
An Ant Colonization Routing Algorithm to Minimize Network Power Consumption

Miguel Rodŕıguez-Péreza,∗, Sergio Herreŕıa-Alonsoa, Manuel Fernández-Veigaa, Cándido López-Garćıaa

aDept. Telematics Engineering, University of Vigo, Spain.

Abstract

Rising energy consumption of IT infrastructure concerns have spurred the development of more power efficient network-
ing equipment and algorithms. When old equipment just drew an almost constant amount of power regardless of the
traffic load, there were some efforts to minimize the total energy usage by modifying routing decisions to aggregate traffic
in a minimal set of links, creating the opportunity to power off some unused equipment during low traffic periods. New
equipment, with power profile functions depending on the offered load, presents new challenges for optimal routing. The
goal now is not just to power some links down, but to aggregate and/or spread the traffic so that devices operate in their
sweet spot in regards to network usage. In this paper we present an algorithm that, making use of the ant coloniza-
tion algorithm, computes, in a decentralized manner, the routing tables so as to minimize global energy consumption.
Moreover, the resulting algorithm is also able to track changes in the offered load and react to them in real time.

c© 2015 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
DOI: 10.1016/j.jnca.2015.08.011.

Keywords: Ant colony optimization, Power saving routing, Energy efficiency, Performance evaluation

1. Introduction

The current Internet infrastructure draws far more power
than needed for its usual operation. At the same time, the
network is still growing, so this inefficiency translates to
ever increasing power demands with high monetary and
environmental costs. For reference, the overall energy con-
sumption of all networking equipment just in the USA in
2008 was estimated to be larger than 18 TWh [1] and the
estimated energy usage for the year 2020 in Europe is more
than 38 TWh [2].

These high energy demands have spurred successful re-
search on all areas of networking, from the link level [3–7]
to the networking layer adapting the routing decisions, as
suggested in Gupta’s seminal paper [8]. However, these
traffic engineering proposals were initially constrained to
the mere aggregation of traffic during low activity peri-
ods to power off some devices, as that was the only way a
non-power aware device could be made to draw less power.
From there, many researches have followed this idea ap-
plying it to different scenarios. Just as an example, [9–
12] study centralized algorithms to minimize the number
of active network resources to get significant power sav-
ings, assuming a simple on-off power model of networking

∗Corresponding author. Address Telematics Engineering Dept.,
Univ. of Vigo, 36310 Vigo, Spain. Tel.:+34 986813459;
fax:+34 986812116.

Email addresses: miguel@det.uvigo.es (Miguel
Rodŕıguez-Pérez), sha@det.uvigo.es (Sergio Herreŕıa-Alonso),
mveiga@det.uvigo.es (Manuel Fernández-Veiga),
candido@det.uvigo.es (Cándido López-Garćıa)

equipment. Decentralized algorithms, as extensions to the
ubiquitous OSPF protocol, were also explored in [13, 14].

Fortunately, newly produced networking equipment is
increasingly becoming more power aware. For instance,
old Ethernet interfaces drew a fixed amount of power re-
gardless of the actual load. Since the arrival of the IEEE 802.3az
standard [15], this is no longer the case as they can adapt
their power demands to the traffic load. Thus, it is un-
necessary to turn them off completely in order to save
power [4]. This trend is not only limited to Ethernet de-
vices. It also appears in optical networks [16, 17], switch-
ing modules [18], etc. The result is that new networking
equipment exhibits non-flat power profiles [4], and thus
presents an opportunity to regulate the traffic offered to
each device, either spreading or concentrating it, to take
advantage of the power profile of each device. These new
capabilities are explored for instance in [19–21]. The idea
is not to concentrate traffic in a few set of links and power
off the rest, but to find the optimum share of traffic that
minimizes energy costs according to the power profile of
each device.

In this paper we present the first dynamic decentralized
algorithm capable of adapting routing decisions to mini-
mize energy usage when networking equipment has oth-
erwise unrestricted power profiles. Although it is not the
first proposal to make use of the ant colony optimization
algorithm [22] for energy saving [23], it is the first that does
not limit its routing decisions to decide the set of links to
power off for a given traffic matrix. In fact, it takes advan-
tage of links with non-flat power profiles and adjusts their

Preprint submitted to Elsevier September 11, 2018

ar
X

iv
:1

50
9.

01
09

4v
2

 [
cs

.N
I]

 4
 S

ep
 2

01
5

http://creativecommons.org/licenses/by-nc-nd/4.0
http://dx.doi.org/10.1016/j.jnca.2015.08.011

traffic load in real time to minimize power consumption
while keeping all the installed capacity available. This lets
the network react better to unexpected spikes in the traf-
fic load and, additionally, improves the network resilience
in case of a link failure. The main difficulty in the adap-
tation of the original ant colony optimization algorithm
comes from the fact that, for the problem at hand, the
cost of a given route is not a simple linear function of its
load and thus the protocol becomes more complex than in
the original version of the algorithm [22]. We show in the
next sections how this problem was solved.

The rest of the paper is organized as follows. In Sec-
tion 2 we present the related work. Then, Section 3 defines
the problem in detail. Our algorithm is described in Sec-
tion 4. Then, an evaluation is carried out in Section 5 to
finally present our conclusions in Section 6.

2. Related Work

Research on new routing procedures that save power on
communication networks have been ongoing for a few years
already. The first proposals focused on concentrating the
traffic on a reduced set of network elements so that unused
resources could be powered off during low load periods de-
creasing power consumption. [14] belongs to this first fam-
ily of proposals. It tries to concentrate traffic flows on a
reduced set of links to power off the rest. Another propos-
als in the same vein are [9] and [24]. The first formulates a
minimization problem of the energy consumption consider-
ing that powered nodes and links need a constant amount
of power, and the second treats the problem of maximiz-
ing the number of powered off links. As both problems
are intractable (NP-complete) [9, 14, 23, 24], both arti-
cles provide some heuristics to approximate the solution.
All these proposals, however, do not take into account the
different power profiles that new power-aware networking
equipment exhibits and may even cause more harm than
good when these profiles are super-linear, as the increased
power consumption caused by traffic aggregation can sur-
pass any power savings obtained by the reduced consump-
tion of the powered-down resources.

New proposals that take into account the different power
profiles are also known in the literature. For instance, [25]
considers super-linear energy costs functions in the analy-
sis of the maximum power savings attainable by powering
down part of the network. In [21] the authors formulate
a minimization problem considering the links formed by
IEEE 802.3az links. Similarly, the authors of [19] address
a similar problem and compare the results obtained with
both super and sub-linear power profiles. The same prob-
lem is also studied in [20, 26], this time considering bun-
dle links between adjacent routers. The authors find out
in [26] that traffic consolidation does not always lead to
energy savings.

The main practical issue with all of these proposals is
the complexity of the problem, which is NP-complete [23].
Finding the optimum solution in a real network is very

hard and it cannot be usually solved in a short enough
amount of time. NP-complete problems can be tackled
employing search heuristics, usually inspired by elements
of the nature, that trade some optimality in the found
solution for execution time. In fact, such heuristics have
already been used with success in other areas of network-
ing [27]. So, there is a new line of research that applies
search heuristics to the route optimization problem re-
ducing its computational complexity. For instance, [28]
presents an algorithm to save power in a restricted scenario
of a multicast transmission using genetic algorithms to find
the solution to the routing problem. In [29] the authors
use the particle swarm optimization technique to study
the trade-off between the number of power profiles in line
cards and the energy savings realized. Finally, [23] uses the
ant colony optimization algorithm to choose which links to
power off to maximize energy savings during low usage pe-
riods. Regretfully, none of these works takes advantage of
the energy savings capabilities present in current equip-
ment, unlike our proposal that permits the links to stay
up, but modulates their offered load to minimize energy
consumption without affecting the network resiliency.

3. Problem Statement

We model the network as a directed graph G = (N,Λ),
with N being the set of nodes (i.e. IP routers) and Λ
the set of directed links. Each link ` = (u, v) ∈ Λ, u, v ∈
N, with a nominal capacity µ`, has associated a dynamic
cost function c`(ρ`) ∈ R+, with ρ` being the normalized
traffic load carried by the link. That is ρ` , λ`/µ`, where
λ` is the amount of traffic carried over the link ` ∈ Λ.
Therefore, the cost of the links varies with the offered load.
Furthermore, we assume c` (ρ`) =∞ if ρ` > 1.

The cost function captures the power needed to run
the links at a given load. Although most currently de-
ployed links lack load-aware power profiles, new links, such
as those implementing IEEE 802.3az, have non-flat power
profiles that must be accounted for when implementing
energy-aware routing protocols. In our analysis we will
assume that the power profile function is monotonically
increasing with link load. Also, for simplicity, the power
needed by the engines of the routers is assumed to be al-
most constant and so it is absent from our analysis.

We will model the network traffic as a set of flows Φ.
Each flow f ∈ Φ is described by a triple f = (o, d, λf),
with o, d ∈ N being the origin and the destination nodes
respectively, and λf the amount of traffic carried by the
flow. Each flow f follows a path pf , defined as an ordered
set of adjacent links going from the origin node o to the
destination node d. There is a list of symbols used in this
article in Table 1.

The total cost of the network, that is, the amount of
power needed to operate it at any given time, can be com-
puted as the sum of the costs of all the links in the network.
As the link cost function is not necessarily linear, each link

2

Symbol Definition
N Set of nodes in the network
E Set of network edges
Λ Set of links in the network
µ` Nominal capacity of link `
c`(ρ) Cost function of link ` ∈ Λ for load ρ
~cf Direct costs of flow f
~γf Indirect cost caused by flow f
Φ Set of flows

f(o, d, λ) Flow from node o to d carrying traffic λ
pf Path followed by flow f

gfi (j) Goodness at node i for taking j as the next hop of flow f
Γ Estimated network cost for the current agent
πe Threshold between random and goodness based next node selection

Table 1: Notation.

load must be obtained first. Let a(f, `) be the route-link
incidence matrix, defined such that

a(f, `) ,

{
1, if ` ∈ pf
0, otherwise.

(1)

Then, the load of a link is simply

ρ` =
1

µ`

∑
f∈Φ

λfa (f, `) , (2)

and the power cost of the whole network is

P =
∑
`∈Λ

c` (ρ`) . (3)

Formally, our goal is to solve

minP = min
∑
`∈Λ

c`

 1

µ`

∑
f∈Φ

λfa(f, `)

 , (4)

that is, to minimize the overall power consumption P sub-
ject to the usual topological constraints:∑

`=(i,j)∈Λ

a(f, `)−
∑

`=(j,i)∈Λ

a(f, `)

=

1, if i = of

−1, if j = df

0, otherwise.

∀f ∈ Φ (5a)

∑
f∈Φ

λfa(f, `) ≤ µ`, ∀` ∈ Λ (5b)

a(f, `) ∈ {0, 1} ∀f ∈ Φ, l ∈ Λ (5c)

Equations (5a) are the flow-conservation constraints, and (5b)
are the physical constraints of the network. The choice of
integer values for the variables a(f, `) means that the flows
are unsplittable, i.e., each flow must follow a single path
through the network. There is an example in Figure 1

that shows feasible solutions to this problem for two dif-
ferent cost functions in a simple five nodes network. This
elementary example illustrates how the different cost func-
tions lead to distinct optimum forwarding strategies.

In the form above, the optimization problem is a gener-
alization of the unsplittable multicommodity flow problem
(UFP), where the generalization consists in allowing arbi-
trary cost functions c`(·) for the links. With linear costs,
(4)–(5c) is the classical UFP, which in specific instances
is known to be NP-hard: for example, when the network
G has only one edge, the classical UFP specializes to the
knapsack problem.

For general link-cost functions, the relaxation of the
problem (4)–(5c) to a(f, `) ∈ [0, 1], namely to flows splitable
over several routes, is generally a global minimization prob-
lem. The case when c`(·) are concave functions is, for
instance, NP-hard [30, 31]. Since we do not impose any
prior assumption about the energy-consumption profiles,
our problem can be regarded NP from a computational
perspective.

Our final goal is to design a new routing algorithm that
solves (4). The solution must be distributed and put low
requirements on the network nodes. Additionally, it must
be able to dynamically adapt to changing traffic demands
and do so in a progressive manner, such that the changes
in the set of network paths do not lead the network to a
congested state nor cause undesired oscillations.

4. Routing Algorithm

As already stated in the introduction, we opt for a
heuristic approach to solve the aforementioned NP-hard
optimization problem. Among all the families of heuristic
solvers available in the literature, the set of ant colony
algorithms [22] maps almost directly to the problem at
hand. Furthermore, their decentralized nature and time-
adaptive characteristics are requisites for any deployable
solution. Note that we do not propose how the routing
decisions can be implemented in practice, although it is

3

λ1

λ2

λ1 + λ2

λ3
λ3

λ1 + λ2 + λ3

(a) Optimum forwarding for logarithmic cost function.

λ2

λ2

λ1
λ1

λ3
λ2λ3

λ2

λ1 + λ3

(b) Optimum forwarding for cubic cost function.

Energy Profile Cost Function Total Cost for Figure 1(a) Total Cost for Figure 1(b)
Logarithmic c`(ρ) = log10(1 + ρ) 0.65 0.85
Cubic c`(ρ) = ρ3 1.33 0.48

Figure 1: Power saving routing example for three flows λ1 = λ2 = λ3 = 1 with a common destination (the gray node). Every link has the
same cost function (logarithmic or cubic) and µ` = 3 ∀` ∈ Λ.

certainly feasible on a MPLS [32] network where RSVP-
TE [33] takes the job of setting up the label switched paths
(LSPs).

As in the seminal AntNet algorithm [22], our algorithm
relies on autonomous agents (ants) that travel the net-
work gathering enough information to form optimal paths.
Agents travel the network from source to destination and
back to the source. In their forward path, they explore
different routes to the destination to measure their costs.
In their return path, they update statistics at every node
related to the fitness of the next-hop node chosen in the
previous forward way. The per-flow routing table is finally
calculated as the most appropriate next-hop for a given
destination at every node.

While the original AntNet algorithm used path delay
as the cost function, we use the power consumption. More-
over, AntNet only obtains a single path to a destination
from a given core node, while our algorithm must be able
to calculate different routes for every flow traversing each
core node. This complicates the problem as now the cost
of the links does not depend on the amount of traffic be-
ing carried by them in a linear way, and so it is important
to consider individual routes for every flow, even when
they share a common intermediate node and destination.
Throughout the rest of this section, we detail how agents
work and what information they collect to obtain the set
of optimal paths for each flow that minimize global power
consumption.

4.1. Information Gathering

A key part of the algorithm relies on obtaining enough
information about the network state for updating the flow
routes. It is the job of a forward agent to gather this
information with the help of the network nodes.

For this, a forward agent departs periodically from the
source node o towards the flow destination d. This agent
carries information about the current flow rate (λf) and
the current flow path (pf). The agent walks the network
towards the flow destination in a non-deterministic manner

1 calcCost = function(`, λf , pf , λ`, µ`) {

2 if (` ∈ pf) { /* link belongs to the current

path of flow f */

3 /* Traffic in the link not from our flow

*/

4 λr = λ` - λf ;
5 } else {

6 /* No traffic is from our flow */

7 λr = λ`;
8 }

9 origCost = c` (λr/µ`);

10 newCost = c`
(
(λr + λf)/µ`

)
;

11
12 return newCost - origCost;

13 }

Listing 1: Procedure for the marginal cost calculation.

to be detailed later. When the agent reaches a new node, it
records the identity of the node in an internal list of visited
nodes. At the same time, the agent calculates the marginal
cost of carrying the flow traffic across the link used in the
last hop and stores it internally as ~cf [i],1 with i the index
of the previous node. This depends on the cost function of
the link, the traffic already being carried by the link and
whether the link is part of current flow path. The exact
procedure to calculate the marginal cost is shown in List-
ing 1 (see function calcCost). Note that forward agents
simply need that core nodes maintain statistics about ag-
gregate traffic load in their outgoing links to calculate the
marginal cost.

Before leaving the current node, forward agents need
to decide which neighbor node to visit next. There is a
trade-off in this selection, because agents should explore
all the possible paths, but, at the same time, more re-
sources should be used to explore good paths, where a
good path is the one that the agent knows that demands

1We assume that agents use the memory in the visited node to
store its state to then serialize it and transmit it to the next node as
an IP packet.

4

1 for each f(o, d, λf) ∈ Φ {

2 Fo→d = new ForwardAgent(f(o, d, λf), pf);
3 sendAgent(Fo→d);

4 }

5
6 sendAgent = function(Fo→d) {

7 i = o;

8 V = {}; // Set of visited nodes

9 ~c = []; // Vector holding the link costs

10
11 do {

12 j = nextNode(Gi(f));
13 ` = (i, j);

14 if (i ∈ V)

15 purgeCycle(V, ~c);
16 V = V ∪ i;

17 /* λ̂l is the estimated amount of traffic

carried by link ` */

18 ~c [i] = calcCost(l, λf , pf , λ̂l, µ`);
19 i = j; // Visit the next node

20 } while (i != d);

21 }

Listing 2: Forward agent algorithm.

less power than others. To achieve a balance in this selec-
tion, forward agents use two procedures to select the next
visited node: one completely random using no previously
obtained information, and the other one based on costs
calculated by other agents. Which procedure to use is se-
lected at random too. With some small probability πe the
agent chooses the first procedure ensuring that eventually
all possible routes are explored. With probability 1 − πe
the next node is chosen according to its goodness relative
to the flow f . There is a vector ~Gi(f) at every node i that
stores the goodness values for each flow f to all neighbor-
ing nodes. That is, ~Gi(f) = {gfi (j) ∀j | (i, j) ∈ Λ}. The
goodness of each node is a probability related to the esti-
mated power consumption of the flow should it select the
neighbor node as part of its path. It must be stored in the
nodes where it is updated by the backward agents.

Finally, if a cycle is detected after arriving to a new
node, all the information about the nodes visited and the
links traveled since the previous visit is deleted from the
agent. A pseudo-code version of the algorithm governing
forward agents is provided in Listing 2.

4.2. Information Dissemination

The information gathered by the forward agent on its
way to the destination node (the marginal costs and the
path actually traversed) is used to update the goodness
values at each of the intermediate nodes. The backward
agent is in charge of this update process while it travels
back to the origin node following exactly the reverse route
recorded by the forward agent.

At an intermediate node i ∈ N in the route of the
backward agent from the destination d toward the origin
o, the goodness value is updated based on the cost of the
partial path followed before by the forward agent from i
to d. In turn, this cost is the sum of two components:

a direct cost that results from the addition of the flow’s
traffic to the downstream links from i on the path, and an
indirect cost that measures the impact on the costs that
the remaining flows would see should the current flow f
departs partially or totally from its current route.

1. The direct cost is computed directly from the mea-
surements taken by the forward agent as

Cf
direct(i) =

d∑
k=i

~cf [k], (6)

where d is the flow destination and ~cf [k] is the vector
of measures recorded by the forward agent at node
k.

2. When a flow leaves or changes its route, this might
actually induce an increase in the marginal costs of
other flows that were sharing the same links, partic-
ularly if the energy profile in those links is sub-linear.
This possible increment is thus regarded as the indi-
rect cost of the partial route from i to d used by the
forward agent. Specifically, the indirect cost is ini-
tialized at the destination d when a backward agent
is created, with value

Cf
indirect(d) =

∑
`∈pf

~γf [`] (7)

where

~γf [`] , (c`(λ` − λf) + c`(λf)− c`(λ`))+
(8)

is the sum of the marginal increases in energy con-
sumption of all other flows traversing the link if the
flow f were to leave link `, and λ` is the total traf-
fic carried by link `. Writing λr , λ` − λf for
the remaining traffic that stays in the link after the
departure of flow f , the cost change (8) is simply
the difference between the cost due to the remain-
ing traffic c`(λr) and the cost savings of shifting λf
units of traffic off its current operating point, i.e.,
c`(λ`)− c`(λf). The value of ~γf [`] is not allowed to
be negative, as would happen for links with super-
linear (convex) cost functions,2 in order to disincen-
tivize that the flows change prematurely their paths.
Such changes could lead to undesirable route flap-
ping and network instability.
The values of the vector ~γf are computed by the
backward agent, for every visited link, as part of its
reverse path. ~γf is stored at the source node of the
flow, and it is carried by the forward agents to be
used in the next round of the backward agents as
follows: when the backward agent leaves node j to
visit node i, the indirect cost is updated

Cf
indirect(i) =

{
Cf

indirect(j)− ~γf [(i, j)], if (i, j) ∈ pf
Cf

indirect(j), otherwise.

(9)

2Note that the argument of (8) is negative iff c`(·) is a superad-
ditive function.

5

Therefore, the indirect cost decreases toward the source,
and diminishes by an amount equal to the cost of
leaving the links upstream from i that flow f really
uses. As a result of this computation, the paths in
which the departure of a flow f would produce a
larger cost to other concurrent flows are penalized in
comparison to paths where this does not occur.

The sum of the direct and indirect costs is the raw
goodness value computed by the backward agent before
leaving its current node, and stored there

Γf (i) = Cf
direct(i) + Cf

indirect(i). (10)

The goodness is used as a metric to select the best next-
hop for every flow. To this end, it is essential that paths
with less energy demands yield increasing goodness, but
this condition is not guaranteed for the raw goodness for
a number of reasons. The raw values are noisy due to
the measurement process, and have to be normalized first
for allowing the comparison with the values computed by
other backward agents for the same flow, possibly after
having explored different paths. Finally, some adjustment
is needed to ensure that the metric is monotonically de-
creasing in Γf [i]. In this paper, we will apply the same
mechanisms and problem-independent constants as [21] to
derive the routing metric.

To simplify notation, we set Γ = Γf (i) for the rest of
this Section. First, Γ is normalized by a scaled average of
previous measurements

r′ = min{ Γ

αΓ
, 1} (11)

where α > 1 is a suitable attenuation constant and Γ de-
notes the average of past samples of Γ. Averaging smoothes
the measurements and reduces the variance, but this vari-
ance can still be high and trigger instability in the routing
decisions. Thus, r′ is corrected according to

r′a =

{
r′ − e−

aσ
Γ if r′ < 0.5

r′ + e−
aσ
Γ otherwise

(12)

where σ stands for the standard deviation of Γ. This cor-
rection is enforced only if the average Γ is considered reli-
able, i.e., if the ratio σ/Γ < ε � 1. If the average is not
stable, σ/Γ ≥ ε then a penalty factor is added

r′a =

{
r′ + 1− e−

bσ
Γ if r′ < 0.5

r′ − 1− e−
bσ
Γ otherwise

(13)

where b < a. Finally, the metric r′a is compressed via the
power law r′a ← (r′a)h and clipped to the interval [0, 1].

After these nonlinear recalibration steps, node i com-
putes the goodness routing metric to each of its neighbors
j ∈ N , (i, j) ∈ Λ as follows:

gfi (j)← gfi (j)+

{
(1− r′a)

(
1− gfi (j)

)
agent comes from j

−(1− r′a)gfi (j) otherwise.

(14)

It is easy to check that if
∑

j∈N,(i,j)∈Λ g
f
i (j) = 1 then the

same condition holds after applying the update rule (14),

so gfi (j) can be conveniently interpreted as the likelihood
of preferring neighbor j as the next hop.3 A total good-
ness of 1 is easily enforced by choosing as initial values
gfi (j) = 1/ni for every neighbor j of node i, with ni adja-
cent nodes. Therefore, in absence of better a priori infor-
mation, initially each neighbor receives the same goodness
as a credit.

4.3. Obtaining the New Path

Once the new goodness values have been calculated,
the backward agent selects the maximum as the next hop
for the flow. This information is stored internally by the
agent.

When the agent finally reaches the source node for the
flow, the information about the next hops is employed to
construct a new path. Because the backward agent fol-
lows the reverse path of the forward agent, and the newly
constructed path is just the ordered collection of best next
nodes, as determined by their respective goodness values,
for the visited nodes, this new path is not necessarily con-
nected. So before replacing the current path, the origin
node performs a connectivity test on it. For this, it can
either rely on an existing link state routing algorithm or
send any kind of source routed probe packet.

Even if the recorded path is dismissed, the work done
by the agents is not lost. Chances are high that a new
forward agent eventually follows the best path, as it is the
one with the highest goodness values at every node, and
thus, the resulting backward agent will record the whole
path.

4.4. Memory Requirements

It is important to characterize the memory require-
ments for storing all the information related to the state of
the agents and any auxiliary information they may need.
To this end, we detail the memory needs of edge nodes,
regular nodes and agents. Obviously, since agents are not
physical entities, they cannot really store any information,
so they store it transiently in the nodes they visit. In any
case, we account for this separately from the memory needs
of regular nodes for clarity.

The forward agent carries the following information: a
set of visited nodes, the cost of the traveled links, the flow
rate, the current path, and the extra cost of leaving links in
the current path. That is, information about the current
path and the traveled one. All this information depends
solely on the path lengths, and so it usually scales with
the logarithm of the number of nodes.

3Note that routing is deterministic, not random, and that the

traffic of a flow is not split among several paths. Thus, even if gfi (j)
is used as a probability by forward agents, all the traffic from a given

flow chooses as the next hop the neighbor with the highest gfi (j)
value.

6

Element Needed storage
Forward agent O(log(N))
Backward agent O(log(N))
Source node O(|E| log(N))

Core node O
(

2|Λ|
|N | |E|

2
)

Table 2: Memory requirements.

The backward agent does not carry much more infor-
mation than the forward one. It just stores the current
path and, additionally, the extra cost values of those links
traveled that are part of the current path. Finally, it also
holds a copy of the path followed by the forward agent and
it records the best next hop node for the visited nodes.
Again, all this information is proportional to the path
length, so it is independent of the number of flows.

The agents do use information stored in the nodes to
communicate with other agents and to obtain some basic
information for their calculations. Source nodes must store
for every flow originating from them the current path of
the flow, its rate and the extra cost incurred when the flow
leaves any of the links currently traversed. The rate infor-
mation scales linearly with the number of flows departing
from the node, while the path information and extra costs
scales with the product between the number of flows de-
parting at the node and the logarithm of the network size.
We consider as a single flow all traffic between a given pair
of edge nodes, the total information stored at the edges is
still manageable. In the worst case, it is |E| log(N), with
|E| the number of edge nodes.

Regular nodes, and edge nodes too, need to store addi-
tional information for the agents to do their calculations.
They need an estimate of the traffic being sent across ev-
ery outgoing link for the cost calculation. They also need
to store the information for the best node selection: the
goodness vector and the cost statistics for each flow. Each

goodness vector has an entry for every outgoing link (2|Λ|
|N |

on average), so its size should remain relatively small.
However, the node must store a goodness vector for ev-
ery network flow. In the worst case, there can be as many
as |E|(|E| − 1) flows in the network, so this is clearly the
limiting factor of the algorithm. To lower this memory
requirement, nodes could use some kind of eviction policy
to free memory associated to flows without recent activity.
All this information is summarized in Table 2.

5. Evaluation

In this section we will analyze the performance of our
algorithm. We start with a set of simple experiments in
a synthetic topology that highlights the behavior of the
algorithm for different cost functions. Then, we show the
results on more realistic network topologies.

All the results have been produced by an open source

in-house simulator available at [34].4 Our simulator ab-
stracts packet level simulation details and considers the
long time traffic averages known. This speeds up the sim-
ulations while, at the same time, let us employ publicly
available traffic matrices that do not usually detail packet
level details. The simulator reads two configuration files:
one describes the network topology and link parameters
and the second one controls the traffic characteristics. The
simulated links are described by their maximum traffic ca-
pacity and their cost function. The cost function for a
given link is reduced for simplicity to the set of coefficients
{a0, . . . , an} in the general formula

c`(λ) = a0 log λ+

n∑
i=1

aiλ
i−1. (15)

This formula lets us represent the main power profiles links
are expected to exhibit in the near future [19, 25]: sub-
linear, like those of IEEE 802.3az links [4]; linear (although
this is not expected to be found in links, it can be used
to account for the power costs of the switch matrix of
the routers), a constant component, although this does
not have any effect on the routing decisions, and super-
linear. These latter profiles, like cubic ones, have been
found in Ethernet interfaces applying dynamic voltage and
frequency scaling [36]. Finally, we do not consider an on-off
power profile as we need all links to be active to be able
to send and receive agents through them. In any case,
with a suitable scaling factor, the logarithmic profile can
be made similar to the on-off profile. For the algorithm
configuration parameters, we used the constants provided
in [22]: ε = 0.25, a = 10, b = 9 and h = 0.04, that are
problem independent. In any case, it has been found that
Ant Colonization algorithms are quite resilient to changes
in the configuration parameters [37], so further tuning has
not been deemed necessary.

Given the inherent random behavior of the algorithm,
each simulation has been repeated 100 times, modifying
the initial seed of the random generator of the simulator.
All the provided results show the averaged measure of a
given metric along with its 95 % confidence interval, except
in those cases where the interval was too small.

5.1. Algorithm Behavior

The first set of results shows the behavior of the al-
gorithm in a regular network. The topology consists of
a simple switching matrix of n steps connecting n traffic
sources to n destinations. Every link has the same cost
function and unlimited capacity. The goal is to check the
results obtained by the algorithm in an otherwise unre-
stricted scenario. Traffic consists of n identical flows going
from each source to every destination, for a total of n2

flows in the network.

4We refrained from writing a module for a general purpose net-
work simulator as [35] as the amount of new code would be on the
same order.

7

D5

D4

D3

D2

D1O1

O2

O3

O4

O5

Figure 2: Algorithm behavior in a lattice network with a logarithmic
cost function. Line width represents the number of flows in a link,
while dotted lines show unused links.

D5

D4

D3

D2

D1O1

O2

O3

O4

O5

Figure 3: Algorithm behavior in a lattice network with a cubic cost
function.

D5

D4

D3

D2

D1O1

O2

O3

O4

O5

Figure 4: Algorithm behavior in a lattice network with a linear cost
function.

Figures 2, 3 and 4 show a graphical representation of
the network and the link occupations for n = 5 and three
different cost functions: logarithmic, cubic and linear, re-
spectively. The number of flows in each link is proportional
to the line width, with dotted lines representing unused
links. After a close inspection of the graphics it can be
seen that in the logarithmic scenario (Figure 2), routes
tend to be short (vertical links are only used in the first
and final steps) and shared among various flows. Note that
line widths are quite wide and, at the same time, a lot of
links remain unused. This is expected, as the marginal
cost of adding traffic to a link decreases with its load.

In contrast, for the cubic cost function (Figure 3), most
links are lightly used. In fact, almost all vertical links are
employed to avoid sharing traffic on either horizontal or
diagonal links. Again, this is the expected behavior, as
in this case the marginal cost increases with load, so the
algorithm must find the way to spread the traffic across
the net as long as the added cost (it employs more links
and longer routes) is not excessive.

In the linear scenario (Figure 4) the algorithm just
searches for the shortest routes regardless of how the links
are shared among flows. As in the logarithmic cost func-
tion scenario, there is almost no single vertical link used,
but it can be also observed that the load is not so concen-
trated on a few links. In fact, the total number of empty
links is smaller.

We repeated these simulations on a somewhat larger
net with n = 8. Figure 5 shows how many links share a
given number of flows. Results agree with the above dis-
cussion. The logarithmic scenario has the highest number
of unused links (96) with some links carrying 27 or even 29
flows. On the contrary, for the cubic cost function most
links carry just a few flows with almost no link sitting
unused. The linear case, as before, fits in between those
scenarios.

Finally, the results obtained after the algorithm is run
are summarized in Table 3. It shows both the energy sav-
ings when compared to a power unaware shortest-path-
first (SPF) routing algorithm and the average route lengths.
As expected, for the linear cost function, the results are
identical to those of the SPF algorithm, and thus our al-
gorithm produces no energy savings, but keeps the opti-
mum average path length of just nine hops. However, for
non-linear cost functions it pays a small penalty in path
lengths. This length increment is necessary to obtain more
power efficient routes. In fact, the energy savings for the
cubic cost function (69.9 ± 0.1 %) are quite impressive in
this topology.

5.2. Performance Results

We have also carried out experiments in more realistic
network topologies, the first set inspired in the topology
of the old NSFNet network and a second one in the nobel-
eu topology from the Survivable Network Design Library
(SNDlib) [38].

8

Ant Colonization Algorithm SPF
Cost Function Log Linear Cubic Any
Path Length 9.9± 0.6 9 9.9± 0.1 9

Energy Savings 13.3± 1.3 % 0 % 69.9± 0.1 % 0 %

Table 3: Energy savings and path lengths obtained for different cost functions in a regular switching network with n = 8. 95 % confidence
interval omitted for clarity when less than 0.1 %.

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30

N
u
m

b
e
r

o
f

lin
ks

Number of flows

Logarithmic cost function

(a) Logarithmic cost function

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30

N
u
m

b
e
r

o
f

lin
ks

Number of flows

Cubic cost function

(b) Cubic cost function

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30

N
u
m

b
e
r

o
f

lin
ks

Number of flows

Linear cost function

(c) Linear cost function

Figure 5: Link occupation for an 8-nodes regular topology for differ-
ent cost functions.

CA1

WA

UT

CA2

IL

MI

CO

TX

PA

DC

GA

NY

NJ

NE

Figure 6: Network topology based on the original NSFNet. Node
names correspond with their geographic location.

Figure 6 shows the NSFNet network. We have con-
ducted several simulations with varying traffic matrices: a
full-mesh matrix with traffic flowing from each source to
every other destination; an intra-coast matrix, with traffic
just between some nodes in the same “coast”; and finally
a coast-to-coast matrix, with traffic flowing from nodes in
each coast to the other and vice-versa. Although the traffic
matrices can not be considered real by any means, they al-
low to bring some light to the behavior and performance of
the algorithm in a wide range of representative scenarios.

The first performance characteristic we measured is the
time needed by the algorithm to reach 90 % and 99 % of
the long term energy savings it is able to achieve. We use
the number of iterations, that is, the number of forward
agents sent by a source, as a proxy for this time, as it
eventually depends on the time separation between two
consecutive agents. The results are plotted in Figures 7
and 8.

The first conclusion is that the algorithm is usually
able to reach the target of 90 % quite fast. There is also
a relationship between the number of flows and the con-
vergence speed. This can be observed in the full mesh
simulations, which usually take the largest number of it-
erations. It can also be seen that the intra-coast scenario
is resolved very fast for any cost function, as it takes al-
most the same number of iterations to reach 90 % of the

9

 10

 100

 1000

 10000

 100000

Logarithmic Linear Cubic

It
e
ra

ti
o
n
s

Link cost function

Coast-to-coast
Intra-coast
Full-mesh

Figure 7: Number of iterations to reach 90% of the greatest power
savings for different traffic matrices and different link cost functions.
Error bars show 95 % confidence intervals.

 10

 100

 1000

 10000

 100000

Logarithmic Linear Cubic

It
e
ra

ti
o
n
s

Link cost function

Coast-to-coast
Intra-coast
Full-mesh

Figure 8: Number of iterations to reach 99% of the greatest power
savings for different traffic matrices and different link cost functions.
Error bars show 95 % confidence intervals.

final savings as to get to 99 %. We believe that this is a
consequence of the optimal routes being quite short, and
thus easy to come across by the agents. On the other
hand, both the coast-to-coast and the full-mesh matrices
need many more iterations to rise to the 99 % target. For
the linear cost function this happens because the optimal
routes are longer and thus the number of alternative routes
with similar costs is higher, lowering the likelihood of a for-
ward agent to follow them. The change for the logarithmic
cost function is even sharper. The reason is that not only
the routes are longer, like in the linear case. There is an
additional complexity in the fact that the algorithm tries
to pack several flows in the same links for maximum en-
ergy savings. As the agents take their routing decisions
autonomously it takes some extra time for routes to con-
verge to the same set of links. This also helps to explain
why for the cubic cost function the complexity increase is
less noticeable. For super-linear cost functions the greatest
savings come from using disjoint routes, so there is no need
for several flows to converge on the same set of links. So,
it is easier for agents to choose links with low occupation.

We have also measured two additional performance

characteristics: actual power savings and average path
length increment. The power savings are compared to the
power consumed by a network using SPF as the power-
agnostic routing algorithm. The results for the three traf-
fic matrices and the three power profiles are summarized
in Table 4. For the linear cost function, the algorithm
is unable to save more energy with regards to SPF, but
this is expected, as SPF discovers the optimal routes for
these networks. In any case, the results of our algorithm
are also optimal, with no additional energy demands nor
increments in the path lengths.

In the logarithmic link cost networks, the algorithm ob-
tains more than 20 % energy savings for the more complex
traffic matrices. The route lengths also grow, although the
increments are below 25 %.

Finally, the cubic cost function does not attain any sav-
ings for the intra-coast traffic matrix. This is because the
shortest path routes are already optimal. In fact, the path
lengths are identical for both the proposed algorithm and
the SPF routing algorithm. For the rest of the traffic ma-
trices it gets savings in the 10–20 % range by distributing
flows in different links, at the cost of an obvious increment
in the average path length.

In short, the proposed algorithm is able to trade some
increment in route lengths to save energy in the network.
When the routes computed by a shortest path first algo-
rithm are already optimal, the routes computed by our
proposal are never worse: both average path length and
energy consumption remain identical.

As already stated at the beginning of the Section, we
have also used a real topology both to assess the behav-
ior of our algorithm and to compare it against the op-
timization shown in [20, 26] and to those power profile
unaware algorithms that minimize the number of active
links [9, 14, 23, 24]. We have employed the topology and
average traffic matrix of the nobel-eu core network from
the SNDlib archive used in those works. The nobel-eu
network is a European network consisting on 28 nodes
connected by 41 links and the traffic matrix consists on
a total of 378 flows. For the sake of the comparison, we
have simplified the network model proposed in [26] as we
restrict the number of links between a given pair of nodes
to one, albeit with unlimited capacity.

Figure 9 shows the normalized power consumption with
a cubic cost function. Traffic was added to the network in
several steps to show the dynamics of our algorithm. It
can be seen that the consumption raises briefly above that
of SPF when new traffic enters the network, but rapidly
stabilizes below it after a few iterations. For completeness
we have calculated with the help of the IBM CPLEX solver
the optimum power consumption obtained considering our
simplified model of [26]. As expected, the centralized cal-
culation is able to obtain the best results, albeit it can-
not adapt automatically to changing network conditions.
We also performed the experiment with a logarithmic cost
function. In this case, our algorithm just managed to save
3±1 % of the power needed when using SPF routes, while

10

Cost Function
Log Linear Cubic

Length Coast to coast 20.1± 1.1 % 0 % 16.1± 1.2 %
Increment Intra coast 23.3± 1.9 % 0 % 0 %

Full mesh 11.0± 0.6 % 0 % 0.8± 0.1 %
Relative Coast to coast 29.5± 1.2 % 0 % 17.6± 1.3 %
energy Intra coast 6.5± 1.4 % 0 % 0 %
savings Full mesh 29.9± 0.5 % 0 % 12.8± 0.06 %

Table 4: Performance improvement of the proposed algorithm for different traffic matrices in the network depicted in Figure 6 when compared
against Shortest Path First. 95 % confidence intervals omitted for clarity when less than 0.1 %.

 0

 20

 40

 60

 80

 100

 0 50000 100000 150000 200000 250000 300000 350000 400000

N
o
rm

a
liz

e
d

 p
o
w

e
r

co
n
su

m
p

ti
o
n
 (

%
)

Iterations

SPF
Proposal

Optimum

Figure 9: Comparison between our algorithm, SPF and the optimal
result for the nobel-eu network with a cubic cost function.

the CPLEX solver managed to save 16% of the power,
considering again a static scenario.

To simulate the results of the power profile unaware
algorithms we eliminated all but the most used outgoing
link for each node when using SPF routing.5 Then, we
calculated the global power usage in the modified graph.
We found that energy usage increases 9.5 % for links with
logarithmic cost function when compared with the unmod-
ified network using SPF as a routing algorithm. This is
due to the increased average length of the routes, resulting
in traffic consuming energy in more links. Results, how-
ever, are much worse for a cubic cost function. In this case,
traffic should be spread over various links to minimize con-
sumption, however, with a single path between each pair
of nodes this is not feasible. Energy consumption is 8.8
times higher than in the unmodified network. Although
the results may seem counter intuitive, there are to be ex-
pected, as all these algorithms are designed for networks
with fixed cost links.

6. Conclusions

In this paper we have presented a modified version of
the AntNet [22] algorithm to calculate, in a decentralized

5The optimum result in these algorithms is obtained with unlim-
ited capacity links, as a single outgoing link is enough to transmit
all the traffic from a given node, and the rest of the links can be
powered down.

way, optimal routes to reduce power consumption of net-
work links. The presented solution does not put any re-
striction in the power profile functions of the networking
equipment.

The proposal was tested in both synthetic and real sce-
narios with different power profiles. The obtained results
show power savings in the 10–20% range for real networks
and up to 70% in favorable, although unlikely, scenarios.
Moreover, the convergence times are small, as the 90% of
the savings are usually obtained in less than 1000 itera-
tions. Thus the algorithm can be used continuously in
background in the network, adapting the routing tables to
the medium-term averages of the traffic load of the incom-
ing flows.

Finally, the results also show that it is necessary to take
into account the power profile of the links, as not doing so
and blindly powering off less used links can even augment
power usage.

Acknowledgments

Work supported by the European Regional Develop-
ment Fund (ERDF) and the Galician Regional Govern-
ment under agreement for funding the Atlantic Research
Center for Information and Communication Technologies
(AtlantTIC).

References

[1] S. Lanzisera, B. Nordman, R. E. Brown, Data network equip-
ment energy use and savings potential in buildings, in: ACEEE
Summer Study on Buildings, 2010.

[2] The Climate Group, SMART 2020. Enabling the low car-
bon economy in the information age, Tech. rep., Global
e-Sustainibility Initiative (GeSI), accessed July 30th 2014
(2008).
URL http://smart2020.org/_assets/files/02_

Smart2020Report.pdf

[3] P. Reviriego Vasallo, J. A. Hernández, D. Larrabeiti, J. A.
Maestro, Performance evaluation of Energy Efficient Ethernet,
IEEE Communications Letters 13 (9) (2009) 697–699.

[4] S. Herreŕıa Alonso, M. Rodŕıguez Pérez, M. Fernández Veiga,
C. López Garćıa, A GI/G/1 model for 10 Gb/s energy efficient
Ethernet, IEEE Transactions on Communications 60 (2012)
3386–3395. doi:10.1109/TCOMM.2012.081512.120089.

[5] V. Sivaraman, P. Reviriego, Z. Zhao, A. Sánchez-Macián,
A. Vishwanath, J. Maestro, C. Russell, An experimental power

11

http://atlanttic.uvigo.es/en/
http://smart2020.org/_assets/files/02_Smart2020Report.pdf
http://smart2020.org/_assets/files/02_Smart2020Report.pdf
http://smart2020.org/_assets/files/02_Smart2020Report.pdf
http://smart2020.org/_assets/files/02_Smart2020Report.pdf
http://dx.doi.org/10.1109/TCOMM.2012.081512.120089

profile of energy efficient ethernet switches, Computer Com-
munications 50 (2014) 110 – 118, green Networking. doi:

10.1016/j.comcom.2014.02.019.
[6] M. I. Khan, W. N. Gansterer, G. Haring, Static vs. mobile sink:

The influence of basic parameters on energy efficiency in wireless
sensor networks, Computer Communications 36 (9) (2013) 965 –
978, reactive wireless sensor networks. doi:10.1016/j.comcom.
2012.10.010.

[7] D. Jung, R. Kim, H. Lim, Power-saving strategy for balanc-
ing energy and delay performance in {WLANs}, Computer
Communications 50 (2014) 3 – 9, green Networking. doi:

10.1016/j.comcom.2014.02.005.
[8] M. Gupta, S. Singh, Greening of the Internet, in: SIGCOMM

’03: Proceedings of the 2003 conference on Applications, tech-
nologies, architectures, and protocols for computer communica-
tions, ACM, 2003, pp. 19–26.

[9] L. Chiaraviglio, M. Mellia, F. Neri, Minimizing ISP network en-
ergy cost: Formulation and solutions, IEEE/ACM Transactions
on Networking 20 (2) (2012) 463–476. doi:10.1109/TNET.2011.
2161487.

[10] M. Caria, A. Engelmann, A. Jukan, B. Konrad, How to slice
the day: Optimal time quantization for energy saving in the
Internet backbone networks, in: Global Communications Con-
ference (GLOBECOM), 2012 IEEE, 2012, pp. 3122–3127. doi:
10.1109/GLOCOM.2012.6503594.

[11] J. F. Botero, X. Hesselbach, M. Duelli, D. Schlosser, A. Fischer,
H. de Meer, Energy efficient virtual network embedding, IEEE
Communications Letters 16 (5) (2012) 756–759. doi:10.1109/

LCOMM.2012.030912.120082.
[12] B. Addis, A. Capone, G. Carello, L. Gianoli, B. Sanso, Energy

management through optimized routing and device powering
for greener communication networks, Networking, IEEE/ACM
Transactions on 22 (1) (2014) 313–325. doi:10.1109/TNET.

2013.2249667.
[13] A. Cianfrani, V. Eramo, M. Listanti, M. Marazza, E. Vittorini,

An energy saving routing algorithm for a green OSPF protocol,
in: INFOCOM IEEE Conference on Computer Communications
Workshops , 2010, 2010, pp. 1–5.

[14] A. Cianfrani, V. Eramo, M. Listanti, M. Polverini, A. V. Vasi-
lakos, An OSPF-integrated routing strategy for QoS-aware en-
ergy saving in IP backbone networks, IEEE Transactions on
Network and Service Management 9 (3) (2012) 254–267. doi:

10.1109/TNSM.2012.031512.110165.
[15] IEEE 802.3az (Oct. 2010). doi:10.1109/IEEESTD.2010.

5621025.
[16] J. Zhang, N. Ansari, Toward energy-efficient 1G-EPON and

10G-EPON with sleep-aware MAC control and scheduling,
IEEE Communications Magazine 49 (2) (2011) s33–s38. doi:

10.1109/MCOM.2011.5706311.
[17] M. Rodŕıguez Pérez, S. Herreŕıa Alonso, M. Fernández Veiga,

C. López Garćıa, Improving energy efficiency in upstream
EPON channels by packet coalescing, IEEE Transactions on
Communications 60 (4) (2012) 929–932. doi:10.1109/TCOMM.

2012.022712.110142A.
[18] A. Bianco, F. G. Debele, L. Giraudo, On-line power savings in

a distributed multi-stage router architecture, in: Global Com-
munications Conference (GLOBECOM), 2012 IEEE, 2012, pp.
2535–2540. doi:10.1109/GLOCOM.2012.6503498.

[19] J. C. Cardona Restrepo, C. G. Gruber, C. Mas Machuca, Energy
profile aware routing, in: Communications Workshops, 2009.
ICC Workshops 2009. IEEE International Conference on, 2009,
pp. 1–5.

[20] R. G. Garroppo, S. Giordano, G. Nencioni, M. Pagano, En-
ergy aware routing based on energy characterization of de-
vices: Solutions and analysis, in: Communications Workshops
(ICC), 2011 IEEE International Conference on, 2011, pp. 1–5.
doi:10.1109/iccw.2011.5963560.

[21] I. Seoane, J. Hernandez, P. Reviriego, D. Larrabeiti, Energy-
aware flow allocation algorithm for energy efficient Ethernet net-
works, in: Software, Telecommunications and Computer Net-
works (SoftCOM), 2011 19th International Conference on, 2011,

pp. 1–5.
[22] G. Di Caro, M. Dorigo, AntNet: A mobile agents approach

to adaptive routing, Tech. rep., Université Libre de Bruxelles,
IRIDIA 97–12 (Dec. 1997).

[23] Y.-M. Kim, E.-J. Lee, H.-S. Park, J.-K. Choi, H.-S. Park, Ant
colony based self-adaptive energy saving routing for energy ef-
ficient Internet, Computer Networks 56 (10) (2012) 2343–2354.
doi:http://dx.doi.org/10.1016/j.comnet.2012.03.024.

[24] Y. Yang, M. Xu, Q. Li, Towards fast rerouting-based energy
efficient routing, Computer Networks 70, in press. doi:10.1016/
j.comnet.2014.04.014.

[25] L. Chiaraviglio, D. Ciullo, M. Mellia, M. Meo, Modeling sleep
mode gains in energy-aware networks, Computer Networks
57 (15) (2013) 3051–3066.

[26] R. Garroppo, G. Nencioni, L. Tavanti, M. G. Scutellà, Does
traffic consolidation always lead to network energy savings?,
IEEE Communications Letters 17 (9) (2013) 1852–1855.

[27] A. Nazi, M. Raj, M. D. Francesco, P. Ghosh, S. K. Das, De-
ployment of robust wireless sensor networks using gene regula-
tory networks: An isomorphism-based approach, Pervasive and
Mobile Computing 13 (2014) 246 – 257. doi:10.1016/j.pmcj.

2014.03.005.
[28] T. Lu, J. Zhu, Genetic algorithm for energy-efficient QoS mul-

ticast routing, IEEE Communications Letters 17 (1) (2013) 31–
34. doi:10.1109/LCOMM.2012.112012.121467.

[29] J. Galán Jiménez, A. Gazo Cervero, Using bio-inspired algo-
rithms for energy levels assessment in energy efficient wired
communication networks, Journal of Network and Computer
Applications 37 (2014) 171–185. doi:10.1016/j.jnca.2013.02.
027.

[30] S. Sahni, Computationally related problems, SIAM Journal on
Computing 3 (4) (1974) 262–279. doi:10.1137/0203021.

[31] S. A. Vavasis, Quadratic programming is in NP, Inf. Pro-
cess. Lett. 36 (2) (1990) 73–77. doi:10.1016/0020-0190(90)

90100-C.
[32] E. Rosen, A. Viswanathan, R. Callon, Multiprotocol label

switching architecture, RFC 3031 (Jan. 2001).
URL http://www.ietf.org/rfc/rfc3031.txt

[33] RSVP-TE: Extensions to RSVP for LSP tunnels, RFC 3209
(Dec. 2001).
URL http://www.ietf.org/rfc/rfc3209.txt

[34] M. Rodŕıguez Pérez, S. Herreŕıa Alonso, Trancas simulator
(Mar. 2014).
URL http://migrax.github.io/trancas/

[35] NS, ns Network Simulator, http://www.isi.edu/nsman/ns/
(Mar. 2007).

[36] B. Zhai, D. Blaauw, D. Sylvester, K. Flautner, Theoretical
and practical limits of dynamic voltage scaling, in: Proceed-
ings of the 41st annual Design Automation Conference, DAC
’04, ACM, New York, NY, USA, 2004, pp. 868–873. doi:

10.1145/996566.996798.
[37] S. S. Dhillon, P. Van Mieghem, Performance analysis of the

AntNet algorithm, Computer Networks 51 (8) (2007) 2104–
2125. doi:10.1016/j.comnet.2006.11.002.

[38] S. Orlowski, M. Pióro, A. Tomaszewski, R. Wessäly, SNDlib 1.0–
Survivable Network Design Library, in: Proceedings of the 3rd
International Network Optimization Conference (INOC 2007),
Spa, Belgium, 2007, http://sndlib.zib.de, extended version ac-
cepted in Networks, 2009.

12

http://dx.doi.org/10.1016/j.comcom.2014.02.019
http://dx.doi.org/10.1016/j.comcom.2014.02.019
http://dx.doi.org/10.1016/j.comcom.2012.10.010
http://dx.doi.org/10.1016/j.comcom.2012.10.010
http://dx.doi.org/10.1016/j.comcom.2014.02.005
http://dx.doi.org/10.1016/j.comcom.2014.02.005
http://dx.doi.org/10.1109/TNET.2011.2161487
http://dx.doi.org/10.1109/TNET.2011.2161487
http://dx.doi.org/10.1109/GLOCOM.2012.6503594
http://dx.doi.org/10.1109/GLOCOM.2012.6503594
http://dx.doi.org/10.1109/LCOMM.2012.030912.120082
http://dx.doi.org/10.1109/LCOMM.2012.030912.120082
http://dx.doi.org/10.1109/TNET.2013.2249667
http://dx.doi.org/10.1109/TNET.2013.2249667
http://dx.doi.org/10.1109/TNSM.2012.031512.110165
http://dx.doi.org/10.1109/TNSM.2012.031512.110165
http://dx.doi.org/10.1109/IEEESTD.2010.5621025
http://dx.doi.org/10.1109/IEEESTD.2010.5621025
http://dx.doi.org/10.1109/MCOM.2011.5706311
http://dx.doi.org/10.1109/MCOM.2011.5706311
http://dx.doi.org/10.1109/TCOMM.2012.022712.110142A
http://dx.doi.org/10.1109/TCOMM.2012.022712.110142A
http://dx.doi.org/10.1109/GLOCOM.2012.6503498
http://dx.doi.org/10.1109/iccw.2011.5963560
http://dx.doi.org/http://dx.doi.org/10.1016/j.comnet.2012.03.024
http://dx.doi.org/10.1016/j.comnet.2014.04.014
http://dx.doi.org/10.1016/j.comnet.2014.04.014
http://dx.doi.org/10.1016/j.pmcj.2014.03.005
http://dx.doi.org/10.1016/j.pmcj.2014.03.005
http://dx.doi.org/10.1109/LCOMM.2012.112012.121467
http://dx.doi.org/10.1016/j.jnca.2013.02.027
http://dx.doi.org/10.1016/j.jnca.2013.02.027
http://dx.doi.org/10.1137/0203021
http://dx.doi.org/10.1016/0020-0190(90)90100-C
http://dx.doi.org/10.1016/0020-0190(90)90100-C
http://www.ietf.org/rfc/rfc3031.txt
http://www.ietf.org/rfc/rfc3031.txt
http://www.ietf.org/rfc/rfc3031.txt
http://www.ietf.org/rfc/rfc3209.txt
http://www.ietf.org/rfc/rfc3209.txt
http://migrax.github.io/trancas/
http://migrax.github.io/trancas/
http://dx.doi.org/10.1145/996566.996798
http://dx.doi.org/10.1145/996566.996798
http://dx.doi.org/10.1016/j.comnet.2006.11.002

	1 Introduction
	2 Related Work
	3 Problem Statement
	4 Routing Algorithm
	4.1 Information Gathering
	4.2 Information Dissemination
	4.3 Obtaining the New Path
	4.4 Memory Requirements

	5 Evaluation
	5.1 Algorithm Behavior
	5.2 Performance Results

	6 Conclusions

