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Abstract—The Internet of Things (IoT) poses important
challenges requiring multidisciplinary solutions that take into
account the potential mutual effects and interactions among the
different dimensions of future IoT systems. A suitable platform is
required for an accurate and realistic evaluation of such solutions.
This paper presents a prototype developed in the context of
the EPSRC/eFutures-funded project “Internet of Surprise: Self-
Organising Data”. The prototype has been designed to effectively
enable the joint evaluation and optimisation of multidisciplinary
aspects of IoT systems, including aspects related with hard-
ware design, communications and data processing. This paper
provides a comprehensive description, discussing design and
implementation details that may be helpful to other researchers
and engineers in the development of similar tools. Examples
illustrating the potentials and capabilities are presented as well.
The developed prototype is a versatile tool that can be used
for proof-of-concept, validation and cross-layer optimisation of
multidisciplinary solutions for future IoT deployments.

I. INTRODUCTION

Communication networks no longer connect just people,
but are evolving into billions of interconnected smart devices
(sensors, controllers, machines, autonomous vehicles, drones,
etc.) [1], with embedded electronics and a number of com-
mon basic functionalities (communications and networking
protocols, operating systems and software). These objects are
interconnected anytime and anywhere with the aim of enabling
the automatic collection and exchange of data (possibly with
little or no human intervention). This concept, known as the
Internet of Things (IoT) [2–4], virtually allows any object to
be sensed and controlled remotely across existing network in-
frastructure, creating unlimited opportunities for the integration
of the physical world into automated computer-based systems
equipped with intelligence and smart features.

IoT is seen as the next stage of the information revolution
and, with an estimated 50 billion devices connected by 2020
[5], it is becoming a reality. IoT has the potential to revo-
lutionise our lives through many applications in future smart
cities, composed of smart domains such as smart homes, smart
e-healthcare, smart transportation, smart energy management,
smart security, etc. [6]. The smart-X concept is aimed at pro-
viding, with the help of novel information and communication
technologies, a set of new generation services that will lead to
improved efficiency and socio-economic benefits [7–9].

Smart systems will soon be overloaded by data from
billions of objects that are part of the IoT. Data sets are
expected to be so large and complex that traditional data pro-
cessing approaches are deemed inadequate, thus claiming for
innovative solutions to extract relevant and useful information.
An important finding of Communication Theory is that the
more surprising a message is, the more information it contains
[10, 11]. This suggests that under big data IoT scenarios
the value will not come from the volume of traffic already
known but from finding unexpected or surprising new trends or
events. If the information is exactly as expected, then it likely
needs no special handling. Only in unexpected scenarios is
intervention required. If data processing is constrained to find
information that is already known to look for, the potential for
surprise is reduced, and the full potential output from the data
is not reached. However, by looking for emergent properties,
surprising connections may be found, even (or especially) with
data from dumb objects.

An illustrative example of this concept could be for in-
stance a smart coffee shop where the behaviour of an ad-
hoc community (customers) would be monitored with NFC
sticker tags attached to the bottom of the customer’s cup,
which would provide details on the customer’s choice of drink.
Tables with NFC readers would allow customers to vote for
environmental aspects (e.g., type of music) by placing the cup
over a particular NFC reader, which would allow to identify
potential correlations between drink choice and music taste,
or between drink choice and seating position. Additionally,
environment sensors (e.g., temperature and light) could be
used to establish connections between temperature and drink
choice, and whether light and temperature at certain parts of
the room would affect the customer choice to sit in a particular
position. This information could be exploited for a smart auto-
configuration of the environment.

The system here envisaged would embrace a large number
of heterogeneous devices, including both smart and dumb
objects (e.g., clothing and home appliances), that can transmit
simple messages (with or without context information), which
are published in a virtual space that authenticates senders and
controls access to the data. This concept poses important chal-
lenges that need to be overcome in order to enable scenarios as
the one described in the example above. The following three
aspects of the system are of particular relevance:



1) Hardware design. The envisaged IoT system
requires the ability to add IoT capability to almost
any object, not only smart but also dumb objects.
These interconnected devices need to be small and
inexpensive. Novel hardware designs are required to
enable ultra-compact wireless sensors (approximately
the size of a human thumb or smaller). While the
size of the hardware associated to computation
and signal processing can be reduced significantly
with state-of-the-art nanoscale technology, reducing
the size of the hardware associated with the radio
transmission of signals is more challenging. This is
particularly true for certain elements such as antennas
whose size can be constrained by the frequency of
operation. New antenna designs that can be attached
to almost any small object are required. In this
context, soft antennas and stretchable antennas are
some particularly promising solutions, however they
require a detailed research study in the context of
IoT. Additionally, IoT devices need to be energy
efficient. In industrial applications, IoT devices will
often need to be able to run for at least ten years on
a single battery. The battery size (and consequently
its capacity) may be constrained by the size of the
IoT object. Moreover, if there are to be billions or
trillions of IoT devices then it will be impossible to
use batteries for every single IoT device (it would
be impractical, costly, and unsustainable). Energy
harvesting techniques are particularly relevant in the
context of IoT [12, 13], which require novel tailored
antenna and circuit designs [14, 15].

2) Communications. A significant portion of IoT devices
(dumb objects in particular) will be based on low-
cost hardware with low computation capabilities and
inaccurate clocks. Novel communication protocols
with low complexity that can maintain reliable links
in such scenario are required. Current communication
networks are designed and optimised for the traffic
generated by a moderated number of users of high
data-rate services (e.g., video streaming, interactive
gaming, enhanced web browsing). IoT is expected to
introduce a much higher number of users (devices)
generating low data-rate traffic, which will represent
a radical change in current network traffic patterns.
Existing network infrastructures and communication
protocols may be inefficient for these new traffic
patterns and new protocols and solutions may be
required. In addition to this, a significant amount of
devices are expected to be connected to the IoT via
wireless links using a wide variety of radio access
technologies. Forecasts of billions of IoT devices in
the foreseeable future along with crowded frequency
allocation charts claim for extremely efficient ways
to access the spectrum. The introduction of spec-
trum sharing approaches based on dynamic spectrum
access and cognitive radio constitutes a promising
solution in the context of IoT, however this requires
the identification of appropriate frequency bands of
operation and the development of reliable mecha-
nisms to enable interference-free coexistence among
radio communication systems.

3) Data processing. With billions of devices generat-
ing data, efficient data processing methods are of
paramount importance. Given the expected size and
complexity of future date sets, traditional data pro-
cessing approaches are unlikely to be suitable. Novel
data processing solutions to extract relevant and
useful information, possibly by looking at potential
relations between apparently unrelated data, may lead
to the discovery of surprising connections with the
potential to provide new applications. In this context,
it is necessary not only to review existing techniques
from diverse domains (e.g., data mining, artificial in-
telligence, machine learning, database systems, statis-
tics), analysing their suitability in the context of large-
scale IoT, but also develop new tailored solutions.

When facing the above mentioned challenges, it is impor-
tant to develop solutions that can address these problems not
only individually but also from a multidisciplinary perspective,
taking into account the possible mutual effects and interactions
among the considered dimensions (i.e., hardware design, com-
munications, and data processing) and providing a joint system
optimisation. An accurate and realistic evaluation of such solu-
tions requires a suitable platform. While mathematical analyses
and software simulations may be suitable for the evaluation of
certain individual aspects of the system, the development of an
adequate prototype would enable a comprehensive and more
realistic performance evaluation, including possible relations
among multidisciplinary aspects of the system that would be
difficult or impossible to capture with mathematical analyses
or software simulations, and enabling a joint optimisation of
the relevant system aspects.

In this context, this paper presents a prototype developed in
the framework of the EPSRC/eFutures-funded project “Internet
of Surprise: Self-Organising Data”. This prototype has been
designed to effectively enable the joint evaluation of multidis-
ciplinary aspects of the envisaged IoT concept. In particular,
this paper provides an in-depth description of the hardware and
software components, discussing design and implementation
details that may be helpful to other researchers and engineers
in the development of similar tools. Examples illustrating the
potentials and capabilities of the developed platform are pre-
sented as well. The developed prototype provides researchers
and engineers with a fully functional tool for proof-of-concept,
validation and cross-layer optimisation of multidisciplinary
solutions before bringing them to real IoT deployments.

The rest of this paper is organised as follows. First, Section
II provides a general overview of the developed prototype.
The three main parts or subsystems integrating the prototype
are then described in detail in Sections III, IV and V. Some
examples illustrating the capabilities and studies enabled by
the developed prototype are presented in Section VI. Finally,
Section VII summarises and concludes the paper.

II. OVERVIEW

The developed prototype is composed of three main parts
or subsystems as shown in Fig. 1, namely an IoT subsystem, a
coexisting radio subsystem, and a spectrum monitoring subsys-
tem. The IoT subsystem emulates an IoT network composed of
a number of IoT sensor nodes generating data that are gathered
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Fig. 1. Overview of the developed prototype.

and processed by a central processing unit. The coexisting
radio subsystem represents an additional radio communication
system composed of a transmitter and two receivers, all
of them operating in the same frequency band as the IoT
subsystem (this subsystem may coexist in an interference-free
manner with the IoT subsystem or generate certain interference
patterns). Finally, the spectrum monitoring subsystem is used
to monitor the spectral activity in the frequency band shared
by the other two subsystems. Sections III, IV and V provide
a more detailed description of each subsystem, including the
motivation, design and hardware/software implementations.

III. IOT SUBSYSTEM

The IoT subsystem emulates an IoT network, including a
number of nodes equipped with different types of sensors that
generate a diverse variety of data and a central processing unit
that gathers and processes the data generated by the sensor
nodes in order to extract relevant information. This is the main
subsystem of the prototype since all IoT-related functions are
implemented and evaluated in this subsystem.

A. Hardware Implementation

The central processing unit is a conventional computer that
performs advanced data-processing operations on the raw data
generated by the sensor nodes. This computer is the core of
the IoT subsystem and where the intelligence is implemented
(more details will be provided in Section III-B).

The IoT sensor nodes are equipped with a wide variety
of sensors that generate different types of data. The current
implementation comprises four IoT sensor nodes (from Node
A to Node D), however the number of nodes can be extended in
a straightforward manner as the overall IoT subsystem is in fact
designed to be easily scalable. Two options were considered
in the design of the sensor nodes, namely a scenario-specific
design with a particular scenario or application in mind (e.g.,
the smart coffee shop example described in Section I) where
the nodes would include a specific set of sensors as required by
the considered scenario, and a scenario-agnostic design where
the sensor nodes would include a generic set of sensors without
any particular scenario in mind. The latter option was finally
selected since it was considered to be adequate as a proof-of-
concept of the envisaged IoT system and it would not constrain
the applicability of the prototype in other possible studies as
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Fig. 2. View of an IoT sensor node.

it might be the case of the former option. Consequently, the
sensor nodes were equipped with an arbitrary set of sensors
embracing a wide variety of physical parameters.

Fig. 2 shows the view of one of the four sensor nodes. Each
sensor node is composed of six physical sensors (elements 1
to 6) connected to a Raspberry Pi minicomputer (element 7),
which connects to the central processing unit by means of a
USB wireless/WiFi adapter (element 8). The sensors included
in each IoT node are as follows:

1) Momentary capacitive touch sensor based on the
AT42QT1010 sensor (Adafruit 1374). This sensor
provides a logical high output when touched by the
user, and a logical low output otherwise. This sensor
can be used to generate on/off patterns manually.

2) Toggle capacitive touch sensor based on the
AT42QT1012 sensor (Adafruit 1375). This sensor
alternates between high and low output states when
touched by the user and can also be used to generate
on/off patterns manually.

3) Passive infrared (PIR) motion sensor HC-SR501. This
sensor provides a logical high output when motion is
detected within a range of 7 metres and a 120-degree
angle. Once triggered the output remains high for an
interval of 5 seconds (adjustable).
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Fig. 3. Connection of physical sensors to the Raspberry Pi 2 Model B.

4) Light sensor based on the TSL2591 sensor (Adafruit
1980). This high-range luminosity sensor contains
both infrared and full-spectrum diodes that can
provide illuminance measurements (in lux) of the
infrared and full-spectrum light. Both values can be
used to compute the illuminance in the human-visible
spectrum (as the difference between both) and the
corresponding luminosity perceived by the human
eye (by means of an empirical formula). In practice,
this physical sensor integrates four logical sensors.

5) Barometric pressure, altitude and temperature sensor
based on the MPL3115A2 sensor (Adafruit 1893).
This sensor contains a barometric pressure sensor
that provides pressure measurements (in Pascals)
and the equivalent altitude (in metres) along with
temperature measurements (in Celsius).

6) Raspberry Pi camera module version 2, based on the
Sony IMX219 8-megapixel image sensor. This mod-
ule can provide 3280×2464 pixel static images and
supports 1080p30, 720p60 and 640×480p90 video.

The six physical sensors are connected to a Raspberry Pi
2 Model B (element 7 in Fig. 2) as shown in Fig. 3. Except
the camera module, which uses its own camera/display serial
interface (CSI/DSI), the rest of sensors are connected via the
general-purpose input/output (GPIO) pins. While sensors 1-3
provide simple logical binary (high/low) outputs and can be
connected to standard logical input pins, sensors 4-5 are based
on the I2C bus protocol and are therefore connected to the
SDA/SCL pins. All sensors are powered from 3.3-volt pins so
that the logical outputs provide a voltage compatible with that
of the GPIO pins (i.e., 0 volts for logical low and 3.3 volts
for logical high), except the motion sensor which requires at
least 5 volts (but provides a 0/3.3-volt output). Table I shows
the maximum current consumption of each sensor. Due to
the limitations of the internal 3.3-volt voltage regulator of the
Raspberry Pi, the GPIO pins can safely draw a maximum of 50
mA distributed across all 3.3-volt pins (including input, output,
and 3.3-volt power pins). The maximum current consumption

TABLE I. MAXIMUM CURRENT CONSUMPTION OF EACH SENSOR.

Sensor Maximum (mA)

Momentary touch sensor (1) 2.03 †

Toggle touch sensor (2) 1.67 ‡

Light sensor (4) 0.4 §

Press. / alt. / temp. sensor (5) 2 ¶

Motion sensor (3) 65

Camera (6) 250

Fig. 4. View of the four IoT sensor nodes.

of the sensors connected to these pins (1, 2, 4 and 5) is around
6 mA, and the current through any individual pin does not
exceed the 16 mA limit. The motion sensor is powered via a
5-volt pin and the camera module is powered via the CSI/DSI
interface; for these two sensors there is no current limit other
than that of the main power supply. The maximum current
consumption of the Raspberry Pi 2 Model B board under stress
conditions (including USB devices) is 820 mA1, which along
with the camera module (250 mA), motion sensor (65 mA)
and rest of sensors (6 mA), leads to a maximum consumption
of 1141 mA per sensor node (2000 mA power supply is used).

IoT sensor nodes are identical and implemented as detailed
above (see Fig. 4). The connectivity between the IoT nodes
and the central processing unit is accomplished by means
of IEEE 802.11 wireless links. To this end, the IoT nodes
and the central processing unit are equipped with 2.4 GHz
USB wireless adapters Edimax EW-7811UN (element 8 in Fig.
2), which offer a wide range of configuration options for a
fine tunning of the radio operation conditions. The prototype
offers the possibility to employ other antennas by means
of an external adapter (Alfa Network AWUS036H), which
provides an SMA connector for external antennas. Fig. 5 shows
the external adapter with different types of antennas. This
feature is particularly appealing when evaluating a particular
antenna design and its potential impact on other components
of the system, both at the link and system level. For example,
flexible antennas may be suitable for certain IoT devices (e.g.,
wearables) but their radiation pattern, directivity and other
properties may be affected by the different positions to which
they may be subjected, which may also have an impact on
the quality of the wireless link (and interference patterns) and
affect ultimately the data processed at the application layer.

1http://www.raspberrypi.org/help/faqs/#powerReqs
∗Obtained by interpolating the consumption values provided in the datasheet

(378.5µA@3V and 542.5µA@4V, i.e. 427.7µA@3.3V) and including the
current consumption of the LED (1.6mA).
†Obtained by interpolating the consumption values provided in the datasheet

(59µA@3V and 88µA@4V, i.e. 67.7µA@3.3V) and including the current
consumption of the LED (1.6mA).
‡Maximum current consumption when actively sensing.
§Current consumption during acquisition and conversion.



Fig. 5. External 2.4 GHz USB wireless adapter with different antenna designs:
whip antenna (left), microstrip antenna (center), flexible PCB antenna (right).

B. Software Implementation

The IoT network can be configured in different ways in
order to meet particular needs. Communication between the
central processing unit and the IoT sensor nodes relies on
Matlab features for remote access of Raspberry Pi computers,
which is based on TCP/IP. This means that the IoT sensor
nodes employed in the prototype could be virtually anywhere
on the world and would be able to communicate with the cen-
tral processing unit as long as they have a valid IP address. For
convenience, the IoT network in the prototype is configured
as a local ad-hoc network with private IP addresses where the
central processing unit acts as an access point to which the
IoT nodes are connected as terminals. This is a simple and
convenient setup for experiments in a laboratory environment
and moreover represents a realistic configuration since many
future IoT devices are likely to be connected to the Internet
via wireless access points or similar network infrastructures.

The central processing unit runs Microsoft Windows 7 op-
erating system and employs the Microsoft Virtual Wifi Miniport
Adapter technology to provide connectivity as an access point
to the IoT sensor nodes. This technology enables a physical
wireless adapter to be virtualised into several logical adapters,
which can be useful for example to access several WiFi
networks with the same physical adapter or to share an Internet
connection with other wireless devices. This technology is used
here to configure the central processing unit as an access point
to which the IoT sensor nodes can connect, thus enabling the
direct communication among nodes in the IoT network.

The central processing unit is configured as an access point
by running the following two commands (as administrator):

1) netsh wlan set hostednetwork mode=allow
ssid=IoT-testbed key=eFutures

2) netsh wlan start hostednetwork

The first command configures the central processing unit as an
access point hosting a network with name/service set identifier
(SSID) IoT-testbed and access password eFutures.
The second command starts the network. Once the hosted
network has been started, any WiFi-equipped device will be
able to connect to the network IoT-testbed (using the
password eFutures) and communicate with other devices
connected to the same network. This network is used to enable
communication between the central processing unit and the IoT
sensor nodes. For this to be possible, the IoT sensor nodes
are configured to automatically search and connect to this

network at startup. This is easily accomplished by adding to the
file /etc/wpa_supplicant/wpa_supplicant.conf
of the Raspbian operating system running on the IoT sensor
nodes the following lines:

network={
ssid="IoT-testbed"
psk="eFutures"

}

This information will be employed by the IoT sensor nodes
to connect automatically to the IoT network hosted by the
central processing unit at startup. By default, this network will
use private IP addresses in the range 192.168.137.0/24,
where the default gateway IP address 192.168.137.1 is
assigned to the central processing unit (since Window’s hosted
network functionality is intended to share a computer’s Internet
connection with other wireless devices) and the rest of network
nodes (i.e., the IoT sensor nodes) are assigned random IP
addresses by the central processing unit via Dynamic Host
Configuration Protocol (DHCP). To facilitate the identification
of the IoT nodes in the network, they are configured with
pre-defined host names following the format RBPi2-Node-X
where X can be A, B, C or D. Since a Windows hosted
network will have by default a domain name mshome.net,
the IoT sensor nodes can be accessed remotely by their
complete host/domain name RBPi2-Node-X.mshome.net
regardless of the IP address assigned by the central processing
unit - the Domain Name System (DNS) protocol will translate
each host/domain name to the corresponding IP address. This
approach removes the need to configure and manage fixed IP
addresses, which may lead to some issues for example when
adding or removing nodes to the system.

Communication between the central processing unit and
the IoT sensor nodes currently relies on Matlab functions
for remote access of Raspberry Pi computers. This feature
of Matlab simplifies the remote access to the IoT sensor
nodes, however it has some limitations, in particular regarding
the ability of the IoT nodes to initiate or trigger certain
events and communications. While the current implementation
based on Matlab’s communications features is sufficient for
experimentation and proof-of-concept, future plans to extend
the prototype include the implementation of communication
protocols that remove the above mentioned limitations such
as the Message Queuing Telemetry Transport (MQTT) pro-
tocol. MQTT is an ISO standard (ISO/IEC PRF 20922) [16]
messaging transport protocol based on a client-server publish-
subscribe model that runs on top of TCP/IP and is light
weight, open, simple, and designed to be easy to implement,
which is particularly important in low-cost low-complexity IoT
nodes where a small code footprint is required and/or network
bandwidth may be limited. A variation aimed at embedded
devices on non-TCP/IP networks, such as ZigBee, is available
as well [17]. Other alternative protocols are Advanced Message
Queuing Protocol (AMQP) [18, 19], Constrained Application
Protocol (CoAP) [20], and Extensible Messaging and Presence
Protocol (XMPP) [21–25].

Once network connectivity is established, communication
in the current implementation takes place on a point-to-point
basis between the central processing unit and each of the
IoT sensor nodes as depicted in Fig. 1. While it would be



possible to emulate other network topologies (e.g., forwarding
a message from one IoT sensor node to another via the central
processing unit), this is currently not needed and, as mentioned
above, the current implementation is sufficient for experimen-
tation and proof-of-concept. Nevertheless, the implementation
of communication protocols as the ones mentioned above may
extend the prototype capabilities by enabling direct node-to-
node links without involving the central processing unit.

Communication between the IoT sensor nodes and the
central processing unit takes place via direct wireless links.
In a real IoT network, certain fixed network infrastructure is
likely to be present between both, which may result in packet
delays and packet losses depending on the network congestion
situation. A computer could be introduced in the prototype
between the IoT sensor nodes and the central processing unit
to capture TCP/IP packets sent by the IoT sensor nodes and
selectively delay or discard some of them in order to reproduce
network congestion situations. However, a simpler approach to
achieve a similar effect is to selectively delay (in the central
processing unit) the data reports from the IoT nodes before
processing them, or discard them, according to a suitable
packet delay/loss model [26, 27], which removes the need for
an additional computer in the prototype.

The central processing unit first establishes a TCP/IP
connection with each IoT sensor node. Once an individual
network connection is established with each node, the central
processing unit configures (for each node) the GPIO pins
taking into account the connections shown in Fig. 3, creates an
I2C connection with the light and pressure/altitude/temperature
sensors based on their I2C addresses (see Fig. 3), configures
the I2C sensors (in particular: the gain for the light sensor
can be configured as low/1x, medium/25x, high/428x and
maximum/9876x; the integration time of the light sensor can
be configured from 100 ms for bright light to 600 ms for
dim light in increments of 100 ms; and the oversampling ratio
for the pressure/altitude/temperature sensor can be configured
from 1 to 128, which leads to minimum time intervals between
samples from 6 to 512 ms), and finally creates a connection
with the cameras and configures their parameters (resolution,
image quality, rotation, horizontal/vertical flip, frame rate,
brightness, contrast, saturation, sharpness, exposure/exposure
compensation modes, and image effects).

Once IoT sensor nodes are configured, the central process-
ing unit can start gathering data from the sensors. Each sensor
node can provide camera snapshots and videos in addition
to the reading from a total of ten sensors, namely momen-
tary touch sensor state, capacitive touch sensor state, motion
detection state, illuminance (in lux) in the infrared/human-
visible/full spectrums and human eye perception (based on an
empirical formula), pressure (in Pascals), altitude (in metres),
and temperature (in Celsius). Note that this represents a net-
work with an effective total of 40 sensors (distributed among 4
sensor nodes) in addition to the picture/video sensors of each
node. In order to emulate different scenarios that can be found
in IoT networks, the prototype offers the possibility to gather
data in the following ways:

• Synchronous full data reporting. In this mode of
operation, the central processing unit collects data
periodically from all sensors in all nodes. A config-
urable data polling period determines the time interval

between two consecutive data polling events. In every
data polling event, the central processing unit requests
a reading from each of the 10 sensors installed in each
of the 4 IoT sensor nodes. This mode of operation
emulates an IoT network where all sensors provide
periodic data reports in a synchronous way.

• Synchronous partial data reporting. This mode of
operation is similar to the synchronous full data re-
porting mode, with the exception that only a certain
percentage (lower than 100%) of the sensors available
in the network provide a data report in every periodic
data polling event (if the percentage is configured as
100%, then this mode of operation is equivalent to
the synchronous full data reporting mode). In this
mode, the central processing unit computes first the
number of sensors to be polled (i.e., the number of
data polling events) based on the selected percentage
of sensors and the total number of sensors available
in the network. In each data polling event, one of
the four IoT sensor nodes is selected randomly (by
generating a random integer number from 1 to 4) and
then one of the ten sensors available in that node is
selected randomly (by generating a random integer
number from 1 to 10). The process is repeated until
the required number of sensors per data polling event
is reached. This mode of operation emulates an IoT
network where sensors provide periodic data reports
in a synchronous way but not all sensors have new
data to report in every data reporting event.

• Asynchronous data reporting. In this mode of opera-
tion the time instants of the data reporting events are
individually decided for each sensor available in the
network based on a Poisson point process with an indi-
vidually configurable interarrival time for each sensor,
or another suitable model. The central processing unit
checks constantly the polling time scheduled for each
sensor in the network. When the polling time for a
particular sensor is reached, the sensor is polled (i.e.,
a data report is provided by the sensor) and the next
polling time is generated based on the corresponding
Poisson point process or the employed model. This
mode of operation emulates an IoT network where
sensors provide data reports in an asynchronous way.

These three data reporting modes enable a wide variety of
network traffic conditions and, subsequently, many interesting
experiments. For example, consider the case of a temperature
sensor that is configured to provide a new data report (in this
case, a new temperature reading) every time the temperature
differs from the last data report by ±1◦C. In this case a new
data packet would be transmitted through the IoT network
every time a relative temperature change of ±1◦C occurs.
This setup would be useful in the development of traffic
models for IoT networks associated to physical magnitudes
such as temperature, pressure, light, human motion patterns,
etc. Moreover, depending on the underlying communication
protocol (e.g., MQTT over TCP/IP) this would also lead to
a certain radio transmission pattern in the radio interface
(which could be captured by the spectrum monitoring sub-
system explained in Section V) that can also be modelled
and characterised for the development of efficient methods to



avoid interference and enable spectral coexistence with other
existing radio communication systems (as explained in more
detail in Section IV). These are just some examples of the type
of experiments in the context of IoT enabled by the developed
prototype. Detailed examples will be provided in Section VI.

The data collected from the sensors available in the net-
work is processed in the central processing unit, where the
intelligence is implemented, using Matlab. Matlab was selected
given its comprehensive set of powerful and versatile functions
that enable sophisticated data operations and simplifies the
processing of complex data sets. Some illustrative examples on
novel data processing methods evaluated with the developed
prototype are provided in Section VI-A.

When an experiment is finished, the prototype is shut down
by following two steps. First, the IoT sensor nodes are shut
down remotely from the central processing unit by running the
following command for each node:

start /B plink.exe -l pi -pw raspberry
RBPi2-Node-X.mshome.net sudo poweroff

where X is replaced with A, B, C and D. This command
uses Plink2 (a free and open-source command-line network
connection tool) to shut down each node individually. Finally,
the IoT network is stopped by running the command:

netsh wlan stop hostednetwork

which stops the hosted network in the central processing unit.

IV. COEXISTING RADIO SUBSYSTEM

As mentioned in Section I, a significant amount of devices
are expected to be connected to the IoT via wireless links
using different types of radio access technologies such as IEEE
802.11 WLAN (WiFi) networks or mobile communication net-
works. Forecasts of billions of IoT devices in the foreseeable
future indicate that there will be a high demand for spectrum,
however the frequency allocation charts of most countries
are currently overcrowded. In this context, spectrum sharing
approaches based on dynamic spectrum access and cognitive
radio techniques are particularly promising in the context of
IoT and the availability of adequate platforms to assess the
performance of new spectrum access approaches is of great
importance. The developed prototype includes a coexisting
radio subsystem operating in the same frequency band as the
IoT subsystem, i.e., the 2.4 GHz Industrial, Scientific and
Medical (ISM) band. While the IoT subsystem is constrained
to the IEEE 802.11 communication standard, the coexisting
radio subsystem relies on a flexible design based on Software-
Defined Radio (SDR) devices that can virtually implement
any radio communication technology. This subsystem can be
configured to coexist in an interference-free manner with the
IoT subsystem or generate certain interference patterns. This
subsystem extends significantly the range of experiments that
can be conducted with the developed prototype by introducing
a spectrum-sharing dimension and enabling the study of inter-
actions of an IoT network with other communication systems
as well as the analysis of the resulting impact at higher layers.

2http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

A. Hardware Implementation

The coexisting radio subsystem is composed of one trans-
mitter and two receivers. The transmitter (receiver) is im-
plemented with USRP B200 (B210) SDR devices, respec-
tively (see Fig. 6). While the USRP B200 is equipped with
one transceiver, the USRP B200 includes two transceivers,
which enables the implementation and evaluation of diversity
reception techniques at the receivers. Moreover, one of the
USRP B210 units can be used as a transmitter in order to
introduce Multiple-Input Multiple-Output (MIMO) techniques
(the two USRP B210 channels can be used as two synchronised
transmitters and/or receivers, thus enabling a full 2×2 MIMO
system, or higher order if synchronised with other units).

In reception, USRP devices capture and amplify the radio-
frequency signal received by the antennas (dual-band 2.4/5
GHz λ/2 whip antennas, model Mobilemark PSKN3-24/55S),
performs down-conversion to a lower intermediate frequency
at which the signal is sampled at a configurable sample rate
up to 61.44 MS/s with a resolution of 12 bits, and decimates
the samples to baseband before sending them (in complex I/Q
format) to a host computer via a USB connection. A computer
implementing the receiver in software captures and processes
the signal samples. In transmission, the computer implements
in software a transmitter that generates signal samples, which
are interpolated by the USRP to the appropriate intermediate
frequency, converted to the analog domain and up-converted
to the radio-frequency for transmission. USB 3.0 connections
allow up to 56 MHz of instantaneous bandwidth in SISO (1x1)
mode and up to 30.72 MHz in MIMO (2x2) mode (USB
2.0 connections allow a maximum rate of 8 MS/s and an
approximate maximum usable bandwidth of 7-8 MHz).

When experiments are conducted in an indoor environment
(in particular inside the same room), transmission/reception
power limitations should be observed to ensure that all devices
operate under safe conditions. The USRP B200/B210 can
transmit at a maximum output power of 20 dBm and tolerates
a maximum input power of -15 dBm. The receiver might
be damaged if placed too close to the transmitter. A radio
propagation model suitable to the scenario of operation can be
used to determine the minimum separation distance between
transmitter and receivers. According to the indoor pathloss
model of the recommendation ITU-R P.1238-8 [28], for a
frequency of operation of 2400 MHz (lowest point and worst
case of the 2.4 GHz ISM band), a power loss coefficient of 30
(office environment at 2.4 GHz), and devices operating in the
same floor, a distance of 1 metre (minimum distance for which
the model is valid) provides an atennuation of 40 dB, which is
greater than the minimum 35 dB required to guarantee a safe
operation at maximum transmission power.

B. Software Implementation

USRP is a very flexible SDR platform that supports many
popular software applications such as GNU Radio, LabVIEW,
MATLAB and Simulink as well as the development of tailor-
made solutions based on the API of the USRP Hardware Driver
(UHD), which provides native support for C++. There exists a
large number of open-source projects embracing a broad range
of radio technologies, services and applications, which could
be employed as a coexisting radio subsystem in the prototype.



Fig. 6. Coexisting radio subsystem: Transmitter based on USRP B200 (left)
and receivers based on USRP B210 (right).

For proof-of-concept studies and demonstrations, the co-
existing radio subsystem currently implements in Matlab a
simple communication system designed for the transmission
of a unidirectional and constant flow of data. Source data are
interpreted as a sequence of bytes that are converted into bits
for transmission using Quadrature Phase Shift Keying (QPSK)
modulation. Data are transmitted in frames of 200 bits. The
first 26 bits are header bits used for frame synchronisation
at the receiver. The header bits are obtained by oversampling
by two a 13-bit Barker code (i.e., repeating the Barker code
bits twice), which ensures the transmission of the Barker code
on both in-phase (I) and quadrature (Q) components of the
QPSK-modulated signal. The remaining 174 bits are used for
data transmission and can be configured in a flexible manner.

Fig. 7 shows an example of frame format for the transmis-
sion of true-colour (24-bit) images (although the same format
can be used or easily adapted for the transmission of any other
type of data). A true-colour image with a height of Nh pixels
and a width of Nw pixels can be represented as a Nh×Nw×3
matrix containing three sub-matrices, each of which represents
the corresponding values for the red (R), green (G), and blue
(B) colour components for each pixel. Each pixel value is
coded with 8 bits (numerical range from 0 to 255). Thus, the
transmission of one pixel requires 24 bits. Each frame contains
5 consecutive pixels as shown in Fig. 7, which are read from
the source image left-to-right and top-to-bottom. The 5 pixels
(120 bits) are encoded with a Hamming(15,11) code to protect
the information against transmission errors. This code has a
rate of 11/15 ≈ 0.73 and outputs 165 bits, which constitutes
the payload of the frame. The remaining 9 bits are padded
with random bits. The payload and padding bits are scrambled
over the data field of the frame using the generator polynomial
p(x−1) = 1 + x−1 + x−2 + x−4. The purpose of this is
twofold. First, transmission errors typically occur in bursts
of consecutive bits and the effectiveness of error-correcting
codes in general decreases when the erroneous bits are close
to each other. The descrambling performed by the receiver
spreads the erroneous bits, thus increasing the effectiveness
of the employed error-correcting code. Secondly, scrambling
guarantees a balanced distribution of zeros and ones, which
facilitates the timing recovery at the receiver.

Frames are modulated using QPSK (with Gray mapping),
up-sampled by a factor of 4, and filtered with a Square
Root Raised Cosine (SRRC) filter (to minimise inter-symbol
interference) with a roll-off factor of 0.5 and a span of 10
symbols (i.e., 40 samples). The filtered samples are sent to the
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Fig. 7. Link level frame format for the transmission of images.

USRP transmitter, which is configured to operate at a sample
rate of 20 MS/s. Since this sample rate may be excessive for
real-time operation with an average computer, the output of the
SRRC filter is set at 200 kS/s and the samples are interpolated
by a factor of 100. This leads to an effective data rate of
50·103 QPSK-modulated symbols per second (i.e., 100 kbps),
which can be increased for powerful computers by reducing
the interpolation factor. The USRP transmitter operates at a
configurable frequency within the 2.4 GHz ISM band, which
can be selected (along with the transmission power) to generate
specific interference patterns on the IoT subsystem.

In order to recover the original image, the receiver needs
not only to revert the operations performed by the transmitter
but also compensate the impairments of the wireless channel.
To achieve this, the receiver includes Fast Fourier Transform
(FFT)-based coarse frequency compensation, Phase-Locked
Loop (PLL)-based fine frequency compensation, timing re-
covery with fixed-rate re-sampling and bit stuffing/skipping,
frame synchronisation, and phase ambiguity resolution (imple-
mentation details are omitted for brevity, see [29] for details).
Moreover, the receiver also needs to identify the beginning of a
new image (i.e., the pixel on the top-left corner of the image).
In order to facilitate this, the transmitter sends a predefined
number of frames with the 120 bits of the message set to zero
to indicate the beginning of a new image. The first non-zero
frame corresponds to the first 5 pixels of the image. Note that
this sequence of zeros is equivalent to 5 consecutive black
pixels (the black colour is encoded as [0,0,0] in the RGB
space). Therefore, an image with many black pixels may be
incorrectly decoded at the receiver. To prevent this problem,
all zero values in the original image are replaced with a value
of 1 (the difference is not noticeable to the human eye).

The implemented coexisting radio subsystem has deliber-
ately been kept as generic and simple as possible in order to
enable the transmission of any type of data (images, text, files,
etc.) in real-time (which can be achieved with an adequate
configuration and using Matlab compiler to produce code for
accelerated execution). While other more sophisticated systems
are freely available, the implemented system is enough to
investigate coexistence issues between IoT and legacy radio
systems operating in the same frequency band and analyse its
impact on the performance of both systems (from the physical
to the application layer) as it will be shown in Section VI.



Fig. 8. Spectrum monitoring subsystem.

V. SPECTRUM MONITORING SUBSYSTEM

The purpose of the spectrum monitoring subsystem is to
monitor and record (for off-line analysis) the spectral activity
in the frequency band shared by the other two subsystems.
This can be useful to understand how several systems and
radio technologies coexist in the same frequency and identify
particular interference patterns between systems. Spectrum
analysers can provide relevant information such as effective
channel occupied bandwidth, spectral masks, Received Sig-
nal Strength (RSS), channel power measurements for several
radio technologies, Adjacent Channel Power/Leakage Ratio
(ACPR/ACLR), etc. It can also be employed to understand
how different systems react to interference (e.g., moving to a
different radio channel) or associate certain errors observed in
one system at a particular time instant with interference from
another system that was active at the same time instant.

This subsystem does not require a specific implementation
since a standard spectrum analyser can be employed. Some of
the illustrative results provided in Section VI were obtained
using an Aaronia Spectran HF-60105 V4 X spectrum analyser
(see Fig. 8) with the same antenna used by the transmitter and
receivers of the coexisting radio subsystem (dual-band 2.4/5
GHz λ/2 whip antenna, model Mobilemark PSKN3-24/55S).
This is a low-cost USB spectrum analyser and despite some
limitations it is sufficient for the purposes of the prototype.

VI. ILLUSTRATIVE EXAMPLES

This section presents some examples illustrating the poten-
tials and capabilities of the developed prototype in the study of
future IoT systems. The developed prototype is flexible enough
to embrace a wide variety of experiments in the context of
IoT systems and the examples shown in this section are just
a small subset of possible experiments. Other types of studies
and experiments enabled by the developed prototype, although
not shown here, are discussed in Section I.

A. Smart IoT data processing

As discussed in Section I, data sets in future IoT systems
are expected to be so large and complex that traditional data
processing approaches are deemed inadequate, thus claiming
for innovative solutions to extract relevant and useful infor-
mation. This first example shows how the prototype can be
employed to explore new smart IoT data processing methods in
order to extract meaningful information from the received data.

The implemented system effectively counts with a high number
of sensors as discussed in Section III-B (40 sensors distributed
among 4 sensor nodes in addition to the picture/video sensors
of each node). Fig. 9 shows a screenshot of one of the several
visualisation screens implemented in the central processing
unit of the IoT subsystem. Each subfigure shows in real-time
the history of measurements reported by each sensor node
for a particular parameter (the last 20 measurements for each
sensor are shown). This shows how a relatively low/moderate
number of sensors can produce a significant amount of data
and highlights the need and importance of developing adequate
and efficient smart IoT data-processing methods.

In this illustrative example, a simple yet insightful method
for data processing inspired by Information Theory is imple-
mented. An important finding of Information Theory is that
the more surprising a message is, the more information it
contains [10, 11]. Therefore, in scenarios with high volumes
of data, the value will not come from the volume of traffic but
from finding unexpected or surprising new trends or events.
Using the terminology from Information Theory, the amount
of information I carried by a message xk from a set {xk}Kk=1
of K mutually-exclusive messages is inversely proportional to
its probability of occurrence P (xk) and can be defined as:

I(xk) = log2

(
1

P (xk)

)
(1)

where k = 1, . . . ,K, and
∑K

k=1 P (xk) = 1. The base of the
logarithm in (1) determines the units of I (bits for base 2).

Eq. (1) considers the case of a single source of information.
The developed prototype implements multiple sensors, each of
which can be seen as a source of information. In this context,
(1) can be rewritten for convenience as:

I(xm,n) = log2

(
1

P (xm,n)

)
(2)

where the index m = 1, . . . ,M identifies an individual
sensor (M is the number of sensors in the system, i.e.,
M = 40 in the current prototype implementation), and the
index n = 1, . . . , Nm identifies the message sent by the
mth sensor (Nm is the number of elements in the set of
possible messages {xm,n}Nm

n=1 for the mth sensor). In sensors
with discrete outputs (e.g., binary on/off sensors such as the
touch and motion sensors) the application of this model is
straightforward (e.g., Nm = 2 for binary sensors). In sensors
with continuous outputs such as temperature and pressure, the
likely range of output values for each sensor can be classified
into a set of Nm bins with a bin width wm such that:

Nm =

⌈
maxn{xm,n} −minn{xm,n}

wm

⌉
(3)

A continuous output value xm is then classified into the nth
bin if xm ∈ [minn{xm,n}+(n−1)wm,minn{xm,n}+nwm].

The method here proposed defines a surprisal parameter in
order to characterise the amount of information carried by a
particular set of output values from the set of sensors available
in an IoT system. Such characterisation is defined in terms of
the probability of occurrence of such combination of outputs
(the lower the probability of occurrence of a set of outputs,
the higher the amount of information/surprisal will be).



Fig. 9. Screenshot showing the real-time monitoring of all the available sensor data.

Consider initially the outputs xm1,n1
and xm2,n2

of two
sensors with indices m1 and m2, respectively. In this case a
joint surprisal parameter can be defined as:

Sjoint(m1,m2) = log2

(
1

P (xm1,n1
, xm2,n2

)

)
(4)

where P (xm1,n1
, xm2,n2

) is the joint probability of simulta-
neous occurrence of output xm1,n1

in sensor m1 and xm2,n2

in sensor m2. This definition can be extended to an arbitrarily
large set of sensors, leading to the more general definition:

Sjoint(M) = log2

(
1

P (xm1,n1
, . . . , xm|M|,n|M|)

)
(5)

where M is a predefined set of sensor indices and |M| is the
cardinality (number of elements) of the set. This definition,
however, can lead to practical implementation problems even
for a relatively moderate number of sensors. In a practical
implementation, the joint probability for M sensors can be
characterised by an M -dimensional histogram whose elements
can be computed based on the history of past outputs. If each
sensor can output Nm different values, the histogram would
need to store

∏M
m=1Nm elements. For Nm = N ∀m the size

of the M -dimensional histogram would be of NM elements.
This problem can be overcome by introducing the assumption
of independent sensors, which would lead to the introduction

of an independent surprisal parameter defined as:

Sindep(M) = log2

(
1∏

m∈M P (xm,n)

)
(6)

When set M is selected as the set of all sensors available in
the system (i.e., M = {1, . . . ,M}), (6) can be expressed as:

Sindep(M) = log2

(
1∏M

m=1 P (xm,n)

)
(7)

The implementation of this alternative definition only requires
an individual one-dimensional histogram for each sensor, and
the total number of elements to be estimated and stored reduces
to
∑M

m=1Nm (only MN elements in the example above).

The selection of one version of the parameter or the other
is mainly determined by the number of sensors available in the
system and how they provide data reports. For example, if the
system operates in synchronous full data reporting mode where
all sensors provide a data report in every data polling event
(see Section III-B for details), the set M necessarily includes
all sensors available in the system (i.e.,M = {1, . . . ,M}). In
such a case, using (5) may be computationally infeasible and
(7) would be a more convenient option. In synchronous partial
data reporting mode and asynchronous data reporting mode,
where not all sensors provide a data report simultaneously and
only a subset of sensor outputs is relevant, (5) may be used if



Fig. 10. Screenshot showing the real-time computation of sensor data histograms and the surprisal parameter S(M).

the number of considered sensors is low, otherwise (6) would
be more convenient. If a small number of sensors is considered,
then (5) may be used regardless of the data reporting mode.

Note that the probabilities in the denominators of (4)–(7)
characterise the joint probability that the sensors in M output
a particular set of values simultaneously. Those combinations
of outputs that are more infrequent will have a lower joint
probability and therefore the surprisal parameter S(M) will
take a higher value. The variations in the value of S(M) can
be used to automatically identify and react to relevant events.

The ability of the proposed data processing method to
detect relevant events was assessed with an experiment con-
ducted in an office environment where a person was working
on a computer. This represents a static scenario with sporadic
movements of the worker around the office. The window was
equipped with blinds to control the light intensity in the room.

Fig. 10 shows a screenshot of a visualisation screen im-
plemented in the central processing unit to show the real-time
computation of the sensor data histograms and both versions of
the surprisal parameter. The small subfigures on the top half of
the screen show the (individual one-dimensional) histograms of
the data reported by the sensors (4 sensor nodes, 10 parameters
per sensor). Every histogram is updated every time a new
data report (value) is received (the last value is shown as a
vertical red line in each histogram). The histograms of sensors
with binary on/off outputs (three first columns of figures on
the left-hand side) are composed of Nm = 2 bins (note that
the touch sensors were not operated in this example) and
the rest of sensors (with continuous outputs all of them) are
discretised to Nm = 10 bins. All histograms are normalised
so that the value of every bin represents the probability of

receiving a message whose value falls within that bin. These
probabilities are used to compute the independent surprisal
parameter Sindep(M) based on (6), where the setM is defined
as the set of all sensors providing a valid data report in the last
data polling event (the IoT system operated in synchronous
partial data reporting mode with about 60% of the sensors
providing a data report in every data polling event). The time
evolution of Sindep(M) is shown in Fig. 10 in the figure
labelled as Independent. Moreover, the joint 2-dimensional
histogram/probability distribution of the motion sensor of node
A and the visible light sensor of node C is computed (shown
on the bottom-left corner of Fig. 10) and used to compute
the joint surprisal parameter Sjoint(M) based on (4)-(5). The
time evolution of Sjoint(M) is shown in Fig. 10 in the figure
labelled as Joint. Fig. 11 shows a detailed view of how the
surprisal parameters evolve over time in this experiment (the
top figure also shows in red a moving-averaged version).

The experiment was divided into four phases, which are
also indicated in Fig. 11. In the first phase of the experiment
(sample numbers 0-295) the blinds were closed and the worker
was sitting on the chair working on a computer (with sporadic
movements to pick up papers and other objects on the desk).
It can be observed that there is a transition at the beginning of
the experiment until sample number ≈75 where the value of
the surprisal parameters increases gradually until they reach a
rather stable value. This transition is due to an initial learning
phase where the system starts collecting samples from a
completely unknown environment. In the rest of the first phase,
the independent surprisal parameter varies within a bounded
interval, with sporadic peaks that occur when some movement
is detected. While the independent surprisal parameter shows
some variation, the measurements received from the sensors
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Fig. 11. Time evolution of surprisal parameters.

fit reasonably well with the distribution of past values and
therefore the independent surprisal parameter remains approxi-
mately constant, with some peaks when movement occurs (this
trend is better appreciated in the moving-averaged sequence).
On the other hand, the joint surprisal parameter shows more
drastic variations every time some movement is detected. The
reason is that this version of the surprisal parameter depends
on only two parameters/sensors and is therefore more sensitive
to the variation of one of these parameters (moreover, a joint
histogram needs more observations to be estimated accurately
and the joint distribution is not well modelled at this point).
The worker remains static most of the time during the first
phase of the experiment, and when some movement is detected
this represents an unusual event since it does not fill well
with the distribution of past values. As a result, the surprisal
parameter increases suddenly as soon as the movement occurs.

In the second phase of the experiment (sample numbers
295-570) the worker was moving constantly around the room
(the blinds remained closed as in phase one). A similar pattern
can be identified in both surprisal parameters. The value of the
surprisal increases suddenly as soon as the worker starts mov-
ing at the beginning of phase two. This sudden increase occurs
because the new measurements reported by the sensors do not
fit well with the distribution of past measurements (when the
worker was static) and as a result they are initially seen as
unlikely events (because their corresponding probabilities in
the histogram are low when they happen for the first time).
When more similar measurements are reported by the sensors,
the corresponding histograms are updated and their relative
probabilities of occurrence increase, thus making them less
unlikely and as a result the surprisal starts decreasing gradually.
After certain time, this new situation becomes as frequent as
the situation in phase one and the surprisal parameter decreases
until it reaches a value similar/comparable to that of phase one.

In the third phase of the experiment (sample numbers 570-
1083) the worker returns to the chair (with the blinds still
closed), which is the same scenario as in phase one. One

might expect that this event would not be detected by the
system since it would in principle be a situation the system
is already familiar with. However, Fig. 11 clearly shows this
is not the case since the system immediately detects the event
via the increase of the surprisal parameter. In the case of
the independent surprisal parameter, the increase is not very
significant (probably due to the existence of similar sets of
measurements in the histograms) but in any case it is notable
enough to be detectable. In the case of the joint surprisal
parameter it is interesting to note that the increase is actually
very significant, which can be explained by the fact that the
new sets of measurements received while the worker was
moving resulted in a reshaping of the original histogram so that
when the worker comes back to the original situation of phase
one the reported measurements are not as likely as they used to
be in the first phase of the experiment. In any case, after some
time, the surprisal parameter decreases as the system becomes
more familiar with the new situation.

Finally, in the last phase of the experiment (sample num-
bers 1083-1900) the worker opens the blinds and returns again
to a static position on the chair. As soon as the blinds open, the
surprisal parameters increase suddenly and reach their highest
peaks. This significant increase can be explained by the fact
that this is the first time the system is exposed to a high light
intensity and, even if the rest of parameters remain unaltered,
the new values of light intensity reported by the sensors are
so far from the distribution of past values that they are seen
as very unexpected values and as a result the overall values of
the surprisal parameters are affected. As in previous phases, as
the system receives more measurements from the new scenario,
the situation becomes less unlikely and the surprisal parameter
decreases gradually (the peaks observed in sample numbers
1300-1400 were caused by the movement of some clouds,
which led to some alternated periods of light/darkness).

From the results obtained in this experiment it can be
concluded that the proposed data processing method is capable
to detect the occurrence of unexpected events in the physical
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Fig. 12. Coexistence Scenario A (without inter-system interference).

world and react to them. The system keeps an updated version
of the histogram of the values reported individually by each
sensor and this information is exploited to determine how
likely or unlikely a new set of data reports is. When an
unexpected event occurs, the measurements reported by the
sensors lead to a set of values with a low probability of
occurrence and this helps the system identify such event and
take actions automatically. The proposed method could be
extended with features such as processing of surprisal values
to determine what events are more relevant and should trigger
a reaction from the system, which is proposed as future work.

The proposed method, while based on rather simple princi-
ples, paves the way for the development of more sophisticated
methods exploiting the full potentials of advanced fields such
as data mining, artificial intelligence, or machine learning,
among others. While the example shown in this section has not
made use of the camera sensors, they can also be exploited in
more sophisticated methods. For example the images captured
by the sensors can be processed for ego-motion detection (i.e.,
the motion and rotation of the camera axes), which can be
useful in applications where the sensors are worn or mounted
on something that moves, the detection of people in front
of the camera (in this case the camera would behave as an
on/off sensor for the detection of human beings or objects),
the identification of the type of environment (indoor, outdoor,
urban, rural, etc.), or the extraction of descriptors that encode
properties of the images as a whole. The range of possibilities
is virtually unlimited and the developed prototype provides
a suitable and flexible tool for a realistic evaluation of such
innovative solutions in the context of IoT systems.

The illustrative example discussed in this section not only
demonstrates that it is possible to design smart data processing
methods to extract meaningful information from large volumes
of data and effectively detect relevant events in the context
of IoT systems, but also shows the ability of the developed
prototype to implement and evaluate such type of methods
under configurable and controllable realistic scenarios.
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Fig. 13. Coexistence Scenario B (with inter-system interference).

B. Radio coexistence

In the example presented in Section VI-A the IoT sub-
system operated without interference from other systems (i.e.,
the coexisting radio subsystem was deactivated). This section
presents an example where the IoT subsystem coexists with
the coexisting radio subsystem (and other radio systems) in the
same frequency band. The spectrum monitoring subsystem is
used to monitor and record the spectral activity of both systems
in the selected band of operation (the 2.4 GHz ISM band).

Two different coexistence scenarios are considered in this
experiment, which are illustrated in Figs. 12 and 13 (these
figures were obtained with the spectrum monitoring subsys-
tem). In both scenarios the IoT subsystem operates in channel
10 of the 2.4 GHz ISM band as defined by the IEEE 802.11
standard (2446-2468 MHz) and its operation can be divided
into three phases. In the first phase (approximately the first
third of sweeps shown in Figs. 12 and 13) the IoT network
is established but the IoT subsystem remains inactive. In
this phase there is no communication between the IoT nodes
and the central processing unit, and therefore there is no
spectral activity, except for the beacon signals that the central
processing unit transmits periodically (some of which are
captured by the spectrum monitoring subsystem). In the second
phase (approximately the second third of sweeps) the IoT
subsystem is active and operates in synchronous partial data
reporting mode, with around 60% of the sensors sending data
reports in every data polling event, which results in some
intermittent usage of channel 10. In the third and final phase
of the experiment (approximately the last third of sweeps) one
of the IoT nodes sends video with a resolution of 1920×1080
pixels at 30 frames per second in real-time, which requires a
high data rate, thus forcing an intensive (constant) usage of
channel 10 as it can be appreciated in Figs. 12 and 13.

The coexisting radio subsystem is configured to operate at
two different radio frequencies. In scenario A the frequency
of operation is 2437 MHz (center frequency of channel 6),
which in this experiment is an idle channel (no other 802.11
networks were detected in this channel), while in scenario B
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Fig. 14. Image transmitted and received by the coexisting radio subsystem under various operation conditions.

the coexisting radio subsystem operates at 2457 MHz (i.e.,
the center frequency of channel 10). Therefore, in scenario
A there is no interference between both radio systems, while
in scenario B the interference is maximum. The coexisting
radio subsystem transmits an image file in a cyclic loop, thus
resembling the transmission of a video, with the exception that
the transmitted image is always the same, which allows a more
accurate evaluation of the impact of interference on the system
performance. The coexisting radio subsystem implements the
physical layer features required for the successful transmission
of data based on a QPSK modulation (as detailed in Section
IV-B) but does not implement any interference prevention
or interference management techniques thus making it very
vulnerable to interference, as opposed to the IoT subsystem,
which is based on IEEE 802.11 links and therefore counts with
sophisticated methods to avoid and react to packet collisions.

This setup allows a detailed evaluation of the impact that
the interference from an IoT system could have on other
systems operating in the same frequency band, not only at the
physical layer (e.g., bit, symbol or frame rates) but also at the
application layer (e.g., visual quality of the received image).

During the experiment, the IoT subsystem did not appear
to be affected by interference, at least to a significant extent.
The data reported by all sensors were correct at all times.
Only during some periods of interference the reception of data
reports from the sensors experienced a noticeable delay (proba-
bly because of packet collisions), and only in one occasion the
connectivity was lost during a moment of high interference but
was recovered some time later. On the other hand, the impact
of interference on the coexisting radio subsystem, which does
not implement mechanisms as sophisticated as those included
in the 802.11 standard, was much more noticeable.

Fig. 14 illustrates the impact of interference on the co-
existing radio subsystem. Fig. 14(a) shows the transmitted
image and the rest of figures show the image received under
different operation conditions. Fig. 14(b) shows the image
received in Scenario A when the overall activity in the 2.4
GHz ISM band was extremely low and there was virtually no
interference from any other systems. Although the image does
not show any noticeable artefacts, it is slightly darker than the

original image, which could be explained by the transmission-
reception process (in particular the up/down-sampling along
with the use of SRRC filters). Figs. 14(c) and 14(d) show
two images received in Scenario A with the IoT subsystem
deactivated (first phase). Both figures show some lines with
different numbers of consecutive incorrect pixels correspond-
ing to frames received in error as a result of interference.
Recall that pixels are transmitted from left-to-right and top-
to-bottom, therefore interference leads to horizontal lines of
consecutive erroneous pixels and the length of the line is
proportional to the duration of the interference. Since the IoT
subsystem was operating at a different frequency and with
no ongoing communications, this interference was caused by
other systems. While the interference pattern observed in Fig.
14(c) is rather irregular, the pattern in Fig. 14(d) appears
to indicate that the interference was caused by a frequency
hopping system, since interference intervals are observed at
periodic time instants (when the interfering system hops to
a frequency that overlaps with that of the coexisting radio
subsystem) and with very similar durations (proportional to
the time interval that the frequency hopping system remains in
the same frequency). Since the coexisting radio subsystem and
the IoT subsystem operate in different channels in Scenario A,
one may expect they could never interfere with each other in
such scenario. However this is not necessarily true. As a matter
of fact, the image shown in Fig. 14(e), which corresponds to
the third phase of the experiment (IoT subsystem transmitting
video), indicates that the coexisting radio subsystem was
severely affected by out-of-band emissions, or possibly by an
increased noise floor, resulting from the transmission power of
the IoT subsystem (17±1.5 dBm at maximum power).

Figs. 14(f)-14(j) correspond to images received in Scenario
B. Fig. 14(f) was received in the first phase of the experiment
(while the IoT subsystem was still inactive) and the interfer-
ence observed was probably caused by other radio systems (in
fact, Fig. 14(f) shows a relatively similar interference pattern as
Fig. 14(c)). Fig. 14(g) was received in the second phase of the
experiment, where the spectral activity of the IoT subsystem
is higher as a result of the data reporting procedure; such
activity leads to an increased level of interference, which can
be clearly appreciated in Fig. 14(g). Fig. 14(h) shows the



image received during an intermittent transmission of video in
the IoT subsystem while Fig. 14(i) shows the image received
when a continuous video transmission starts in the middle of
the image reception; in both cases, the periods of interference
can be clearly identified because the corresponding regions
of the images are severely damaged. Moreover, in Fig. 14(h)
the transmission of the image started during a period of inter-
ference, which affected the detection of the zero frames sent
by the transmitter to help the receiver identify the beginning
of an image. As a result, the beginning of the image (and
consequently the whole image) was right-shifted. Finally, Fig.
14(j) shows the image received during a period of continuous
video transmission. In this case the shape of the statue can be
vaguely inferred, which indicates that the receiver was able to
detect the zero frames (i.e., beginning of the image) but the
rest of frames were severely corrupted by interference.

This illustrative example shows how the coexisting radio
subsystem and the spectrum monitoring subsystems extend
significantly the range of experiments that can be conducted
with the developed prototype, introducing a spectrum-sharing
dimension that enables the study of interactions between IoT
networks and other communication systems and the analysis
of the resulting impact not only at lower but also at higher
layers of the system. This feature is particularly appealing in
the development of reliable mechanisms to enable interference-
free coexistence among radio communication systems in the
context of IoT systems.

VII. CONCLUSIONS

Current trends indicate that future communication networks
will interconnect billions of smart devices capable of automat-
ically collecting and exchanging data, thus enabling the direct
integration of the physical world into automated computer-
based systems equipped with intelligence and smart features.
This concept, referred to as the Internet of Things (IoT), poses
important challenges requiring multidisciplinary solutions that
take into account the potential mutual effects and interactions
among the different dimensions of future IoT systems. In
this context, this paper has presented a prototype developed
in the context of the EPSRC/eFutures-funded project “Inter-
net of Surprise: Self-Organising Data”, which constitutes a
suitable platform for an accurate and realistic evaluation of
IoT solutions. The prototype enables the joint evaluation and
optimisation of multidisciplinary aspects of IoT systems, in-
cluding aspects related with hardware design, communications
and data processing. This paper has provided a comprehensive
description of the developed prototype, including design and
implementation details that may be helpful to other researchers
and engineers in the development of similar tools. Several
illustrative examples showing the potentials and capabilities
of the prototype have been presented as well. The developed
prototype is a versatile tool that can be employed for proof-of-
concept, validation and cross-layer optimisation of multidisci-
plinary solutions before bringing them to real IoT deployments.
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