MLOF), satisfying division condi-
tion, as node’s utility function. Then, it puts forward a
distributed heuristic algorithm to get optimal strategy
by iteration in order to reach NE. Using game theory,
the network lifetime is maximized while ensuring the1460

maximum area coverage. However, if the destiny of
nodes is high, increasing the node coverage set will
lead to an increase of algorithm iteration number.

In [97], Game-theoretical Complete Coverage
(GCC) is proposed to ensure complete network cov-
erage through adjusting the coverage range of nodes
and controlling the redundancy in network coverage.
This paper takes into account transmission power con-
trol. The problem description is that in a network that
has changed its topology due to mobile or sleeping
nodes, parts of nodes’ coverage area should be decided
again. In this case, every node probably has to update
its operating parameters. In many cases, the way to
solve this problem is through a detailed planning of
the network topology by optimizing the coverage area
of every node. This approach is easy to manage but
not suitable for the stability of a WSN whose topology
changes fast. The aim of GCC is to avoid the series of
holes in coverage rapidly and effectively. Game the-
ory is used to optimize this problem and the payoff of
every node is defined as follows:

Payoff=1 − αr2
i + βpi

where the value of the complete coverage is 1, ri is the
inductive radius of node i, and α is a parameter that1465

ranges between 0 and 1. It affects the amount of en-
ergy consumption. Smaller coverage area saves more
energy. β is a parameter (between 0 and 1) related to
the importance of the coverage level that should be
considered during the nodes’ decision, and pi is the1470

coverage level. The strategy of power management is
that in each stage of game, the sink broadcasts energy
level data. Then, an energy level determined through
the NE confirmed. If any node deviates, other nodes
will increase their energy levels in order to punish it.1475

All the nodes know other nodes energy condition. In
every stage of game, the energy distribution of every
node achieves equilibrium. During the whole repeated
game processes, certain equilibrium is reached, which
is more effective than single-stage NE. AN improve-1480

ments over GCC is proposed. The two versions -the
basic and the improved- are compared. Nevertheless,
this proposal is not fully distributed since the sink plays
an essential role.

Game-theoretical Total Link (GTL) [98] is an algo-
rithm based on game theory designed for optimizing

the transmission range dynamically in order to save
energy. An amount of 20% of energy is saved in com-
parison to the Critical Transmitting Range (CTR) algo-
rithm [99], where sensors assign fixed and equal trans-
mission ranges, which results in coverage overlapping
(i.e., energy waste). Nodes control their energy con-
sumption flexibly according to topology changes with-
out loss of connectivity and robustness. For doing so,
the following payoff function of a node is proposed:

πi = 1 − αr + β(n − k)

where r is the transmission range radius, α and β are1485

weight parameters, n is the amount of neighbors, and k
is the neighbor expectation. β(n−k) is the benefit from
neighbors, and −αr represents the energy consump-
tion. Through repeated games, the whole network will
reach a NE which means that most nodes will decrease1490

their energy consumption. The paper shows that in ex-
periments with a sleeping strategy, the sleeping nodes
would probably make extra energy waste than other ac-
tive nodes.

The work presented in [100] formulates the cover-
age optimization problem for mobile sensors as a con-
strained repeated multi-player strategic game. Each
sensor tries to optimize its own coverage while mini-
mizing the processing energy cost. A number of learn-
ing rules (e.g., best response dynamics and adaptive
play) have been proposed to reach NE. Utility values
induced by alternative actions are inaccessible because
of the information constraints caused by unknown re-
wards, motion, and sensing limitations. To tackle this
challenge, two distributed payoff-based learning algo-
rithms are developed, where each sensor remembers
only its own utility values and actions played during
the last two rounds. These algorithms are proven to be
convergent to the set of constrained NE and global op-
timum of a certain coverage performance metric. The
utility function proposed for an agent i that aims to cap-
ture the sensing/processing trade-off is:

ui(s) =
∑

q∈D(ai,ci)∩Q

Wq

nq(s)
− fi(ci)

The first term of the formula represents the benefit that1495

agent i obtains through sensing. The second term rep-
resents the sensing energy/processing cost. This cov-
erage game is proved to be a constrained EPG [101].
More results of this work are presented in [102, 103].

6.1.2. Cooperative Games1500

In [104], a compromise model based on a coop-
erative game for both energy conservation and sens-
ing accuracy is proposed. A realistic sensing model
which allows high flexibility in optimizing networks’
sensing activity is presented. The interaction between1505

sensor nodes is modeled as a cooperative bargaining
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game, where individual sensors cooperate for achiev-
ing the application sensing requirements while mini-
mizing and balancing the energy consumption. Kalai-
Smordinsky Bargaining Solution (KSBS) is used to1510

find a distribution rule that optimizes the trade-off in
the compromise problem. Simulation results show that
the WSN lifetime is extended, compared to a Linear
Programming (LP) and a heuristic methods.

6.1.3. Cooperation Enforcement Games1515

In [105], a Coverage Maintenance Protocol (CMP)
that is based on game theory is presented. An incen-
tive mechanism is used to tackle the selfish behavior
of nodes. Selfish nodes may refuse to wakeup to ex-
ecute a Coverage Eligibility Rule (CER) (i.e., to find1520

the eligibility of a sensor node to sleep) for one or sev-
eral rounds, in order to save more energy and increase
their lifetime. The objectives of this work are to detect
and prevent such behavior, and to optimize the network
coverage. In addition, CMP assures that the network1525

coverage degree is maintained by the remaining active
nodes. Thus, it helps to balance the energy consump-
tion by scheduling the active state of nodes. The game
is considered a multi-stage repeated game, since the
phases of coverage optimization and maintenance con-1530

sists of several rounds. The sent and received control
packets overhead is evaluated according to the number
of detected selfish nodes. Results show that the energy
efficiency and the network lifetime are affected when
the number of selfish nodes increases. The results re-1535

veal a trade-off between coverage range (i.e., accuracy
of selfish node detection) and the control packet over-
head, as it affects energy efficiency.

6.1.4. Discussion and Future Directions
Designing a distributed energy-saving solution in1540

this domain is a challenge that has attracted such at-
tention. All the previous set k-cover algorithms are
centralized. Besides, it can not adapt to large-scale
sensor network applications. In [93, 95, 96], game the-
ory has been applied to address the k-cover problem in1545

order to provide the maximum possible coverage sub-
ject to a lifetime guarantee. However, the algorithm
in [93, 95] has many limitations as discussed in [96].
Firstly, the network lifetime is related to the number
of coverage node sets. Secondly, the algorithm aims1550

at maximizing lifetime at the expense of overall cov-
erage. This is against the user demands in real moni-
toring applications, when it is required to enlarge the
coverage area as far as possible. Thirdly, the algorithm
can not achieve a balance between network node den-1555

sity and the number of coverage sets number to opti-
mize the network coverage area. Lastly, this algorithm
uses node’s exposed area as payment function, which
makes calculations in the real application complicated
and less accurate. In [96], if node destiny is high, in-1560

creasing the node coverage set number will lead to an
increase of algorithm iterations.

Coverage control for mobile WSNs is addressed in
GCC [97] and [100]. GCC allows nodes to adjust their
coverage range by taking transmission power control1565

into account. The main drawbacks of GCC are that all
nodes should know other nodes’ energy levels. More-
over, the sink plays an essential role by broadcasting
energy level data. In contrast, in [100] the utility values
induced by alternative actions are inaccessible because1570

of the information constraints. Besides, it employs an
accurate sensing model. GTL[98] optimizes transmis-
sion ranges dynamically to reduce coverage overlaps
in order to save energy.

On the other side, cooperative games are not widely1575

used in this domain. Only one proposal in the re-
cent literature uses a cooperative game to address the
trade-off problem between sensing accuracy and life-
time by using scheduling techniques -not a pure cov-
erage problem- in [104]. Finally, cooperation enforce-1580

ment games are useful when some nodes might have
a selfish behavior or deviate from the NE point (see
[105]).

In the future, the collaborative relation between the
coverage control and the MAC layer (e.g., schedul-1585

ing nodes to sleep according to the required coverage)
will be an important issue that could be modeled using
game theory tools. Moreover, game theory could also
be used to address the joint coverage and power con-
trol problems. For example, the presence of multiple1590

wireless networks in ISM bands, including Wireless
Local Area Networks (WLANs) and other WSNs, is a
cause of mutual interference. WSNs may use dynamic
channel hoping to avoid interference from external net-
works by moving all or one part of the network to a1595

different channel [106]. To do that, all sensors should
agree on that decision as the network connectivity must
be guaranteed.

6.2. Topology Control
In some applications, nodes need to be placed ac-1600

curately at predetermined locations. Given a geo-
graphical coverage, Topology Control (TC) determines
where to place nodes, cluster heads (in cluster-based
topologies), or sinks. It helps in arranging the commu-
nication among them.1605

The network lifetime during which the topology is
preserved -or adapts dynamically- is referred to as
topological lifetime. Many researchers aimed to max-
imize this topological lifetime with regard to a given
mission and a certain amount of initial energy. One1610

energy savings strategy is to allow each node to ad-
just its transmission power to cover only a specific set
of direct neighbors, while preserving connectivity and
coverage. A survey on distributed TC techniques for
prolonging the lifetime of WSNs is provided in [107].1615

However, the failure of nodes due to energy depletion
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Table 7: Proposals in WSN Topology Control (Subsection 6.2)

Article Year Algorithm Game Class Distributed/Centralized Game Techniques Method of Energy Savings

[109] 2008 DIA Non-cooperative Centralized potential game, Pareto effi-
cient

preserving network connectivity with a fair
transmission power distribution

[112] 2009 EPG,OPG Non-cooperative Distributed exact and ordinal potential
game

preserving network connectivity with a fair
transmission power distribution

[113] 2009 Joint
TC and
Power

Non-cooperative Distributed dynamic game, sequential
move, static game, BNE,
incomplete info

the transmission power control is consid-
ered in the TC procedure

[114] 2012 VGEB Non-cooperative Distributed potential game, incomplete
info, Pareto efficient

reducing the energy waste when exchang-
ing the information, and selecting the nodes
with higher energy as direct neighbors

[115] 2012 NS Non-
cooperative/Cooperative

Distributed/Centralized NE, best-response optimizing the energy consumption by con-
necting with a minimal set of neighbors and
using the minimal transmission power

[116] 2012 CTCA Non-cooperative Distributed NE, ordinal potential game a node makes a sacrifice by increasing its
transmission power dynamically if it can
help their neighbors (with short lifetime) to
reduce energy consumption

[117] 2014 - Non-cooperative Distributed BNE efficient placement of relay nodes to
guarantee network recovery in partitioned
WSNs

[118] 2010 - Cooperative Distributed coalition, non-
superadditive, rewards

maximizing the feasible sleep time

may partition the network leaving some areas uncov-
ered. Moreover, it has a negative effect in the applica-
tion since it prevents data exchange. Therefore, topol-
ogy management techniques for tolerating node fail-1620

ures in WSNs have been surveyed in [108].
Since topology may vary with time due to malfunc-

tioning nodes or node mobility, it is preferable that
the network is able to dynamically adjust the topology
in a distributed manner. The TC algorithms found in1625

the literature are either centralized algorithms (i.e., re-
quire global network information), semi-distributed or
distributed algorithms [107, 109]. However, a central
coordination is often impractical, therefore distributed
approaches are required. In this context, a simple dis-1630

tributed topology control algorithm that determines the
minimal power consumption operating point for each
node in a multi-hop wireless ad hoc network is pro-
posed in [110]. There each node makes local decisions
about its transmission power. These local decisions1635

collectively guarantee global connectivity.
Game theory models can effectively address the pro-

cess of nodes’ deployment and control their transmis-
sion power in order to reach a solution which optimizes
energy efficiency and prolongs the network lifetime.1640

The following subsections will discuss the latest pro-
posals in this domain. The papers are summarized in
Table 7.

6.2.1. Non-cooperative Games
Delta-Improvement Algorithm (DIA) [109] is a TC

game that extends the Max-Improvement Algorithm
(MIA) [111]. The utility function ui of the game spec-
ifies that nodes have enough incentives to establish
and maintain connectivity with a sufficient number of
neighbors, and ensures that the network does not parti-

tion. It can be expressed as follows:

ui(p) = ϕi(g(p)) − Xi(pi)

where ϕi represents the benefit (i.e., being connected)1645

node i derives from network g, and Xi is the cost (i.e.,
energy). This TC game is a potential game which guar-
antees the existence of a NE. The game also admits
many locally efficient NE. However, only a subset of
those NE topologies is globally efficient from an en-1650

ergy efficiency point of view. The problem with MIA
is that, although it converges to topologies that pre-
serve network connectivity, being greedy leads to a
biased steady-state power-level distribution. In DIA,
each node makes small decrements in its power level1655

if that change improves its utility. Otherwise, the node
reverts to its previous power level. Thus, at the end,
the transmission power distribution is more fair. This
work shows that under DIA, the induced topologies are
energy efficient and preserve network connectivity. It1660

is observed that the NE topology obtained by DIA is
Pareto efficient. For any random topology, and from
the Pareto efficiency and uniqueness of NE, it can be
deduced that the steady-state power allocation under
DIA is lifetime optimal.1665

In [109], an algorithm that guarantees convergence
to a connected network is proposed. The algorithm
requires global information flowing through the net-
work in order to check at each iteration the connec-
tivity of the network. [112] relaxes that assumption1670

and proposes a fully distributed algorithm based on lo-
cal information only to adjust the transmission power
of each node in a WSN. Hence, the network becomes
connected with an energy efficient solution. The algo-
rithm is formulated as a non-cooperative game where1675

nodes exchange information only with their neighbors
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(i.e., local information only). Potential games concepts
(i.e., EPG and OPG) are used to prove the existence
of NE. The results indicate that for a relatively low
node density, the probability that the proposed algo-1680

rithm leads to a connected network is close to one.
Power management and TC are directly correlated.

The work presented in [113] is motivated by this con-
sideration. It proposes a joint topology and power con-
trol algorithm based on game theory to analyze the de-1685

centralized interactions among heterogeneous sensors.
Three desirable characteristics: reliability, connectiv-
ity, and power efficiency, are considered in designing
the game. The strategies played by the nodes reflect
the trade-off between Frame Access Rate (FSR), node1690

degree, and power consumption. The power control
problem is formulated into a realistic incomplete infor-
mation dynamic game model with sequential moves.
Two solution schemes for implementations are pro-
vided, NEPow and BEPow. The NEPow scheme is1695

derived from the NE of the static game model. The
BEPow scheme is derived from the BNE of the incom-
plete information dynamic game model. Both NE and
BNE are proved under sufficient conditions. Simula-
tions are done to examine the efficiency and stability1700

of the proposed approach. The results show that the
average transmission power over all nodes is reduced
by 45% compared with the case without power control.

In many game theory based TC algorithms, every
node has to make others aware of its actions by trans-1705

mitting the control information repeatedly. This re-
sults in much unnecessary energy waste and network
lifetime minimization. To solve this problem, a dis-
tributed Virtual Game-based Energy Balanced TC al-
gorithm (VGEB) with incomplete information is pro-1710

posed in [114]. In VGEB, each node only needs in-
formation exchange just once. Then, based on the ob-
tained information, each node can figure out its own
transmission power by executing a virtual game. This
work illustrates that the TC virtual game is a poten-1715

tial game and can converge to the NE, which is Pareto
optimal. Moreover, VGEB can easily construct the
topology with a low information complexity of O(n),
and the induced topology can maintain the network
connectivity, where n is the number of nodes in net-1720

work. VGEB is also compared with DIA. Simulation
results show that VGEB outperforms DIA in: i) bal-
ancing nodes’ energy consumption by selecting some
of the available nodes with higher energy as their di-
rect neighbors, ii) reducing the energy waste in infor-1725

mation exchange, and iii) prolonging the lifetime of
network. In addition, the average-hops and maximum-
hops of the shortest path between a node pair in VGEB
are much shorter than that in DIA. Hence, VGEB re-
duces the end-to-end delay.1730

The Neighbor Selection (NS) game is presented in
[115]. In this game, each individual node tries to self-
ishly choose its neighborhood such that its own en-
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Figure 5: A sample NE topology

ergy consumption is optimized. The goal of nodes in
this game is different in the sense that each node tries
to egoistically optimize its energy consumption. This
goal is achieved through connecting themselves to a
minimal set of neighbors while also using the minimal
transmission power. The choice of a minimal neighbor
set allows nodes to minimize their traffic load. This
objective creates a new game with completely differ-
ent outcomes than the original TC game, where nodes
are only interested in minimizing their transmission
power. The utility function of node i can be expressed
as:

ui(L) = M fi −
∑

j,(i, j)∈EL

vi, j pi

where fi is the number of nodes connected to node i,
M is a fixed benefit multiplier. The negative term rep-
resents the energy cost, where vi, j is the volume of traf-
fic going over the link (i, j), and pi is the transmission
power of node i to any of its neighbors. The multiplier1735

M is set to a value larger than any possible energy cost
value. The benefit term indicates that nodes prefer con-
nectivity over energy savings. However, they would
get more rewards by maintaining this connectivity with
a lower energy usage. Hence, a connected topology is1740

always preferred by nodes over a disconnected one.
Fig. 5 illustrates a sample NE topology in which no

node benefits from removing any of its non-cut links.
In [115], a simplified version of this game where nodes
know their transmission power before participating in1745

the game is proposed first. Then, a couple of dis-
tributed algorithms is proposed to obtain stable topolo-
gies in a network of selfish nodes using both global
and local connectivity information. The general case
where the transmission powers are unknown variables1750

is taken into consideration. The results show that the
global method yields to about 20% higher total energy
consumption than the approximated (stable) solution.
However, if the local information is appropriately cho-
sen, the local method can reduce this gap by more than1755

10%.
Cooperative TC with Adaptation (CTCA) [116] is a
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dynamic TC algorithm based on game theory that con-
siders both energy costs across links and the amount
of energy available on a node. It maps the problem1760

of maximizing the network’s lifetime into an ordinal
potential game. This allows a node running CTCA to
make a sacrifice by increasing its transmission power
dynamically if it helps in reducing the energy con-
sumption at another node that has a shorter lifetime1765

(see Fig. 6). The existence of NE is proved. Simu-
lation results indicate that CTCA extends the life of a
network by more than 50% compared to well-known
algorithms.

Placing relay nodes is a possible solution to restore1770

connectivity in partitioned WSNs. However, the ex-
isting solutions require some global information, re-
garding the availability of the number of partitions,
and the location of the remaining nodes, among others,
which may not be available in all applications. A dis-1775

tributed game theory based approach for the placement
problem of relay nodes is proposed in [117], in order
to guarantee network recovery for partitioned WSNs.
Movement decisions of the relays are regarded as a net-
work game. A BNE function is assigned to each par-1780

tition using limited information about the routes and
partition boundary nodes. A probability distribution
function is defined for each partition using this esti-
mated equilibrium function (i.e., BNE). This game al-
lows some relay nodes (the leaders) to determine the1785

partition to be connected with (i.e., for recovery) based
on the probability distribution function of the parti-
tions. The recovery process proceeds with the partition
with the next highest priority until the network is com-
pletely recovered (i.e., reaching the system-wide NE).1790

Results show that this approach performs slightly bet-
ter than a centralized approach in terms of the distance
traveled by all relay nodes between partitions, which
enhances the network lifetime. However, taking the
residual energy of the nodes into account when mak-1795

ing decisions is planed for the future work.

6.2.2. Cooperative Games
Given that target localization requires nodes cooper-

ation, the main idea of [118] is to dynamically achieve
an optimal formation of collaborative coalitions. For1800

this reason, a non-superadditive cooperative game is
proposed. The term non-superadditive means that the
grand coalition (i.e, the coalition comprising all nodes)
is not optimal. Nodes in each coalition share measure-
ments to localize a particular target. As a result, they1805

are rewarded with sleep times. The paper explains why
the optimal coalition does not necessarily comprise the
nearest nodes to the target. In general, finding the op-
timal coalition structure is an NP-complete problem.
This motivated the use of randomized algorithms to1810

solve the coalition formation game. At the end, nodes
autonomously decide which coalition to join, while
maximizing their feasible sleep times.

A

C

B

(a) The initial topology
where no node can reduce
its transmission power

A

C

B

(b) Node C sacrifices and
increases its transmission
power to directly connect
to B

A

C

B

(c) Node A can now reduce
its transmission power and
connects only with C

Figure 6: An example illustrating cooperative topology con-
trol

6.2.3. Discussion and Future Directions
A reader can clearly see the strong relation be-1815

tween topology and coverage problems (i.e., adjust-
ing transmission range control and scheduling which
nodes must turn on/off and when). When designing
an energy efficient TC solution it is also crucial to
maintain connectivity and fast convergence to a NE1820

point. Proposals like [109, 112, 115, 117] use non-
cooperative games to achieve this problem. Potential
games are also appropriate to solve this kind of prob-
lems (see [109, 112, 114, 116]). They are easy to im-
plement and guarantee the convergence to NE. In addi-1825

tion, [114, 115] reduce the unnecessary energy waste
in information exchange. CTCA [116] considers both
energy costs across links and the amount of energy
available on a node. A node running CTCA makes a
sacrifice by increasing its transmission power dynami-1830

cally if it helps in reducing the energy consumption of
another node which has a shorter lifetime.

Given that the target localization requires nodes co-
operation, a coalitional game is proposed in [118],
which is the only cooperative game found in the lit-1835

erature in this domain.
To the best of our knowledge, the use of game theory

in this domain usually assumes homogeneous wireless
nodes. In the future, addressing the connectivity and
bi-directionality issues in heterogeneous WSNs should1840

be studied (e.g., nodes with higher hardware capabili-
ties can help others to execute their tasks efficiently).

7. Data Aggregation, Security, Task Allocation and
Energy Harvesting

7.1. Data Aggregation1845

Transmitting all sensor data, specially in dense
WSNs, can result in a high traffic load and cause con-
gestion at destination nodes. This may result in higher
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Table 8: Proposals in WSN Data Aggregation, Security, and Task Allocation (Section 7)

Domain Article Algorithm Year Game Class Game Techniques Method of Energy Savings

Data aggregation
[119] CAR 2012 Non-

cooperative
exact potential game the cost function takes into account the

energy and the correlated data
[125] RGTAGN- ACO-R 2012 Non-

cooperative
reverse game, repeated game,
pure strategy

an energy aware data aggregation by a
robust selection of aggregation nodes

Security
[136] - 2014 Non-

cooperative
evolutionary game, incomplete
info, mixed strategy

finding the best strategy that balances
between the rewards and the costs re-
sulted from deploying the security mea-
sures (i.e., energy consumption)

[138] TDDG 2014 Non-
cooperative

mixed strategy NE an energy aware trust derivation
dilemma game

[139] - 2014 Non-
cooperative

evolutionary game, mixed strat-
egy NE, best response

an energy aware coordinator selection
mechanism

[140] TEER 2009 Cooperation
Enforcement

NE, incentive mechanism
(reputation-based)

electing healthy CHs with the highest
energy and trust levels

[141] - 2013 Cooperation
Enforcement

incentive mechanism
(reputation-based), central-
ized

maintaining a good reputation while
saving energy resources

[142] G-FQL 2013 Cooperation
Enforcement

incentive mechanism (credit-
based), centralized

to defend against attackers who send
flooding messages that exhaust nodes’
energy and prevent nodes from entering
the sleeping mode

Task allocation
[153] NGTSA 2011 Cooperation

Enforcement
mechanism design, incentive
mechanism (credit-based), pri-
vate information

splitting the main tasks received by sink
into a number of sub-tasks and dis-
tributing them to the clusters

[154] Centralized WDP 2011 Cooperation
Enforcement

reverse auction game, incom-
plete information

maximizing the network lifetime by
sharing the tasks and the network re-
sources among applications

[156] Distributed ED-WDP 2012 Cooperation
Enforcement

reverse auction game, incom-
plete information

an energy and delay efficient decentral-
ized WDP mechanism

[157] - 2012 Cooperation
Enforcement

incentive mechanism, mixed
strategy, repeated game

serving nodes with the lowest remain-
ing energy level first

energy consumption for the overall network. A multi-
hop WSN can reduce network traffic by aggregating1850

data along the route from the nodes to the sink (see
Fig. 7). This is achieved by using functions such as
suppression (i.e., eliminating duplicates), min, max,
and average. Most routing algorithms in WSNs aim
to minimize the total transmission cost of transporting1855

the collected data in a distributed manner. Taking into
account data correlation, as well as transmission en-
ergy per bit in routing decisions, we can improve the
system performance [119].

Data aggregation and in-network processing tech-1860

niques depend on the type of data used in each specific
application and must be tailored to it. A survey of tra-
ditional data aggregation algorithms used in WSNs is
presented in [120]. This technique has been used to
achieve energy efficiency and traffic optimization in a1865

number of routing protocols [58, 121, 122]. In [123], a
structure-free data aggregation protocol (i.e., no using
any structure like tree-based or cluster-based) is pro-
posed in order to reduce the delay and the energy spent
on building and maintaining the data aggregation struc-1870

ture, specially in those environments where nodes may
move or fail.

Game theory models are used to achieve an energy
efficient data aggregation in a way that does not affect
the network lifetime. The proposals are discussed be-1875

low and summarized in Table 8.

7.1.1. Non-cooperative Games

Correlation Aware Routing (CAR) [119] is an adap-
tive and distributed routing algorithm based on po-
tential games. It is proposed to address the problem1880

of designing an energy efficient transmission struc-
ture in WSNs where all nodes aggregate correlated
data over intermediate nodes on a route to the sink.
The total amount of energy consumed to correctly de-
liver one data symbol, accounting for data redundancy1885

through correlation is calculated. The cost function
takes into account the energy consumption, the inter-
ference, and correlated data. CAR is proved to be an
EPG, for which a best response strategy is shown to
converge to a NE. The performance of CAR is com-1890

pared with Minimum Energy Routing (MER) schemes
and MEGA [124]. Simulation results show that CAR
outperforms both algorithms in saving the total effec-
tive energy in normal and dense networks. However,
the end-to-end transmission delay minimization is not1895

taken into consideration in this work.

Reverse Game Theory based Aggregator Node Se-
lection and Ant Colony Optimization based Routing
(RGTAGN-ACO-R) [125] is a novel framework for
power efficient data aggregation in WSNs. The goal1900

is to maximize the lifetime of the sensor network. The
proposed system has two phases. In the first phase a ro-
bust and energy aware selection of aggregation nodes
using reverse game theory is achieved. The second
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Figure 7: Node G aggregates correlated data between E, F,
and sends it to H which will deliver it to the sink

phase is associated to an optimized data dissemination1905

and power efficient routing scheme using Ant-colony
Optimization. Simulation results indicate remarkable
power optimization and enhanced QoS in comparison
to LEACH protocol.

7.1.2. Discussion and Future Directions1910

This domain is strongly related to the routing do-
main that justifies why game theory has been proposed
in only two proposals. In the first one, CAR [119], the
cost function takes into account the energy, interfer-
ence and correlated data. However, the proposal does1915

not pay attention to the end-to-end delay. The other
[125] divides the routing process into two phases, and
uses game theory only in the first phase for a robust
and energy aware selection of aggregation nodes.

Many security challenges arises from data aggrega-1920

tion. This is related to the fact that identification infor-
mation of data is lost once it is aggregated, making the
detection of malicious nodes more difficult [126].

Future work should use game theory to address these
security challenges. It should focus on the trade-off1925

between energy balancing and delay in both structure-
based and structure-free data aggregation schemes.
Besides, comparisons with heuristic based data aggre-
gation proposals [127, 128] are still not covered. Het-
erogeneous WSNs are suitable scenarios for data ag-1930

gregation because involving various duties (i.e., relay-
ing, sensing and aggregation) at the same time on a
node with limited resources, might quickly drain its
battery.

7.2. Security1935

Wireless links in WSNs are susceptible to eaves-
dropping, impersonating, message modification,
Denial of Service (DoS), among others. Due to the
limited capabilities of nodes, researchers had to think
about efficient approaches to solve this problem. Vari-1940

ous security challenges and types of attacks in WSNs
are analyzed. The key issues that need to be resolved
for achieving adequate security are summarized and
surveyed in [129, 130].

Many secure routing protocols such as SEAD [131],1945

Ariadne [132], SRP [133], and SAODV [134] are de-
signed for protecting routing information. A misbe-
having node could behave well during the route dis-
covery phase, but drop data packets later. Moreover,
if misbehaving nodes drop packets, all these solutions1950

can not detect and prevent such attacks, as they focus
only on the detection of modification of routing control
traffic or fabricating false routing information. With
WSNs, security not only has to worry about malicious
nodes but also about ”selfish nodes”. A selfish node is1955

a node that misbehaves, not necessarily because it is a
malicious node, but because either it prefers to save its
own limited resources or it may belong to a different
authority. A big percentage of selfish nodes in a net-
work can rapidly decrease network performance and1960

even create big ”blind spots”.
Game theory models have been widely used in this

domain. A survey of security approaches based on
game theory in WSNs is presented in [135]. The recent
proposals for achieving energy efficient security algo-1965

rithms in WSNs based on game theory are discussed
below and summarized in Table 8.

7.2.1. Non-cooperative Games
A proactive defense scheme that uses an evolution-

ary game theory model is presented in [136]. The con-1970

cept of evolutionary game theory proposes the player
with bounded rationality and dynamics of the game
process (i.e., partial knowledge of the state of the
game) [137]. The scheme allows nodes to have the
ability to learn the evolution of rationality by dynami-1975

cally adjusting their defense strategies according to the
attackers’ strategies. The nodes try to find the strategy
that best balances their own rewards (i.e., successfully
forwarding of data packets) and their costs resulted
from deploying the security measures (i.e., energy con-1980

sumption). The proposed game satisfies the character-
istics of the nodes of WSNs. Because the nodes have to
consume large amounts of energy if they want to obtain
and keep updating the information about the state of
the entire network, particularly if the topology changes1985

continuously.
An energy aware Trust Derivation Dilemma Game

(TDDG) for WSN-based Internet of Things (IoT) net-
works is presented in [138]. The work aims to min-
imize the energy consumption, while maintaining an1990

adequate security level for the WSNs. First, a risk
strategy model is presented to stimulate nodes’ cooper-
ation. Then, TDDG is introduced into the trust deriva-
tion process. Based on the mixed strategy NE, the opti-
mal ratio between the gain and the cost and the proba-1995

bility of the selected strategy are discussed. Simulation
results show that the proposed scheme achieves the de-
sirable security and reduces the energy consumption of
the network compared with traditional flooding trust
derivation mechanisms.2000
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Coordinator selection is a technique that can con-
siderably defend against attacks and reduce the data
delivery delay. In [139], an adaptive coordinator se-
lection algorithm using game and fuzzy logic is pro-
posed. It enables the defender to proactively select a2005

reliable coordinator to minimize the expected network
energy loss. The proposed game model consists of
two interrelated formulations: a stochastic game for
dynamic defense and a best response policy using evo-
lutionary game formulation for the coordinator selec-2010

tion. The amount of remaining battery of the selected
one is taken into account. The global NE point exists.
Then, a mixed-strategy solution for the defender and
the attacker is designed. It combines both evolutionary
game NE strategies and stochastic game NE strategies2015

in order to achieve the maximum payoffs for both play-
ers.

7.2.2. Cooperation Enforcement Games
Trustworthy Energy Efficient Routing (TEER) [140]

is an algorithm that aims to distribute energy consump-
tion across sensors evenly, as well as to increase path
security in a hierarchical-cluster sensor network. The
cluster heads election process is modeled using game
theory. The NE of the game corresponds to the health-
ier CHs having higher energy and trust level. Firstly,
each node establishes a possible head set P which is
empty at the initialization phase. Secondly, each node
will broadcast its own payoff (i.e., π value) to all neigh-
bors. After that, each node will compare each neigh-
bor’s π value with its own. Then it adds the nodes
whose π value is larger than its own to its possible head
set P. If a node’s possible head set P is still empty,
this node will declare itself as a CH. The payoff value
is calculated using the following formula:

πi = αEi/Einit + βRi − γ
∑

Ppathloss/(niPmax)

where α, β and γ denote weight parameters of the
node’s i residual energy level, trust level, and aver-2020

age path loss within neighbors, correspondingly. Einit
denotes node’s initial energy level, Ei denotes node’s
current residual energy level, Ri denotes node’s trust
level, and

∑
Ppathloss/(niPmax) denotes node’s average

path loss to its neighbors which can provide cluster2025

head’s appropriate position within cluster. Each node
tends to elect neighbor node with maximum π value as
CH to maximize its payoff. Following this strategy, the
energy consumption is distributed and path security is
increased. Results indicate that this proposal produces2030

a longer network lifetime and a safer network in com-
parison to LEACH.

The impact of applying game theory on the network
throughput, battery consumption, and accuracy of self-
ish node detection in WSNs is investigated in [141].2035

A protocol that is based on game theory is presented.
It allows sensors to decide whether or not to forward

packets by i) defining a suitable cost and profit for rout-
ing and forwarding incoming packets, and ii) keeping
a history of experiences with non-cooperating nodes in2040

order to drive selfish nodes out of the WSN. The in-
centive for each node is to have a better reputation. A
node that acts selfishly is the one that randomly drops
packets to conserve energy or to corrupt the network
intentionally. Over time, nodes with low reputation2045

can be isolated and labeled as ”selfish nodes”. At each
node, there is a trade-off between saving energy re-
sources and maintaining their reputation. The proposal
has two main weak points. Firstly, selfish nodes detec-
tion is done by the sink which means that the method2050

is totally centralized. Secondly, it is difficult to detect
selfish nodes if there is a medium or large number of
nodes which have low reputations.

Game-Fuzzy Q-Learning (G-FQL) [142] combines
both game theory and fuzzy Q-learning to detect Dis-2055

tributed Denial-of-Service (DDoS) in a cluster-based
WSN. DDoS is characterized by the presence of an
attacker who sends flooding messages that exhaust
nodes’ energy in reception and processing. Besides,
these messages prevent nodes from entering ’sleep2060

mode’. G-FQL is a triple-player game, in which a clus-
ter head (detector) and the sink (defender) cooperate to
provide defense against an attacker. The game has two
phases. In the first phase, a CH (player-1) identifies the
level of the attack, that depends on the disruption done2065

by the attacker (player-2), using a fuzzy Q-Learning
algorithm. For attacks detection, player-1 adopts three
strategies, namely: catch, missed, and low catch. If the
level of the attack is above the default value threshold,
player-1 (CH) transmits an alarm event containing in-2070

formation about the malicious node to the sink (player-
3). That information is preprocessed by the sink to
travel from phase 1 to 2. In the second phase, the
sink prepares a countermeasure strategy by employ-
ing the fuzzy Q-learning algorithm to confirm the mali-2075

cious node’s behavior (i.e., past attacks). The detection
player (CH) and defense player (sink) coordinate their
defense with each other. Incentive mechanism for co-
operation enforcement has been applied. Two constant
reward values are defined. R1 is the gain of the IDS12080

when the CH detects an attack, and R2 is the gain of
the IDS2 when the sink protects the WSN. If the sink
does not identify the malicious node during the attack,
the reward of the IDS1 would be −R1 (a negative re-
ward). Likewise, if the base station fails to defend the2085

WSN during an attack, the payoff of the IDS2 would be
−R2. It has been determined that repeated interaction
sustains cooperation, builds confidence and enhances
reputation. The game has the following utility func-
tion:2090

U = ρ SP −β FN −θ FP

where ρ is the weight of effective prediction, SP is the
true confidence rate of attack patterns, β is the weight
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of failed estimates (attacks but no defense), FN is the
false negative of attack patterns (attacks but no de-2095

fense), θ denotes the weight of failed predictions (de-
fense but no attack), and FP represents false positive of
attack patterns (defense but no attack).

G-FQL algorithm with was compared with existing
soft computing methods like Fuzzy Logic Controller2100

(FLC), Q-learning, and Fuzzy Q-learning (FQL), in
terms of total energy consumed by sensor nodes and
number of alive nodes during the simulation. The re-
sults show that the number of alive nodes in G-FQL is
greater than the other methods. However, a clear con-2105

clusion about the performance of G-FQL in term of en-
ergy efficiency is missing. It is also important to note
that G-FQL is not fully distributed. Only the detection
of an attacker is done by clusters in a distributed man-
ner. However, the algorithm is centralized as all the2110

defense actions are done mainly by the sink.

7.2.3. Discussion and Future Directions
Due to the nature of the problems in this domain, it

is unlikely to see proposals that use cooperative games.
That is because if nodes could be trusted to coop-2115

erate we would not have most of the security prob-
lems. However, nodes could cooperate in defending
against attackers. Nevertheless, we believe that coop-
eration enforcement mechanisms are preferable in this
domain, in the sense that it guarantees cooperation and2120

makes the defending strategy more robust, as in [142].
Evolutionary game theory [137] is also used in defense
models [136, 139]. It does not require a global knowl-
edge of the game state, though it allows the nodes to
dynamically adjust their defense strategies taking en-2125

ergy consumption costs into account.
Different proposals for security in WSNs that focus

on energy efficiency could be found in the literature.
eHIP [143] tries to solve the intrusion detection and in-
trusion prohibition. SEEM [144] uses multi-path com-2130

munications to avoid draining the energy of the nodes
of a single path, and avoids that malicious nodes get
the traffic routed through themselves. However, these
proposals do nothing against selfish nodes. We believe
that intrusion detection, spying avoidance, and prob-2135

lems of similar nature can not benefit much from the
application of game theory.

The main security issue where game theory can re-
ally shine is by helping to address problems derived
from nodes that misbehave. Specifically in the cases2140

where they do it for selfish reasons -as opposed to
malicious reasons. We foresee that some of the best
future applications of game theory in this domain -
for energy efficiency and other issues- will use games
that implement reputation schemes, trust models, or at-2145

tack detection and protection mechanisms - just [140],
[139, 138, 141] and [142, 136] do, respectively.

An innovative design method of combining game
theory and computational intelligence for attack detec-

tion and protection has been proposed in [142]. How-2150

ever, the solutions proposed in [140], [141] and [142]
are centralized. It would be interesting to research on
energy efficient proposals in which the trust model or
the protection mechanism are distributed despite the
expected challenges that can arise in networks with a2155

large number of nodes.
A recent trend in WSNs is to use data from other

WSNs to optimize the operation of a target WSN
[145]. For instance, a WSN measuring pollution can
use the instantaneous information provided by a WSN2160

measuring the number of cars in a road to adapt its
sensing rate to the traffic conditions, thus saving en-
ergy when the road is empty. In case the WSNs that
exchange data do not belong to the same administra-
tive domain, trustworthiness becomes a fundamental2165

requirement. In this scenario, game theory can help to
decide if a WSN may benefit from sharing its data, as
well as to guarantee the trustworthiness of the received
data.

7.3. Task allocation2170

According to [146], task allocation in WSNs is
defined as: (1) the assignment of tasks into sensor
nodes, (2) the assignment of communication activities
on channels, or (3) the scheduling of computation and
communication activities. Recently, task-based sys-2175

tems are needed to provide services to entities outside
the network. Allocation of tasks on different wire-
less nodes must take into account energy constraints,
as well as the compatibility of tasks to a given node
and/or topology.2180

Non-game theoretic approaches have been applied
in this domain like EcoMapS (Energy-constrained
Task Mapping and Scheduling) [147]. EcoMapS is
application-independent. It consists of a scheduling
system that aims to map and schedule tasks of an appli-2185

cation with minimum schedule length subject to con-
sumption constraints in cluster-based WSNs. A dif-
ferent scheduling problem is how to schedule a given
set of tasks on a single node, taking into account en-
ergy efficiency, as proposed in [148]. In this pro-2190

posal, the tasks specify an attribute called ”impor-
tance”, also denoted as a power index. It shows the
relative importance of a task in relation to the other
tasks under low-power conditions. An Integer Lin-
ear Programming (ILP) formulation and a polynomial2195

time 3-phase heuristic are proposed in [146] in order
to formulate the energy-balanced task allocation onto a
cluster-based WSNs. The goal is to find an allocation
that maximizes the lifetime of the cluster. Topology-
aware energy efficient task assignment for multi-hop2200

WSNs has been addressed in [149], in which an ant-
based meta-heuristic algorithm was developed to opti-
mize the task assignment. In [150], simulated anneal-
ing [151] method was applied to search an optimal task
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assignment, aiming to minimize the total energy con-2205

sumption and latency. The work described in [152]
focuses on a scheduling algorithm for the sub-tasks of
an application in WSNs. The goal of the task sched-
uler there is to maximize the network lifetime. The
task scheduling problem is reduced into a min k-cut2210

problem (i.e. a well-studied graph problem), which is
a polynomial algorithm.

In the following subsections we present and discuss
the latest contributions that focus on energy efficiency
using game theory in this domain. The proposals are2215

summarized in Table 8.

7.3.1. Cooperation Enforcement Games
Sensing tasks should be allocated among sensors

fairly and in a minimum time. Besides, completing the
sensing task faster will also results in energy savings.2220

However, sensors may refuse to execute a task due to
their limited energy capabilities. To solve that sensors
act selfishly, a Non-cooperative Game Task Scheduling
Algorithm (NGTSA) is proposed in [153]. The goal is
to find an optimal strategy for splitting main tasks re-2225

ceived by the sink into a number of sub-tasks, as well
as distributing these subtasks to clusters in the right
order. A utility function related to the total task com-
pletion time and tasks allocating scheme is designed.
NE is proved. Simulation results illustrate that self-2230

ish nodes can be forced to report their true process-
ing capability and endeavor to participate in the mea-
surement. Thereby, the total time for accomplishing
the task is minimized and the energy consumption of
nodes is balanced.2235

In [154], the distributed task allocation problem for
multiple concurrent applications in shared WSNs is
modeled using a reverse combinatorial auction. In this
proposal nodes are models as bidders. Each node bids
the cost value in terms of available resources (e.g., en-2240

ergy and CPU) for accomplishing the subset of the ap-
plications’ tasks. Each application may consist of sev-
eral tasks. The architecture of this scheme is illustrated
in Fig. 8. The main objective is to maximize the net-
work lifetime by sharing tasks and network resources2245

among applications, while improving the overall QoS
(e.g., deadlines) of each application. Since combina-
torial reverse auction problem is a NP-complete prob-
lem, a heuristic two-phase Winner Determination Pro-
tocol (WDP)is proposed to solve it. In the first phase,2250

a local decision maker is developed to eliminate the
subsets of bidders with lower probability of winning.
This results in a significantly low overhead for com-
binatorial auction message exchange. In the second
phase, the suboptimal subsets are selected by an or-2255

dering heuristic. Simulation experiments are done to
evaluate the system efficiency and scalability when the
number of concurrent applications and network size in-
creases. The results show a significant difference in
terms of energy consumption when the tasks are shared2260

Task and Budget
History of winning bidders

Task Messages
Bids bundle

App 1 QoS 1 App 2 QoS 2
App n QoS n

Application Manager (AM)

QoS based resource decomposition

budget allocation Task sharing

Auctioner

Wireless Sensor Network

Figure 8: Market based architecture for multiple task alloca-
tion

compared to the non-sharing case. Besides, the pro-
posed task allocation scheme outperforms the static en-
ergy balanced scheme, Energy Balanced Critical Node
Path Three (EB-CNPT) [155], in balancing the energy
in the network since the energy level of each sensor is2265

considered in each epoch of the proposed task alloca-
tion scheme.

In [156], the work presented in [154] is extended. It
claims that given a distributed pool of bids from bid-
ders (i.e., sensor nodes), a centralized Winner Determi-2270

nation Protocol (WDP) would require costly message
exchanges with high energy consumption and over-
head. Hence, [156] proposes the Energy and Delay
Efficient Distributed Winner Determination Protocol
(ED-WDP). Simulation results show a fairer energy2275

balance achieved through this bid formulation in com-
parison to other well-known static schemes. Moreover,
in ED-WDP, the message exchange overhead, energy
consumption, and delay for winner determination are
significantly reduced compared to a centralized WDP.2280

Few of the previous works notice the constraints
on sensors caused by a limited buffer size. Thus, a
scheduling policy is proposed in [157]. The scheduler
serves first nodes with low remaining energy, as well as
those with the least free buffer storage. This solution2285

extends the WSN’s lifetime and provides a real-time
service quality. It also considers the presence of selfish
nodes. It shows their negative impact on the system
performance in terms of packet loses, the network life-
time, and spectrum utilization efficiency. Based on a2290

mixed strategy game model, the non-cooperative game
converges to an inefficient NE, at which the bandwidth
resource is wasted. In order to eliminate user’s selfish
behavior and enforce cooperation, an incentive mech-
anism represented by a punishment scheme via a re-2295

peated game is added.
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Figure 9: The percentage of latest proposals in each domain
of WSNs

7.3.2. Discussion and Future Directions
The research in this area is still in its early stages, but

it looks very promising. All the proposals in this field
apply cooperation enforcement games. [153] aims to2300

distribute sensing tasks between nodes fairly. It deals
with nodes’ selfish behavior by forcing them to report
their true processing capability. [154, 156] use reverse
combinatorial auctions, in which nodes bid the cost
value in terms of available resources for accomplishing2305

the subset of the applications’ tasks. Since the com-
binatorial reverse auction problem is a NP-complete
problem, a heuristic two-phase winner determination
protocol (WDP in [154], ED-WDP in [156]) is pro-
posed to solve it. The difference between WDP and2310

ED-WDP is that the first one is centralized while the
other is distributed.

In [157], the selfishness behavior is considered
while serving first nodes with the least remaining en-
ergy and buffer free storage. This proposal also im-2315

poses a punishment scheme and to enforce coopera-
tion. It considers the network lifetime maximization
and performance at the same time. Cooperation en-
forcement models are the best choice for this problem
when tasks are independent and can be performed and2320

reported to the server without the cooperation of the
other nodes.

In the future work, scenarios that employ nodes of
different capabilities should be considered. For ex-
ample, we can have nodes with multiple sensors that2325

can support several tasks concurrently, or nodes with
higher computational capacity that can help others to
execute their tasks.

7.4. Energy Harvesting WSNs

Finally, we overview the work done in game the-2330

ory related to Energy Harvesting Wireless Sensor
Networks (EH-WSNs). Since the number of papers
in this area is reduced, we simply describe the papers

Non-cooperative Games

60%

Cooperative Games

20%
Cooperation Enforcement Games

20%

Figure 11: The distribution of the reviewed game theory pro-
posals in the three main classes

in this subsection, including also our thoughts about
future research directions in this area.2335

Energy harvesting technologies comprises a promis-
ing solution for WSNs where the battery capacity of
sensor nodes is limited and recharging (or replacing)
the battery is infeasible. In EH-WSNs, an energy
harvesting device (e.g., a solar cell) converts differ-2340

ent forms of environmental energy into electricity to
be supplied to a sensor node. In this manner, the
nodes could prolong lifetime without a need for bat-
tery recharge or replacement. However, since it can
produce energy only at a limited rate, energy harvest-2345

ing introduces fundamental issues in the different do-
mains of WSNs. An overview of the various EH re-
search issues, the energy savings mechanisms, and the
EH technologies for WSNs is presented in [51].

Game theory offers tools for solving the various is-2350

sues of EH-WSNs. In general, the energy level of an
energy-harvesting sensor varies dramatically. Hence,
distributed estimation of the energy level in EH-WSNs
is required. In [158], the unpredictable energy har-
vested, the battery level, and energy consumption are2355

modeled together in a unified way using game theory.
The formulated game has complete and perfect infor-
mation. The sub-game perfect NE is derived by back-
ward induction. Simulation results show that the pro-
posed model improves the use of the harvested energy2360

and enhances the estimation of the energy level of the
nodes.

Another crucial problem in this area that suitable to
be addressed using game theory is optimizing the re-
maining energy of an energy-harvesting sensor. The2365

goal is to satisfy the required QoS at a regular basis un-
der varying amounts of power caused by the ambient
or climatic changes (e.g., cloudy or stormy weather).

Finally, the different domains of WSNs (i.e., power
control mechanisms, MAC, and routing protocols,2370

among others) should be extended and adapted to cope
with the properties and challenges imposed by EH sen-
sors.
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8. Conclusion

In this survey we present and discuss the state-of-2375

the-art of game theory approaches for addressing en-
ergy efficiency and lifetime maximization problems in
different domains of WSNs like power control, MAC,
and routing, among others. We classify the space of
games into three main classes: i) non-cooperative, ii)2380

cooperative, and iii) cooperation enforcement games.
We also describe how recent proposals in different
WSNs domains employ different classes of games, and
how each proposal use the various game theory con-
cepts. Then, the method used by each proposal for2385

achieving energy efficiency and/or lifetime maximiza-
tion are explained.

Each domain starts with an introduction which
presents and discusses the recent work done for ad-
dressing the energy efficiency problem in that domain2390

using non-game theory approaches. Then, we present
and evaluate the different game theory proposals. At
the end of each domain we specify a separate sub-
section (called Discussion and Future Directions). It
places special emphasis on i) lessons learned in each2395

proposal, and in the domain in general, ii) what is the
most appropriate game class for that domain or for spe-
cific problems, iii) strength and pitfalls of proposals,
and iv) a guide for researchers about gaps that needs to
be addressed in the future work.2400

In addition, comparative tables and statistical charts
(see Fig. 9, 10 and 11) are presented to overview how
this research area has evolved in the last few years.
Fig. 9 and 10 are specially interesting, since they il-
lustrate the amount of work in each domain over the2405

years. We can notice that the area that attracts most re-
searchers is routing and clustering, followed by power
control. This is because of the diversity and impor-
tance of the issues that need to be solved in these areas.
In contrast, according to the same figures, little amount2410

of work has been done in data aggregation and secu-
rity. Finally, it is noticeable that the game theory mod-

els used for addressing energy efficiency vary from one
domain to another, as they depend on the specific prob-
lem to address. Thus, it is still hard to categorize the2415

proposals from an energy efficiency point of view.
To conclude, this survey fills a need in the current

literature since it covers the latest work in this research
area. It is very extensive and thorough, and it will be
of invaluable help for any researcher that wants to start2420

contributing to this area.

Acronyms

WSNs Wireless Sensor Networks
IoT Internet of Things
WLANs Wireless Local Area Networks2425

MAC Medium Access Control
TDMA Time Division Multiple Access
CDMA Code Division Multiple Access
CWmin minimum Contention Window
FSR Frame Access Rate2430

SINR Signal Interference plus Noise Ratio
QoS Quality of Service
CSMA Carrier Sense Multiple Access
MER Minimum Energy Routing
IDS Intrusion Detection System2435

TC Topology Control
LP Linear Programming
NE Nash equilibrium
BNE Bayesian Nash equilibrium
EPG Exact Potential Game2440

OPG Ordinal Potential Game
NBS Nash Bargaining Solution
DAP Deferred Acceptance Procedure
DoS Denial of Service
WSLS Win-Stay, Lose-Shift2445

ILP Integer Linear Programming
EH-WSNs Energy Harvesting Wireless Sensor Networks
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