
http://wrap.warwick.ac.uk/

Original citation:
Tan, Wilson M. and Jarvis, Stephen A.. (2016) Heuristic solutions to the target
identifiability problem in directional sensor networks. Journal of Network and Computer
Application, 65 . pp. 84-102.

Permanent WRAP url:
http://wrap.warwick.ac.uk/77939

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work of researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.
Publisher statement:
© 2016 Elsevier, Licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see
the ‘permanent WRAP url’ above for details on accessing the published version and note
that access may require a subscription.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/77939
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:publications@warwick.ac.uk

Heuristic Solutions to the Target Identifiability

Problem in Directional Sensor Networks

Wilson M. Tan and Stephen A. Jarvis

Performance Computing and Visualisation Group

Department of Computer Science

University of Warwick, UK

Abstract

Existing algorithms for orienting sensors in directional sensor net-

works have primarily concerned themselves with the problem of max-

imizing the number of covered targets, assuming that target identi-

fication is a non-issue. Such an assumption however, does not hold

true in all situations. In this paper, heuristic algorithms for choosing

active sensors and orienting them with the goal of balancing coverage

and identifiability are presented. The performance of the algorithms

are verified via extensive simulations, and shown to confer increased

target identifiability compared to algorithms originally designed to

simply maximize the number of targets covered.

1

1 Introduction and motivation

Directional sensors are sensors whose sensing capabilities are limited within

an angle range [7][8]. In comparison, an omnidirectional sensor’s sensing

range covers everything around it. In geometric terms, the covered area of

an omnidirectional sensor is a circle centered on the sensor, while that of a

directional sensor is a sector. In WSNs, nodes that are directional can imply

that the node has directional capability in sensing and/or communication

[7]. In this paper, we solely focus on the sensing capability, and thus will

interchangeably use the terms ‘nodes’ and ‘sensors’.

Examples of sensors that are inherently directional in nature include video

sensors [11], ultrasonic sensors [3], and infrared sensors [13]. Acoustic sen-

sors (or microphones) can also potentially be directional [9], although most

of the existing work in WSN literature so far have utilized omnidirectional

microphones [12][6].

Because the sensed region of a directional node is constrained within an

angle range, of primary concern is the total sensing coverage provided by

such a network of directional sensors. A problem that frequently needs to

be solved is ‘Given a number of directional sensors distributed in space, how

should each sensor’s sensing region be oriented such that the total sensing

coverage of the network is maximized?’.

Coverage-maximizing algorithms proposed in literature fall into two cat-

egories: those that are target-centric and those that are area-centric.

In target-centric algorithms, it is assumed that there are a finite number of

static targets distributed in the area, and it is desired that as many as possible

2

of such targets be covered. Sometimes, for issues of energy efficiency, it is

also desired that the covering be also done with the least number of sensors

possible - such a problem is formalized in [1] as the Maximum Coverage

Minimum Sensors (MCMS) Problem.

In area-centric algorithms, there are no specific objects or targets of in-

terest; the entire area is of sensing interest, and it is desired that as much

of it is covered. In such algorithms, the problem is equivalent to minimizing

the overlap between the sensed regions of sensors. An example of such an

algorithm was presented in [16].

In this work, we solely focus on target-centric algorithms.

Most coverage algorithms focus on maximizing the number of targets cov-

ered. This is reasonable when the targets are continually being monitored,

and easy target identification is built-in to the system. This is true to a

certain extent for visual sensor networks: for instance, a Closed Circuit Tele-

vision (CCTV) camera (being remotely watched by a person) monitoring a

street intersection. However, this assumption does not hold true for all situ-

ations. For instance, if we assume that a single acoustic sensor is monitoring

two possible sound sources, in general, the sensor will be able to detect that a

sound was generated, but not which source generated it - at least not unless

the sound generated by each source is distinct, and even then, not without

further digital signal processing.

As a slight deviation from all previous studies, we shall work with the

following assumptions

1. Targets generate events, and these events randomly occur. Events oc-

3

cur only one at a time, and they are brief enough that they do not

overlap in time.

2. Events can be detected by the sensor if the source is within the sen-

sor’s sensed region, but the events themselves say nothing about which

source generated it.

s1 s2
123 4

1

a1

1

a2
1

a3

1

a4
1

a5

Figure 1: Diagram for the first example.

In this work, instead of just focusing on the number of targets covered,

we will also concern ourselves with the identifiability of the targets or event

sources.

As a motivating example, we present Figure 1, where the dots s1 and

s2 are sensors while the stars a1 - a5 are the targets. The dotted regions

around each sensor represent the possible covered or sensed region of each

sensor. Each sensor can be oriented to be in 1 of 4 possible orientations.

Orientation 1 represents the region covered by the sector from 0° to 90°, 2

covers 90° to 180°, 3 covers 180° to 270°, and 4 covers 270° to 360°. In this

example, the boundaries of the sensed regions of each sensor are aligned with

the cardinal directions (and with each other). The 4 possible orientations for

s1 are labeled in Figure 1. It must be noted however, that such an alignment

4

is not required by the algorithms that will be discussed. In Figure 1 s1 is

in orientation 1, while s2 is in orientation 2. With these orientations, a2 is

covered by s1, a3 is covered by s1 and s2, and a4 is covered by a2. A total of

3 targets are covered. a1 and a5 are not covered.

It is easy to verify that 3 is the maximum number of targets that can be

covered by any network configuration. A network configuration is a set of

active sensors, each with its corresponding orientation.

However, the configuration s1 - 1 (shorthand for s1 in orientation 1), s2 -

2 is not the only configuration that yields 3 covered targets. s1 - 2, s2 - 2 also

yields 3 covered targets, as will s1 - 1, s2 - 1. There are differences however

in the identifiabilities conferred by these configurations to the targets that

they cover.

Let us begin with s1 - 2, s2 - 2. When a1 generates an event, s1 will be

able to detect it, and we know for certain that a1 generated the event since

it is the only target covered by s1. When a3 generates an event, s2 will be

able to detect it, but we are not sure whether it was a3 or a4 that generated

the event. The best that can be done is hazard a guess with 50% probability

of being correct. The same analysis holds for s1 - 1, s2 - 1.

Compare this with s1 - 1, s2 - 2. When a2 generates and event, s1 will

be able to detect it. At first glance, it seems like we might not be able to

distinguish whether it was a2 or a3 which generated the event since both are

covered by s1. However, we can know that it is not a3, since s2 did not detect

anything. Hence, it must be a2 which generated the event. In other words,

whether a target generated an event or not can be deduced not just from

which sensors detected something, but also from those that did not detect

5

anything.

We call the set of sensor states (where state indicates whether a sensor

detected something or not) which signifies a target generating an event as

the target’s syndrome. A syndrome is a tuple of values, one for each active

sensor in the system, each denoting whether a sensor will detect anything

upon the target generating an event. For a sensor x, let sx be the element

for the sensor in the tuple if the sensor will detect anything, and sx’ if it will

not. In our latest example, a2 has the syndrome s1s
′
2. Table 1 enumerates

the syndrome for each covered target in each of the network configuration

that yields 3 covered targets.

s1 - 1, s2 - 2 s1 - 2, s2 - 2 s1 - 1, s2 - 1

a1 - s1s
′
2 -

a2 s1s
′
2 - s1s

′
2

a3 s1s2 s′1s2 s1s
′
2

a4 s′1s2 s′1s2 -
a5 - - s′1s2

Table 1: Configurations that yield 3 covered targets, and their resulting
syndromes.

In Table 1, we can clearly see why the configuration s1-1, s2-2 affords

better target identifiability: in that configuration, each covered target has

its own syndrome. In comparison, in the other two configurations, two targets

have to share a single syndrome, resulting in ambiguity when identifying their

events.

It must be noted that some aspects of Figure 1 do not hold true in other

situations.

6

Firstly, sometimes, assigning a single syndrome for each target is simply

impossible. Nevertheless, it is conceivable that even in such situations, it is

desirable to minimize the ambiguity between events as much as possible.

Secondly, in other networks (especially those that are underprovisioned,

meaning there are few sensors relative to targets), it is possible that improved

target identifiability will come at the cost of less targets covered. The accept-

able trade-off between the number of targets covered and their identifiability

will vary from one application to the next.

Another use of the concept of identifiability is in overprovisioned networks

- that is, networks where there is a surplus in the number of sensors, and

even after the maximum possible number of targets has been covered, there

are still sensors that are not covering anything. In previous studies, the extra

sensors are used in extending the network lifetime: sensors form cover sets

that take turns covering the targets [2]. Clearly, another possible use for such

extra sensors is in increasing the identifiability of targets.

This paper makes three contributions: firstly, the introduction of the con-

cept of syndromes; secondly, the definition of the Maximum Target Identifiability-

Aware Utility with Minimum Sensors (MTIAUMS) problem; and finally, six

heuristic algorithms that determine network configurations that strike a bal-

ance between identifiability and the number of targets covered.

This paper is structured as follows. The notations utilized are discussed

in Section 2. The problem is formally defined, and its NP-hardness proven in

Section 3. Centralized heuristic algorithms are presented in Section 4, while

distributed heuristic algorithms are presented in Section 5. The methodology

used to test the algorithms, and the results of the simulations, are presented

7

in Section 6. A discussion of related work follows in Section 7, while Section 8

concludes the paper.

2 Notations

The following notations are used in this paper

• M : number of targets.

• ai: a specific target, 1 ≤ i ≤ M .

• A: the set of all targets A = {a1, a2, ... aM}.

• N : number of nodes.

• si: a specific node, 1 ≤ i ≤ N .

• S: the set of all nodes S = {s1, s2, ... sN}.

• r: the sensing radius; a target is said to be covered by one of the node’s

orientations if the distance between the target and the node is less than

or equal to the sensing radius.

• W : number of orientations with which each node can work with.

• φi,j: set of targets covered by node i when it is working with orientation

j, 1 ≤ i ≤ N , 0 ≤ j ≤ W . Note that we allow j to take on the value

of 0: this indicates that the node’s sensing mechanism is inactive, thus

φi,0 = {}, ∀ i.

• Φi: set of all targets within range of si, regardless of orientation; Φi =

{∪ φi,j | 1 ≤ j ≤ W}.

8

• Qi: set of nodes comprised of one-hop neighbours of si.

• Φ′i: set of all targets within range of si’s one-hop neighbours, sans those

also seen by si; Φ′i = {∪ Φj \ Φi | sj ∈ Qi}.

• α: user-defined parameter indicating the desired trade-off between the

number of targets covered and their identifiability; higher value indi-

cates more preference for number of targets covered; 0 ≤ α ≤ 1.

• Z: network configuration, set of active sensors and corresponding ori-

entations; set of (i, j) pairs, where i ∈ S, 1 ≤ j ≤ W.

• ui: target utility for a given Z, 1 ≤ i ≤ M .

• U : sum of all target utilities for a given Z.

2.1 Coverage by a specific orientation

Once a target is ascertained to be within a node’s sensing radius, the specific

orientation of the node covering the target can be determined by

1. Let D be the node, E the target, and F a point immediately to the

right of the node. From these points, define the vectors DE and DF

(which should be parallel to the x-axis).

2. Compute the angle θ using

θ = DE ·DF
|DE||DF |

(1)

9

3. In this study, we assume that the orientation numbers are assigned

in a counter-clockwise fashion. The orientation numbers are assigned

starting from a reference axis, which in this study is coincidental with

the x-axis. Let the offset (in degrees) of the reference axis be referred

to as refoffset. The specific orientation n which covers a certain target

can then be determined using

(360°
W

+ refoffset)× (n− 1) ≤ θ < (360°
W

+ refoffset)× n (2)

3 Problem definition

To give consideration to the fact that not all setups will be like that in

Figure 1 (where the network configuration which maximizes the number of

targets covered also maximizes the number of syndromes), we first introduce

the concept of target utility, ui

ui = α + (1− α)(certaintyi) (3)

ui will depend on the network configuration Z. α is a parameter (with

value between 0 and 1, inclusive) defined by the user, which indicates the

desired trade-off between the number of targets covered and identifiability: a

higher α indicates that the number of covered targets is more important than

the number of syndromes in the system, a lower α value indicates the reverse.

certaintyi is the level of certainty with which a target can be identified when

it generates an event. Like ui, it is dependent on Z (it is the reason why ui

10

is dependent on Z). It can be defined as

certaintyi = 1
of targets sharing the same syndrome as ai

(4)

Building on the concept of target utility, we define system utility, U :

U =
M∑
i=1

ui (5)

Another definition for U will be

U = α(number of targets covered) +

(1− α)(number of syndromes in the system) (6)

The second term holds because if all the certainties of all covered targets

are summed, one will end up with the number of syndromes in the system.

Unless explicitly stated, references to ‘utility’ in this paper must be taken to

mean ‘system utility’.

Our goal is to provide coverage to targets, maximizing the system util-

ity as defined by Equation 6, while activating as few sensors as possible.

We call this problem the Maximum Target Identifiability-Aware Utility with

Minimum Sensors (MTIAUMS) problem. A more formal statement of the

problem will be: Given a set of targets A and a set of sensors S (each with

W possible sensing orientations), find a network configuration Z (consisting

of a set of active sensors, along with their corresponding orientations), such

that the resulting system utility U is maximized and the cardinality of Z is

11

minimized.

It must be noted that the computed system utility is affected by the

ratio of targets to sensors, and their densities (targets per unit area, sensors

per unit area). If there are significantly more targets than sensors (several

orders of magnitude higher, for instance), it is actually possible for heuristic

algorithms that only aim to maximize the number of covered targets to attain

a higher system utility than our algorithms. While the algorithms will still

confer better identifiability to covered targets in such a situation, that can

possibly be hidden by the fact that there are significantly more possible

targets that can be covered (first term, Equation 6) than there are possible

syndromes that can be generated (second term, Equation 6). In such cases,

it might be helpful to take the metric targets
syndrome

into account when evaluating

solutions. In this work, we will deal with cases wherein the number of targets

is comparable to the number of sensors.

In this study, we propose heuristic solutions to the MTIAUMS problem.

A Heuristic solution is useful since the problem is NP-hard (this will be

proven in the next subsection).

3.1 NP-hardness of the problem

We prove the NP-hardness of the problem through the ‘Proof by Restric-

tion’ method [5]. When α = 1, the MTIAUMS problem becomes the Maxi-

mum Coverage with Minimum Sensors (MCMS) problem defined in [1]. The

MCMS problem therefore is a special case of the MTIAUMS problem. It is

proven in [1] that the MCMS problem is NP-hard - therefore, the MTIAUMS

12

problem is also NP-hard.

4 Centralized algorithms

Centralized algorithms are presented first. Syndrome counting is discussed

in Section 4.1. Our first heuristic algorithm, TIA-CGA, is presented in Sec-

tion 4.2. Two other centralized algorithms are discussed in Section 4.3.

4.1 Counting syndromes

The capability to count the number of syndromes associated with a specific

network configuration is of primary importance to algorithms that will be

presented later. To count the covered targets and to evaluate the level of

identifiability afforded by a given network configuration (or set of sensor

orientations), we introduce the concept of coverage matrix. A coverage matrix

is formed from a given Z. A coverage matrix has its rows indexed by the

members of A and its columns indexed by the members of S. Let zi,j be a

member of a coverage matrix

zi,j =

 1 if i ∈ φj,k s.t. (j, k) ∈ Z;

0 otherwise, inc. (j, k) /∈ Z ∀ k, 1 ≤ k ≤ W.
(7)

To count the number of syndromes in a given configuration, we use Algo-

rithm 1. One of the inputs to Algorithm 1 is an array called covered whose

element is 1 if the index corresponding to the target is covered in the cov-

erage matrix (at least one non-zero value in the corresponding row). The

array covered can be easily generated along with the coverage matrix via

13

Equation 7.

Algorithm 1 Syndrome counting algorithm
1: Inputs: coverage matrix with elements zi,j (generated using Equation 7);

an array called covered whose element is 1 if the index corresponding to
the target is covered in the coverage matrix (at least one non-zero value
in the corresponding row)

2: Output: syndromes - the number of syndromes in the system when
solution embodied by the coverage matrix is applied

3: syndromes ← 0
4: processed(i) ← 0 ∀i ∈ A
5: for 1 ≤ i ≤M do
6: if (processed(i) == 0) && (covered(i) == 1) then
7: syndromes ← syndromes + 1
8: for i+ 1 ≤ j ≤M do
9: if (processed(j) == 0) && (covered(j) == 1) then

10: same ← 1
11: for 1 ≤ k ≤ N do
12: if zi,k != zj,k then
13: same ← 0
14: end if
15: end for
16: if same == 1 then
17: processed(j) ← 1
18: end if
19: end if
20: end for
21: processed(i) ← 1
22: end if
23: end for

Algorithm 1 works by comparing the syndromes of each target in a pair-

wise fashion. In the coverage matrix, the syndrome of a target is represented

by the values in the row corresponding to the target number. For exam-

ple, target a1’s syndrome will be the concatenation of the values in row 1:

z1,j, 0 ≤ j ≤ N . Each target, unless already ‘processed’, becomes a reference

at some point in the algorithm. The algorithm chooses the reference row

14

sequentially (Algorithm 1, Line 5). The reference row is then compared with

rows with higher numbers (Algorithm 1, Line 8). The actual element-by-

element comparison of the syndromes happens in Algorithm 1 Lines 11-15.

If a row has exactly the same values as the reference row, it is marked as

already processed (Algorithm 1, Line 21) and loses the chance to become

a reference row itself. It will also not be eligible for comparison with any

other future reference rows. The successful selection of a new reference row

effectively represents the ‘discovery’ of a new syndrome and the syndromes

variable is incremented by 1 (Algorithm 1, Line 7).

The maximum number of target-target comparisons that can possibly be

performed in the process of counting syndromes is equivalent to the number

of pairwise combination of targets (Algorithm 1, Lines 6 and 9), or M !
2!(M−2)! .

Within a target-target comparison, it is checked whether or not both tar-

gets are covered by each sensor (N, Algorithm 1, Line 11). Therefore, the

computational complexity of Algorithm 1 is NM !
2!(M−2)! .

4.2 Target Identifiability-Aware Centralized Greedy Al-

gorithm

The Target Identifiability-Aware Centralized Greedy Algorithm (TIA-CGA)

is a heuristic algorithm that produces network configurations that take into

account both the number of targets covered and the identifiability of those

targets. The TIA-CGA is primarily derived from the Centralized Greedy

Algorithm (CGA) presented in [1]. The CGA is a greedy algorithm which

at each stage of the solution computation chooses the sensor-orientation pair

15

Algorithm 2 Target Identifiability-Aware Centralized Greedy Algorithm
1: Inputs: A; S; α; φi,js
2: Output: Z - network configuration, a set of (ID of active node, config-

uration of active node) pairs
3: Z ← ∅
4: V ← A . at the end, will contain all uncovered targets
5: Y ← S . at the end, will contain all inactive nodes
6: new_utility ← 0
7: while 1 do
8: old_utility ← new_utility
9: for (i, j) s.t. si ∈ Y , 0 ≤ j ≤ W do

10: TempNodeSet ← ∅
11: TempNodeSet ← Z ∪ {(i, j)}
12: TempCovMatrix ← coverage matrix generated from

TempNodeSet . generate using Equation 7
13: Qi,j ← SyndromeCount(TempCovMatrix, associated covered ar-

ray) . compute number of syndromes using
Algorithm 1

14: Ui,j ← (α) × (|φi,j ∩ V |) + (1 - α) × (Qi,j)
15: end for
16: (i, j) ← arg maxsi∈Y,0≤j≤W Ui,j
17: new_utility ← maximum Ui, j determined in previous step
18: if new_utility - old_utility ≤ 0 then
19: break . utility does not increase anymore, algorithm ends
20: else
21: Z ← Z ∪ {(i, j)}
22: V ← V \ φi,j
23: Y ← Y \ {(si)}
24: end if
25: end while

which adds the highest number of targets to those already covered. The

CGA main loop can be seen in Algorithm 3, Lines 7-22 sans Lines 8-11

and 14. The main difference between the TIA-CGA and the CGA is that

in an iteration, instead of choosing the sensor-orientation pair which adds

the most number of newly covered targets, the TIA-CGA chooses the pair

which results in the greatest additional system utility to the system. To do

16

this, for each remaining unchosen sensor-orientation pair, it computes the

number of additional targets that will be covered if the pair was chosen next,

and the number of syndromes that the system will have (Algorithm 2, Lines

10-13). These two values are weighted by the priority factors α and 1 - α,

respectively, and then added together (Algorithm 2, Line 14). Algorithm 2

Line 16 chooses the pair which adds the greatest system utility to the system.

The algorithm will stop when the best pair found no longer improves the

system utility (Algorithm 2, Lines 18-19); otherwise, the pair is added to the

solution (Algorithm 2, Line 21), the sensor is removed from the set of sensors

viable for selection in the next iteration (Algorithm 2, Line 23), and the loop

begins anew.

To derive the computational complexity of Algorithm 2, it must be noted

that in each of its iteration, it needs two pieces of information to choose

the sensor-orientation pair: the number of additional targets each sensor-

orientation pair will cover (if chosen), and the number of syndromes each

sensor-orientation pair will add to the system (if chosen).

The number of targets covered can be determined in MNW steps, in

keeping with the value derived in [1].

For the number of syndromes, there are NW sensor-orientation pairs to

evaluate. In each evaluation, a coverage matrix is generated (Algorithm 2,

Line 13, Equation 7). The coverage matrix has MN elements, so it can

be assumed that it will take MN steps to evaluate. The coverage matrix

is processed by Algorithm 1, with complexity NM !
2(M−2)! . Therefore, in each

iteration of the main loop of Algorithm 2, the complexity due to syndrome

counting will be NW (MN + NM !
2(M−2)!).

17

The evaluation of the system utility and the choosing of the sensor-sensor

configuration pair can be done in NW steps. There are a maximum N iter-

ations of the main loop of Algorithm 2. Therefore, the overall complexity of

Algorithm 2 is N(MNW +NW (MN + NM !
2(M−2)!) +NW).

4.3 2-stage algorithms

The next algorithms that will be introduced are the 2-stage algorithms. One

of these algorithms is based on the Centralized Force-based Algorithm (CFA),

so a short introduction on CFA is in order.

The CFA is an alternative to CGA, proposed in [10]. Like CGA, CFA

aims to produce network configurations that maximize the number of tar-

gets covered, and does so greedily. Unlike CGA however, when building the

solution, it does not solely rely on the number of targets that will be cov-

ered by each sensor-sensor configuration pair. Instead, at each step of the

computation, it chooses on the basis of the ‘force’ exerted by a sensor con-

figuration (or direction) on the sensor. This force is defined as the ratio of

the targets covered by a specific sensor configuration to the total number of

targets covered by the sensor (Equation 8).

Fi,j = |φi,j|
|Φi|

(8)

The 2-stage algorithms basically apply CGA or CFA first to the problem

and then attempt to increase the number of syndromes in the system by

greedily using the sensors left unselected. When the first stage is CGA, the

algorithm is called 2-stage Target Identifiability-Aware Centralized Greedy

18

Algorithm 3 2-stage Target Identifiability-Aware Greedy Algorithm
1: Inputs: A; S; φi,js; CFAStage1 - binary variable, 1 if desired first stage

is CFA, 0 if CGA
2: Output: Z - network configuration, a set of (ID of active node, config-

uration of active node) pairs
3: Z ← ∅
4: V ← A . at the end, will contain all uncovered targets
5: Y ← S . at the end, will contain all inactive nodes
6: new_syndrome_count ← 0
7: while 1 do
8: if CFAStage1 == 1 then . First stage is CFA
9: Compute Fi,j = |φi,j∩V |

|Φi∩V | ∀ si ∈ Y , 0 ≤ j ≤ W

10: (i, j) ← arg maxsi∈Y,0≤j≤W Fi,j
11: else . First stage is CGA
12: Compute |φi,j ∩ V | ∀ si ∈ Y , 0 ≤ j ≤ W
13: (i, j) ← arg maxsi∈Y,0≤j≤W |φi,j ∩ V |
14: end if
15: if |φi,j ∩ V | == 0 then
16: break . nothing new can be covered anymore, stage 1 ends
17: else
18: Z ← Z ∪ {(i, j)}
19: V ← V \ φi,j
20: Y ← Y \ {(si)}
21: end if
22: end while

Algorithm (2S-CGA), and when the first stage is CFA, the algorithm is called

2-stage Target Identifiability-Aware Centralized Force-based Algorithm (2S-

CFA).

In Algorithm 3, the first stage can be found in Lines 7-22. As previously

mentioned, the first stage can either be CGA or CFA. In the interest of saving

space, Algorithm 3 is made to be capable of using both CGA and CFA, with

the choice of which algorithm to use now dependent on the binary variable

CFAStage1, which is assumed to be an algorithm input. CFAStage1 having

the value of 1 denotes that CFA should be used (Algorithm 3, Lines 9-10),

19

23: while 1 do
24: old_syndrome_count ← new_syndrome_count
25: for (i, j) s.t. si ∈ Y , 0 ≤ j ≤ W do
26: TempNodeSet ← ∅
27: TempNodeSet ← Z ∪ {(i, j)}
28: TempCovMatrix ← coverage matrix generated from

TempNodeSet . generate using Equation 7
29: Qi,j ← SyndromeCount(TempCovMatrix, associated covered ar-

ray) . compute number of syndromes using
Algorithm 1

30: end for
31: (i, j) ← arg maxsi∈Y,0≤j≤W Qi, j
32: new_syndrome_count←maximumQi, j determined in previous step
33: if new_syndrome_count - old_syndrome_count ≤ 0 then
34: break . nothing can be covered that will increase the number of

syndromes anymore, stage 2 and algorithm ends
35: else
36: Z ← Z ∪ {(i, j)}
37: Y ← Y \ {(si)}
38: end if
39: end while

while CFAStage1 having the value of 0 denotes that CGA should be used

(Algorithm 3, Lines 12-13). We call this algorithm, which represents both 2-

stage algorithms, the 2-stage Target Identifiability-Aware Greedy Algorithm.

The second stage can be found in Algorithm 3 Lines 23-39. In each

iteration of the loop, the number of additional syndromes that can possibly be

added by each remaining sensor-orientation pair is computed (Algorithm 3,

Lines 25-30). If the most that can be added by any sensor-orientation pair is 0

(or negative), the stage and the algorithm will end (Algorithm 3, Lines 33-34);

otherwise, the sensor-orientation pair is added to the solution (Algorithm 3,

Line 36), the sensor is removed from the set of viable or inactive sensors

(Algorithm 3, Line 37), and the loop begins anew.

20

It must be noted that strictly speaking, the two 2-stage algorithms are not

exact alternatives to the TIA-CGA. TIA-CGA always aims to maximize the

system utility, thus taking into account both targets covered and syndromes

generated at each step. The 2-stage algorithms only take the syndromes

into account after all targets that can possibly be covered are covered. In

situations where all sensors are utilized for covering targets (no leftovers) -

the 2-stage algorithms degenerate into CGA or CFA (depending on which

version is being used).

The complexity of the first stage of Algorithm 3 follows that of CGA or

CFA: N1(MN1W + N1W). N1 is the number of sensors that will be chosen

by the first step. If all sensors are utilized in covering targets (no leftovers),

N1 = N , and the complexity of Algorithm 3 becomes the same as that of

CGA or CFA.

The complexity of the second stage is N2(N2W (MN2 + N2M !
2(M−2)!) +N2W).

This is the same as that of Algorithm 2, but without the component for count-

ing covered targets. N2 is the number of unselected sensors left after the first

stage. The sum of N1 and N2 cannot exceed N (i.e., N1 + N2 ≤ N). The

complexity of Algorithm 3 is then N1(MN1W + N1W) + N2(N2W (MN2 +
N2M !

2(M−2)!) + N2W), N1 + N2 ≤ N . The majority of the complexity of Al-

gorithm 2 stems from the computation necessary to count syndromes - by

sparing some (if not most) sensors from such a step (by splitting N into N1

and N2), the two 2-stage algorithms usually end up with shorter runtimes

than Algorithm 2. This will be empirically verified in Section 6.

21

5 Distributed algorithms

Communication costs (in terms of energy and time) will make the trans-

mission of data between the nodes and the base station (which will run the

algorithm in a centralized solution) prohibitive as the network grows in size -

hence, a distributed solution is at times more practical than a centralized one.

Relevant data structures to the distributed algorithms will first be discussed

in Section 5.1. Our first distributed algorithm, 2S-TIA-DGA, is introduced

in Section 5.2 and its operation discussed in Section 5.3. A comparison with

two algorithms for solving MCMS will be given in Section 5.4, and its time

complexity is discussed in Section 5.5. 2-stage heuristic algorithms are intro-

duced and discussed in Section 5.6.

5.1 Data structures

s1 s3s2

1

a1
1

a2 1

a3

1

a4
1

a5

Figure 2: Diagram for the fourth example.

We first introduce two data structures on which the algorithm will rely

on. The data structures can be found in each node (as each node will run

the algorithm).

The first data structure is the seen_targets matrix. The seen_targets

matrix has its rows indexed by the members of Φi, and its columns indexed

22

by the members of Qi. A member of the seen_targets matrix (let us call it

zj,k) is defined by

zj,k =
{ 1 if sk’s current orientation covers aj;

0 otherwise.
(9)

Assume that we have the setup in Figure 2, and that we are taking the

point of view of s1 (which has not yet decided on its orientation). Also

assume that s1 has a lower priority than either s2 or s3 (priorities will be

discussed later) and that it has just received a protocol message from each

of the nodes, informing it of their chosen orientations. The seen_targets

matrix of s1 will then be:

Q1

s2 s3

Φ1

a2 1 0

a3 0 1

The second data structure is the unseen_targetsmatrix. Like the seen_targets

matrix, it has its columns indexed by Qi. The rows on the other hand, are in-

dexed by Φ′i. The rows can be built dynamically (added as the node receives

messages from its neighbors), or be built at an initial information exchange

stage. The members of the unseen_targets matrix are defined in the same

way as the members of the seen_targets matrix (Equation 9). Continuing

with our example, if we take the point of view of s1, the unseen_targets

matrix will then be:

23

Q1

s2 s3

Φ′1

a1 0 0

a4 0 1

a5 0 0

5.2 Algorithm overview

The algorithm Target Identifiability-Aware Distributed Greedy Algorithm

(TIA-DGA) is shown in Algorithm 4. In TIA-DGA, each node chooses the

orientation that has the highest total system utility and then announces its

choice to its neighbouring nodes. To avoid double counting, a node will

only count a certain target if it has not been covered yet by a node with

higher priority. An order of priority between the nodes (or at least within

neighbouring nodes) is necessary to ensure that the distributed algorithm will

eventually terminate [1]. Priorities in TIA-DGA are assigned by the number

of targets that a node can see, or |Φi|. The idea behind this is that nodes

that can cover a large number of targets (and thus, have higher priorities)

will take care of covering targets while nodes that do not have as many will

then increase the number of syndromes. Ties are broken using the node ID

numbers (which are assumed to be unique throughout the network).

5.3 Algorithm operation

Upon being initialized, a node will set its priority to the number of targets

that it covers in all orientations (Algorithm 4, Line 3). It will then proceed

to execute the SetAndAnnounceBestOrientation function (Algorithm 5).

24

Algorithm 4 Target Identifiability-Aware Distributed Greedy Algorithm
1: Inputs: α; φi,js; W; Qi; Φi; Φ′i;
2: Output: j_chosen - chosen orientation for the sensor node
3: Set priority PRi = |Φi|
4: SetAndAnnounceBestOrientation();
5: while a protocol message is received from sensor n ∈ Qi s.t. PRn ≥ PRi

do
6: if PRn == PRi then
7: if n > i then
8: continue;
9: else

10: stop processing message, throw it away
11: end if
12: end if
13: Based on the content of the message and Equation 9, update

seen_targets matrix and unseen_targets matrix
14: SetAndAnnounceBestOrientation();
15: end while

For each of the possible orientations, the number of targets that can

possibly be acquired can be determined by counting the number of relevant

rows in the seen_targets matrix with all-zero entries (Algorithm 5, Line 3):

because the relevant rows are those whose index belong to φi,j, each row is

representative of a target that can be seen by the sensor; the row having

all-zero entries signifies that it has not been covered yet by any other sensor.

The algorithm will then determine how many additional syndromes it can

create by choosing the orientation under consideration. This can be done by

counting the unique row patterns (we define pattern here as the concatenation

of the column-by-column values) in the seen_targetsmatrix that have at least

one equivalent row pattern in the unseen_targets matrix (Algorithm 5, Line

4). The idea behind this is that a new syndrome is actually assigned to a

target whenever a node chooses to cover it. However, it is possible that no

25

Algorithm 5 Algorithm for setting and announcing best orientation (Se-
tAndAnnounceBestOrientation)
1: j_old ← j_chosen
2: for j s.t. 1 ≤ j ≤ W do
3: Pj ← number of rows in seen_targets matrix with all 0s, s.t. target

corresponding to the row ∈ φi,j
4: Rj ← number of unique rows in seen_targets matrix that can also

be found in unseen_targets matrix, s.t. target corresponding to the
seen_targets matrix row ∈ φi,j

5: if Pj != 0 then
6: Rj ← Rj + 1
7: end if
8: Uj ← (α) × (Pj) + (1 - α) × (Rj)
9: end for

10: if arg max1≤j≤W Uj == 0 then
11: j_chosen ← 0
12: else
13: j_chosen ← arg max1≤j≤W Uj
14: end if
15: if j_chosen != j_old then
16: Set orientation to j_chosen
17: Send a protocol message including priority and φi,j_chosen

18: end if

new syndrome is added to the system as the assigned syndrome can simply

be a redefinition of the previous syndrome. The addition of a new syndrome

to the system will only happen if and only if

1. There are other targets that share the target’s current syndrome, and

2. Those targets will not share the new syndrome that will be assigned.

Going back to the previous example, should s1 choose orientation 1, it will

add a new syndrome to the system: a3 will be given a syndrome different

from that of a4, which it used to share the same syndrome with. Should

26

s1 choose orientation 2, the syndrome of a2 will be redefined, but no new

syndrome will be added to the system, since only a2 uses the old syndrome.

After the number of possibly newly covered targets and possibly newly

added syndromes are counted, they are then weighted and added, resulting

in the utility (Algorithm 5, Line 8) for the orientation. This is done for each

possible orientation.

If there is no utility that can be had from choosing any orientation, the

node will turn the sensing mechanism off (Algorithm 5, Line 11). It is as-

sumed however, that even with the sensing mechanism turned off, the node

can still send and receive protocol messages. If there is at least one orien-

tation with a non-zero additional utility, the orientation with the highest

additional utility is chosen (Algorithm 5, Line 13), and the orientation set to

it (Algorithm 5, Line 16). The node will then broadcast a protocol message

containing its priority, and the targets that it has chosen to cover with its

orientation (Algorithm 5, Line 17). To minimize congestion and save energy,

a protocol message is only sent if the node changed its chosen orientation

(Algorithm 5, Line 15). Take note that the protocol message will contain

φi,j, meaning, it contains all targets covered by the chosen orientation, even

those already covered by another node.

Assuming that the node is still in its initialization stage, the matrices

seen_targets and unseen_targets will not contain anything (basically, this is

the same as the node assuming that all of its neighbours are turned off).

After the initialization stage, the node will begin receiving messages from

its neighbours. After determining that a message should be processed (i.e.,

sender has higher priority than the node), the node will update the matri-

27

ces seen_targets and unseen_targets with the contents of the message (Al-

gorithm 4, Line 13), and the function SetAndAnnounceBestOrientation is

executed.

5.4 Comparison with DGA and DFA

We compare our algorithm with the Distributed Greedy Algorithm (DGA)

[1] and the Distributed Force-based Algorithm (DFA) [10], two distributed

heuristic algorithms designed to maximize the number of targets covered by

a network of directional sensors.

In DGA, the priorities are randomly assigned, and the nodes choose the

orientation with the highest number of targets not covered by neighbouring

nodes with higher priorities.

In DFA, the priorities are determined by the highest ‘force’ the node

experiences in any orientation, with the force in a given orientation defined

by Equation 8. If the force values of two neighbouring nodes are similar,

the number of targets covered are then compared; if those are also equal,

node ID values are used to ultimately break the tie. Like in DGA, the nodes

choose the orientation with the highest number of targets not covered by

neighbouring nodes with higher priorities.

5.5 Time complexity

Similar to DGA (and DFA), nodes in TIA-DGA have definite priorities, en-

suring termination in finite time. Another implication of this is that it also

shares the two algorithms’ time complexity in the worst case (which hap-

28

pens when sensors reach their final states one-by-one in the order of their

priorities), which is O(n2) [1].

5.6 2-stage distributed algorithms

We also introduce 2-stage algorithms for solving the MTIAUMS problem in a

distributed way. Similar to their centralized counterparts, the idea behind the

distributed 2-stage algorithms is to cover the targets first using distributed

heuristic algorithms designed for solving the MCMS problem (first stage).

The number of syndromes is then increased using the remaining sensors (sec-

ond stage). We introduce two 2-stage algorithms: 2-stage Distributed Greedy

Algorithm (2S-DGA) and 2-stage Distributed Force-based Algorithm (2S-

DFA). The difference between the two lies in the MCMS-solving algorithm

used in the first stage: 2S-DGA uses DGA for its first stage, while 2S-DFA

uses DFA for its first stage. An algorithm both representing 2S-DGA and

2S-DFA is presented in Algorithm 6.

The primary difference between DGA and DFA lies with how the priorities

of the nodes are determined. DGA randomly assigns priorities, assuming that

the random numbers assigned are unique among the nodes (Algorithm 6, Line

5). DFA assigns priorities based on the orientation with the most number of

targets covered (Algorithm 6, Lines 7-8). Since the priority values assigned

by DFA are not necessarily unique, a mechanism for tie-breaking is needed

(Algorithm 6, Lines 13-23). Algorithm 6 decides on the priority to assign

using the binary variable DFAStage1 (Algorithm 6, Line 4), which is assumed

to be a user input. A value of 0 for DFAStage1 denotes that the algorithm

29

being represented is 2S-DGA, while a value of 1 denotes that the algorithm

being represented is 2S-DFA. The stage the algorithm is in is denoted by

the variable CurrentStatei. The first stage of the algorithm can be found in

Algorithm 6 Lines 11-26 while the second stage can be found in Algorithm 6

Lines 29-43.

In the first stage, a message received by the node is processed as long as

the message is from a node with a higher priority or while the supporting

function TimerFired returns False (Algorithm 6, Line 11). TimerFired is

a function which returns False when the timer has not fired yet, and True

after the timer has fired. We assume that the timer is a countdown timer

which fires after a certain amount of time has elapsed after the timer is

started. The timer is started (and the amount of time the timer will wait

for specified) using the supporting function StartTimer. The timer is simul-

taneously stopped and reset using the supporting function StopTimer. The

three supporting functions are tabulated and described in Table 2.

The messages processed in the first stage cause the data structures seen_targets

and unseen_targets to be updated (Algorithm 6, Line 24), and the func-

tion TwoStageSetAndAnnounceBestOrientation (Algorithm 7) to be called.

Similar to its counterpart for TIA-DGA, TwoStageSetAndAnnounceBestOri-

entation chooses the orientation with the highest additional utility. Unlike

Algorithm 5 however, Algorithm 7 defines utility differently. While Algo-

rithm 5 defines utility as a weighted sum of the number of covered targets

and the number of syndromes (Algorithm 5, Line 8) utility for Algorithm 7

in the first stage is solely determined by the number of covered targets (Algo-

rithm 7, Line 9). If the chosen orientation of the node is changed, the choice

30

Function Input Return value Description
parameters

StartTimer time before none starts the timer
timer fires

StopTimer none none stops and
resets the
timer

TimerFired none binary returns True if
timer has fired;
returns False
if otherwise

Table 2: Supporting functions for Algorithm 6 and Algorithm 7

is broadcast (Algorithm 7, Line 21). At the end of Algorithm 7, the timer is

started with the supporting function StartTimer, and the timer duration is

specified to be equivalent to the value TIMEOUT. TIMEOUT is an amount

of time sufficient for the entire network to be covered by DGA or DFA. The

timer is stopped or reset every time a message is received (Algorithm 6, Line

12), assuming of course that the timer has not fired first. The situation of

a message from a neighbouring node in Stage 1 arriving after the node’s

timer has fired or elapsed should never happen if the variable TIMEOUT

was properly set.

The firing of the timer indicates that that the first stage is over and the

algorithm now moves to the second stage (Algorithm 6, Line 27). It must be

noted that nodes that got an orientation assignment from the first stage will

no longer participate in the second stage (Algorithm 6, Line 28).

The operation of the second stage is different from that of the first stage

31

primarily in that the timer no longer plays a role in the admission of packets

or messages (Algorithm 6, Line 29) and Algorithm 7 now defines utility based

on the number of syndromes generated (Algorithm 7, Line 11).

Algorithm 6 2-stage Target Identifiability-Aware Distributed Generic Al-
gorithm
1: Inputs: α; φi,js; W; Qi; Φi; Φ′i; DFAStage1 - binary variable, 1 if desired

first stage is is DFA, 0 if DGA
2: Output: j_chosen - chosen orientation for the sensor node
3: Set CurrentStatei = 1
4: if DFAStage1 == 0 then
5: Set priority PRi = unique random number
6: else
7: j_highest ← arg max1≤j≤W |φi,j|
8: Set priority PRi = |φi,j_highest|
9: end if

10: TwoStageSetAndAnnounceBestOrientation();
11: while (TimerFired() == FALSE) AND (a protocol message is received

from sensor n ∈ Qi s.t. PRn ≥ PRi) do
12: TimerStop();
13: if PRn == PRi then
14: if Φi > Φn then
15: continue;
16: else
17: if n > i then
18: continue;
19: else
20: stop processing message, throw it away
21: end if
22: end if
23: end if
24: Based on the content of the message and Equation 9, update

seen_targets matrix and unseen_targets matrix
25: TwoStageSetAndAnnounceBestOrientation();
26: end while
27: Set CurrentStatei = 2

32

28: if j_chosen == 0 then
29: while a protocol message is received from sensor n ∈ Qi s.t. PRn ≥

PRi do
30: if PRn == PRi then
31: if Φi > Φn then
32: continue;
33: else
34: if n > i then
35: continue;
36: else
37: stop processing message, throw it away
38: end if
39: end if
40: end if
41: Based on the content of the message and Equation 9, update

seen_targets matrix and unseen_targets matrix
42: TwoStageSetAndAnnounceBestOrientation();
43: end while
44: end if

6 Methodology and simulation results

6.1 Methodology

We implement the algorithms and run the experiments in Matlab. Differ-

ent parameters are varied in different simulations; however, unless otherwise

stated, default parameters for a setup are: 50 targets and 50 sensors ran-

domly distributed over a 50 x 50 space, with each sensor having a sensing

radius of 10, and 4 possible sensing orientations. Similar to Figure 1, the

axes dividing the sensing regions are aligned to a North-East-West-South

orientation; however, it should be noted that the results should not be any

different if it is otherwise. Also, unless otherwise stated, results presented

are the averages of 1000 experiment runs.

33

Algorithm 7 Algorithm for setting and announcing best orientation, 2-stage
version (TwoStageSetAndAnnounceBestOrientation)
1: j_old ← j_chosen
2: for j s.t. 1 ≤ j ≤ W do
3: Pj ← number of rows in seen_targets matrix with all 0s, s.t. target

corresponding to the row ∈ φi,j
4: Rj ← number of unique rows in seen_targets matrix that can also

be found in unseen_targets matrix, s.t. target corresponding to the
seen_targets matrix row ∈ φi,j

5: if Pj != 0 then
6: Rj ← Rj + 1
7: end if
8: if CurrentStatei = 1 then
9: Uj ← Pj

10: else
11: Uj ← Rj

12: end if
13: end for
14: if arg max1≤j≤W Uj == 0 then
15: j_chosen ← 0
16: else
17: j_chosen ← arg max1≤j≤W Uj
18: end if
19: if j_chosen != j_old then
20: Set orientation to j_chosen
21: Send a protocol message including priority and φi,j_chosen

22: end if
23: if CurrentStatei = 1 then
24: StartTimer(TIMEOUT);
25: end if

The effect of α on the heuristic algorithms’ performance is evaluated in

Section 6.2. The effect of the number of sensors, number of targets, etc.,

is evaluated in Section 6.3. Section 6.4 will compare the execution times of

TIA-CGA and the two centralized 2-stage algorithms. A limited validation

of the heuristic algorithms’ performance against that optimal solutions is

provided in Section 6.5.

34

6.2 Effect of α on heuristic algorithms

We test the effect of the parameter α on the performance of TIA-CGA and

TIA-DGA using a setup with 50 targets and 50 sensors. Figure 3 plots the %

of targets covered, % of sensors that are active, and the number of syndromes.

Five values for α are tested: 0, 0.25, 0.5, 0.75, and 1.0. To provide a point

of comparison, we also plot the metrics for 2S-CGA, 2S-CFA, 2S-DGA, and

2S-DFA. As expected, the plots for the four are horizontal lines, since they

are not parameterizable by α.

The first thing that must be noted from Figure 3 is how similar the

results are for α = 0.25, α = 0.5, and α = 0.75. This signifies that while

the algorithms allow users to specify the acceptable level of trade-off between

coverage and identifiability, in reality and practice, sensor-target setups offer

a limited number of possible configurations and solutions. Therefore different

values of α (except 0 and 1.0) can result in the same solution. This does not

mean however that α does not matter, as the results for α = 0 and α = 1.0

will show.

When α = 0, the algorithm degenerates into a syndrome-maximizing

algorithm.

For TIA-CGA, α = 0 utilizes the same number of sensors as the three

middle α values: 30% of the total (Figure 3b). With α = 0, the TIA-

CGA covers slightly fewer targets than the solution for all other α values

(Figure 3a) - 77% compared to α = 0.25’s 79%, for instance. Surprisingly, α

= 0 actually has a slightly lower average number of syndromes compared to

the three middle α values (Figure 3c) - 22.07 compared to α = 0.25’s 22.41.

35

For TIA-DGA, α = 0 utilizes a slightly higher number of sensors than

the three middle α values: 36% compared to 35% for α = 0.25 (Figure 3b).

With α = 0, TIA-DGA covers less targets than the solution for all other α

values (Figure 3a) - 71% compared to α = 0.25’s 78%, for instance. Like TIA-

CGA, at α = 0, TIA-DGA actually has a lower average number of syndromes

compared to the three middle α values (Figure 3c).

α = 1.0 signifies that only the number of covered target matters, and the

algorithm degenerates into a coverage-maximizing algorithm.

TIA-CGA at α = 1.0 covers almost the same number of targets as the

middle α values (Figure 3a), but does so with significantly less sensors: 12%,

compared to 30% of α = 0.25 (Figure 3b). With α = 1.0, TIA-CGA ends

up with a significantly smaller number of syndromes than at other α values

(Figure 3c) - 8.49, against α = 0.25’s 22.41.

TIA-DGA at α = 1.0 also covers almost the same number of targets as the

middle α values (Figure 3a), and also does so with significantly less sensors:

18%, compared to 35% of α = 0.25 (Figure 3b). With α = 1.0, TIA-DGA

likewise ends up with a significantly smaller number of syndromes than at

other α values (Figure 3c) - 12.64, against α = 0.25’s 21.54.

In summary, Figure 3 illustrates that because of the limited number of

solutions offered by sensor-target setups, the solutions for values of α between

0 and 1.0 do not differ by much from each other. However, a non-0, non-1.0

α value still offers a middle ground between α = 0 and α = 1.0; or more

accurately, it offers the ‘best of both worlds’ in terms of targets covered and

syndromes generated.

36

0 0.2 0.4 0.6 0.8 1

72

74

76

78

α

Ta
rg
et
s
co
ve
re
d
(%

)

TIA-CGA
2S-CGA
2S-CFA

TIA-DGA
2S-DGA
2S-DFA

(a) Targets covered

0 0.2 0.4 0.6 0.8 1

20

40

60

α

Se
ns
or
s
ac
tiv

e
(%

)

TIA-CGA
2S-CGA
2S-CFA

TIA-DGA
2S-DGA
2S-DFA

(b) Active sensors

0 0.2 0.4 0.6 0.8 1

10

15

20

α

Sy
nd

ro
m
es

TIA-CGA
2S-CGA
2S-CFA

TIA-DGA
2S-DGA
2S-DFA

(c) Syndromes

Figure 3: Effect of α on heuristic algorithms. 50 targets, 50 sensors, 50x50
space, 4 sensing orientations, sensing radius = 10.

6.3 Main comparison

In this subsection, we test the effect of the number of sensors, number of

targets, number of possible orientations, and the sensing radius on the met-

rics number of targets covered, number of sensors that are active, number of

syndromes generated, and the system utility garnered. For the distributed

algorithms we also include the total number of broadcasts made by all nodes.

We assume that two nodes that can cover at least one target in common can

communicate with one another (i.e., are one-hop neighbours in the network

topology). We also assume that the nodes utilize a perfect media access

control (MAC) protocol, and that there are no retransmissions due to inter-

ference (or hidden and exposed terminal problems). Such an assumption is

difficult to realise in actual implementations, but the results from the sim-

ulations will at least give us an approximate measure of the communication

costs associated with the distributed heuristic algorithms.

37

6.3.1 Number of sensors

For the first simulation set, we vary the number of sensors from 10-100 and

hold the number of targets constant at 50.

The results for the centralized algorithms are shown in Figure 4. As can

be seen in Figure 4a, as more sensors are added, the % of covered targets

increases, but the increase eventually slows down. All three heuristic algo-

rithms track CGA and CFA very closely. The diminishing increase in the

number of covered targets indicate that the system is becoming more and

more over-provisioned, with an increasing number of sensors becoming idle

since they no longer have any targets to cover or syndromes to contribute.

This is consistent with Figure 4b which shows the drop in % of sensors which

are active. Among the heuristic algorithms, 2S-CFA consistently utilizes

the most sensors, followed by 2S-CGA, and then TIA-CGA. In Figure 4c, we

see that consistent with their aims, all three heuristic algorithms consistently

have significantly higher number of syndromes than either CGA or CFA. The

number of syndromes increases with the number of sensors, but the increase

becomes more and more attenuated as the number of sensors increases. The

plateauing in the number of syndromes occurs much earlier for CGA and

CFA. The same pattern is seen in Figure 4d, which shows the system utility.

2S-CFA has a slight but consistent advantage over the other two heuristic

algorithms when it comes to the system utility garnered.

The results for the distributed algorithms are shown in Figure 5. As can

be seen in Figure 5a, as more sensors are added, the % of covered targets

goes up, but the increase eventually slows down. The % of covered targets

38

20 40 60 80 100

60

70

80

Sensors

Ta
rg
et
s
co
ve
re
d
(%

)

CGA
CFA

TIA-CGA
2S-CGA
2S-CFA

(a) Targets covered

20 40 60 80 1000

20

40

60

Sensors

Se
ns
or
s
ac
tiv

e
(%

)

CGA
CFA

TIA-CGA
2S-CGA
2S-CFA

(b) Active sensors

20 40 60 80 100
5

10

15

20

25

Sensors

Sy
nd

ro
m
es

CGA
CFA

TIA-CGA
2S-CGA
2S-CFA

(c) Syndromes

20 40 60 80 100

20

25

30

Sensors

U
til
ity

CGA
CFA

TIA-CGA
2S-CGA
2S-CFA

(d) Utility

Figure 4: Effect of varying the number of sensors on centralized algorithms.
α = 0.5, 50 targets, 50x50 space, 4 sensing orientations, sensing radius = 10.

are very similar for all algorithms, with TIA-DGA lagging just very slightly

behind the others. The plateauing indicates that the system is becoming

more and more over-provisioned, with more and more sensors becoming idle

since they no longer have any targets to cover or syndromes to contribute.

Consistent with this, Figure 5b shows the drop in % of active sensors. The

plots are quite similar for DGA and DFA, with the plots of the three heuris-

tic algorithms being higher - this is because TIA-DGA, 2S-DGA, and 2S-

DFA utilize the additional sensors for increasing the number of syndromes.

Between the three heuristic algorithms, TIA-DGA utilizes a slightly lower

number of active sensors than the two 2-stage algorithms. In Figure 5c, we

see that consistent with their aims, TIA-DGA, 2S-DGA, and 2S-DFA con-

sistently have a higher number of syndromes than either DGA or DFA. The

39

number of syndromes increases with the number of sensors, but the increase

becomes more and more attenuated as the number of sensors increases. The

number of syndromes plateaus much earlier for DGA and DFA. Between the

three distributed heuristic algorithms, and with respect to the number of syn-

dromes, 2S-DFA performs best, followed very closely by 2S-DGA, and then

TIA-DGA. The pattern for the number of syndromes is repeated for the sys-

tem utility (Figure 5d). As for the number of broadcasts made (Figure 5e),

all five algorithms follow a linear (increasing) relationship with the number

of sensors. The number of broadcasts for DGA and DFA are highly similar.

The slope for the TIA-DGA is slightly higher than that of DGA and DFA.

Both 2S-DGA and 2S-DFA have noticeably higher slopes than TIA-DGA,

with 2S-DFA having a slightly higher slope than 2S-DGA.

6.3.2 Number of targets

For the second simulation set, we vary the number of targets from 10-100

and hold the number of sensors constant at 50.

The results for the centralized algorithms are plotted in Figure 6. Fig-

ure 6a shows that the % of targets covered remains constant all throughout

the values tested (this means that the absolute number of targets covered

increases). As the number of targets increases, the % of sensors that are

active also increases (Figure 6b). We also see in Figure 6b that compared to

CGA and CFA, the three heuristic algorithms consistently have more sen-

sors that are active. Among the heuristic algorithms, 2S-CFA consistently

utilizes more sensors than 2S-CGA, which in turn, consistently utilizes more

than TIA-CGA. Consistent with their aims, Figure 6c shows that the heuris-

40

20 40 60 80 100

60

70

80

Sensors

Ta
rg
et
s
co
ve
re
d
(%

)

DGA
DFA

TIA-DGA
2S-DGA
2S-DFA

(a) Targets covered

20 40 60 80 100

20

40

60

Sensors

Se
ns
or
s
ac
tiv

e
(%

)

DGA
DFA

TIA-DGA
2S-DGA
2S-DFA

(b) Active sensors

20 40 60 80 100

10

15

20

25

Sensors

Sy
nd

ro
m
es

DGA
DFA

TIA-DGA
2S-DGA
2S-DFA

(c) Syndromes

20 40 60 80 100

20

25

30

Targets

U
til
ity

DGA
DFA

TIA-DGA
2S-DGA
2S-DFA

(d) Utility

20 40 60 80 100
0

50

100

150

Sensors

To
ta
lb

ro
ad

ca
st
s

DGA
DFA

TIA-DGA
2S-DGA
2S-DFA

(e) Broadcasts

Figure 5: Effect of varying the number of sensors on distributed algorithms.
α = 0.5, 50 targets, 50x50 space, 4 sensing orientations, sensing radius = 10.

tic algorithms consistently have more syndromes than CGA and CFA. The

same can also be said about the system utility, shown in Figure 6d. When

it comes to the system utility garnered, 2S-CFA once again has a slight but

consistent advantage over the two other heuristic algorithms.

The results for the distributed algorithms are plotted in Figure 7. Fig-

ure 7a shows that the % of targets covered remains constant all throughout

the values tested, with only a very slight variation across the values tested

41

20 40 60 80 100
78.2

78.4

78.6

78.8

79

79.2

79.4

Targets

Ta
rg
et
s
co
ve
re
d
(%

)

CGA
CFA

TIA-CGA
2S-CGA
2S-CFA

(a) Targets covered

20 40 60 80 100

10

20

30

40

Targets

Se
ns
or
s
ac
tiv

e
(%

)

CGA
CFA

TIA-CGA
2S-CGA
2S-CFA

(b) Active sensors

20 40 60 80 100

10

20

30

Targets

Sy
nd

ro
m
es

CGA
CFA

TIA-CGA
2S-CGA
2S-CFA

(c) Syndromes

20 40 60 80 100

10

20

30

40

50

Targets

U
til
ity

CGA
CFA

TIA-CGA
2S-CGA
2S-CFA

(d) Utility

Figure 6: Effect of varying the number of targets on centralized algorithms.
α = 0.5, 50x50 space, 50 sensors, 4 sensing orientations, sensing radius = 10.

(this means that the absolute number of targets covered increases). It can

also be seen in the plot that TIA-DGA trails the other four algorithms when it

comes to the % of targets covered. The number of active sensors increases for

all algorithms, although the increase is much steeper for TIA-DGA, 2S-DGA

and 2S-DFA than DGA or DFA (Figure 7b). The increase in the number

of active sensors can also be seen to plateau, as already active sensors prove

sufficient to cover the targets that are added. Between the three distributed

algorithms that are target-identifiability aware, the increase is greatest for

2S-DFA, followed by 2S-DGA, and finally, TIA-DGA. Consistent with the

algorithms’ aims, Figures 7c and 7d show that TIA-DGA, 2S-DGA and 2S-

DFA consistently have more syndromes and higher system utilities than both

DGA and DFA, with the difference increasing with the number of targets.

42

Between the three distributed algorithms for MTIAUMS, the same ordering

seen before in Figure 7b is again repeated in Figures 7c and 7d: 2S-DFA

closely followed by 2S-DGA, which is then closely followed by TIA-DGA.

As for broadcasts, it can be seen in Figure 7e that DGA and DFA utilize

significantly less broadcast messages than the other three algorithms, and

the number of broadcast messages stay more or less the same even whwn

the number of targets is increased. In comparison, the number of broadcasts

made by TIA-DGA, 2S-DGA and 2S-DFA increases with the number of tar-

gets. 2S-DFA consistently makes more broadcasts than TIA-DGA. 2S-DGA

starts with less broadcasts than TIA-DGA, but eventually catches up with

2S-DFA.

6.3.3 Number of sensor orientations

For the third simulation set, we vary the number of possible sensor orien-

tations from 2-8 and hold the number of sensors and targets constant at

50.

The results for the centralized algorithms are plotted in Figure 8. It

must be noted that an increase in the number of possible sensor orienta-

tions implies a decrease in the size of the sensed region. In Figure 8a it can

be seen that when it comes to the number of targets covered, the increase

in the number of possible sensor orientations only slightly affects CFA and

2S-CFA. It has the effect of decreasing the number of covered targets for

TIA-CGA, CGA, and 2S-CGA, although the decrease seems to plateau af-

ter 6. As for the number of active sensors (Figure 8b), the increase in the

number of possible sensor orientations results in the increase in the number

43

20 40 60 80 100
77.5

78

78.5

79

79.5

Targets

Ta
rg
et
s
co
ve
re
d
(%

)

DGA
DFA

TIA-DGA
2S-DGA
2S-DFA

(a) Targets covered

20 40 60 80 100

10

20

30

40

50

Targets

Se
ns
or
s
ac
tiv

e
(%

)

DGA
DFA

TIA-DGA
2S-DGA
2S-DFA

(b) Active sensors

20 40 60 80 100

10

20

30

Targets

Sy
nd

ro
m
es

DGA
DFA

TIA-DGA
2S-DGA
2S-DFA

(c) Syndromes

20 40 60 80 100

10

20

30

40

50

Targets

U
til
ity

DGA
DFA

TIA-DGA
2S-DGA
2S-DFA

(d) Utility

20 40 60 80 100
50

60

70

80

Targets

To
ta
lb

ro
ad

ca
st
s

DGA
DFA

TIA-DGA
2S-DGA
2S-DFA

(e) Broadcasts

Figure 7: Effect of varying the number of targets on distributed algorithms.
α = 0.5, 50x50 space, 50 sensors, 4 sensing orientations, sensing radius = 10.

of active sensors for all algorithms. The number of syndromes for the three

heuristic algorithms slightly increases as the number of possible sensor ori-

entations increases (Figure 8c). The slight increase is brought about by the

increase in the number of intersecting sensed regions, which is a consequence

of the increased number of active sensors. The pattern seen in the number

of syndromes is carried over to the system utility garnered by the algorithms

(Figure 8d).

44

2 3 4 5 6 7 8

79

79.2

79.4

Orientations

Ta
rg
et
s
co
ve
re
d
(%

)

CGA
CFA

TIA-CGA
2S-CGA
2S-CFA

(a) Targets covered

2 3 4 5 6 7 8
10

15

20

25

30

35

Orientations

Se
ns
or
s
ac
tiv

e
(%

)

CGA
CFA

TIA-CGA
2S-CGA
2S-CFA

(b) Active sensors

2 3 4 5 6 7 8

10

15

20

Orientations

Sy
nd

ro
m
es

CGA
CFA

TIA-CGA
2S-CGA
2S-CFA

(c) Syndromes

2 3 4 5 6 7 8

24

26

28

30

32

Orientations

U
til
ity

CGA
CFA

TIA-CGA
2S-CGA
2S-CFA

(d) Utility

Figure 8: Effect of varying the number of possible sensor orientations on
centralized algorithms. α = 0.5, 50x50 space, 50 sensors, 50 targets, sensing
radius = 10.

The results for the distributed algorithms are plotted in Figure 9. In

Figure 9a it can be seen that the increase in the number of possible sensor

orientations causes a slight decrease in the number of targets covered for all

algorithms. The increase in the number of possible sensor orientations also

has the effect of slightly increasing the number of active sensors (Figure 9b),

which is to be expected as the area covered by each sensor decreases. The

increase in the number of active sensors also causes an increase in the in-

tersection of active sensed regions, resulting in an increase in the number of

syndromes (Figure 9c). Similar to the centralized algorithms, even with the

slight decrease in the number of covered targets, the increase in the num-

ber of syndromes more than compensates and the system utility garnered

increases for all algorithms (Figure 9d). As for the number of broadcasts,

45

the increase in the number of possible sensor orientations causes an increase

in the number of broadcasts for all algorithms (partially to be expected due

to the increase in the number of active sensors), although the increase is

especially pronounced for TIA-DGA (Figure 9e).

2 3 4 5 6 7 8

78.5

79

79.5

Orientations

Ta
rg
et
s
co
ve
re
d
(%

)

DGA
DFA

TIA-DGA
2S-DGA
2S-DFA

(a) Targets covered

2 3 4 5 6 7 8
15

20

25

30

35

40

Orientations
Se

ns
or
s
ac
tiv

e
(%

)

DGA
DFA

TIA-DGA
2S-DGA
2S-DFA

(b) Active sensors

2 3 4 5 6 7 8
12

14

16

18

20

22

Orientations

Sy
nd

ro
m
es

DGA
DFA

TIA-DGA
2S-DGA
2S-DFA

(c) Syndromes

2 3 4 5 6 7 8

26

28

30

Orientations

U
til
ity

DGA
DFA

TIA-DGA
2S-DGA
2S-DFA

(d) Utility

2 3 4 5 6 7 8

50

60

70

80

Orientations

To
ta
lb

ro
ad

ca
st
s

DGA
DFA

TIA-DGA
2S-DGA
2S-DFA

(e) Broadcasts

Figure 9: Effect of varying the number of possible sensor orientations on
distributed algorithms. α = 0.5, 50x50 space, 50 sensors, 50 targets, sensing
radius = 10.

46

6.3.4 Sensing radius

For the fourth simulation set, we vary the sensing radius from 2-8 and hold

the number of sensors and targets constant at 50.

The results for centralized algorithms are plotted in Figure 10. In Fig-

ure 10a it can be seen that as the sensing radius increases, more targets

are covered as sensors are able to reach previously unreachable targets. The

increase however eventually flattens out. The trend holds true for all the

algorithms. To cover the targets that can now be seen by the sensors, more

sensors are activated (Figure 10b). Nevertheless, the increase in the number

of active sensors eventually plateaus for TIA-CGA, 2S-CGA and 2S-CFA. In

contrast, the number of active sensors actually decreases for CGA and CFA

after some point - as the sensing radius of sensors grows, fewer and fewer

sensors are needed to cover the targets (and coverage is solely the concern

of CGA and CFA). The decrease is not seen in the TIA-CGA, 2S-CGA and

2S-CFA (at least not yet in the values tested) because the multiple coverage

is used to increase the number of syndromes (Figure 10c). The increase in the

number of covered targets (at least in the first few values) and the increase

in the number of syndromes lead to increased system utility for all algo-

rithms, although that for CGA and CFA eventually decreases (Figure 10d).

The decrease in system utility for CGA and CFA is due to the decrease in

the number of syndromes, which, in turn, is caused by the decrease in the

number of covering sensors.

The results for distributed algorithms are plotted in Figure 11. The

patterns seen in Figures 10a-10d can also be seen in their counterparts in

47

2 4 6 8 10 12 14

20

40

60

80

Sensing radius

Ta
rg
et
s
co
ve
re
d
(%

)

CGA
CFA

TIA-CGA
2S-CGA
2S-CFA

(a) Targets covered

2 4 6 8 10 12 14

10

15

20

25

30

35

Sensing radius

Se
ns
or
s
ac
tiv

e
(%

)

CGA
CFA

TIA-CGA
2S-CGA
2S-CFA

(b) Active sensors

2 4 6 8 10 12 14

5

10

15

20

Sensing radius

Sy
nd

ro
m
es

CGA
CFA

TIA-CGA
2S-CGA
2S-CFA

(c) Syndromes

2 4 6 8 10 12 14
5

10

15

20

25

30

Sensing radius

U
til
ity

CGA
CFA

TIA-CGA
2S-CGA
2S-CFA

(d) Utility

Figure 10: Effect of varying the sensing radius on centralized algorithms. α
= 0.5, 50x50 space, 50 sensors, 50 targets, 4 sensing orientations.

Figures 11a-11d. The increase in the number of targets that can be covered

(Figure 11a), as well as the increase in the number of active sensors (Fig-

ure 11b), leads to the increase in the number of broadcasts (Figures 11e) -

however, the increase for TIA-DGA is markedly less than that of 2S-DGA

and 2S-DFA. The increases for DGA and DFA are even less than that of

TIA-DGA, and also flatten out very early.

6.4 Comparison of execution times of centralized heuris-

tic algorithms

The primary advantage of (and rationale for) the centralized 2-stage algo-

rithms are their lower execution times compared to that of TIA-CGA. To

validate this, we plot the average algorithm execution times for the cen-

48

2 4 6 8 10 12 14

20

40

60

80

Sensing radius

Ta
rg
et
s
co
ve
re
d
(%

)

DGA
DFA

TIA-DGA
2S-DGA
2S-DFA

(a) Targets covered

2 4 6 8 10 12 14

10

20

30

40

Sensing radius

Se
ns
or
s
ac
tiv

e
(%

)

DGA
DFA

TIA-DGA
2S-DGA
2S-DFA

(b) Active sensors

2 4 6 8 10 12 14

5

10

15

20

25

Sensing radius

Sy
nd

ro
m
es

DGA
DFA

TIA-DGA
2S-DGA
2S-DFA

(c) Syndromes

2 4 6 8 10 12 14
5

10

15

20

25

30

Sensing radius

U
til
ity

DGA
DFA

TIA-DGA
2S-DGA
2S-DFA

(d) Utility

2 4 6 8 10 12 14

50

60

70

80

90

Sensing radius

To
ta
lb

ro
ad

ca
st
s

DGA
DFA

TIA-DGA
2S-DGA
2S-DFA

(e) Broadcasts

Figure 11: Effect of varying the sensing radius on distributed algorithms. α
= 0.5, 50x50 space, 50 sensors, 50 targets, 4 sensing orientations.

tralized heuristic algorithms (as when they were used in Section 6.3.1 and

Section 6.3.2) in Figure 12. Figure 12a shows the execution times for the

simulation set where the number of sensors is varied, while Figure 12b shows

the execution times for the simulation set where the number of targets is

varied. Comparing Figure 12a and Figure 12b, it becomes apparent that the

number of sensors has a greater effect on the growth of the execution time

than the number of targets. It can also be seen in both plots that TIA-CGA

49

consistently has longer execution times than the two 2-stage algorithms.

20 40 60 80 100

0

0.5

1

1.5

2

2.5

Sensors

Ex
ec
ut
io
n
tim

e

TIA-CGA
2S-CGA
2S-CFA

(a) Number of sensors varied

20 40 60 80 100
0

0.5

1

1.5

Targets

Ex
ec
ut
io
n
tim

e

TIA-CGA
2S-CGA
2S-CFA

(b) Number of targets varied

Figure 12: Average execution times for the heuristic algorithms. α = 0.5,
50x50 space, 4 sensing orientations, sensing radius = 10.

6.5 Limited comparison of heuristic solutions to opti-

mal solutions

To provide validation (even if just a limited one) of how close the heuristic

solutions are to the optimal solutions, we solve a limited number of problems

(20 for each setup) using brute force. The number of targets is varied from

50 to 100, while the number of sensors is set constant to 10. The targets and

sensors are distributed over a 30 x 30 space, with α set to 0.5, the number

of sensing regions to 4, and the sending radius to 5. The results of the

simulations are plotted in Figure 13 (centralized) and Figure 14 (distributed).

The values plotted in Figure 13 and Figure 14 are the averages of 20 runs.

It can be seen in Figure 13 and Figure 14 that the heuristic solutions

approximate the optimal solutions well. The system utility, which is the

value being maximized, has two components: the number of targets covered

and the number of syndromes generated. Figure 13 and Figure 14 show that

it is possible for a heuristic algorithm to produce solutions that have more

50

than the optimal solution in a certain component: for example, for targets =

90, all centralized heuristic solutions (Figure 13c) and 2S-DFA (Figure 14c)

actually have more syndromes than the optimal solution. For all the setups

tested, the best performance (in terms of system utility) by a centralized

heuristic algorithm (Figure 13d) is by 2S-CFA (targets = 50), which comes

within 0.3% of the optimal solution’s system utility. The worst performance

by a centralized algorithm is by TIA-CGA (targets = 50), which differs from

the optimal solution by 4.0%. For the distributed algorithms (Figure 14d),

the best performance is by 2S-DFA (targets = 80), with only 0.52% difference,

while the worst is by TIA-DGA, with 8.25% difference.

50 60 70 80 90 100

44

46

48

50

52

Targets

Ta
rg
et
s
co
ve
re
d
(%

)

OPTIMAL
TIA-CGA
2S-CGA
2S-CFA

(a) Targets covered

50 60 70 80 90 100

52

54

56

58

60

Targets

Se
ns
or
s
ac
tiv

e
(%

)

OPTIMAL
TIA-CGA
2S-CGA
2S-CFA

(b) Active sensors

50 60 70 80 90 100
6

6.5

7

7.5

Targets

Sy
nd

ro
m
es

OPTIMAL
TIA-CGA
2S-CGA
2S-CFA

(c) Syndromes

50 60 70 80 90 100
15

20

25

30

Targets

U
til
ity

OPTIMAL
TIA-CGA
2S-CGA
2S-CFA

(d) Utility

Figure 13: Validation of solutions produced by centralized heuristic algo-
rithms against optimal solutions. α = 0.5, 10 sensors, 30x30 space, 4 sensing
orientations, sensing radius = 5.

51

50 60 70 80 90 100
42

44

46

48

50

52

Targets

Ta
rg
et
s
co
ve
re
d
(%

)

OPTIMAL
TIA-DGA
2S-DGA
2S-DFA

(a) Targets covered

50 60 70 80 90 100
50

52

54

56

58

60

Targets

Se
ns
or
s
ac
tiv

e
(%

)

OPTIMAL
TIA-DGA
2S-DGA
2S-DFA

(b) Active sensors

50 60 70 80 90 100
6

6.5

7

7.5

Targets

Sy
nd

ro
m
es

OPTIMAL
TIA-DGA
2S-DGA
2S-DFA

(c) Syndromes

50 60 70 80 90 100

15

20

25

30

Targets

U
til
ity

OPTIMAL
TIA-DGA
2S-DGA
2S-DFA

(d) Utility

Figure 14: Validation of solutions produced by distributed heuristic algo-
rithms against optimal solutions. α = 0.5, 10 sensors, 30x30 space, 4 sensing
orientations, sensing radius = 5.

7 Related work

The problem of maximizing target-based coverage for directional sensors was

first formalized in [1] as the Maximum Coverage Minimum Sensors (MCMS)

Problem. The MCMS problem’s Integer Linear Programming (ILP) formula-

tion was also given in [1], along with 2 heuristic-based solutions: a centralized

algorithm (Centralized Greedy Algorithm, or CGA) and a distributed algo-

rithm (Distributed Greedy Algorithm, or DGA).

Munishwar and Ab-Ghazaleh [10] also dealt with the problem of target

coverage maximization, but in the specific context of visual sensor networks

(cameras). The main difference between visual sensors and general sensors

is the concept of RMin or the minimum distance required between the sensor

52

and the target for the latter to see the former. Munishwar and Ab-Ghazaleh

[10] proposed alternatives to [1]’s CGA and DGA, called Centralized Force-

based Algorithm (CFA) and Distributed Force-based Algorithm (DFA), re-

spectively.

Another common problem in directional sensor networks is finding and

scheduling cover sets. Cover sets are sets of sensors (and their orientations)

that ensure that all targets are covered. It must be noted that finding cover

sets is equivalent to finding network configurations repeatedly, each time

removing the cover set-comprising nodes from the set of viable nodes. The

need for cover sets is primarily motivated by the limited lifetimes of nodes.

By finding several such cover sets and scheduling their activation, the targets

will be covered for a longer period of time than if only a single cover set is

found. Notable studies on cover sets are [2] and [18].

This study is not the first study to go beyond maximization of the number

of covered targets.

Fusco and Gupta [4] dealt with the problem of providing k-coverage to a

given set of targets (or area) using a minimum number of sensors - a problem

they called SODkC, or Selecting and Orienting D-sensors for k-Coverage. The

problem was shown to be NP-hard, and they proposed two greedy solutions

to the problem, a centralized algorithm and a distributed algorithm. Wang et

al[17], on the other hand, dealt with the case where the targets have different

coverage requirements.

It must be noted however, that the problem of maximizing coverage or

meeting coverage requirements is different than that of maximizing target

identifiability. For instance, if what is wanted is to satisfy a certain k-coverage

53

requirement, when two sensors cover exactly the same set of targets, both

should be activated since by doing so the coverage of each target covered

increases. However, if what is wanted is the maximization of target identifi-

ability, only one of the sensors should be activated, as activating both adds

no new syndrome to the system.

8 Conclusion

It is important to recognize that the assumption of built-in target identifia-

bility needs to be re-examined in directional sensor networks, as it does not

always hold true. To this end, we introduce the concept of syndromes which

facilitates the measurement of target identifiability in a directional sensor

network - this leads to the definition of the Maximum Target Identifiability-

Aware Utility with Minimum Sensors (MTIAUMS) problem, which we prove

to be NP-hard. We also introduce heuristic algorithms for orienting sensors

in a directional sensor network. The algorithms take into account not just the

number of targets covered but also their identifiability when finding network

configurations.

We introduce three centralized heuristic algorithms: Target Identifiability-

Aware Centralized Greedy Algorithm (TIA-CGA), 2-stage Target Identifiability-

Aware Centralized Greedy Algorithm (2S-CGA), and 2-stage Target Identifiability-

Aware Centralized Force-based Algorithm (2S-CFA). TIA-CGA is parame-

terizable with α which lets users specify the desired level of trade-off between

coverage and identifiability. Simulations show that α loses sensitivity or dif-

ferentiability in the middle range of values because of the limited number of

54

configurations possible for any sensor-target setup; nevertheless, the middle

values still provide a middle ground, solutions-wise, between those given by

extreme α values. The 2-stage algorithms on the other hand are not param-

eterizable, instead covering the targets first (using algorithms designed for

MCMS) and then using the remaining sensors to increase the identifiability of

covered targets. The 2-stage algorithms tend to have shorter runtimes than

TIA-CGA. Of the three heuristic algorithms, 2S-CFA perform best in most

of the simulations carried out, followed by 2S-CGA, and then TIA-CGA.

2S-CFA however, also has the tendency to use more nodes than 2S-CGA and

TIA-CGA.

We also introduce three distributed heuristic algorithms: Target Identifiability-

Aware Distributed Greedy Algorithm (TIA-DGA), 2-stage Target Identifiability-

Aware Distributed Greedy Algorithm (2S-DGA), and 2-stage Target Identifiability-

Aware Distributed Force-based Algorithm (2S-DFA). Similar to TIA-CGA,

TIA-DGA is parameterizable with α. 2S-DGA and 2S-DFA are the dis-

tributed counterparts of 2S-CGA and 2S-CFA, respectively. In most of

the simulations carried out, 2S-DFA produces more syndromes and slightly

higher system utilities than 2S-DGA and TIA-DGA.

Acknowledgement

This work is funded in part by the UK Technology Strategy Board (TSB)

Emerging Technologies Programme, Project 131187/26835-183208, OPV-based

Energy Harvesting for Urban Noise Pollution. Author W. M. Tan is sup-

ported by the Republic of the Philippines’ Engineering Research and Devel-

55

opment for Technology (ERDT) Program.

Declaration of relevant previous publications

Some portions and aspects of this paper were published before elsewhere:

we first introduced the centralized algorithms in [14] while we first presented

TIA-DGA in [15]. Portions of Sections 6.2, 6.3.1 and 6.3.2 (sans data on total

number of broadcasts) pertaining to the aforementioned algorithms were also

previously presented in [14] and [15].

References

[1] Jing Ai and AlhusseinA. Abouzeid. Coverage by directional sensors in

randomly deployed wireless sensor networks. Journal of Combinatorial

Optimization, 11(1):21–41, 2006.

[2] Yanli Cai, Wei Lou, Minglu Li, and Mo Li. Target-oriented scheduling

in directional sensor networks. In INFOCOM 2007. 26th IEEE Inter-

national Conference on Computer Communications. IEEE, pages 1550–

1558, May 2007.

[3] J. Djugash, S. Singh, G. Kantor, and Wei Zhang. Range-only slam for

robots operating cooperatively with sensor networks. In Robotics and

Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International

Conference on, pages 2078–2084, May 2006.

56

[4] G. Fusco and H. Gupta. Selection and orientation of directional sensors

for coverage maximization. In Sensor, Mesh and Ad Hoc Communica-

tions and Networks, 2009. SECON ’09. 6th Annual IEEE Communica-

tions Society Conference on, pages 1–9, June 2009.

[5] M. Garey and D. Johnson. Computers and Intractability. W.H. Freeman

and Company, New York, 1979.

[6] I. Hakala, I. Kivela, J. Ihalainen, J. Luomala, and Chao Gao. Design

of low-cost noise measurement sensor network: Sensor function design.

In Sensor Device Technologies and Applications (SENSORDEVICES),

2010 First International Conference on, pages 172–179, 2010.

[7] Huadong Ma and Yonghe Liu. On coverage problems of directional

sensor networks. In Xiaohua Jia, Jie Wu, and Yanxiang He, editors,

Mobile Ad-hoc and Sensor Networks, volume 3794 of Lecture Notes in

Computer Science, pages 721–731. Springer Berlin Heidelberg, 2005.

[8] Huadong Ma and Yonghe Liu. Some problems of directional sensor

networks. Int. J. Sen. Netw., 2(1/2):44–52, April 2007.

[9] Panasonic. WM-55A103/WM-56A103: Unidirectional Back Electret

Condenser Microphone Cartridge, November 2013.

[10] Vikram P. Munishwar and Nael B. Abu-Ghazaleh. Coverage algorithms

for visual sensor networks. ACM Trans. Sen. Netw., 9(4):45:1–45:36,

July 2013.

57

[11] Mohammad Rahimi, Rick Baer, Obimdinachi I. Iroezi, Juan C. Garcia,

Jay Warrior, Deborah Estrin, and Mani Srivastava. Cyclops: In situ

image sensing and interpretation in wireless sensor networks. In Pro-

ceedings of the 3rd International Conference on Embedded Networked

Sensor Systems, SenSys ’05, pages 192–204, New York, NY, USA, 2005.

ACM.

[12] Silvia Santini, Benedikt Ostermaier, and Andrea Vitaletti. First expe-

riences using wireless sensor networks for noise pollution monitoring.

In Proceedings of the workshop on Real-world wireless sensor networks,

REALWSN ’08, pages 61–65, New York, NY, USA, 2008. ACM.

[13] Robert Szewczyk, Alan Mainwaring, Joseph Polastre, John Anderson,

and David Culler. An analysis of a large scale habitat monitoring appli-

cation. In Proceedings of the 2Nd International Conference on Embedded

Networked Sensor Systems, SenSys ’04, pages 214–226, New York, NY,

USA, 2004. ACM.

[14] W.M. Tan and S.A. Jarvis. Quality over quantity: Target identifiability

in directional sensor networks. In Wireless Sensor (ICWISE), 2014

IEEE Conference on, Oct 2014.

[15] W.M. Tan and S.A. Jarvis. A distributed heuristic solution to the tar-

get identifiability problem in directional sensor networks. In Computing,

Networking and Communications (ICNC), 2014 International Confer-

ence on [TO APPEAR], Feb 2015.

58

[16] Dan Tao, Shaojie Tang, and Liang Liu. Constrained artificial fish-swarm

based area coverage optimization algorithm for directional sensor net-

works. In Mobile Ad-Hoc and Sensor Systems (MASS), 2013 IEEE 10th

International Conference on, pages 304–309, 2013.

[17] Jian Wang, Changyong Niu, and Ruimin Shen. Priority-based tar-

get coverage in directional sensor networks using a genetic algorithm.

Computers & Mathematics with Applications, 57(11):1915 – 1922, 2009.

Proceedings of the International Conference Bio-Inspired Computing-

Theories and Applications BIC-TA 2007 Zhengzhou, China.

[18] Huiqiang Yang, Deying Li, and Hong Chen. Coverage quality based

target-oriented scheduling in directional sensor networks. In Communi-

cations (ICC), 2010 IEEE International Conference on, pages 1–5, May

2010.

59

