
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

CRISTIAN CLEDER MACHADO

ARKHAM: an Advanced Refinement
Toolkit for Handling Service Level
Agreements in Software-Defined

Networking

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Advisor: Prof. Dr. Alberto Egon
Schaeffer-Filho
Coadvisor: Prof. Dr. Lisandro Zambenedetti
Granville

Porto Alegre
February 2015

CIP – CATALOGING-IN-PUBLICATION

Machado, Cristian Cleder

ARKHAM: an Advanced Refinement Toolkit for Handling
Service Level Agreements in Software-Defined Networking /
Cristian Cleder Machado. – Porto Alegre: PPGC da UFRGS,
2015.

104 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2015. Advisor: Alberto Egon Schaeffer-Filho; Coadvisor:
Lisandro Zambenedetti Granville.

1. Policy-based management. 2. Policy refinement.
3. Software-defined networking. 4. Service level agreement.
I. Schaeffer-Filho, Alberto Egon. II. Granville, Lisandro Zam-
benedetti. III. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitor de Pós-Graduação: Prof. Vladimir Pinheiro do Nascimento
Diretor do Instituto de Informática: Prof. Luís da Cunha Lamb
Coordenador do PPGC: Prof. Luigi Carro
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

ACKNOWLEDGMENTS

I would like to thank God for giving me strength and health to successfully complete this
journey of my life.

I would like to thank my mother Elenir, who has always been example of humility, perse-
verance, courage, honesty, and many others qualities. For you mom, my eternal thanks. You’re
my Idol. I love you.

My emotive thanks goes to my wife Bárbara for the unconditional support no matter the
circumstances, for encouraging me on my professional projects, and for teaching me the great
value of true love. Also, thanks for her patience, affection, and companionship. You make me a
better person. Thank you for being my shoulder to cry on. This achievement was only possible
because of you: my friend, my love, my life. I love you.

A special thanks to my advisor Prof. Alberto and my co-advisor Prof. Lisandro for all
intellectual and philosophical lessons, experiences, opportunities, and criticisms, and also for
all talks about life decisions. Today, I understand that all this was extremely important to turn
me a better researcher. Also, thanks for believing in my potential and giving me the opportunity
to show my talents and skills. I also thank the professors Luciano P. Gaspary, Liane M. R.
Tarouco, Carlos A. Kamienski (UFABC), Cláudio F. R. Geyer, and Philippe O. Navaux for
always requiring the best of me. Certainly my skills in producing research was great ly improved
by each of you.

I can say that not only met friends that supported me and made me feel at Home, but I
found a new family. I’m very thankful to all my great friends of the research lab 212. Thank
you Anderson (Mr. Andersen), Gabriel (Doceiro), GerMano (Mano/Little brother), Juliano (no
nickname), Lucas (Bondan), Luis (Bride[No offense!]), Pedro (Catarina/Peter), and Vinicius
(Funai). The experience of working and exchanging ideas with all of you was very important to
me, and the lessons I learned will follow me for life. I’m grateful to the group that we created
for having fun and supporting each other: The Group of hipsters (Grupo dos descolados). The
unconditional support, in good and bad moments, offered by this amazing group was essential
for me.

Thanks to all the other friends of Computer Networks Group: Carlos (Ranieri), Cristiano,
Daniel, Jéferson, Leonardo, Lucas (Müller), Maicon, Marcelo (Marotta), Márcio, Matheus
(Cadori), Matheus (Ganso), Miguel, Oscar, Rafael (Esteves), Rafael (Hansen), Ricardo, and
Rodolfo. Being member of this group added values to me that goes beyond Master’s degree.
Forgiveness if I forgot to mention someone. I thank to Marotta for having given me a powerful
nickname, calling me Batman, a respect position for the skills that Batman has. It could have
been worse.

I would like to thank Thiago for being a great friend and brother by understanding my
absences in our company and unconditionally support me for achieving of this step of my life.

My thanks to my colleagues and friends from URI (Integrated Regional University): An-
dré, Dioni, Eliakim, Gustavo, Henrique, Lucas, Rafael, Rodrigo (big), Ronaldo (Maninho), and
Vagner from Information Technology and Communication Department, while I was still work-
ing in this department and specially Éderson (Palmera), Érlon, and Rodrigo (Góis) by moments
of friendship, fun, and for supporting me in the Network Management Sector when I was absent.
Catiane, Giancarlo, Leandro, and Marcos, specially Maurício and Clicéres from Department of
Computer Science for supporting and understanding the importance of this step in my profes-
sional career. Elisabete, Clóvis, Nestor, and Silvia for supporting, believing, and giving me the
opportunity to develop my skills and reinforce my knowledge, making me a better professional.

Finally, I would like to thank the others friends, colleagues, professors, and staff of the
Informatics Institute from UFRGS and from URI (as a whole), by their support during the
accomplishment of this work. Thank you all!

AGRADECIMENTOS

Eu gostaria de agradecer a Deus por me dar força e saúde para concluir com êxito esta
jornada da minha vida.

Eu gostaria de agradecer a minha mãe Elenir, que sempre foi exemplo de humildade, perse-
verança, coragem, honestidade, e muitas outras qualidades. Para você mãe, meu eterno agradec-
imento. Você é meu ídolo. Amo você.

Meu emotivo agradecimento vai para minha esposa Bárbara pelo apoio incondicional, não
importando as circunstâncias, por encorajar meus projetos profissionais, e por me ensinar o
grande valor do verdadeiro amor. Além disso, obrigado por sua paciência, carinho e compan-
heirismo. Você me tornar uma pessoa melhor. Obrigado por ser meu ombro para chorar. Essa
conquista só foi possível por causa de você: minha amiga, meu amor, minha vida. Eu te amo.

Um agradecimento especial ao meu orientador Prof. Alberto e meu co-orientador Prof.
Lisandro por todas as lições intelectuais e filosóficas, experiências, oportunidades e críticas,
e também por todas as conversas sobre decisões de vida. Hoje, eu entendo que tudo isso foi
extremamente importante para me tornar um melhor pesquisador. Além disso, obrigado por
acreditarem no meu potencial e me dar a oportunidade de mostrar meus talentos e habilidades.
Agradeço também aos professores Luciano P. Gaspary, Liane M. R. Tarouco, Carlos A. Kamien-
ski (UFABC), Cláudio F. R. Geyer e Philippe O. Navaux por sempre exigir o melhor de mim.
Certamente minhas habilidades na produção de pesquisas foram melhoradas por cada um de
vocês.

Posso dizer que não só encontrei amigos que me apoiaram e me fizeram sentir em casa,
mas eu encontrei uma nova família. Eu sou muito grato a todos os meus grandes amigos do
laboratório de pesquisa 212. Obrigado Anderson (Mr. Andersen), Gabriel (Doceiro), GerMano
(Mano/little Brother), Juliano (no nickname), Lucas (Bondan) , Luis (Bride[Sem ofensas!]),
Pedro (Catarina/Peter) e Vinicius (Funai). A experiência de trabalhar e trocar ideias com todos
vocês foi muito importante para mim, e as lições que aprendi vão me seguir por toda a vida.
Sou grato ao grupo que criamos para descontração e apoiar uns aos outros: O Grupo dos De-
scolados. O apoio incondicional, nos bons e maus momentos, oferecido por este incrível grupo
foi essencial para mim.

Obrigado a todos os outros amigos do grupo de Redes de Computadores: Carlos (Ranieri),
Cristiano, Daniel, Jéferson, Leonardo, Lucas (Müller), Maicon, Marcelo (Marotta), Márcio,
Matheus (Cadori), Matheus (Ganso), Miguel, Oscar, Rafael (Esteves), Rafael (Hansen), Ricardo
e Rodolfo. Ser membro deste grupo acrescentou valores que vai além do Mestrado. Perdão se
eu esqueci de mencionar alguém. Agradeço ao Marotta por ter me dado um poderoso apelido,
me chamando de Batman, uma posição de respeito pelas habilidades que o Batman possui.
Poderia ter sido pior.

Gostaria de agradecer ao Thiago por ser um grande amigo e irmão compreendendo minhas

ausências em nossa empresa e me apoiar incondicionalmente para a realização desta etapa da
minha vida.

Meus agradecimentos aos meus colegas e amigos da URI (Universidade Regional Integrada):
André, Dioni, Eliakim, Gustavo, Henrique, Lucas, Rafael, Rodrigo (Grande), Ronaldo (Man-
inho) e Vagner do Departamento de Tecnologia da Informação e Comunicação, enquanto eu
ainda estava trabalhando neste departamento e especialmente Éderson (Palmera), Érlon e Ro-
drigo (Góis) por momentos de amizade, diversão, e por me apoiar no Setor de Gerência de Rede,
quando eu estava ausente. Catiane, Giancarlo, Leandro, e Marcos, especialmente ao Maurício e
Clicéres do Departamento de Ciência da Computação pelo apoio e compreensão da importância
desta etapa na minha carreira profissional. Elisabete, Clóvis, Nestor e Silvia por apoiar, acredi-
tar, e me dar a oportunidade de desenvolver minhas habilidades e reforçar o meu conhecimento
tornando-me um profissional melhor.

Finalmente, gostaria de agradecer ao restante dos amigos, colegas, professores e funcionários
do Instituto de Informática da UFRGS e da URI (como um todo), por seu apoio durante a real-
ização deste trabalho. Obrigado a todos.

"Intelligence is the ability to adapt to change".
— STEPHEN HAWKING.

ABSTRACT

Software-Defined Networking (SDN) aims to provide a more sophisticated and accurate ar-
chitecture for managing and monitoring network traffic. SDN permits centralizing part of the
decision-making logic regarding flow processing and packet routing in controller devices. De-
spite this, the behavior of network devices and their configurations are often written for specific
situations directly in the controller. This becomes an issue when there is an increase in the
number of network elements, links, and services, resulting in a large amount of rules and a
high overhead related to network configuration. As an alternative, techniques such as Policy-
Based Management (PBM) and policy refinement can be used by high-level operators to write
Service Level Agreements (SLAs) in a user-friendly interface without the need to change the
code implemented in the controllers. However, policy refinement in the new research area of
SDN has been a neglected topic, in part, because refinement is a nontrivial process. When us-
ing SLAs, their translation to low-level policies, e.g., rules for configuring switching elements,
is not straightforward. If this translation is not performed properly, the system elements may
not be able to meet the implicit requirements specified in the SLA. In this context, we intro-
duce ARKHAM: an Advanced Refinement Toolkit for Handling Service Level Agreements in
Software-Defined Networking. This work presents (i) a Policy Authoring Framework that uses
logical reasoning for the specification of business-level goals and to automate their refinement;
(ii) an OpenFlow controller which performs information gathering and configuration deploy-
ment; and (iii) a formal representation using event calculus that describes our solution. As a
result, our approach is capable of identifying the requirements and resources that need to be
configured in accordance with SLA refinement, and can successfully configure and execute dy-
namic actions for supporting infrastructure reconfiguration.

Keywords: Policy-based management. Policy refinement. Software-defined networking. Ser-
vice level agreement.

ARKHAM: um avançado conjunto de ferramentas de refinamento para manipulação de
acordos de nível de serviço em redes definidas por software

RESUMO

Redes definidas por software (Software-Defined Networking – SDN) tem como objetivo for-
necer uma arquitetura mais sofisticada e precisa para gerenciar e monitorar o tráfego da rede.
SDN permite centralizar parte da lógica de tomada de decisão sobre o processamento de fluxo
e roteamento de pacotes em dispositivos chamados controladores. Apesar disso, o comporta-
mento dos dispositivos de rede e suas configurações são muitas vezes escritos para situações
específicas diretamente no controlador. Isto torna-se um problema quando há um aumento no
número de elementos, ligações e serviços de rede, resultando numa grande quantidade de regras
e uma elevada sobrecarga relacionada à configuração da rede. Como alternativa , técnicas, tais
como gerenciamento baseado em políticas (Policy-Based Management – PBM) e refinamento
de políticas podem ser utilizadas por operadores de alto nível para escrever Acordos de Nível
de Serviço (Service Level Agreements – SLAs) em uma interface amigável, sem a necessidade
de alterar o código implementado nos controladores. No entanto, o refinamento de políticas na
nova área de pesquisa SDN tem sido um tema negligenciado, em parte, porque o refinamento
não é um processo trivial. Ao utilizar SLAs, a sua tradução para políticas de baixo nível, por
exemplo, regras para a configuração de elementos de comutação, não é simples. Se essa tradu-
ção não for realizada corretamente, os elementos do sistema podem não ser capaz de cumprir os
requisitos implícitos especificados no SLA. Neste contexto, este trabalho apresenta ARKHAM:
um avançado conjunto de ferramentas de refinamento para manipulação de acordos de nível de
serviço em redes definidas por software. Este conjunto de ferramentas é composto por (i) um
framework para criação de políticas que usa raciocínio lógico para a especificação de objetivos
de nível de negócio e automatização de seu refinamento; (ii) um controlador OpenFlow que re-
aliza a coleta de informações e implantação de configurações na rede; e (iii) uma representação
formal de políticas de alto nível utilizando Event Calculus e aplicando raciocínio lógico para
modelar tanto o comportamento do sistema quanto o processo de refinamento de políticas para
o gerenciamento de SDN. Como resultado, a abordagem é capaz de identificar as necessidades
e os recursos que precisam ser configurados de acordo com o refinamento do SLA, podendo
assim configurar e executar com sucesso ações dinâmicas de suporte à reconfiguração de infra-
estrutura.
Palavras-chave: Gerenciamento de baseado em políticas. Refinamento de políticas. Redes
definidas por software. Acordo de nível de serviço.

LIST OF FIGURES

2.1 OpenFlow-Based SDN architecture. 20
2.2 Example of SLA policy refinement. 24

3.1 Overall Policy Refinement Toolkit. 27
3.2 Example of occurrences of elements of our grammar in an SLA. 30
3.3 Deriving SLOs/parameters from goal and gathering network information. . 32
3.4 Diagram of the StartUp Phase. 33
3.5 Diagram of the Events Phase. 34
3.6 Diagram of the Analysis Phase. 36
3.7 Flow diagram to query qos-regexes in an SLA and display classes that

match the SLA. 38
3.8 Flow diagram to query service-regexes in an SLA and display classes that

match the SLA. 38
3.9 Flow diagram to query requirements-regexes in an SLA and display classes

that match the SLA. 39
3.10 Flow diagram to modification or creation QoS classes. 40

4.1 Example of network infrastructure. 48
4.2 Example of alternative routes for Figure 4.1. 48
4.3 Average number of iterations for each SLA performed in each scenario. . . 60

5.1 Policy Authoring Graphical User Interface Module. 63
5.2 Input screen to SLA operations. 64
5.3 Scenarios for the experiments with increasing number of switches and link

redundancy. 66
5.4 Average time for recognition of links, calculation, and installation of rules

in the switches. 67
5.5 Average response time for each SLA. 69
5.6 Average response time for SLAs 1, 2, and 3 performed in scenarios X, Y,

and Z. 72
5.7 Percentage of total time for SLAs 1, 2, and 3 performed in scenarios X, Y,

and Z. 73
5.8 Number of rules deployed in each scenario. 74

LIST OF TABLES

3.1 Examples of regular expression. 30

4.1 Event Calculus Predicates . 41
4.2 New Predicates for Event Calculus. 43
4.3 Operations used with predicates. 44
4.4 QoS Classes . 50
4.5 Description of SLAs used in the experiments. 56
4.6 Number of classes registered in the repository. 56
4.7 Rules performed for each SLA in each scenario. 57
4.8 Description of Operations used in the rules. 58
4.9 Results of the iterations and classes found for each scenario. 59

5.1 Number of hosts, switches, and links in each scenario. 65
5.2 Description of SLAs used in the experiments. 68
5.3 Number of classes registered in the repository. 69
5.4 Experiment results. 70
5.5 Description of SLAs used in the experiments. 71
5.6 Number of switches and links in each scenario. 71
5.7 Number of classes registered in the repository. 71

LIST OF ABBREVIATIONS AND ACRONYMS

BDIM Business-Driven IT Management

BLOs Business-Level Objectives

DHCP Dynamic Host Configuration Protocol

DMTF Distributed Management Task Force

DNS Domain Name Service

ECA Event-Condition-Action

GB Gigabyte

GUI Graphical User Interface

ICMP Internet Control Message Protocol

I/O Input/Output

ICT Information And Communication Technology

IETF Internet Engineering Task Force

IP Internet Protocol

KAOS Knowledge Acquisition in autOmated Specification

LAN Local Area Network

LDAP Lightweight Directory Access Protocol

LLDP Link Layer Discovery Protocol

MAC Media Access Control

MB Megabyte

MIB Management Information Base

OP Orchestration Plane

OSS Operations Support Systems

P2P Peer-to-Peer

PBM Policy-Based Management

PBNM Policy-Based Network Management

PCIM Policy Core Information Model

PDL Policy Description Language

PDP Policy Decision Point

PEP Policy Enforcement Point

PMT Policy Management Point

PR Policy Repository

QoS Quality of Service

RFC Request For Comments

RTT Round-Trip Time

SDN Software-Defined Networking

SLA Service Level Agreement

SLO Service Level Objective

SLS Service Level Specification

SNMP Simple Network Management Protocol

CONTENTS

1 INTRODUCTION . 16

1.1 Problem and Motivation . 16

1.2 Aims and Main Contributions . 17

1.3 Document Outline . 18

2 BACKGROUND . 19

2.1 Software-Defined Networking (SDN) . 19

2.2 Policy-Based Management (PBM) . 21

2.2.1 Typical Categories of Policy-Based Management 21

2.2.2 Policy Languages Paradigms . 22

2.2.3 Basic Entities . 23

2.2.4 SLA Policy Refinement . 24

3 POLICY REFINEMENT TOOLKIT . 26

3.1 Policy Refinement Toolkit: An Overview . 26

3.1.1 Main Components . 27

3.1.2 Controlled Natural Language (CNL) . 29

3.1.3 Refinement Process: Bottom-up and Top-down Stages 30

3.2 Low-level Controller Configuration . 32

3.2.1 Startup Phase . 32

3.2.2 Events Phase . 34

3.2.3 Analysis Phase . 35

3.3 Policy Authoring Operation . 37

3.3.1 Matching Process: A Step-by-step to Match Regexes 37

3.3.2 Modifying and Creating QoS Class . 39

4 AN EC-BASED FORMALISM FOR POLICY REFINEMENT 41

4.1 Event Calculus and Logical Reasoning . 41

4.2 Extend Event Calculus . 42

4.3 Policy Refinement Model . 44

4.4 Modeling Case-studies . 47

4.4.1 Network Infrastructure Formal Representation 47

4.4.2 Services, QoS Classes, and Parameters Formal Representation 50

4.4.3 SLA Refinement . 50

4.4.4 EC-Based Formalism Experimental Evaluation 55

5 PROTOTYPE AND EXPERIMENTAL EVALUATION 61
5.1 Prototype . 61
5.1.1 Low-level Controller Prototype . 61
5.1.2 Policy Authoring Framework Prototype . 62
5.2 Experimental Evaluation . 65
5.2.1 Controller Experiments . 65
5.2.2 Policy Authoring Experiments . 68
5.2.3 End-to-end Process Experiments . 69

6 RELATED WORK . 75
6.1 Software-Defined Networking . 75
6.2 Policy-Based Management . 76

7 CONCLUDING REMARKS . 78
7.1 Summary of Contributions . 78
7.2 Discussion and Lessons Learned . 79
7.3 Final Remarks and Future Work . 80

REFERENCES . 82

APPENDIXA PUBLISHED PAPER – AINA 2014 86

APPENDIXB ACCEPTED PAPER – IM 2015 95

16

1 INTRODUCTION

For many years, organizations have developed management strategies for dealing with the
scale and computational complexity in Information and Communications Technology (ICT) in-
frastructures. The emergence of Software-Defined Networking (SDN) (NUNES et al., 2014)
aims to provide a more sophisticated and accurate architecture for managing and monitoring
network traffic. It provides an extensible platform for delivery of network services, capable of
responding quickly to service requirement changes. To accomplish this, SDN simplifies net-
work management by removing part of the decision-making logic from the switching elements.
These decisions can be centralized in a network component called controller, while switching
elements become simple packet forwarding devices. Thus, controllers can have a global view of
the network traffic, and switching elements can be configured through an open interface, such
as the OpenFlow protocol (MCKEOWN et al., 2008), independently from the hardware (BAK-
SHI, 2013). As a result, this allows an effective way for providing dynamically – and at runtime
– services that support, for example, Quality of Service (QoS) reconfiguration, access control,
and load balancing (SEZER et al., 2013).

1.1 Problem and Motivation

Despite the benefits of SDN, the intended behavior of network devices are usually defined
by static rules written to cope with specific situations directly in the controller (MONSANTO et
al., 2013; SEZER et al., 2013; HYOJOON; FEAMSTER, 2013). As a result, this programming
model is susceptible to traditional problems in the network management domain, such as:

• human work overload due to the need of writing a large set of rules;

• limit or hinder the development and deployment of new services and resources that were
not anticipated when hard-coded rules were written; and

• low-level rules that do not faithfully fulfill high-level goals, as network programmers may
not be aware of business goals.

A possible solution to alleviate these problems is the use of Policy-Based Management
(PBM). The use of PBM aims to reduce the complexity of network management tasks, en-
abling the system to gain a certain level of autonomy. PBM approaches can be used to govern
complex network infrastructures through a set of rules rather than managing device-by-device
configurations (HAN; LEI, 2012). In PBM systems an administrator specifies the infrastructure
objectives/goals and restrictions in the form of rules to govern the behavior of the managed sys-
tem elements. In addition, policy refinement techniques can be used to automatically translate
high-level policies – e.g., specified as a Service Level Agreement (SLA) – into a set of low-level
ones, which can be enforced directly by network devices. Policies can be specified for each ele-
ment, group or domain, targeting the operation and requirements of the network infrastructure.

17

Additionally, at runtime, the system may receive information from the infrastructure, and new
rules can be dynamically deployed, supporting adaptive system behavior. Thus, the behavior
of network components can be modified without the need to recode them, and without human
intervention or the need to stop the system (VERMA, 2002).

The use of PBM and, in particular, policy refinement for management of traditional net-
works has been investigated with relative success (BANDARA et al., 2004; BANDARA et al.,
2005; WALLER et al., 2006; CRAVEN et al., 2011). However, we argue that policy refine-
ment in the new research area of SDN has been a neglected topic, in part, because refinement
is a nontrivial process. When using SLAs, their translation to low-level policies, e.g., rules
for configuring switching elements, is not straightforward. If this translation is not performed
properly, the system elements may not be able to meet the implicit requirements specified in
the SLA (CRAVEN et al., 2011). For this reason, when applying policy refinement, specific
problems must be addressed:

• determining which resources are needed to fulfill the policy requirements;

• translating high-level policies into operational policies that the system can enforce; and

• checking whether or not the low-level policies are accurate and faithfully satisfy the re-
quirements specified by the high-level policy (BANDARA et al., 2004).

1.2 Aims and Main Contributions

In this context, we investigate in this work a solution for the refinement of high-level policies
(expressed in a controlled natural language) into SDN rules to be enforced by the network
controller. We specifically introduce ARKHAM: an advanced refinement toolkit for handling
service level agreements in software-defined networking. This toolkit presents:

• a Policy Authoring Framework that uses logical reasoning for the specification of business-
level goals and to automate their refinement. On the one hand, abductive reasoning assists
Policy Authoring Framework operators in identifying the QoS classes that can support
the specifications of the SLA. On the other hand, inductive reasoning assists operators in
specifying system parameters in the configuration of QoS classes that can fulfill require-
ments of an SLA;

• an OpenFlow controller which performs information gathering, which is later used, for
example, to calculate optimal routes. Additionally, it configures the rules in the switches
for optimization of network resource usage at runtime; and

• a Formal Representation of high-level SLA policies using Event Calculus (EC) and the
used of logical reasoning to model both the system behavior and the policy refinement
process in SDN architectures. It is our aim with this formalism to assist network operators
to develop refinement tools and configuration approaches to achieve more robust SDN
deployments. Thus, the development of the refinement approaches becomes independent

18

of the network controller implementation or policy language used.

To the best of our knowledge, this is the first time that policy refinement has been applied
to SDN. The development of a policy refinement strategy specifically for SDN can benefit from
several aspects found in these environments. Firstly, it is possible to more easily collect moni-
toring information and network traffic data, with the aim of checking whether high-level goals
are being fulfilled by low-level rules or not. Secondly, we have the ability to refine policies to
lower level ones, which can be (re)implemented in any network device, since the SDN controller
uses a standard protocol and interface.

The main contributions of this work are:

• refined policies with minimal human intervention;

• analysis of the infrastructure’s ability to fulfill the requirements of high-level policies;

• decreased amount of network rules coded into the controller; and

• management and deployment of new rules with minimal disruption to the network.

In order to obtain better analysis and results, we have limited our scope to scenarios for QoS
management. As a proof-of-concept, we executed several experiments considering different
SLAs by changing the number of expressions and their increasing complexity, different scenar-
ios by changing the number of network elements, different populations stored in the repository,
among others. Further, to validate our formal representation, we present some case studies that
show the representation of network infrastructure and their elements, services, QoS classes, and
SLAs. Furthermore, to validate the use of logical reasoning and event calculus, we present case
studies that illustrate the end-to-end decomposition of rules and demonstrate how our refine-
ment solution performs. In addition, our formalism demonstrated that policies can be designed,
analyzed and, if necessary, refined and/or adapted before they are deployed in the network in-
frastructure.

1.3 Document Outline

This dissertation is organized as follows. Chapter 2 provides an overview of the main con-
cepts employed in our solution. We present in details the refinement solution developed, to-
gether with the elements, techniques, and concepts that are part of the same in Chapter 3. In
Chapter 4 we define and demonstrate a formal representation of high-level SLA policies to
model both the system behavior and the policy refinement process for SDN management. We
present the prototype, experiments, and a discussion about the achieved results in Chapter 5. In
Chapter 6 we discuss the related work in this research area. Finally, in Chapter 7 we conclude
this work with final remarks, along with a proposal for future work.

19

2 BACKGROUND

This chapter presents an overview of the main elements, techniques, and concepts involved
in our policy refinement toolkit. Below, we start with a brief discussion of the main concepts
of SDN with OpenFlow in Section 2.1. In Section 2.2 we explain the notions of Policy-Based
Management (PBM) and Policy Refinement.

2.1 Software-Defined Networking (SDN)

Software-Defined Networking is a dynamic, adaptable, controllable, and flexible network
architecture. It provides an extensible platform for delivery of network services, capable of
responding quickly to service requirement changes (DAVIS et al., 2012). An SDN architec-
ture comprises four planes: control plane, data plane, application plane, and management plane
(BETTS et al., 2014). The control plane is responsible for the protocols and the decision mak-
ing that result in the updating of forwarding tables. The data plane, known as the forwarding
plane, manages the switching and routing of network packets. The application plane includes
SDN applications (e.g., firewalls, load balancers), business applications (e.g., e-commerce por-
tals, enterprise management systems) or Cloud Orchestration (e.g., OpenStack, CloudStack).
Each application has exclusive control of a set of resources provided by SDN controllers. The
management plane includes management systems performing operations and functions to sup-
port the infrastructure, e.g. SLAs and low-level policies to drive SDN applications and SDN
controllers.

In traditional networks, the control plane is executed in each network device. Each device
has its proprietary protocols becoming difficult to be programmed. Often is not possible to
carry out the management decision-making that has not been anticipated. Differently, SDN is
characterized by a logically centralized control plane, which allows moving part of the decision-
making logic of network devices to external controllers. This provides controller devices with
the ability to have an overall view of the network and its resources, thus becoming aware of
all the network elements and their characteristics. Based on this centralization, network de-
vices become simple packet forwarding elements, which can be programmed through an open
interface, such as the OpenFlow protocol (WICKBOLDT et al., 2015; NUNES et al., 2014).

OpenFlow is an open protocol that allows the development of programmable mechanisms
based on a flow table in different forwarding devices. The OpenFlow protocol establishes a se-
cure communication channel between OpenFlow switches and the controller, using this channel
for controlling and establishing flows according to customizable programs (MCKEOWN et al.,
2008).

Briefly, the main elements of an OpenFlow-based SDN architecture are (depicted in Figure
2.1): (i) a flow table in each switch containing entries for each active flow; (ii) a controller that
executes customized programs to decide which rules and actions are going to be installed to

20

control packet forwarding in each switch element; and (iii) an abstraction layer that commu-
nicates securely with a controller reporting on new input flows that are not present in the flow
table. Each entry in the flow table consists of: (a) a mask of fields found in the packet header,
which is used to match the incoming packets, (b) counters for collecting statistics for each spe-
cific flow, such as number of bytes, number of packets received, and flow duration, and (c) a
series of actions to be performed when a packet matches the corresponding mask (BAKSHI,
2013; BETTS et al., 2014).

Figure 2.1: OpenFlow-Based SDN architecture.

OpenFlow

Switch 1

OpenFlow

Switch 2

e.g. OpenFlow Protocol (secure channel)

Flow Table

Action StatisticsFlow 1 Rule

Action StatisticsFlow 2 Rule

Action StatisticsFlow n Rule

OpenFlow

Switch n

SDN Control Software

Southbound Communication

Controller

Applications

Route

Management

Network

Visibility

Network

Provisioning
...

Business

Applications

Cloud

Orchestration

SDN

Applications

Management

Functions and

Operations

Support

Systems (OSS)

Access Control

List (ACL)

Service Level

Agreement

(SLA)

Credentials

Policies

...

Managers

Open

API

Open

API

Open

API

Northbound Communication

Map to QueueModify FieldsDrop packets
Forward Packet

to Controller

Forward Packet

to Ports

...DurationBytes Packets

Ethernet Type

Ethernet

Destination

Ethernet Source

MPLS Label

VLAN ID

VLAN Priority

Metadata

Ingress Port

MPLS Traffic

Class

Transport

Source Port

IP TOS Field

IP Protocol
Transport

Destination Port

IP Destination

IP Source

Source: Betts et al. (2014).

SDN is characterized by the separation between the data plane and the control plane. Thus,
with the OpenFlow protocol, on the one hand, the data plane is concerned with the forwarding
of packets based on rules, called OpenFlow actions, associated with each table entry in the
switch. On the other hand, the control plane enables the controller to manage the entries in the
flow table associated with the desired traffic (BAKSHI, 2013; MCKEOWN et al., 2008).

21

2.2 Policy-Based Management (PBM)

Policies are defined as a collection of rules which express and enforce the required behavior
of a resource. RFC 3198 (WESTERINEN et al., 2001) provides the following definitions for a
policy:

• A defined goal or action that determines how present and future decisions are taken.
Policies are established or executed within a particular context;

• Policies refer to a set of rules to manage and monitor access to features of a particular
ICT infrastructure (MOORE et al., 2001).

In Policy-Based Management (PBM) systems an administrator specifies the infrastructure
objectives/goals and constraints in the form of rules to guide the behavior of the elements in
a system (VERMA, 2002). The use of PBM presents three main benefits (HAN; LEI, 2012).
Firstly, policies are predefined by administrators and stored in a repository. When an event
occurs, these policies are requested and accessed automatically, without the need of manual
intervention. Secondly, the formal description of policies permits automated analysis and ver-
ification with the aim of guaranteeing consistency to some extent. Thirdly, because of the
abstraction of technical details, policies can be inspected and changed dynamically at runtime
without modifying the underlying system implementation.

Policies may be seen in two principal levels of abstraction: low-level policies, which are
related to a domain or a device, and high-level policies that are more user-friendly. A simple
example of a low-level policy is the settings on routers so multimedia traffic packets have higher
priority over peer-to-peer (P2P) traffic packets. An example of a high-level policy is an Service
Level Agreement (SLA) (BLAKE et al., 1998). In PBM, using techniques for refinement, a
high-level policy such as an SLA can be translated into low-level policies that are applicable in
various elements of a system (BANDARA et al., 2004; MOFFETT; SLOMAN, 1993). SLAs
are generally business-oriented, and they leave aside the technical details, which are guided by a
Service Level Specification (SLS) and a Service Level Objective (SLO). The SLS is a technical
interpretation of the SLA. The SLO is a sub-item of the SLS that contains the parameters to
achieve the SLS (AIB; BOUTABA, 2007).

2.2.1 Typical Categories of Policy-Based Management

PBM approaches can be categorized by observing they management focus and environment
elements. In the following, we introduce some of the main classifications:

• Policy-Based Network Management (PBNM) – In PBNM, the main goal is to spec-
ify how the devices and network resources comply with system operation requirements.
From the view point of the network operation, the use of PBNM aims to reduce the com-
plexity of the network management tasks allowing the system to gain a certain autonomy-

22

level (HAN; LEI, 2012). Several network devices, whether domestic or corporate, support
some type of management. For example, home-routers can support the IP addresses dis-
tribution using a Dynamic Host Configuration Protocol (DHCP) server, binding the MAC
address of client device interface. Further, management systems that support quality of
service guarantees can be programed to configure each network device, removing the
overload of manual work.

• Policy-Based Security Management – In Policy-Based Security Management there is
a focus on system resources protection, either physically (e.g., environments) or logi-
cally (e.g., confidential data, copyright, and user privacy) (WALLER et al., 2011). Many
security-related problems are linked to application developers. Oftentimes, developers
are unaware of the safety practices, creating applications that only meet business require-
ments, not realizing security and compliance tests. In this management type, problems
such as connection ports open, encryption changes, among others, can be monitored,
identified and corrected.

• Business-Driven IT Management (BDIM) – Organizations have high expectations on
their computing infrastructure to achieve their Business-Level Objectives (BLOs). How-
ever, there are several critical management problems due to complexity of such sys-
tems (FITO et al., 2012). BDIM aims to monitor and measure IT resources for investment
recommendations, such as purchase of equipment in order to improve the business.

• Policy-Based Cloud Management – Cloud computing offers the outsourcing of re-
sources and services, reducing infrastructure costs for both providers and customers. This
does not allow customers to outsource the responsibility of the confidentiality, integrity,
and access control to providers (PUESCHEL; PUTZKE; NEUMANN, 2012). In the same
direction, also does not allow providers to be able to predict and provide efficiently re-
source because the service range is not fully estimated yet. Because of this, and also by the
fact that cloud computing is transparent to programmers and users, it induces challenges
that were not present in previous models of computation (SQUICCIARINI; PETRACCA;
BERTINO, 2012). Thus, Policy-Based Cloud Management is still an open question and
its concept is very wide and undefined. However, we can apply various techniques built
for Distributed Systems Management such as Quality of Service systems, Security sys-
tems, among others (VILLEGAS et al., 2012).

2.2.2 Policy Languages Paradigms

Paradigms may contain specific components such as (HAN; LEI, 2012):

• Event – It is an occurrence in the system which was specified in a rule and was being
monitored. Event triggers the policy to be enforced.

• Condition – It is a predicate expression that can be evaluated as True, False or Not Ap-

23

plicable. There are several conditions, such as run-time or waiting for something, a type
of application, among others. If the condition is met (True), then the next step (Action)
should be executed.

• Action – It is the execution of something that was determined in the policy. An action
can generate an action set, e.g., the action “RebootServer” can trigger other actions such
as verifying the online users, save and close open programs, among others.

In general, rules in most policy languages are based on the following paradigms (HAN;
LEI, 2012): Condition-Action paradigm and Event-Condition-Action paradigm. In Condition-
Action paradigms policies are implemented through a set of rules. Each policy rule is built up
by a set of conditions having a set of actions. Thus, this type of policy rule follows an “IF
(Condition) THEN (Action)”. When the conditions of a policy rule are true the correspond-
ing actions can be performed. The Event-Condition-Action (ECA) paradigm is similar to the
Condition-Action paradigm. The only difference is the need of an event to occur in the sys-
tem to trigger the execution of the policy. This type of policy rule follows an “ON (Event) IF
(Condition) THEN (Action)”.

2.2.3 Basic Entities

IETF/DMTF introduces four basic entities to model the architecture of a policy-based sys-
tem (WALLER et al., 2011):

• Policy Management Tool (PMT) – allows the administrator to manage policies;

• Policy Repository (PR) – stores policy-related information;

• Policy Decision Point (PDP) – searches, verifies, and validates the necessary conditions
for policies;

• Policy Enforcement Point (PEP) – executes and monitors policies also providing feed-
back of relevant information during runtime.

The key of this architecture is the PDP. PDP exerts a important part of the control processing
in the system. In this entity, high-level policies are translated into actions understood by system
elements, and remain awaiting at sometime be executed in the PEPs. For correct operation, the
PDP should differentiate every detail of each PEP in the system to provide increased accuracy
and refinement in each policy.

In this architecture type, administrators define management policies that are inserted into the
PR –, e.g., Lightweight Directory Access Protocol (LDAP) – through a PMT. After that, a PDP
performs event monitoring on the system, following the administrator settings. When a specific
events occur, the PDP will be triggered to retrieve from the PR applicable policies to each
individual case. For each policy retrieved from the specific event, when specific conditions are
met, the corresponding actions are enforced by the PEP associated with the monitored element.

24

2.2.4 SLA Policy Refinement

Policy refinement aims to translate a high-level policy into a set of corresponding low-level
policies. In other words, using techniques for refinement, a high-level policy such as a Service
Level Agreement (SLA) can be translated into low-level policies that are applicable in various
elements of a system (BANDARA et al., 2004; MOFFETT; SLOMAN, 1993).

SLAs are generally business-oriented, and they leave aside the technical details, which are
guided by a Service Level Specification (SLS) and a Service Level Objective (SLO). The SLS
is a technical interpretation of the SLA. The SLO is a sub-item of the SLS that contains the
parameters to achieve the SLS (AIB; BOUTABA, 2007).

Figure 2.2 presents an overview of the process of refining SLAs. The SLA, SLS and SLO
represent, respectively, the documentation describing the service in a formal way, the technical
form (guide) for its functioning requirements, and the parameters aimed at quality and satisfac-
tion. At the system level, a quality of service system interprets the management requirements,
and enforces policies for the configuration of elements at the hardware level.

Figure 2.2: Example of SLA policy refinement.

Router 1, Router 2, , Router n Switch 1, Switch 2, , Switch n

SLO – Priority = 1

SLS – Quality of Service VoIP – Technical Guide

SLA – Quality of Service VoIP

Quality of Service System

Documentation

Level

System Level

Hardware Level

Source: by author (2015).

The refinement process typically involves stages of decomposition, operationalization, im-
plementation, operation and re-refinement of goals and subgoals (CRAVEN et al., 2011; CRAVEN
et al., 2010). Policy refinement aims to automate these stages to get the translation of policies
relating to objects and implementable actions, and ensure that the low-level policies still satisfy
the goals defined by the high-level policy.

The main objectives of policy refinement are identified by Moffett and Sloman (MOFFETT;
SLOMAN, 1993) as:

• To determine what resources are needed to fulfill policy needs;

25

• To translate the high-level policy into a set of operational policies that the system can
enforce;

• To examine whether the low-level policies actually meet precisely the requirements spec-
ified by the high-level policy.

26

3 POLICY REFINEMENT TOOLKIT

In this chapter we described ARKHAM: an Advanced Refinement toolKit for Handling
service level AgreeMents in software-defined networking. Our toolkit introduces the use of
PBM paradigms to solve problems found in SDN architectures such as static rules and config-
urations often written for specific situations directly in the controller. Using PBM we reduced
the amount of static rules and configurations writing more generic code which deploys specific
rules obtained from a policy repository.

Our solution borrows ideas from previous investigations (BANDARA; LUPU; RUSSO,
2003; BANDARA et al., 2005; CRAVEN et al., 2011), which have been limited due to the
characteristics of traditional IP networks, such as best-effort packet delivery and distributed
control state in forwarding devices (SEZER et al., 2013). Thus, simultaneously, we leverage
SDN’s main features to enhance the policy refinement process.

In SDN, these limiting factors of traditional networks can be overcome, since in imple-
mentations such as OpenFlow the switching elements have their control plane centralized in an
element called controller. The controller receives information from all network elements and so
can have an overall view of what happens in the network infrastructure. This architecture where
network traffic information is centralized in a controller is valuable to our policy refinement so-
lution. It makes it easier to retrieve information from the network infrastructure, and to validate
SLA requirements more accurately.

Below, we present an overview of our policy refinement toolkit in Section 3.1. In Section
3.2 we introduce a low-level controller to collect network information and deploy rules. Finally,
we describe a policy authoring framework to write and refine SLAs in Section 3.3.

3.1 Policy Refinement Toolkit: An Overview

In this section we present conceptually our policy refinement toolkit (Figure 3.1). In or-
der to obtain better results, we have limited our scope to QoS management. It is worth noting
that our QoS management is based on routing. QoS mechanisms allow network administrators
to use existing resources efficiently and ensure the required level of service without the need
of expanding or over provisioning their networks. However, to ensure that QoS requirements
are satisfied across the network is difficult, as network devices such as switches and routers
are heterogeneous and have proprietary interfaces. Moreover, QoS architectures such as Diff-
Serv (BLAKE et al., 1998) and IntServ (BRADEN; CLARK; SHENKER, 1994) are built over
current networks. These are based on distributed hop-by-hop routing, without a broader per-
ception of global, network-wide capabilities. Thus, QoS management is a suitable case-study
to be shown.

27

Figure 3.1: Overall Policy Refinement Toolkit.

Regexes

requirements adjectiveserviceqos

Extend Event

Calculus

Logical

Reasoning

Controlled

Natural

Language

Prolog

...

OpenFlow

Switch 1

OpenFlow

Switch 2

e.g. OpenFlow Protocol (secure channel)

OpenFlow

Switch 3

Policy Authoring GUI

SLA

Descriptor

Policy

Analyzer

Parser

Configurator GUI

SLAs

QoS

regexes

Service

regexes

Requirements

regexes

Service

Descriptor

Settings

Editor

Class

Creator

Class

Modificator

Adjective

regexes

...

Bronze

Gold

Diamond

Regexes pool

QoS Classes

Routes ...

Services

S
ta

rt
u

p

p
h

a
s
e

Network

Discovery

Network

Information

Collector

Path

Generator

Standard

Rules

Deployer

Open API

E
v
e

n
ts

p
h

a
s
e

A
n

a
ly

s
is

p
h

a
s
e

Service

Events

Monitor

Analysis

Trigger

Service

Analyzer

Specific

Rules

Deployer

Network

Analyzer

Northbound Communication

Southbound Communication

OpenFlow

Switch n

...

Policy

Refinement

Model

Matching

Technique

Event Calculus

...

Peer-to-peer

VoIP

HTTP

Jitter

Delay

Bandwidth

Priority

...

more

highest

higher

high lowestlow

lower less

...

like

similar

equal

...

identical

Source: by author (2015).

3.1.1 Main Components

Our toolkit consists of several components, process, concepts, and techniques that are placed
inside the following fundamental elements:

28

• OpenFlow Controller – its operation is divided into three phases: (i) Startup Phase: dis-
covers network elements and their possible paths. In addition, it performs information
gathering such as number of hops, delay, and available bandwidth for each path. More-
over, it deploys standard rules with the idea of best-effort packet delivery; (ii) Events

Phase: identifies service events and analyzes the duration of each flow to propose mod-
ifications to the network configuration triggering the Analysis Phase; and (iii) Analysis

Phase: determines the best path based on the characteristics of the network and service re-
quirements. Additionally, it implements the rules and monitors the Events Phase in order
to identify possible enhancements to the active flows and reconfigure the infrastructure.
The controller phases will be explained in more detail in Section 3.2.

• Policy Authoring Framework– is divided into two modules: (i) Policy Authoring Graph-

ical User Interface: enables the writing of SLAs in a Controlled Natural Language (CNL)
and automates their translation into the low-level controller configuration. The Policy

Analyzer Component analyses the SLA requirements that match the regexes (regular ex-
pressions) stored in the Policy Repository, and uses abductive reasoning to suggest the
more appropriate QoS class/classes to the SLA. In addition, if the network cannot accom-
modate the SLA requirements, the Policy Analyzer performs a process using inductive
reasoning to suggest classes or the creation of a new class that can fulfill the SLA re-
quirements; and (ii) Configuration Graphical User Interface: permits the specification of
regular expressions and technical characteristics of services and their parameters such as
TCP/UDP port numbers, service name. The policy authoring operations will be described
in more details in Section 3.3.

• Policy Repository – stores both the information about the behavior of the infrastructure,
which is obtained during the controller phases, and policy authoring operations. For ex-
ample, the repository stores all the possible links between elements, number of elements,
and available bandwidth, delay, and jitter. Additionally, the repository maintains a list of
all services and their parameters, and some QoS classes. The information in this reposi-
tory will be used later, in the Events Phase and Analysis Phase (see Section 3.2) and in
the Policy Authoring Operation (see Section 3.3). Finally, the repository stores a wide
range of regular expressions separated by type. The regular expressions will be presented
in Section 3.1.2.

• EC-based formalism – permits the representation of high-level policies in the form of
SLAs using Event Calculus (EC) and the use of logical reasoning to model both the
system behavior and the end-to-end policy refinement process. For example, we describe
the SLAs in EC, and use logical reasoning to derive the SLOs and QoS classes based on a
system model description. We also model the state of routes and links maintained by the
controller, and use logical reasoning to match the best route based on the requirements of
the SLA. The formalism will be presented in more detail in Chapter 4.

29

As mentioned previously in Section 2.2.3, a policy-based system is composed of four ba-
sic entities: (i) Policy Management Tool (PMT) allows the administrator to manage policies;
(ii) Policy Repository (PR) stores policy-related information; (iii) Policy Decision Point (PDP)

searches, verifies, and validates the necessary conditions for policies; and (iv) Policy Enforce-

ment Point (PEP) executes and monitors policies also providing feedback of relevant informa-
tion during runtime. In the proposed Policy Refinement Tookit, these entities can be mapped as
follows: a Policy Authoring Framework represents the PMT; a MySQL database represents the
PR; an OpenFlow controller represents the PDP; and OpenFlow switches represent PEPs.

3.1.2 Controlled Natural Language (CNL)

We created a Controlled Natural Language (CNL) to establish restrictions and requirements
for writing business-level goals. Thus, our CNL aims to improve translation between what the
humans (business-level operators and infrastructure programmers) mean and what the Policy
Refinement Toolkit need to do. In addition, our CNL is a base for creating natural and intuitive
representations for formal notations. Furthermore, it can be adapted as needed for new applica-
tions, such as monitoring, firewalls, and access control. The grammar of the controlled natural
language is defined below:

Listing 3.1: Grammar of the controlled natural language.

1 Language :→ (<QoS>| < S e r v i c e >) < ModalVerb >< E x p r e s s i o n >
2 QoS :→ qos−r e g e x e s
3 S e r v i c e :→ s e r v i c e−r e g e x e s
4 ModalVerb :→ s h o u l d | s h o u l d n o t
5 E x p r e s s i o n :→ <Term >| < Term>< Connec t ive >< E x p r e s s i o n >
6 Term :→ < Parame te r >< Opera to r ><Value >
7 P a r a m e t e r :→ r e q u i r e m e n t s−r e g e x e s
8 O p e r a t o r :→ a d j e c t i v e −r e g e x e s
9 Value :→ v

10 C o n n e c t i v e :→ and | o r

Source: by author (2015).

Our toolkit uses regexes as a concise and flexible way of identifying strings of interest such
as particular characters (e.g., >, <, =, 6=,≤,≥) or words (e.g., high, low, http, ftp, gold, silver).
We defined the following types of regexes:

• qos-regexes – regular expression to identify QoS classes;

• service-regexes – regular expression to identify services;

• requirements-regexes – regular expression to identify service requirements;

• adjective-regexes – regular expression to identify adjectives in service requirements.

30

Table 3.1 shows examples of regular expressions that can be contained in an SLA. Figure 3.2
shows an SLA containing these regular expressions.

We have configured these requirements and grouped them into classes, because it is an easier
way to deal with the increasing number of policies that have common goals. However, if at any
time it is discovered that an SLA cannot be fulfilled or that some SLO cannot be achieved, the
system is flexible enough to allow the necessary adjustments.

We apply the concept of logical reasoning to support the operator in the refinement of an
SLA. We use two modes of logical reasoning: abduction to assist the Policy Authoring operator
in identifying the QoS classes that can support the specifications of the SLA; and induction to
assist the operator in specifying the system parameters in the configuration of the QoS classes
that can meet an SLA.

Table 3.1: Examples of regular expression.

Type Expression

qos-regexes Bronze, Silver, Gold, Platinum, Diamond ... N/A
service-regexes VoIP, Streaming, HTTP, FTP, SMTP, POP, P2P ... N/A
requirements-regexes Priority, Bandwidth, Delay, and Jitter N/A

adjective-regexes
more, high, higher, highest, up, over ... >

equal, like, even, uniform, equable, same, similar ... =

less, low, lower, lowest, down, below ... <

Source: by author (2015).

Figure 3.2: Example of occurrences of elements of our grammar in an SLA.

HTTP services should receive bandwidth higher than 100kbps or Gold QoS

Service ModalVerb Parameter QoSOperator ConnectiveValue

Term Expression

Source: by author (2015).

3.1.3 Refinement Process: Bottom-up and Top-down Stages

Policy refinement performs a process of derivation/translation of SLOs which must meet the
SLA. These SLOs are considered QoS-class requirements, e.g., priority, bandwidth.

31

As mentioned previously, we identified the business-level objectives and high-level policies
as Service Level Agreements (SLAs). From this, our refinement process consists of a technique
that extracts regexes from an SLA and decomposes them into meta-goals or Service Level Ob-
jectives (SLOs), i.e.:
SLA1→SLO1−1,

SLA1→SLO1−2,

SLA1→SLO1−3,

SLA1→SLO1−n.

These SLOs are identified from a query to the repository of requirements-regexes, such
as delay (D), jitter (J), bandwidth (B), and priority (P), or qos-regexes, such as Diamond, or
service-regexes, such as HTTP, according to Table 3.1. Thus,
SLO1−1→D,

SLO1−2→J,

SLO1−3→B,

SLO1−4→P.

or
SLO1−1→ qos-regexes

or
SLO1−1→ service-regexes

The refinement approach is split into two stage (Figure 3.3): The first stage, called bottom-

up, consists of the network information (e.g., bandwidth, delay) gathering process. A key el-
ement of this stage is the OpenFlow controller (described in Section 3.2) which performs the
data collection process. The information gathered is stored in a repository. Using this infor-
mation, the Policy Authoring framework (described in Section 3.3) uses abductive reasoning to
indicate to the business-level operator what are the possible configurations. These indications
are provided through settings performed previously – other SLAs or policies created manu-
ally by the business-level operator or by the infrastructure-level programmer – along with the
characteristics that the network can support.

The second stage, called top-down, is a technique for the refinement of high-level goals,
extracted from SLAs and translated into achievable goals (SLOs). An operator writes the SLAs
and create – if necessary – the QoS classes needed to fulfill them. As mentioned previously, the
bottom-up stage will try to indicate using abductive reasoning which are the best configurations
for the SLA that is being written. Thus, multiple configuration options of policies will be
offered to the operator, who can select or customize an existing configuration, or even create a
new configuration.

After any selection or customization performed by the operator, the policies will be stored
in the Policy Repository. Subsequently, the OpenFlow controller reads from the repository these
new policies starting the Analysis Phase for setting up the rules in the switches. We use in our
approach a formal representation both for the refinement of SLAs, as to confront information
about the network infrastructure behavior. The formalization of the policy refinement approach

32

Figure 3.3: Deriving SLOs/parameters from goal and gathering network information.

SLA

SLO 2 SLO 1

Jitter ...Delay

VoIP services should receive

bandwidth higher than

128kbps and delay lower

than 20ms

Repository

Jitter ...Delay

Explicit SLOs

Delay < 20ms

(SLA)

Explicit

Parameters

Delay = 20ms

(Infrastructure)

Available parameters

and network elements

Network

Infrastructure

(SDN)A
b
d

u
c
ti
v
e

In
d

u
c
ti
v
e Refinement

Technique

Translation of

Parameters

Information

Gathering

Process

T
o

p
-D

o
w

n

S
ta

g
e

B
o
tt

o
m

-U
p

S
ta

g
e

Source: by author (2015).

is based on Event Calculus (BANDARA; LUPU; RUSSO, 2003).

3.2 Low-level Controller Configuration

This section presents the operation of the controller, which is divided into three phases:
Startup Phase, Events Phase, and Analysis Phase. These three controller phases handle the
actions of the bottom-up stage. The operation of each phase is detailed in the following.

3.2.1 Startup Phase

In this phase (see Figure 3.4), the controller reads information from a repository that con-
tains descriptions and requirements of all services that are initially scheduled to run in the
network. This information is identified and set by the administrator as requirements to perform
the low-level policies in order to fulfill the SLA definitions. Thereafter, the controller monitors
the network in order to discover the devices and topology. Network devices are instructed to
send Link Layer Discovery Protocol (LLDP) packets to report their location on the topology,
which is stored by the controller in an internal data structure. While the LLDP packets are
received and stored, a routine for calculating paths between all elements is performed using

33

Dijkstra’s Shortest Path Algorithm (DIJKSTRA, 1959). We use a spanning tree library to find
all the paths between the network devices that are being found. We assume at first that the best
path is the one with the smallest number of hops, because at this stage values such as delay and
jitter are unknown, thus we consider that these values are initially zero. Subsequently, all paths
are sorted from the shortest to the longest path and stored in the repository.

Figure 3.4: Diagram of the StartUp Phase.

Controller SwitchesHostSrc HostDst

 Controller Boot

 LLDP Packets

Standard Rules

Calculates
and Saves

Links

Checks
Best
Path

Writes
Standard

Rules

Source: by author (2015).

Once all possible paths between network elements have been calculated, the controller
writes rules (which we call standard rules) in the flow table of the switches that are in the
best path between each of the network elements. The mask that comprises the standard rule is
very simple. It indicates that each packet that has the Ingress Port field will receive the actions
Forward Packet to Ports and Forward Packet to Controller. Moreover, this rule has the lowest
priority in the flow table of each network element. This priority has been established so that
the standard rules do not conflict with the specific rules that will emerge. The purpose of these
rules is to handle each new service flow in such a way that its first packet is duplicated, (i) for-
warding one copy of the packet to the controller in order to inform it that there is a new service
flow, which will be further evaluated (see Section 3.2.3), but also (ii) handling the duplicate
packet with the idea of best-effort network and no-act delay Round-Trip Time (RTT) (KARN;
PARTRIDGE, 1987). After setting up the rules in the switches, the controller inserts in the
repository all the update network information collected at this stage.

34

3.2.2 Events Phase

This phase aims to identify events in the network infrastructure. At the moment, (i) Dataflow

Event is the only event handled by our controller, but we may extend it to handle events such
as (ii) New Device Addition to the Topology and (iii) Dropped Communication Link. Dataflow

Events are generated by a new type of service in the network (e.g., a video streaming), and are
stored in a services dictionary.

Figure 3.5: Diagram of the Events Phase.

Controller SwitchesHostSrc HostDst

 First Packet

 First Packet

 First Packet Duplicate

 First Packet

 First Packet

Computes
Service

Type

Standard
Rules

 First Packet Duplicate

Computes
Service

Type

Standard
Rules

Source: by author (2015).

The Events Phase stays in a loop during the operation of the infrastructure (see Figure
3.5). When running a specific protocol, such as HTTP communication, the first few packets
of the communication are initially treated by the standard rules and switches are instructed to
duplicate the first packet of each new service flow (e.g., between HostSrc [source host] and
HostDst [destination host]), sending a copy to the controller. The controller stores in a list
the protocols that are running in a link, which are identified by a function that reads the IP
packet header and gets the information from the protocol field (e.g., source and destination
MAC addresses, IP addresses, and TCP/UDP port numbers). We use standard TCP/UDP port
numbers to register a given service in the repository (e.g., HTTP = [80,8080], SSH = [22],
SMTP = [25,587]). This list is previously supplied by the network programmer, using RFC

35

1700 (REYNOLDS; POSTEL, 1994) recommendations. Then, the controller checks what are
the necessary requirements for the proper functioning of such protocol through the information
loaded from the repository and decides whether the controller should start the Analysis Phase

(see Section 3.2.3). The Analysis Phase is initiated immediately if the protocol of the new flow
is not yet included in the list of protocols for the link, or if some other flow is already sharing
the same path but using a different protocol.

3.2.3 Analysis Phase

After identifying the service requirements, the controller calculates the new rules for best
path, taking into account the specific parameters for that service (see Figure 3.6). The calcula-
tions are carried for the paths using as weights the bandwidth (BW), throughput (T), delay (D),
jitter (J), loss rate (LR), and number of hops (NH) in each link of the physical topology (PAR-
TRIDGE, 1992). E.g., for VoIP we define the requirements for calculation of the best link as an
amount of bandwidth that varies according to the encoding used, low delay and low jitter, and
priority (P) (KEEPENCE, 1999). We check the value of each of these requirements using an
analysis function that sends Internet Control Message Protocol (ICMP) (POSTEL, 1981) pack-
ets and stores the return value in a state vector of links. When calculating the jitter, we store a
vector with the 30 last values and calculate the average. For the purposes of our experiments,
the requirements of VoIP SLA goals were considered as D≤ 200ms, BW≥ 128kbps, J≤ 20ms,
and P = 99. Each requirement/value pair is presented in order of importance. The link that
satisfies the largest number of requirements with priority numbered from left to right is chosen
as the best path.

At this moment, the best path should be converted into specific rules. A specific rule com-
prises a mask indicating that a packet containing the Transport Destination Port field will re-
ceive the actions Modify Fields and Forward Packet to Ports. The Modify Fields action changes
the value of the ToS field of the IP packet header to the priority value defined by the QoS class
of the service. Moreover, each rule has a priority in the flow table of each network element.
Each priority value is set according to the priority value of each QoS class, i.e., the QoS classes
with higher priority will take preference over QoS classes with lower priority. There are two
types of specific rules: The specific rules deployed in the switches having links with hosts and
specific rules deployed in switches having links with other switches. The only difference is that
in cases of links between switches there is no need to change the value of the ToS field, because
this change is performed in the switch where the host is connected.

These new rules are reconfigured at runtime and only on switches that have the flow, aiming
to reduce processing overhead where there is no need for such rules. Unlike the standard rules,
these specific rules are configured with a timeout in the flow table of each element. In our
experiments, we set the value of the timeout to 15s (but it can be easily adjusted based on the
analysis of the services being executed).

36

Figure 3.6: Diagram of the Analysis Phase.

Controller SwitchesHostSrc HostDst

 Rules

 Packets

 Packets

 Packets

 Packets

 Check Link Packets

 Return Check Link Packets

Check Best
Path by
Service

Type

Writes
Specific

Rules

Executes
Verification

Scripts

Analyzes
Flow

Source: by author (2015).

Periodically, the controller checks if the the configured links remain the best choices for the
current flow. In our experiments, we set the checking intervals to 10s (but these can also be
easily adjusted). If at any time the controller identifies that there is a better alternative path,
new rules are sent to the switches in order to process the flow as efficiently as possible. If the
current path remains the best, the controller only increases the value of the timeout for the rules
on each switch for the corresponding flow. This phase stays in a loop during the operation of
the infrastructure.

37

3.3 Policy Authoring Operation

The policy authoring framework handles the actions of the top-down stage (Figure 3.3).
Regarding the Policy Authoring Operation, the operator inserts an SLA that defines explicitly
or implicitly business-level goals. When inserting each policy, the Policy Analyzer component
(Figure 3.1) uses regexes (regular expressions) – previously stored in the Policy Repository – to
match the expressions written in controlled natural language, and suggest the more appropriate
QoS class/classes to the SLA.

This Policy Authoring relies on abductive reasoning to suggest QoS classes. As mentioned
previously, in abductive reasoning, starting from a conclusion and a known rule, it is possible
to explain a particular premise. We use the following SLA to illustrate how logical reasoning
works and, subsequently, we use the same SLA to explain how the Policy Authoring operates:

“HTTP services should receive bandwidth higher than 100kbps and delay lower than
300ms”.

The conclusion of this SLA is “HTTP services should receive” certain characteristics. The
rules for reaching this conclusion are “bandwidth > 100kbps” and “delay < 300ms”. Thus,
we present the premise (QoS class in the repository) that has this rule and which can possibly

arrive at this conclusion.

We define a query that assigns weights to results based on the importance of the regexes con-
tained in the SLA. These expressions are compared to the information stored in the repository
to sort the results and display them. The ordering thus follows:

1. expressions related to QoS classes;

2. expressions related to services; and

3. expressions related to service requirements.

3.3.1 Matching Process: A Step-by-step to Match Regexes

Figures 3.7, 3.8, and 3.9 show the flow diagrams to query regexes in an SLA and display
possible classes to match. These steps are the following:

Step 1 – Check if there is any qos-regexes expression in the SLA indicating a class, e.g.,
QoS Gold, Silver. If there are occurrences of these expressions, the Policy Authoring framework
returns the QoS class values, based on the identified qos-regexes. For the SLA presented in the
example, we have no expressions of this type.

Step 2 – Check if there is any service-regexes expression in the SLA relating to services,
e.g., FTP, VoIP. If there are occurrences of these expressions, the Policy Authoring framework
returns the QoS class values to which the services are associated. For the SLA in the example,
there is a service-regexes (HTTP), which may be associated with a QoS class in the repository.

Step 3 – Analyze the expressions indicating service requirements, e.g., priority, bandwidth.

38

Figure 3.7: Flow diagram to query qos-regexes in an SLA and display classes that match the
SLA.

Query QoS

Start

Found QoS?Repository Show Result

yes

no

Insert SLA
SLA

Source: by author (2015).

Figure 3.8: Flow diagram to query service-regexes in an SLA and display classes that match
the SLA.

Query Service Found Service?Repository Show Result

yes

no

Source: by author (2015).

If there are occurrences of these expressions, the Policy Authoring framework performs the
following operations: (i) identify and count the requirements-regexes found, and (ii) identify
and count the adjective-regexes that come before and after any requirements-regexes.

We also developed a technique for identifying and counting the requirements-regexes, which
allows the operator to optimally match the adjective-regexes found with their respective re-
quirements. In the SLA above, we can observe the adjective-regexes higher and lower, which
are related to the requirements-regexes bandwidth and delay, respectively. The Policy Ana-

lyzer identifies any adjective-regexes and examines the SLA, identifying the proximity of the
adjective-regexes referring to requirements-regexes. This is performed by checking if adjective-

regexes are located before or after requirements-regexes. At the end, the result is presented to
the business-level operator.

The Policy Authoring framework uses abductive reasoning to show what are the best config-
urations for the SLA. Thus, the Policy Analyzer can identify, for example, that there is already
a QoS class configured with low delay, or that the throughput for the specified network path
already exceeds the network configuration, indicating that the policy should be reformulated.
Also, the operator can be warned of potential conflicts or even non-compliance with policies.

39

Figure 3.9: Flow diagram to query requirements-regexes in an SLA and display classes that
match the SLA.

Query Requirement Repository Show Result
Found

Requirement?

Query Adjective > Than?

Query Value Higher
Than

Found Higher
Value?

< Than?

no

Query Value Lower
Than

Query Value Equal
Than

Increase Value

yes

Found Lower
Value?

Decrease Value

no

There Are More
Requirements?

Found Equal
Value?

yes

yes

no

yes

no no

yes

no

yes

yes

Source: by author (2015).

If the operator chooses one of the suggested QoS classes, the Policy Authoring framework will
store the information extracted from the SLA, e.g., the service, with the selected class.

3.3.2 Modifying and Creating QoS Class

Suggestions provided through abductive reasoning are not mandatory. If after analyzing
them the operator decides they do not meet the high-level goals, the suggestions can be ignored.
At this point, the operator can analyze the information presented by the Policy Authoring frame-
work and rely on inductive reasoning to perform the following actions (Figure 3.10:

• Modify existing policy/class – This action allows the operator to change a predetermined
parameter, e.g., priority = 100 to priority = 101, or add a parameter that does not yet exist,
e.g., delay = 120ms. This modification may impact other policies, and the Analyzer uses
inductive reasoning to identify the classes in the repository that may be impacted. Thus,
the operator has the opportunity to analyze policy-by-policy and decide if the change is
viable or not.

• Create policy/class based on existing class – This action is an alternative to modifying

40

Figure 3.10: Flow diagram to modification or creation QoS classes.

Show Result
Matching Class

With SLA?

yes

Add/Alter ParametersChosen Class

Modify Existing
Class?

yes

Create Class
Based On Exist ing

Class?no

Alter Parameters Add Parameters

Create A New?

yes yes

nono

End

Source: by author (2015).

an existing class. Through this action, a new class created by the operator inherits the
parameters of an existing class, which can be customized as needed. The Policy Analyzer

uses inductive reasoning to automatically check if the parameter values of this new class
are not identical to the ones in an existing class in the repository. If so, the existing class
is returned instead.

• Create a new policy/class – The creation of new classes can be conducted (i) if a class
that meets the objectives of the SLA does not exist, or (ii) if the parameters of other
classes retrieved via abductive or inductive reasoning are not related to the objectives of
the new SLA. Thus, the operator can set the new class parameter-by-parameter to meet
the SLA objectives.

After any of the actions above is executed, the Parser component (Figure 3.1) will be exe-
cuted and the policies/classes will be stored in the Policy Repository. It is based on this infor-
mation that the Policy Authoring framework estimates the amount of allocated traffic per class
and warns if the infrastructure can support or not new policies. Subsequently, the OpenFlow
controller reads from the repository these new policies starting the Analysis Phase for setting
up the appropriate rules in forwarding devices, as explained in Section 3.2.

41

4 AN EC-BASED FORMALISM FOR POLICY REFINEMENT

In this chapter we define a formal representation of high-level policies in the form of SLAs
using Event Calculus (EC) and the use of logical reasoning to model both the system be-
havior and the policy refinement process in SDN. It is our aim with this formalism to assist
infrastructure-level programmers to develop refinement tools and configuration approaches to
achieve more robust SDN deployments independent of the network controller implementation
or policy language.

Below, we present an overview of a formalism called Event Calculus and Logical Reasoning
in Section 4.1. In Section 4.2 we extend Event Calculus for our policy refinement solution. We
present our policy refinement model in Section 4.3. In Section 4.4 we demonstrate how our
model represents the system elements and refines an SLA and how it decomposes the SLA into
a set of low-level configurations. Finally, we present experiments and results obtained with an
implementation using prolog in Section 4.4.4.

4.1 Event Calculus and Logical Reasoning

Event Calculus (KOWALSKI; SERGOT, 1986) is a formalism that permits representing and
reasoning about dynamic systems (BANDARA; LUPU; RUSSO, 2003). It consists of axioms
and predicates that are independent of application or domain. Table 4.1 presents the predicates
of Event Calculus. We use the form described by Bandara et al. (BANDARA; LUPU; RUSSO,
2003; BANDARA et al., 2005), consisting of (i) a set of event types, (ii) a set of properties
(called fluents) that can vary over the system lifetime, and (iii) a set of time points.

Table 4.1: Event Calculus Predicates

Predicates Description

initiates(e,f,t) event e ‘initiates’ fluent f for all time > t

terminates(e,f,t) event e ‘terminates’ fluent f for all time > t

releases(e,f,t) event e ‘releases’ fluent f at time t

initiallyp(f) fluent f is initially true

initiallyn(f) fluent f is initially false

happens(e,t1,t2) event e ‘happens’ at time t1 and ‘terminates’ at time t2

holdsAt(f,t) fluent f ‘holds’ at time t

clipped(t1,f,t2) fluent f ‘clipped’ between times t1 and t2

declipped(t1,f,t2) fluent f ‘declipped’ between times t1 and t2

Source: by author (2015).

42

Event Calculus can be used for interpreting perceptions and predicting actions and their
consequences in order to perform a possible solution plan. It is worth noting that Event Calculus

uses a representation of time, which is independent of any other events that may occur in the
same system. We can then use this formalism for reasoning about events that have a certain
duration and not only about instantaneous events. Thus, it is possible to model events occurring
within intervals, instead of specifying a specific time for their occurrence.

We apply the concept of logical reasoning (SHANAHAN, 2000) to support the operator in
the refinement of an SLA. Logical reasoning has three modes: deductive, inductive and abduc-
tive. In deductive reasoning, a conclusion is reached by using a rule that analyzes a premise. For
example, if streaming packets are transmitted the network becomes slower; streaming packets
are being transmitted now; therefore, the network is slower. In inductive reasoning, the goal
is to identify a rule, starting from a historical set of conclusions generated from a premise.
For example, every time streaming packets are transmitted the network becomes slower; so, if
streaming packets are transmitted tomorrow, the network will be slower. Finally, in abductive

reasoning, starting from a conclusion and a known rule, we can explain a premise. For exam-
ple, when streaming packets are transmitted the network becomes slower; the network is slower
now; so, possibly streaming packets are being transmitted.

We use two modes of logical reasoning: abduction to assist the Policy Authoring Framework
operator in identifying the QoS classes that can support the specifications of the SLA; and
induction to assist the operator in specifying the system parameters that classes should have to
meet the SLA.

4.2 Extend Event Calculus

A number of variations of the standard Event Calculus (described in Section 4.1) have been
presented in the literature. In particular, we build on the one presented by Bandara et al. (BAN-
DARA; LUPU; RUSSO, 2003; BANDARA et al., 2005). In order to achieve our goals we
customized it with new constants, variables, operations/functions, and predicates as follow:

• Constants – these can be defined as SLAs (SLA), services (Serv), classes (Class), pa-
rameters/requirements (Par), or objects (Objn). Obj may represent a set of objects of the
system where n represents a source object (ObjSrc), a destination object (ObjDst), an ob-
ject of link – i.e., the connection between an ObjSrc and ObjDst – (ObjLink), or even a
route (ObjRoute).

• Variables – define Vo to represent the attributes of objects and Vρ to represent the param-
eters for the operations supported by objects.

• Predicates – specify what the object represent in the system, what is declared about it or
relationships between objects. Table 4.2 presents the predicates.

• Operations – specify actions used with predicates. For example, a query in a repository

43

or the triggering of a phase. Table 4.3 presents the operations.

Table 4.2: New Predicates for Event Calculus.

Predicates Description

object(SLA/Serv/Class/Par/Objn) Used to specify that Obj is an object in
the system. Objects can be network el-
ements such as routers, switches, con-
trollers, links, or routes.

isElement(Objn) Holds if Objn represents a network ele-
ment, e.g., switch, controller.

method(Objn, Action(Vρ)) Defines an action supported by an object.

isLink(ObjLink, ObjSrc, ObjDst) Holds if ObjLink represents a link be-
tween an ObjSrc and ObjDst.

isRoute(ObjRoute) Holds if ObjRoute represents a route.

isMemberRoute(ObjRoute, ObjLink) Holds if the object, ObjLink, is a member
of the route, ObjRoute.

isRouterParameter(ObjRoute, Par, Vo) Holds if the object, Par, is a parameter of
the route.

isSLA(SLA) Holds if SLA represents an SLA.

isDescriptionSLA(Serv/Class/Par/Objn,SLA) Defines if Serv/Class/Par/Objn is an ob-
ject contained in the SLA description.

isService(Serv) Holds if Serv represents a service, e.g.,
HTTP, VoIP.

isClass(Class) Holds if Class represents a QoS Class,
e.g., gold, silver.

isPar(Par) Holds if Par represents a parameter/re-
quirement, e.g., delay, priority.

isMemberClass(Class, Serv) Holds if the object, Serv, is a member of
the QoS Class, Class.

isMemberParameter(Class/Serv/SLA, Par, Vo) Holds if the object, Par, is a parameter of
a QoS Class, Service or SLA.

newMemberParameter(Class/Serv/SLA, Par, Vo) Holds if the object, Par, is a changing
or addition of parameter value of a QoS
Class, Service or SLA.

attr(SLA/Serv/Class/Par/Objn, Vo) Defines that Vo is an attribute of a Serv,
Class, Par, or Objn.

Source: by author (2015).

44

Table 4.3: Operations used with predicates.

Operations Description

state(Objn, Vo, Value) Indicates the state of an object in the
system.

operation(Objn, Action(Vρ)) Indicates the operations and functions
specified in a policy or event.

systemEvent(Event) Indicates any event in the system. It is
used to trigger the operations and func-
tions.

doAction(ObjSrc, operation(ObjDst, Action(Vρ))) Indicates the action performed by
ObjSrc in ObjDst.

Source: by author (2015).

4.3 Policy Refinement Model

In our solution we first describe the SLAs in EC, and use logical reasoning to derive the
SLOs and QoS classes based on a system model description. We also model the state of routes
and links maintained by the controller, and use logical reasoning to match the best route based
on the requirements of the SLA. Requirements-regexes are used to search for matching QoS
classes (qos-regexes) that were previously registered in the repository. We use abductive rea-
soning to identify possible configurations that achieve the goals specified by the SLA. Thus
we can maximize the number of inferences between requirements-regexes – i.e. SLOs – found
in the SLA and the parameters of the QoS classes registered in the repository. The technique
proposed performs the matching in the following order:

λ1 : isMemberParameter(SLAn,P,Vo) ∧ isMemberParameter(SLAn,B,Vo)

∧ isMemberParameter(SLAn,D,Vo) ∧ isMemberParameter(SLAn,J,Vo)

λ2 : isMemberParameter(Classn,P,Vo) ∧ isMemberParameter(Classn,B,Vo)

∧ isMemberParameter(Classn,D,Vo) ∧ isMemberParameter(Classn,J,Vo)

λ3 : isMemberParameter(Classn,P,Vo) ∧ isMemberParameter(Classn,B,Vo)

∧ isMemberParameter(Classn,D,Vo)

λ4 : isMemberParameter(Classn,B,Vo) ∧ isMemberParameter(Classn,P,Vo)

λ5 : isMemberParameter(Classn,P,Vo) ∧ isMemberParameter(Classn,D,Vo)

λ6 : isMemberParameter(Classn,B,Vo) ∧ isMemberParameter(Classn,D,Vo)

λ7 : isMemberParameter(Classn,P,Vo) ∨ isMemberParameter(Classn,B,Vo)

∨ isMemberParameter(Classn,D,Vo) ∨ isMemberParameter(Classn,J,Vo)

φ1 : λ1 ↔ λ2

φ2 : (λ1 ↔ λ3) ← ¬ φ1

45

φ3 : (λ1 ↔ λ4) ← ¬ φ2

φ4 : (λ1 ↔ λ5) ← ¬ φ3

φ5 : (λ1 ↔ λ6) ← ¬ φ4

φ6 : (λ1 ↔ λ7) ← ¬ φ5

SLAn is an SLA

Classn is a QoS Class

Vo is a value of a parameter

λn is a predicate

The set of λ rules are used to retrieve the QoS classes that satisfy the largest amount of
requirements. Thus, λ2 will retrieve QoS classes that satisfy all requirements (B, P, D, J),
whereas λ7 will retrieve QoS classes that satisfy at least one of the requirements. The set of φ
rules is an order of matches that happens until an occurrence of φ matches the desired result.
Thus, φ1 is an ideal match where all requirements are satisfied while φ6 is a match where at
least one requirement is satisfied.

Ultimately, the result presented to the business-level operator is a set of QoS classes ordered
by the highest amount of requirements found which can better meet the SLA. In the worst case,
the refinement process will propose QoS class(es) which contain at least one of the parameters.
From these results, the business-level operator can decide between using the suggested class or
to use inductive reasoning to perform:

(i) modification of existing class by changing parameters:
isClass(Classn)

∧ newMemberParameter(Classn,Parn,Vn′)

→ isMemberParameter(Classn,Parn,Vn)

isClass(Classn) is the QoS class.

newMemberParameter(Classn,Parn,Vn′) is the changing or addition of parameters.

isMemberParameter(Classn,Parn,Vn) is the new parameter value of isClass(Classn).

This action indicates that the value Vn of the parameter Parn of the QoS class Classn modi-
fies the QoS class Classn generating a QoS Class Classn′ . This action allows the business-level
operator to change a predetermined parameter, e.g., delay = 10ms to delay = 20ms, or to add
a parameter that does not yet exist in the SLA, e.g., priority ≤ 999. However, this modifica-
tion may impact other policies. To address that, our policy refinement toolkit uses inductive
reasoning to identify the classes in the repository that may be impacted. Thus, the operator has
the opportunity to analyze policy-by-policy or parameter-by-parameter and decide whether the
change should be applied or not.

(ii) creation of a new QoS class based on an existing one:
isClass(Classn)

∧ newMemberParameter(Classn,Parn′,Vn′))

→ isClass(Classn′)

isClass(Classn) is the existing QoS class.

newMemberParameter(Classn,Parn′,Vn′) is the changing or addition of parameters.

isClass(Classn′) is the new QoS class based on Classn.

This action is an alternative to modifying an existing class. Through this action, a new

46

class created by the business-level operator inherits the parameters of an existing class, which
can be customized as needed. The toolkit uses inductive reasoning to automatically check if
the parameter values of this new class are not identical to the ones in an existing class in the
repository. If so, the existing class is returned instead preventing QoS classes duplication.

(iii) creation of a new QoS class specifying new requirements and values:
→ isClass(Classn)

isClass(Classn) is the new QoS class.

Ultimately, the creation of new classes can be conducted (i) if a class that fulfills the require-
ments of the SLA does not exist, or (ii) if the parameters of other classes retrieved via abductive
or inductive reasoning are not related to the requirements of the new SLA. Thus, the business-
level operator can set the new class parameter-by-parameter to fulfill the SLA requirements.

As mentioned previously, the controller, at startup, collects information about the network
infrastructure to calculate all possible routes (Route) between two elements. The calculations
are carried for the paths using as weights the bandwidth (B), delay (D), jitter (J), and number of
hops (NH) in each link of the network infrastructure. Thus, the representation of this operation
performed by the controller is:

λ1 : isRouterParameter(Routen,NH,Vo) ∧ isRouterParameter(Routen,B,Vo)

∧ isRouterParameter(Routen,D,Vo) ∧ isRouterParameter(Routen,J,Vo)

λ2 : isRouterParameter(Routen,B,Vo) ∧ isRouterParameter(Routen,D,Vo)

∧ isRouterParameter(Routen,J,Vo)

λ3 : isRouterParameter(Routen,NH,Vo) ∨ isRouterParameter(Routen,B,Vo)

∨ isRouterParameter(Routen,D,Vo) ∨ isRouterParameter(Routen,J,Vo)

Routen ← λ1

Routen+1 ← λ2

Routen+2 ← λ3

Routen is a route

As can be observed, λ1 is a rule that chooses the route that faithfully fulfills all the parame-
ters of the SLA. λ2 is an alternative route that does not consider the number of hops. We exclude
the number of hops since many services do not recognize this as a main requirement for their
proper functioning. Ultimately, λ3 is a rule that selects all routes that satisfy at least one of
the parameters. Routen, Routen+1, and Routen+2 are possible routes sorted by the requirements
presented in each λn. These routes are selected at runtime whenever competing SLAs are de-
tected. This process is performed in order to establish a load balancing or to create a best route
to satisfy the requirements of each SLA.

Thus, after any choice, our refinement model will match the indications performed by the
business-level operator with the conditions of the network infrastructure as follows:

λ1 : Classn ↔ Routen

λ2 : Classn ← Routen+1 ← ¬ λ1

λ3 : Classn ← Routen+2 ← ¬ λ2

47

We have configured the SLA requirements and grouped them into classes, because it is an
easier way to deal with the increase in the number of policies that have common goals. However,
if at any time it is discovered that an SLA cannot be fulfilled or if some SLO cannot be achieved,
the system is flexible enough to allow the necessary adjustments.

4.4 Modeling Case-studies

In this section we demonstrate and discuss the formalism through case studies and an imple-
mentation using Prolog. Prolog is a declarative programming language combined with artificial
intelligence and first-order logic. Prolog is composed of facts (data) and a set of rules, i.e.,
relationship between data. The general idea behind Prolog is to describe a situation. Briefly,
an interpreter is used to evaluate a logical formula and generate by inference a set of results
deduced from the database. Thus, it will indicate whether a Prolog question is true or false
and, if variables are present in the formula, it will also indicate what should be the values of
the variables. We use Prolog in the sections below to present the formal representation of the
network infrastructure and their elements, QoS classes, services, and SLA.

The formal model of the infrastructure, services, QoS classes, and SLAs is presented through
simple examples. However, it is used as a basis for more sophisticated inferences that occur dur-
ing the SLA refinement process such as the creation of rules to match SLA requirements with
QoS Classes. This will be shown in Section 4.4.3 and in Section 4.4.4.

Below, in Section 4.4.1 we present the formal representation of the network infrastructure.
We present the formal representation of the services, QoS classes, and requirements in Sec-
tion 4.4.2. In Section 4.4.3 we demonstrate and discuss the refinement of an SLA. We present
and discuss the experimental evaluation of our formalism in Section 4.4.4.

4.4.1 Network Infrastructure Formal Representation

In order to formally represent the network infrastructure, we assume the scenario shown in
Figure 4.1. There are 11 switches (SWn) and 22 links (Ln).

In this scenario, we express the links and routes as elements of the network infrastructure.
Figure 4.2 shows alternative routes between H1 and H2. The need to express links becomes rel-
evant when there are alternative routes between the elements. Thus, the system gains dynamism
to decide routes between ObjSrc and ObjDst.

As mentioned previously, we modeled our formal representation in Prolog. In Prolog, we
represent all switches and all their links in the network infrastructure as follows:

isElement(sw1).

isElement(sw2).

...

isElement(sw11).

48

isLink(l1,sw2,sw1).

isLink(l2,sw1,sw3).

isLink(l3,sw2,sw6).

isLink(l4,sw3,sw5).

isLink(l5,sw2,sw5).

isLink(l6,sw3,sw6).

isLink(l7,sw4,sw2).

isLink(l8,sw3,sw7).

isLink(l9,sw5,sw9).

isLink(l10,sw6,sw10).

isLink(l11,sw8,sw4).

isLink(l12,sw7,sw11).

isLink(l13,sw5,sw8).

isLink(l14,sw6,sw11).

Figure 4.1: Example of network infrastructure.

L
1
1

L
9

H1 H2 H4H3

L
1
0

L
1
2

H5 H6 H8H7

SW1

SW2 SW3

SW7

SW11

SW6

SW10

SW5

SW9

SW4

SW8

Source: by author (2015).

Figure 4.2: Example of alternative routes for Figure 4.1.

H1 H2 H4H3 H5 H6 H8H7H1 H2 H4H3 H5 H6 H8H7 H1 H2 H4H3 H5 H6 H8H7H1 H2 H4H3 H5 H6 H8H7

H1 H2 H4H3 H5 H6 H8H7 H1 H2 H4H3 H5 H6 H8H7 H1 H2 H4H3 H5 H6 H8H7 H1 H2 H4H3 H5 H6 H8H7

H1 H2 H4H3 H5 H6 H8H7 H1 H2 H4H3 H5 H6 H8H7 H1 H2 H4H3 H5 H6 H8H7H1 H2 H4H3 H5 H6 H8H7

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Source: by author (2015).

49

Based on formal representation above, if we want to list all switches in the network and all
their links we can execute the following command in Prolog and obtaining the following result:

?- isElement(Switch); isLink(Link,SwitchA,SwitchB).

Switch = sw1 ; Switch = sw2 ; Switch = sw3 ; Switch = sw4 ; Switch = sw5 ; Switch = sw6

; Switch = sw7 ; Switch = sw8 ; Switch = sw9 ; Switch = sw10 ; Switch = sw11 ; Link = L1,

SwitchA = sw1, SwitchB = sw2 ; Link = L2, SwitchA = sw1, SwitchB = sw3 ; Link = L3, SwitchA

= sw2, SwitchB = sw6 ; Link = L4, SwitchA = sw3, SwitchB = sw5 ; Link = L5, SwitchA = sw2,

SwitchB = sw5 ; Link = L6, SwitchA = sw3, SwitchB = sw6 ; Link = L7, SwitchA = sw2, SwitchB

= sw4 ; Link = L8, SwitchA = sw3, SwitchB = sw7 ; Link = L9, SwitchA = sw5, SwitchB = sw9 ;

Link = L10, SwitchA = sw6, SwitchB = sw10 ; Link = L11, SwitchA = sw4, SwitchB = sw8 ; Link

= L12, SwitchA = sw7, SwitchB = sw11 ; Link = L13, SwitchA = sw5, SwitchB = sw8 ; Link =

L14, SwitchA = sw6, SwitchB = sw11.

If we want to list all links and switch connected to sw5 we can execute the following com-
mand in Prolog and obtaining the following result:

?- isLink(Link,Switch,sw5).

Link = L5, Switch = sw2; Link = L13, Switch = sw8; Link = L4, Switch = sw3; Link = L9,

Switch = sw9;

Subsequently, we present the representation of a possible route between sw8 and sw11. The
route shown in Figure 4.2(a) can be specified as follows:

isLink(l11,sw8,sw4).

isLink(l7,sw4,sw2).

isLink(l1,sw2,sw1).

isLink(l2,sw1,sw3).

isLink(l8,sw3,sw7).

isLink(l12,sw7,sw11).

isRoute(r1).

isMemberRoute(r1,l11).

isMemberRoute(r1,l7).

isMemberRoute(r1,l1).

isMemberRoute(r1,l2).

isMemberRoute(r1,l8).

isMemberRoute(r1,l12).

If we want to list all links of r1 we can execute the following command in Prolog and
obtaining the following result:

?- isMemberRoute(r2,Link).

Link = l11 ; Link = l7 ; Link = l1 ; Link = l2 ; Link = l8 ; Link = l12 .

Despite being very simple, the isMemberRoute(Route, Link) predicate can be used to dis-
cover the number of hops of a specific route. This information will be important for deciding
which routes should be chosen to fulfill the requirements of a particular service, as described
next.

50

4.4.2 Services, QoS Classes, and Parameters Formal Representation

We present in this section the formal representation of a service and its QoS Class. We set
five classes with different QoS requirements. This configuration aims to show the variation of
requirements for each QoS class. The pre-configured classes are shown in Table 4.4.

Table 4.4: QoS Classes

QoS Class Priority Bandwidth Delay Jitter

Bronze 100 128 500 50

Silver 300 256 400 40

Gold 500 512 300 30

Platinum 700 1024 200 20

Diamond 900 2048 100 10

Source: by author (2015).

If we want to find every priority value for every registered class, we can perform the follow-
ing command in Prolog and obtaining the following result:
?- isParametersClass(Class,priority,Value).

Class = diamond, Value = 900 ; Class = platinum, Value = 700 ; Class = gold, Value = 500 ;

Class = silver, Value = 300 ; Class = bronze, Value = 100.

As mentioned previously, this formal representation, although simple, is used as a basis
for more sophisticated inferences that occur during the refinement process of the SLAs. In
the following sections, we will discuss how these representations can be combined into more
elaborate queries such as discovering the highest value of a parameter.

4.4.3 SLA Refinement

In this section we demonstrate how our formal model can be used to refine an SLA into
a set of low-level configurations. It is important to emphasize that we applied the concept
of logical reasoning to support the operator in the refinement of an SLA. We use two modes
of logical reasoning: abduction to assist the operator in identifying the QoS classes that can
support the specifications of the SLA; and induction to assist the operator in specifying the
system parameters in the configuration of the QoS classes that can meet an SLA. We use the
following SLA as a case-study:

“HTTP traffic should receive lowest priority and lowest bandwidth”.
The formalism to represent the HTTP SLA is presented as follows:

51

object(sla).

object(http).

isSLA(sla).

isService(http).

attr(sla,status).

attr(http,status).

state(sla,status,enabled).

state(http,status,authorized).

isMemberParameter(http,priority,lowest).

isMemberParameter(http,bandwidth,lowest).

isDescriptionSLA(sla,http).

isDescriptionSLA(sla,priority).

isDescriptionSLA(sla,bandwidth).

isPar(priority).

isPar(bandwidth).

We represent our refinement model using Event Calculus notation and its standard predi-
cates as declared in Table 4.2. For a better understanding of the formal representation of the
refinement process, we use friendly names to indicate to the reader where each process occurs
in our solution. For example, Policy Analyzer is used to indicate the module that performs
the regex analyzing operation, and PolicyAuthoringFramework is used to indicate where this
operation occurs. Also, we use lambda (λn) to indicate a set of predicates or operations used
with predicates. As mentioned previously, when an operator inserts an SLA, our refinement
model uses regexes (see Table 3.1) – previously stored in the Policy Repository – to match the
expressions written in semi-structured natural language, and suggests the more appropriate QoS
class/classes to the SLA. As a result, suggestions will be displayed to the operator only after all
possible matches.

Regarding the refinement process, on the one hand, a top-down stage initializes a policy
analyzer process aiming to search qos-regexes explicitly written in the SLA. In this case, as
there is no qos-regexes in the SLA, no compatible class will be returned by the query.

λn : initiates(doAction(PolicyAuthoringFramework,

operation(PolicyAuthoringFramework,

policyAnalyzer(qos-regexes))),state(http,status,enabled),T).

λn+1 ← (happens(doAction(PolicyAuthoringFramework,

operation(Repository,request(qos-regexes))),T+1)

← λn).

λn is a predicate

Following, we search service-regexes in the SLA.
λn+2 ← (holdsAt(operation(PolicyAuthoringFramework,

policyAnalyzer(service-regexes)),T+2)

← ¬ λn+1).

At this time, service-regexes “HTTP” is found. From this occurrence, we perform a query

52

in the repository to find if exist a QoS class associated with the HTTP service.
λn+3 ← (happens(doAction(PolicyAuthoringFramework,

operation(Repository,request(service-regexes(http)))),T+3)

← λn+2).

λn+4 ← (happens(doAction(Repository,

operation(PolicyAuthoringFramework,return(Class))),T+4)

← λn+3).

In this case, HTTP service is not associated with any QoS class. Thus, a search for requirements-

regexes and their adjectives-regexes is performed.
λn+5 ← ((holdsAt(operation(PolicyAuthoringFramework,

policyAnalyzer(requirements-regexes)),T+5)

∧ holdsAt(operation(PolicyAuthoringFramework,

policyAnalyzer(adjectives-regexes)),T+5))

← λn+4).

In the given SLA, we found the requirements-regexes “priority (P)” and “bandwidth (B)”
and the occurrences of adjective-regexes “lowest” and “lowest”. As our refinement model as-
sociates the number of occurrences of adjectives-regexes with the number of occurrences of
requirements-regexes, the toolkit needs to check what are the correct adjectives-regexes for the
requirements-regexes found. We used a factor of proximity to analyze in which position of
the SLA each adjective-regexes is located relative to the position of the requirements-regexes.
At this point, we need to associate the adjectives-regexes “lowest” with something in the SLA
(e.g., another service). As we have no explicit statement in the SLA indicating that priority and
bandwidth in HTTP service must be lower than something, we assume that this service should
receive the lowest priority and lowest bandwidth registered in the repository.

λn+6 ← (((happens(doAction(PolicyAuthoringFramework,

operation(Repository,request(requirements-regexes(priority)))),T+6)

∧ happens(doAction(PolicyAuthoringFramework,

operation(Repository,request(adjectives-regexes(low)))),T+6))

∧ (happens(doAction(PolicyAuthoringFramework,

operation(Repository,request(requirements-regexes(bandwidth)))),T+6)

∧ happens(doAction(PolicyAuthoringFramework,

operation(Repository,request(adjectives-regexes(low)))),T+6)))

← λn+5).

Ultimately, our toolkit applies abductive reasoning to build a query based on regexes found
in the SLA. This query will be executed and will return to the operator the QoS class that best
matches the SLA requirements, in this case, Bronze QoS Class as a top choice. Abductive
reasoning reaches this conclusion, because if the search is for “lowest priority” and “lowest
bandwidth”, Bronze QoS Class is the class which has lowest priority and lowest bandwidth
among the registered QoS Classes (Table 4.4). After the choice performed by the operator, our
toolkit will register in the repository the SLA associating it with Bronze QoS Class.

λn+7 ← (happens(doAction(PolicyAuthoringFramework,

operation(Repository,registerNew(sla(http)))),T+7)

∧ happens(doAction(PolicyAuthoringFramework,

operation(Repository,associateNewSLA(isMemberClass(bronze,http))))),T+7)

53

← λn+6).

terminates(λn+7, state(SLA,status,associated),T+7).

On the other hand, a bottom-up stage performs the controller phases. When starting the
controller, it monitors the network in order to discover the network elements and their links
(StartUp phase). Forwarding devices are instructed to send Link Layer Discovery Protocol
(LLDP) packets to report their location in the topology. The controller collects these packets
and performs a routine for calculating all possible links between all elements. For each result of
this calculation a standard rule is created. As a result, the controller comes to know the position
of all network elements and what is the cost (per link) to reach them. This information about
links between forwarding elements and their standard rules is stored in the repository.

λm : initiates(doAction(Controller,

operation(Controller,startupPhase(packets)),state(Controller,status,on),T)).

λm+1 ← (happens(operation(Controller,discoveryTopology(LLDP)),T+1)

∧ happens(operation(Controller,discoveryLinks(LLDP)),T+1))

← happens(doAction(Switch,operation(Controller,sendPacket(LLDP)),T+1))

← λm

λm+2 ← (happens(doAction(Controller,

operation(Repository,registerSwitchId(idSwitch)),T+2))

∧ happens(doAction(Controller,

operation(Repository,registerSwitchLink(linkSwitch)),T+2)),

∧ happens(doAction(Controller,

operation(Repository,registerRule(standardRule)),T+2))

← λm+1.

λm is a predicate

Subsequently, the controller reads the QoS Classes - which have been previously registered
through the policy refinement process – from a repository that contains descriptions and require-
ments of all services that are initially scheduled to run in the network and the standard rules to
address best efforts. The controller compares each QoS Class with the links previously analyzed
(when the controller was initialized) and creates a spanning tree with the links that has the best
possibility to fulfill the needs of the QoS Class. Each spanning tree is created by specific rules
that will be set up in forwarding devices. These rules are composed by the flow priority (that
identifies the order in which the packets should be processed), TCP/UDP destination port (that
identifies to which service the packet is addressed), output port (that indicates to which port the
switch will send the packet). Also, the controller uses the standard rule to create a spanning tree
based on the best links between any two elements. This spanning tree aims to set up best-effort
routes to initially address any service that appears on the network without causing transmission
delay in the first packets while specific rules for each new service (not provided in an SLA)
have not been established yet. Finally, the controller installs each rule in the flow tables of the
switches.

54

λm+3.1 ← happens(doAction(Controller,

operation(Repository,request(QoSClass)),T+3))

← λm+2.

λm+3.2 ← happens(doAction(Controller,

operation(Repository,request(standardRule)),T+3))

← λm+2.

λm+4.1 ← happens(doAction(Repository,

operation(Controller,return(bronze)),T+4))

← λm+3.1.

λm+4.2 ← happens(doAction(Repository,

operation(Controller,return(standardRule)),T+4))

← λm+3.2.

λm+5.1 ← holdsAt(operation(Controller,

calculateSpanningTreeClass(bronze)),T+5)

← λm+4.1.

λm+5.2 ← holdsAt(operation(Controller,

calculateSpanningTreeStandard(standardRule)),T+5)

← λm+4.2.

λm+6.1 ← happens(doAction(Controller,

operation(Switch,registerRule(specificRule)),T+6))

← λm+5.1.

λm+6.2 ← happens(doAction(Controller,

operation(Switch,registerRule(standardRule)),T+6))

← λm+5.2.

λm+7.1 ← holdsAt(operation(Switch,writeRule(specificRule)),T+7)

← λm+6.1.

λm+7.2 ← holdsAt(operation(Switch,writeRule(standardRule)),T+7)

← λm+6.2.

Subsequently, the controller enters a phase that stays in a loop awaiting the occurrence of
events during the operation of the infrastructure. When running a specific service, such as
HTTP, the source host (hostSrc) sends packets to the switch. If there is a specific rule for
that type of service, the switch forwards the packet to destination host (hostDst). If there is no
specific rule, the switch forwards the packet to hostDst and a copy of the packet to the controller.
Subsequently, the controller performs a similar process, as outlined above, checking out from
the repository if there is any QoS class establishing specific rules for this new service.

λm+8 ← initiates(doAction(Controller,

operation(Controller,eventsPhase(packet)),state(packet,status,on),T+8)).

λm+9 ← happens(doAction(HostSrc,operation(Switch,sentPacket(packet)),T+9))

← λm+8.

λm+10 ← holdsAt(operation(Switch,verifySpecificRule(packet)),T+10)

← λm+9.

λm+11 ← (happens(doAction(Switch,operation(HostDst,sentPacket(packet)),T+11)),

55

∧ happens(doAction(Switch,operation(Controller,sentPacket(packet)),T+11))).

← initiallyFalse(λm+10)

λm+3.1,

λm+4.1,

λm+5.1,

λm+6.1,

λm+7.1.

The purpose of the EC-based representation described in the previous sections is to formally
specify the operation of the policy authoring, low-level controller, and policy refinement pro-
cess. Although the logical inferences achieved with the aid of the Prolog interpreter are not
integrated with the refinement toolkit, it is our aim as part of our future work to incorporate a
Prolog engine as part of the refinement toolkit prototype.

4.4.4 EC-Based Formalism Experimental Evaluation

In this section, our goal was to measure the amount of iterations and rules to find QoS
classes that fulfill the requirements of different SLAs. The experimental evaluation was mod-
eled and performed in Prolog 6.6.4. Each experiment was run ten times. The experiments were
performed on an AMD 2.0 GHz Octa Core with 32 GB RAM memory.

4.4.4.1 Scenarios

We created six SLAs by changing the number of expressions according to Table 4.5. We
applied the six SLAs to five repository containing different amounts of classes. We populated
each repository according to Table 4.6. Each QoS class considers all QoS requirements, i.e.,
priority, bandwidth, delay, and jitter. Each QoS requirement has different values1.

4.4.4.2 Experiments and Discussion

In this section, our goal was to measure the number of iterations for the identification of
QoS requirements and for the query of all suggestions of QoS classes. Each SLA (Table 4.5)
generated a set of prolog rules to find at least one occurrence of a QoS class. Each rule can be
composed by a set of prolog operations. Each prolog operation is connected by connectives.
Connectives can be of the type “and” (represented by a comma [,]) or of the type “or” (repre-
sented by a semicolon [;]). The prolog rules generated for each SLA are described in Table 4.7.
The prolog operations used in the prolog rules are described in Table 4.8.

As can be seen in Table 4.7 some SLAs have generated more rules such as SLA 1(4), SLA

1The values for QoS requirements were generated randomly: between 0 and 999 for priority (where 0 is highest
priority and 999 is lowest priority), between 2 kbps and 212 kbps for bandwidth, between 1 ms and 999 ms for
delay, and 10% of the delay value for jitter.

56

Table 4.5: Description of SLAs used in the experiments.

SLA Description of SLAs

SLA1 Streaming traffic should receive highest priority, lowest delay, lowest jitter, and
highest bandwidth.

SLA2 Peer-to-peer traffic should receive lowest priority, highest delay, lowest jitter, and
highest bandwidth.

SLA3 FTP traffic should receive highest bandwidth.

SLA4 VoIP traffic should receive delay lower than 20ms and bandwidth higher than
128kbps.

SLA5 SNMP traffic should receive priority higher than 500 and bandwidth lower than
16kbps.

SLA6 SSH traffic should receive bandwidth higher than 1024kbps, delay lower than 50ms,
and lowest jitter.

Source: by author (2015).

Table 4.6: Number of classes registered in the repository.

Repository Number of Classes

Repository A 5

Repository B 10

Repository C 50

Repository D 100

Repository E 250

Source: by author (2015).

2(3), SLA 4(2), and SLA 6(3). This happens when the rule for an SLA does not match the
information stored for QoS classes. Thus, our technique applies a first rule that includes all
parameters found in an SLA. If there is not a match, new rules are generated until a match
is found. In the worst case, the rule generated will fetch the parameters using the connec-
tive or (represented by a semicolon), for example, parameter1 or parameter2 or parameter3 or

parameter4.

Table 4.9 shows the relationship between the number of iterations generated by each rule
and the number of classes found. As can be seen, in all cases at least one class has been found by
a rule. In addition, some rules have found multiple classes such as S5R1. This happens because
each rule aims to find an ideal match of parameters ignoring the other parameters registered in
the class. Thus, a rule aiming values of priority = 12 and bandwidth = 128kbps can identify

57

classes with the following information: Class1: priority = 12, bandwidth = 128kbps; Class2:
priority = 12, bandwidth = 128kbps, and delay = 10ms; Class3: priority = 12, bandwidth =
128kbps, delay = 10ms, and jitter = 1ms; Class4: priority = 12, bandwidth = 128kbps, and
delay = 200ms.

Table 4.7: Rules performed for each SLA in each scenario.

SLA Name* Rule

1

S1R1
lowestValue(Class,priority,Priority), lowestValue(Class,delay,Delay),

lowestValue(Class,jitter,Jitter), highestValue(Class,bandwidth,Bandwidth).

S1R2
lowestValue(Class,priority,Priority), lowestValue(Class,delay,Delay),

highestValue(Class,bandwidth,Bandwidth).

S1R3
lowestValue(Class,priority,Priority),

highestValue(Class,bandwidth,Bandwidth).

S1R4 lowestValue(Class,priority,Priority), lowestValue(Class,delay,Delay).

2

S2R1
highestValue(Class,priority,Priority), highestValue(Class,delay,Delay),

highestValue(Class,jitter,Jitter), lowestValue(Class,bandwidth,Bandwidth).

S2R2
highestValue(Class,priority,Priority), highestValue(Class,delay,Delay),

lowestValue(Class,bandwidth,Bandwidth).

S2R3
lowestValue(Class,bandwidth,Bandwidth),

highestValue(Class,priority,Priority).

3 S3R1 highestValue(Class,bandwidth,Bandwidth).

4
S4R1 findParLower(Class,delay,20), findParHigher(Class,bandwidth,128).

S4R2 findParLower(Class,delay,20); findParHigher(Class,bandwidth,128).

5 S5R1 findParHigher(Class,priority,500), findParLower(Class,bandwidth,16).

6

S6R1
findParHigher(Class,bandwidth,1024), findParLower(Class,delay,50),

lowestValue(Class,jitter,Jitter).

S6R2 findParHigher(Class,bandwidth,512), findParLower(Class,delay,20).

S6R3
findParHigher(Class,bandwidth,1024); findParLower(Class,delay,50);

lowestValue(Class,jitter,Jitter).

∗ Name is the short representation of a rule where S = SLA and R = Rule. Thus, S1R1 is

the first rule for SLA1.

Source: by author (2015).

58

Table 4.8: Description of Operations used in the rules.

Prolog Operation Description

findParLower(Class,Parameter,Value) :-

isMemberParameter(Class,Parameter,Value2),

Value2 < Value.

Used to find a parameter lower than a
specific value.

findParHigher(Class,Parameter,Value) :-

isMemberParameter(Class,Parameter,Value2),

Value2 > Value.

Used to find a parameter higher than a
specific value.

findParIdentical(Class,Parameter,Value) :-

isMemberParameter(Class,Parameter,Value2),

Value2 = Value.

Used to find a parameter identical the
specific value.

lowestValue(Class,Parameter,Value) :-

isMemberParameter(Class,Parameter,Value),

(isMemberParameter(Class2,Parameter2,Value2),

Parameter = Parameter2,

Value2 < Value, Class ! = Class2).

Used to find the QoS Class which has the

lowest parameter among the registered

QoS Classes.

highestValue(Class,Parameter,Value) :-

isMemberParameter(Class,Parameter,Value),

(isMemberParameter(Class2,Parameter2,Value2),

Parameter = Parameter2,

Value2 > Value, Class ! = Class2).

Used to find the QoS Class which has the

highest parameter among the registered

QoS Classes.

Source: by author (2015).

Figure 4.3 shows the number of iterations for each SLA in each repository. Each color
indicates a different prolog rule. For example, in Figure 4.3(a) the repository with 50 classes
performed 4 prolog rules to find at least one class.

As can be observed in Figure 4.3, by increasing the number of classes the amount of itera-
tions for each repository grows. This increase is visible in all experiments performed with the
SLAs. This behavior is expected, since the number of classes has influence on the number of
iterations to obtain the ideal matches between SLAs and QoS classes. In addition, the SLAs
requiring extreme values, e.g., lowest delay, highest bandwidth also increase the number of
iterations because they needed to find lowest or highest values.

59

Table 4.9: Results of the iterations and classes found for each scenario.

Number of Classes

5 10 50 100 250SLA Rule*

Iterat. Found Iterat. Found Iterat. Found Iterat. Found Iterat. Found

S1R1 158 1 332 0 2617 0 4747 0 11573 1

S1R2 N/A N/A 332 0 2617 0 4747 0 N/A N/A

S1R3 N/A N/A 226 0 2111 0 2232 1 N/A N/A
1

S1R4 N/A N/A 252 1 2157 1 N/A N/A N/A N/A

S2R1 77 0 137 0 1783 1 1352 0 10763 0

S2R2 77 0 137 0 N/A N/A 1352 0 10763 02

S2R3 118 1 270 1 N/A N/A 12218 1 40923 1

3 S3R1 68 1 289 2 1743 1 2137 2 13563 6

S4R1 19 0 12 0 58 2 114 4 290 13
4

S4R2 14 1 24 1 N/A N/A N/A N/A N/A N/A

5 S5R1 14 2 33 5 125 20 293 45 718 107

S6R1 7 0 12 0 564 3 2126 4 16579 13

S6R2 7 0 12 0 N/A N/A N/A N/A N/A N/A6

S6R3 100 1 314 2 N/A N/A N/A N/A N/A N/A

∗ Rules described in Table 4.7.

The occurrence of an N/A means that a previous rule found a class.

Source: by author (2015).

60

Figure 4.3: Average number of iterations for each SLA performed in each scenario.

 0

 2000

 4000

 6000

 8000

 10000

 12000

5 10 50 100 250

N
u
m

b
e
r

o
f

It
e
ra

ti
o
n
s

Number of Classes

(a) SLA 1

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

5 10 50 100 250

N
u
m

b
e
r

o
f

It
e
ra

ti
o
n
s

Number of Classes

(b) SLA 2

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

5 10 50 100 250
N

u
m

b
e
r

o
f

It
e
ra

ti
o
n
s

Number of Classes

(c) SLA 3

 0

 50

 100

 150

 200

 250

 300

5 10 50 100 250

N
u
m

b
e
r

o
f

It
e
ra

ti
o
n
s

Number of Classes

(d) SLA 4

 0

 100

 200

 300

 400

 500

 600

 700

 800

5 10 50 100 250

N
u
m

b
e
r

o
f

It
e
ra

ti
o
n
s

Number of Classes

(e) SLA 5

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

5 10 50 100 250

N
u
m

b
e
r

o
f

It
e
ra

ti
o
n
s

Number of Classes

(f) SLA 6

 Rule 1 Rule 2 Rule 3 Rule 4 .

Source: by author (2015).

61

5 PROTOTYPE AND EXPERIMENTAL EVALUATION

This chapter provides an overview of the prototype developed and the experiments in order
to validate our policy refinement toolkit. In Section 5.1 we describe the prototype. In Section 5.2
we present and discuss the experimental evaluation.

5.1 Prototype

In this section we present the prototype developed. We briefly describe our low-level con-
troller in Section 5.1.1. In Section 5.1.2 we describe our Policy Authoring Framework.

5.1.1 Low-level Controller Prototype

In order to apply our solution we need to customize and to create some functionality of
an OpenFlow controller. This was required for collecting information about the network in-
frastructure, which is later used, for example, to calculate optimal routes. This customization
is based on SDN native features. Thus, it can be applied to any controller implementation.
Therefore, our solution is not tied to any specific controller design or language. We empha-
size that even though the commands supported by the forwarding elements are standardized,
the controllers require different programming languages and/or support different features. This
difference among controllers can reflect in the effort for customization that must be spend by
an infrastructure-level programmer. For example, topology discovery, which is available in the
POX (MCCAULEY et al., 2013) controller from the discovery module, is a feature that can be
achieved by others controllers in different implementations by collecting Link Layer Discovery
Protocol (LLDP) packets that are sent from the network devices.

The controller was designed using POX (MCCAULEY et al., 2013), written in Python Lan-
guage (PYTHON, 2014). We take the l2_multi module as a kernel basis for development of our
customized controller. This module has some important presets for our solution such as support
to discovery library, used for example for discovery of network elements and spanning tree li-

brary, used for example to calculate and deploy different paths between source and destination
elements.

We used the OpenFlow Protocol 1.0 (PFAFF et al., 2009; MCKEOWN et al., 2008) to
coordinate network devices because it is the currently stable version of the protocol. We know
the resources provided by the newer versions introduced a more flexible pipeline with multiple
tables and the use of groups to organize flow rules. However, we found in 1.0 version all
required support to our solution. Obviously, the use of newer versions can optimize issues such
as processing and even organization and grouping of rules in the switches. Nevertheless, these
issues are handled by our solution which has shown satisfactory results.

As mentioned previously, the behavior of the customized OpenFlow controller is divided

62

into three phases. In the following we present an overview of the modules implemented in each
phase:

1. Modules of the Startup phase:

• Network Discovery – monitors the network in order to discover the elements and
topology using a customized POX discovery library.

• Network Information Collector – sends ICMP packets to analyze the network
characteristics such as delay and available bandwidth. Additionally, based on the
delay values, it calculates the jitter for each path.

• Path Generator – calculates the paths between all elements using Dijkstra’s Short-
est Path Algorithm (DIJKSTRA, 1959) and a customized POX spanning tree library.
In order to generate each path, it creates various spanning trees between the source
and destination elements. Later, it triggers the Network Information Collector to
perform the gathering and processing of information from each tree created. Each
path is generated considering the available bandwidth, number of hops, average de-
lay and jitter.

• Standard Rules Deployer – deploys the standard rules based on best-effort paths
found by the Path Generator module using a customized POX spanning tree library.

2. Modules of the Events phase:

• Service Events Monitor – waits for service packets without specific rules.

• Analysis Trigger – analyzes the duration of each flow to propose modifications in
the network configuration triggering the Analysis Phase.

3. Modules of the Analysis phase:

• Service Analyzer – finds services requirements and its specifics rules in the policy
repository.

• Specific Rules Deployer – deploys specific rules based on service requirements
found by the Service Analyzer module and the Path Generator module using a cus-
tomized POX spanning tree library.

• Network Analyzer – sends ICMP packets to analyze the network changes and trig-
gers the Service Analyzer module.

5.1.2 Policy Authoring Framework Prototype

In this section we describe the design/operation of our Policy Authoring framework for
SDN management. The main goal is to enable operators to express business goals, e.g., Service
Level Agreements (SLAs), without having to specify in detail what elements in the network
infrastructure should receive the configurations and how they should be configured.

63

We developed the Policy Authoring GUI module and the Configurator GUI module using
the Django web framework1. We chose Django due to its support to the Python2 language
and the support it provides to create web applications. For the interface design we used the
Bootstrap front-end framework3.

Section 5.1.2.1 introduces the Policy Authoring GUI Module. We show the Configuration

GUI Module in Section 5.1.2.2.

5.1.2.1 Policy Authoring GUI Module

We developed a user-friendly Graphical User Interface (GUI) module for Policy Authoring
in order to allow the configuration of the network through business goals. Thus, a business-level
operator uses the Policy Authoring GUI to express high-level goals and receive feedback from
his requests.

Figure 5.1: Policy Authoring Graphical User Interface Module.

Source: by author (2015).

Figure 5.1 illustrates the home screen of the Policy Authoring GUI. It presents statistics
about the number of policies, classes, services, and users registered. In addition, it shows two
pie charts about the top 5 services that most appear in policies and the top 5 QoS classes that
most have linked policies. The dashboard is composed of the following items:

• Policies – Used by business-level operators to create, search, edit, remove, enable or
disable policies. Operators can also associate a high-level SLA with the QoS class that

1http://www.djangoproject.com/
2http://www.python.org/
3http://getbootstrap.com/

64

best meets the SLA requirements.

• Classes – Used to specify QoS classes. Infrastructure-level programmers and business-
level operators can perform the necessary parameter settings for each class.

• Services – Used by infrastructure-level programmers to record, edit, and delete services.
Also, it is here that a service can be associated with a QoS class.

• Reports – Used by business-level operators and infrastructure-level programmers to view
reports, e.g.,, number of policies, services, classes; classes containing more policies; ser-
vices that most appear in policies; services that less appear in policies. Additionally, some
reports can be filtered by specific parameters, e.g., priority, delay.

• Users – Used to manage system users.

• Settings – Used to determine the system settings, such as settings to connect to the
database.

The input screen for writing SLAs is depicted in Figure 5.2.

Figure 5.2: Input screen to SLA operations.

Source: by author (2015).

5.1.2.2 Configurator GUI Module

Our aim is to facilitate not only the description of business objectives but also the config-
uration of the infrastructure. The Configurator GUI is designed to manage the registration of
services and parameters. An infrastructure-level programmer inserts service information, such
as ServiceName and ServicePort (as used in TCP/IP). Subsequently, the infrastructure-level pro-
grammer may create QoS classes with parameters and their respective values. The fields that

65

may be informed are ClassName, Priority, Bandwidth, Delay, and Jitter.

We decided to group services by class, thus after QoS classes have been defined, each ser-
vice is associated with a QoS class. This step is important because if services are previously
associated with some class, the toolkit will have a better performance since there will be an
entry in the repository for a group of services as opposed to one entry for each service. Thus,
services with similar requirements can be grouped into a single class while maintaining fairness
among competing services in the same link.

5.2 Experimental Evaluation

Firstly, in Section 5.2.1, we present experiments with the controller prototype. Secondly,
we present experiments with the policy authoring framework in Section 5.2.2. Thirdly, in Sec-
tion 5.2.3, we present experiments with the end-to-end process, i.e., from the policy authoring
process to deployment of low-level rules.

5.2.1 Controller Experiments

This section describes our test environment and some initial results with the controller pro-
totype. The experiments were performed on an AMD 2.0 GHz Octa Core with 32 GB RAM
memory. Each experiment was run thirty times. The scenarios were created using the Mininet
emulator.

5.2.1.1 Scenarios

Five scenarios were created in our experiments. The scenarios that we built had increasing
numbers of switches and redundant links, thus increasing path diversity between any two hosts.
Table 5.1 shows the number of hosts, switches, and links in each scenario.

Table 5.1: Number of hosts, switches, and links in each scenario.

Scenario Switch L0 Switch L1 Switch L2 Switch L3 Host Link

V 2 2 0 0 4 4

W 4 4 2 0 8 12

X 8 8 4 0 16 32

Y 16 16 8 4 32 80

Z 32 32 16 8 64 96

Source: by author (2015).

66

The topologies used in the experiments were based on Fat-Tree topologies (LEISERSON,
1985). An overview of scenarios V, W, and X is shown in Figure 5.3. Due to the large number
of elements, scenarios Y and Z could not be clearly presented in a figure. By increasing the
number of switches and redundant links, these topologies can be used to, for example, maintain
system availability in the presence of problematic links and to reduce traffic congestion in the
infrastructure.

Figure 5.3: Scenarios for the experiments with increasing number of switches and link redun-
dancy.

Hosts

Switches L0

Switches L1

Switches L2

Hosts

Switches L0

Switches L1

Switches L2

Scenario V Scenario W

Scenario X

Hosts

Switches L0

Switches L1

Source: by author (2015).

5.2.1.2 Experiments and Discussion

Our experiments with the controller aim to measure the average time to discover the net-
work, i.e., all network elements and all possible paths between these elements and deploying
standard rules (performed in the Startup Phase of the controller) (Figure 5.4(a)); deploying
specific rules from a previously known topology (Figure 5.4(b)); and deploying specific rules
without previous knowledge of topology (Figure 5.4(c)).

As can be observed in Figure 5.4(a), with the increase in the number of elements and links
in the topology, the time to calculate all paths between any network element increases, reaching
78.17 seconds in scenario Z. Even with this growth, we justify the execution of this calculation
and installation of these initial standard rules because we want to avoid any delay when new

67

flows arrive. We also take into consideration that, due to the initial calculation, later, in the
Analysis Phase (see Section 3.2.3), we have already all possible flow paths, which makes the
calculation of specific rules faster, reaching 0.841 seconds in scenario Z (as can be seen in
Figure 5.4(b)). The increase in the number of elements in each topology reflects in a small
increase in the time for deploy of the specific rules as can be observed in Figure 5.4(b). Thus,
there is a minimum time necessary for deploying the specific rules, but that does not delay
service flow processing due to the pre-established standard rules.

Figure 5.4: Average time for recognition of links, calculation, and installation of rules in the
switches.

 0

 10

 20

 30

 40

 50

 60

 70

 80

V W X Y Z

T
im

e
 (

S
e
co

n
d
s)

Scenarios

(a) Time for calculation and in-
stallation of standard rules in the
switches in the startup phase and
recognition of topology in each ex-
periment.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

V W X Y Z

T
im

e
 (

S
e
co

n
d
s)

Scenarios

(b) Time for calculation and in-
stallation of specific rules in the
switches in each experiment.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

V W X Y Z

T
im

e
 (

S
e
co

n
d
s)

Scenarios

(c) Time for recognition of the first
link between source and destination
and calculation and installation of
specific rules in the switches in each
experiment.

Source: by author (2015).

For comparison purposes, Figure 5.4(c) shows what the time for recognition of a link and
installation of rules would be without a previous knowledge about the topology and its links. As
can be observed, the time for scenario Z reaches 8.23 seconds. This time is nearly 10 times lower
than the time spent by our solution for previous recognition of the topology and deploy standard
rules (78.14 seconds according to Figure 5.4(a)). However, our experiments have shown that an
initial calculation of best-effort paths between network elements can increase the performance
of the network during runtime. Certainly there is an overhead related to the startup phase of
the controller (Figure 5.4(a)). Nevertheless, this is justifiable as it improves the performance
of the network during runtime when observed the time of 0.841 seconds for scenario Z in
Figure 5.4(b) that is approximately 10 times lower than the time of 8.23 seconds for scenario
Z in Figure 5.4(c). As mentioned previously, these results show that due to the calculations
performed initially, our proposal is able to perform a quick reconfiguration of specific rules,
since we already have a populated list of the best links between network elements. Thus, if we
observe that in a network several flows are being forwarded, in a short time our solution obtains
a better time compared with approaches without a previous knowledge of the topology.

It is noteworthy that the path chosen in the experiments (Figure 5.4(c)) is the first one found

68

between a source and a destination. Thus, there is no checking if this link is the best link to
a particular flow, i.e., if it complies with best-effort requirements of a particular flow. Nev-
ertheless, rules deployed by our solution intend to choose the best rules to fulfill the service
requirements among several possible links.

5.2.2 Policy Authoring Experiments

In this section, our goal was to measure the response time of the Policy Authoring Frame-
work, according to the increased complexity of each SLA and number of classes stored in the
repository. Each experiment was run thirty times. The experiments were performed on an AMD
2.0 GHz Octa Core with 32 GB RAM memory.

5.2.2.1 Scenarios

We created three SLAs (Table 5.2) by changing the number of expressions. We applied the
three SLAs to five repository containing different amounts of classes. We populated each repos-
itory according to Table 5.3. Each QoS class considers the possibility of a different amount of
QoS requirements, i.e., a QoS class may contain all QoS requirements such as priority, band-
width, delay, and jitter whilst another QoS class may contain only one QoS requirement such
as bandwidth. Each QoS requirement has different values4.

Table 5.2: Description of SLAs used in the experiments.

SLA Description of SLAs

SLA1 Peer-to-peer traffic should receive lowest Quality of Service and lowest priority
compared with other services.

SLA2 Streaming traffic should receive highest priority, lowest delay and bandwidth higher
than 512kbps.

SLA3 VoIP traffic should receive highest priority, delay lower than 200ms, lowest jitter,
and bandwidth higher than 128kbps.

Source: by author (2015).

5.2.2.2 Experiments and Discussion

We measured the time spent on the identification of regexes and on the query of all sug-
gestions of classes in the repository. Figure 5.5 shows the average time for each SLA in each
repository.

4The values for QoS requirements were generated randomly: between 0 and 999 for priority, between 2 kbps
and 210 kbps for bandwidth, between 1 ms and 999 ms for delay, and 10% of the delay value for jitter.

69

Table 5.3: Number of classes registered in the repository.

Repository Number of Classes

Repository A 10

Repository B 100

Repository C 1000

Repository D 10000

Repository E 100000

Source: by author (2015).

Figure 5.5: Average response time for each SLA.

 0

 2

 4

 6

 8

 10

 12

10 100 1000 10000 100000

T
im

e
 (

S
e
co

n
d

s)

Number of Classes

(a) SLA 1

 0

 2

 4

 6

 8

 10

 12

10 100 1000 10000 100000

T
im

e
 (

S
e
co

n
d

s)

Number of Classes

(b) SLA 2

 0

 2

 4

 6

 8

 10

 12

10 100 1000 10000 100000

T
im

e
 (

S
e
co

n
d

s)

Number of Classes

(c) SLA 3

Source: by author (2015).

As can be observed in Figure 5.5, with the increase in the number of classes and the level of
complexity of the SLA, the time to calculate all suggestions of classes increases. Even with this
growth, the policy authoring process performs well when we observe and compare the values
of standard deviation and confidence interval according to Table 5.4.

5.2.3 End-to-end Process Experiments

We present in this section experiments and initial results obtained with the implemented
toolkit. Our goal is to measure the response time of the end-to-end process, i.e., from policy
authoring to deployment of low-level rules in the controller device. Each experiment was run
thirty times. The scenarios were created using the Mininet emulator and experiments were
performed on an AMD 2.0 GHz Octa Core with 32 GB RAM memory.

70

Table 5.4: Experiment results.

Repository Standard deviation Confidence interval

SLA1

A 0.02 0.000435567

B 0.02 0.000567653

C 0.03 0.000965765

D 0.04 0.000987866

E 0.06 0.001676778

SLA2

A 0.13 0.004652696

B 0.17 0.005444554

C 0.21 0.007234412

D 0.24 0.006231234

E 0.29 0.008654578

SLA3

A 0.25 0.009656654

B 0.31 0.009356912

C 0.33 0.010324475

D 0.65 0.010344532

E 0.84 0.012644334

Source: by author (2015).

5.2.3.1 Scenarios

In order to perform the experiments, we created three SLAs (Table 5.5) by changing the
number of expressions, where SLA2 has more expressions than SLA1 and SLA3 has more ex-
pressions than SLA2. Our goal is to show the robustness and efficiency of the refinement process
when we increase the number of expressions that should be compared. We also created three
scenarios (Table 5.6) by varying the number of network devices and adding redundant links
between some network devices. The scenarios used in the experiments were based on Fat-Tree
topologies (LEISERSON, 1985). Our goal was to demonstrate the ability of the framework to
operate in increasingly large topologies.

We applied the three SLAs to five different repositories and populated each repository ac-
cording to Table 5.7. We performed experiments on all variations of SLAs, repositories, and
scenarios.

71

Table 5.5: Description of SLAs used in the experiments.

SLA Description of SLAs

SLA1 HTTP traffic should receive lowest priority.

SLA2 Streaming traffic should receive highest priority, lowest delay and bandwidth higher
than 512kbps.

SLA3 VoIP traffic should receive highest priority, delay lower than 200ms, lowest jitter,
and bandwidth higher than 128kbps.

Source: by author (2015).

Table 5.6: Number of switches and links in each scenario.

Scenario Switch L0 Switch L1 Switch L2 Switch L3 Switch L4 Host Link

X 16 8 8 4 0 32 88

Y 32 16 16 8 4 64 176

Z 64 32 32 16 8 128 210

Source: by author (2015).

Table 5.7: Number of classes registered in the repository.

Repository Number of Classes

Repository A 10

Repository B 100

Repository C 1000

Repository D 10000

Repository E 100000

Source: by author (2015).

5.2.3.2 Experiments and Discussion

In particular, the experiments described in this sections intend to evaluate our prototype in
terms of average execution time and percentage of the total time occupied by each stage of our
policy refinement toolkit.

Figure 5.6 shows the average response time for each SLA in each scenario. We break the
total execution time down in three categories, namely requirements analysis (i.e., parse the
SLAs and their regexes), repository queries (i.e., search for the best matching QoS class), and
deploy rules (i.e., install the flow rules in the controller). By increasing the number of classes,

72

Figure 5.6: Average response time for SLAs 1, 2, and 3 performed in scenarios X, Y, and Z.

 0

 2

 4

 6

 8

 10

 12

 14

 16

10 100 1000 10000 100000

T
im

e
 (

S
e
co

n
d

s)

Number of Classes

(a) SLA 1 (scenario X)

 0

 2

 4

 6

 8

 10

 12

 14

 16

10 100 1000 10000 100000
T
im

e
 (

S
e
co

n
d

s)
Number of Classes

(b) SLA 1 (scenario Y)

 0

 2

 4

 6

 8

 10

 12

 14

 16

10 100 1000 10000 100000

T
im

e
 (

S
e
co

n
d

s)

Number of Classes

(c) SLA 1 (scenario Z)

 0

 2

 4

 6

 8

 10

 12

 14

 16

10 100 1000 10000 100000

T
im

e
 (

S
e
co

n
d

s)

Number of Classes

(d) SLA 2 (scenario X)

 0

 2

 4

 6

 8

 10

 12

 14

 16

10 100 1000 10000 100000

T
im

e
 (

S
e
co

n
d

s)

Number of Classes

(e) SLA 2 (scenario Y)

 0

 2

 4

 6

 8

 10

 12

 14

 16

10 100 1000 10000 100000
T
im

e
 (

S
e
co

n
d

s)

Number of Classes

(f) SLA 2 (scenario Z)

 0

 2

 4

 6

 8

 10

 12

 14

 16

10 100 1000 10000 100000

T
im

e
 (

S
e
co

n
d

s)

Number of Classes

(g) SLA 3 (scenario X)

 0

 2

 4

 6

 8

 10

 12

 14

 16

10 100 1000 10000 100000

T
im

e
 (

S
e
co

n
d

s)

Number of Classes

(h) SLA 3 (scenario Y)

 0

 2

 4

 6

 8

 10

 12

 14

 16

10 100 1000 10000 100000

T
im

e
 (

S
e
co

n
d

s)

Number of Classes

(i) SLA 3 (scenario Z)

 Deploy-Rules Repository-Queries Requirements-Analysis .

Source: by author (2015).

it is possible to observe that the average time spent performing repository queries also grows.
This increase is visible in all experiments performed with SLAs 1, 2, and 3. This behavior is
expected, since the number of classes has influence on the number of queries to obtain the ideal
matches between SLAs and QoS classes.

In Figure 5.7 the y-axis shows the percentage of the total time occupied by each process

73

in the experiments performed with SLAs 1, 2, and 3 in each scenario. From these results it is
possible to note that, according to the level of complexity of each SLA, the percentage of time
for analyzing requirements also increases. This happens due to the increase in the number of
occurrences of regular expressions found in each SLA.

Figure 5.7: Percentage of total time for SLAs 1, 2, and 3 performed in scenarios X, Y, and Z.

 0

 20

 40

 60

 80

 100

10 100 1000 10000 100000

P
e
rc

e
n
ta

g
e
 (

%
)

Number of Classes

(a) SLA 1 (scenario X)

 0

 20

 40

 60

 80

 100

10 100 1000 10000 100000

P
e
rc

e
n
ta

g
e
 (

%
)

Number of Classes

(b) SLA 1 (scenario Y)

 0

 20

 40

 60

 80

 100

10 100 1000 10000 100000

P
e
rc

e
n
ta

g
e
 (

%
)

Number of Classes

(c) SLA 1 (scenario Z)

 0

 20

 40

 60

 80

 100

10 100 1000 10000 100000

P
e
rc

e
n
ta

g
e
 (

%
)

Number of Classes

(d) SLA 2 (scenario X)

 0

 20

 40

 60

 80

 100

10 100 1000 10000 100000

P
e
rc

e
n
ta

g
e
 (

%
)

Number of Classes

(e) SLA 2 (scenario Y)

 0

 20

 40

 60

 80

 100

10 100 1000 10000 100000

P
e
rc

e
n
ta

g
e
 (

%
)

Number of Classes

(f) SLA 2 (scenario Z)

 0

 20

 40

 60

 80

 100

10 100 1000 10000 100000

P
e
rc

e
n
ta

g
e
 (

%
)

Number of Classes

(g) SLA 3 (scenario X)

 0

 20

 40

 60

 80

 100

10 100 1000 10000 100000

P
e
rc

e
n
ta

g
e
 (

%
)

Number of Classes

(h) SLA 3 (scenario Y)

 0

 20

 40

 60

 80

 100

10 100 1000 10000 100000

P
e
rc

e
n
ta

g
e
 (

%
)

Number of Classes

(i) SLA 3 (scenario Z)

 Deploy-Rules Repository-Queries Requirements-Analysis .

Source: by author (2015).

Figure 5.8(a) shows the total number of rules generated by refining each SLA separately in

74

each scenario. As can be observed, each SLA generates practically the same number of rules
in each scenario. SLA 1 shows a small difference in the number of rules deployed compared
to SLAs 2 and 3. This occurs because SLA 1 has lower QoS requirements (i.e., low priority)
compared to other services, which causes the choice of routes with more hops and consequently
causes rules to be deployed in more devices. It is worth mentioning that the total number of
rules generated by the policy authoring framework is smaller than the total number of rules that
would have to be manually created on all network devices. This is because, as our approach is
based on routing, it creates a spanning tree to find all routes between sources and destinations.
Thus, some routes may be common between different sources and destinations. As a result,
a number of switches do not need to be configured, thus reducing the total number of rules
required in each scenario.

The growth in the total number of rules in SLA 1 appears more clearly when we performed
simultaneously the refinement of the three SLAs in each scenario (Figure 5.8(b)). Our frame-
work attempts to fulfill the requirements of each SLA. In order to achieve this, it identifies the
possibility of routing (balancing) each SLA by alternative routes without failing to fulfill their
requirements. Thus, SLA 1 receives routes with more hops in order not to compete with SLAs
2 and 3 which have higher priority requirement.

Figure 5.8: Number of rules deployed in each scenario.

 0

 100

 200

 300

 400

 500

 600

Scenario-X Scenario-Y Scenario-Z

N
u
m

b
e
r

o
f

R
u
le

s

SLA-1
SLA-2
SLA-3

(a) Total number of rules deployed
by each SLA performed separately
in each scenario.

 0

 100

 200

 300

 400

 500

 600

Scenario-X Scenario-Y Scenario-Z

N
u
m

b
e
r

o
f

R
u
le

s

SLA-1
SLA-2
SLA-3

(b) Total number of rules deployed
by each SLA performed simultane-
ously in each scenario.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

Scenario-X Scenario-Y Scenario-Z

N
u
m

b
e
r

o
f

R
u
le

s

SLA-1
SLA-2
SLA-3

(c) Total amount of rules deployed
by all SLAs in each scenario.

Source: by author (2015).

Finally, Figure 5.8(c) shows the total amount of rules generated by all SLAs in each sce-
nario. This illustrates the benefits of our policy authoring and refinement approach, in which
the infrastructure-level programmer does not need to be concerned with the number of low-
level configuration rules to be deployed in the network. Our results suggest that the prototype
is able to support the refinement of SLAs and the installation of flow rules in large-scale de-
ployments. Even if we consider the scenario with the largest number of switches and links
(Figure 5.6(c)), and the largest number of QoS classes, the total measured time remains within
acceptable bounds. Moreover, as mentioned previously, the framework optimizes the deploy-
ment of rules according to the requirements of each SLA and according to each scenario.

75

6 RELATED WORK

In this work, we advocate that policy refinement techniques may reduce the manual work
overload for Software-Defined Networking configurations. The literature presents studies using
separately techniques and frameworks to policy refinement, and studies using SDN to achieve
improvements in the network resource management. SDN studies which may use and are al-
ready using any policy/rule type are described in Section 6.1. Section 6.2 presents works about
PBM and Policy Refinement.

6.1 Software-Defined Networking

SDN features have been employed to enhance the monitoring and management of network
traffic. Foster et al. (FOSTER et al., 2011) introduced a new language for network program-
ming supporting OpenFlow called Frenetic. Frenetic has a set of operators for handling network
traffic flows, and a runtime that abstracts the details related to installing and uninstalling low-
level rules in switches. Monsanto et al. (MONSANTO et al., 2013) introduced the Pyretic
language. Pyretic introduced two main programming abstractions that have simplified the cre-
ation of modular management programs. Nonetheless, Frenetic and Pyretic are just languages to
model low-level rules and do not employ any policy refinement technique to translate high-level
policies into a set of low-level policies.

Rubio-Loyola et al. (RUBIO-LOYOLA et al., 2011) investigated the sharing of virtualized
network resources in software-defined networking. The authors proposed an autonomic man-
agement system capable of separating control and data planes, providing greater isolation in
the execution of applications. Also, an Orchestration Plane (OP) was presented, which aims to
manage the system behavior in response to context changes, and in accordance with business
goals and policies. However, the authors do not specify if there is any refinement approach to
automate the translation of policies in different levels of abstraction.

Min et al. (MIN et al., 2012) developed a FlowVisor to enhance the admission control and
bandwidth scheduling to network resources. The visor has provided an improvement in the
dynamic control of network resources based on requirements and conditions for using the net-
work. Notwithstanding, FlowVisor does not provide a framework to write high-level policies
in a natural language and consequently does not use any policy refinement technique. In addi-
tion, FlowVisor does not provide or use information about network guarantees to accommodate
service requirements.

Kim and Feamster (HYOJOON; FEAMSTER, 2013) presented a discussion about three
problems with the current state-of-the-art in network management: changes to network be-
havior; a high-level language for network configuration; and vision and control over tasks for
performing network analysis and troubleshooting. Further, the authors described the use of the
Procera language to assists operators to express network policies that react to various types of

76

events using a high-level functional programming language. Despite producing a broad dis-
cussion on network management problems, this work does not investigate aspects concerning
policy refinement and its implementation issues.

6.2 Policy-Based Management

The use of PBM and policy refinement in computer networks has been investigated for
over a decade. Bandara et al. (BANDARA et al., 2005) presented the use of goal design and
abductive reasoning to derive strategies that attain a specific high-level goal. Policies can be re-
fined by combining strategies with events and restrictions. The authors provide tool support for
the refinement process, and use examples of DiffServ (BLAKE et al., 1998) QoS management.
Craven et al. (CRAVEN et al., 2011) presented a policy refinement process for authorization and
obligation that involves stages of decomposition, operationalization, re-refinement, and deploy-
ment. The work described in detail how a formalization of UML information on system objects,
a high-level policy, and decomposition rules that relate actions can produce concrete low-level
policies. Rubio-Loyola et al. (WALLER et al., 2006) presented a goal-oriented approach for
goal decomposition using KaOS. The refinement approach makes use of linear temporal logic
and reactive systems analysis techniques, thus generating deployable policies in Ponder. These
works were limited due to the characteristics of traditional IP networks, such as best-effort
packet delivery and distributed control state in forwarding devices. In addition, it does not use
information about network guarantees to accommodate the service requirements.

Reeder et al. (REEDER et al., 2007) investigate usability challenges in policy authoring
interfaces. Some of the challenges that were found are related to the use of consistent termi-
nology and how users express their policies. Johnson et al. (JOHNSON et al., 2010) present a
template-based framework for policy authoring. The work describes the relationship between
general templates and specific policies, and the skills required from users to produce high-
quality policies. Although these research efforts investigate important issues regarding policy
authoring, none of them specifies a formal language for authoring, the use of logical reasoning
to assist the refinement process, or experimental results.

Zhao et al. (ZHAO; SAKR; LIU, 2013) describe the design and implementation of an end-
to-end framework for the management of cloud-hosted databases from a consumer’s perspec-
tive. The approach is based on the interpretation of SLAs to assist the dynamic provisioning
of databases. The framework checks if SLAs have changed and automatically performs cor-
rective actions to enforce the new specifications. Villegas et al. (VILLEGAS et al., 2012)
present a framework for the analysis of provisioning and allocation policies for Infrastructure-
as-a-Service clouds, i.e., policies to dynamically allocate resources which remain largely un-
derutilized over time. Oriol Fito et al. (FITO et al., 2012) introduce a Business-Driven ICT
Management (BDIM) model to satisfy the business strategies of cloud providers. The objective
is to evaluate the impact of events related to ICT using business-level metrics. A Policy-Based

77

Management system analyzes these events and is able to determine automatically the ICT man-
agement actions that are most appropriate. However, the authors do not specify if there is any
refinement approach to automate the translation of policies into lower levels of abstraction.

Carey and Wade (CAREY; WADE, 2008) presented the design, implementation and evalu-
ation of a toolkit for the refinement of high-level policies into low-level policies. The work pre-
sented a framework describing the adaptive refinement of high-level policy into system rules and
system behavior for policy execution. Brodie et al. (BRODIE et al., 2008) present a platform-
independent framework to specify, analyze, and deploy security and networking policies. A
portal prototype for policy authoring, based on natural language and structured lists, allows the
management of policies from their specification to enforcement. The policy authoring portal en-
ables web users to write policies, using a high-level language, which are translated and mapped
to specific low-level configurations. Note that the work of Carey and Wade (CAREY; WADE,
2008) and the work of Brodie et al. (BRODIE et al., 2008) suffer from the same problems found
in (BANDARA et al., 2005), (CRAVEN et al., 2011), (WALLER et al., 2006), (JOHNSON et
al., 2010), and (REEDER et al., 2007).

In summary, SDN enables the deployment of network applications that perform sophisti-
cated traffic monitoring and traffic processing. As a result, SDN has become a suitable scenario
for the application of techniques and approaches for improved infrastructure management. SDN
has used policies for defining some aspects of network management. However, policies are of-
ten written for specific situations directly in the controller, and specific techniques that can
facilitate policy refinement in SDN have not been explored yet.

Despite efforts related to PBM have achieved satisfactory results, they were also limited
by the characteristics imposed by traditional IP networks, such as best-effort packet delivery
and distributed control state. We distinguish our policy refinement solution from other existing
approaches by exploring the characteristics of SDN architectures, such as centralized control
plane and overall view of the network infrastructure to enhance the policy refinement process.

The work presented in this dissertation relied on policy refinement to model the behavior of
SDN components without the need to recode them or interrupt the network operation. Although
some of the ideas in our toolkit are inspired by the research efforts above, to the best of our
knowledge, this is the first time a policy refinement toolkit for SDN management is presented.

78

7 CONCLUDING REMARKS

Despite the benefits of SDN, the expected behavior of the network and their elements are
defined by static rules written to handle with specific circumstances. This approach presents
several problems such as human work overload to write, analyze, and manage a large set of
hard-coded rules. It also limits or prohibits the development and deployment of new services
and resources that were not anticipated when rules were written in the controller. Finally, the
low-level rules are difficult to analyze and do not provide guarantees for compliance with the
high-level goals.

In this context, we advocate that a possible solution to minimize these problems is the use
of the PBM paradigm and policy refinement techniques. PBM in SDN can be used to specify
goals and constraints in the form of rules to guide the operation of network elements. Policy
abstractions can be used not only to adapt the controlled system, but also to adjust the policies
themselves, changing their behavior to better achieve the system goals. For example, a policy
may add QoS control rules for network monitoring and traffic analysis. If the rate at which the
network is read is too high, communication costs for monitoring will end up interfering, and
generating more traffic. However, if it is excessively low, the system may not be sufficiently
aware of changes, failing to fulfill specific objectives. To solve this problem, trends in behav-
ior can be analyzed and policies adjusted dynamically to better reflect the needs of specific
resources.

7.1 Summary of Contributions

In this work, we presented a high-level policy refinement toolkit for software-defined net-
working management. We aim to remove much of the manual workload of administrators in
the configuration of network elements. In particular, we focused on the refinement of QoS re-
quirements for different applications and services (specified in SLAs) into the configuration of
controllers and switches. As a result of our toolkit, we identified the resources that need to be
configured in accordance with the SLAs, and successfully executed reactive dynamic actions
used in the reconfiguration of the infrastructure.

We presented a controller that performs information gathering and calculates ideal routes
that support the requirements of each service flow. Additionally, it configures the rules in the
switches for optimization of network resource usage at runtime with minimal disruption to the
network. Further, the controller provides an improved flow processing strategy, by reorganizing
flows upon the arrival of new service requests. Our experiments have shown that the controller,
the initial recognition of topology elements and their possible links improve the deployment
time of specific rules for each service.

We also presented a policy authoring framework that can facilitate the configuration of an
SDN based on the interpretation of SLAs. We expect that the framework will assist network ad-

79

ministrators and operators to more easily specify overall service requirements, which can then
be automatically translated into the configuration of an SDN. An important aspect to be em-
phasized is that our solution is flexible, and allows the operator to decide whether to accept or
not the suggestions given by the framework. Thus, the operator can fully or partially accept the
suggestion, or create his own configuration. Also, our experiments have shown that the frame-
work performs well even with the increase in the number of QoS classes and in the complexity
of the SLAs.

Finally, we described a formal representation using Event Calculus (EC) and applied log-
ical reasoning to model both the system behavior and the policy refinement process for SDN
management. It is our aim with this work to assist network operators to develop refinement
tools and configuration approaches to achieve more robust SDN deployments. Thus, the devel-
opment of the approaches becomes independent of the network controller implementation or
policy language used. We demonstrated and discussed the formalism presenting case studies
and examples where we described how to model and to represent network elements and their
features; SLAs and QoS classes; the phases and their processes and operations executed by the
controller; and the operation of the policy authoring modules. Further, we performed experi-
ments to analyze the amount of iterations and suggestion of classes for the rules created by our
solution.

7.2 Discussion and Lessons Learned

Several points that were not part of the proposed goals in this work call for our attention.
As mentioned previously, we defined a formal representation of high-level policies in the form
of SLAs using Event Calculus and used logical reasoning to model both the system behavior
and the policy refinement process in SDN. Although this formalism is not integrated with the
refinement toolkit, it can be incorporated for validation of the toolkit operations and of the prop-
erties of each predicate using logical inferences achieved with the aid of an interpreter, such as
a Prolog engine. The integration with an interpreter can be used to increase the reliability of
the refinement process, since all SLAs could be modeled as logical predicates and the mapping
to low-level rules could be automatically performed via logical inferences. However, by incor-
porating an interpreter, there is clearly an increase in the response time of the processes, due
to the set of inferences to be performed. Thus, it is important to analyze and select the set of
processes and predicates requiring logical inferences, so that the time spent with an interpreter
has the lowest operating cost.

It is noteworthy that many tools, techniques, and algorithms can be exploited to improve the
toolkit processes. An example is related to the replacement of the repository. When observing
the toolkit performance experiments, we found that in cases where the amount of information
in the repository increases, there is an exponential growth in response time for the queries. By
replacing the repository with NoSQL databases or databases with support for semantic metadata

80

can dramatically improve the response time for the queries.

Regarding the controller phases, each phase comprises a set of modules responsible for
specific actions. In the event phase, we only found the occurrence of flows in the network.
However, several modules can be implemented to assist decisions on new flows and even con-
cerning the occurrence of events in the network elements. An example is the creation of a
module which identifies new network elements. Through the identification of a new element,
a reformulation of the routes between all network elements can be performed. Another exam-
ple is the development of a module which monitors the processing overhead on the switches.
Through this monitoring, a load balancing process can be activated, for example, to reorganize
routes between network elements.

We also noted some questions regarding the toolkit scalability. When we observe the ex-
periment results related to the sum of rules deployed in the switches, it is apparent that a large
set of classes leads to an increase in the number of rules produced. However, it is important to
remember that the toolkit induces the operator to register each SLA with existing QoS classes,
restricting the growth of the number of classes. Despite this, the flexibility provided by the
toolkit for creation and modification of (new) QoS classes does not limit the maximum number
of classes that can be created. Thus, a study of possible toolkit delimitations can reduce the
number of rules produced, optimizing the use of computational resources as a whole.

Another issue that may be better explored is the way network information is gathered. We
have used ICMP packets and applied a rule of three to calculate information/parameters/weights
of links between network elements. In this context, other approaches, techniques, and tools can
be explored.

7.3 Final Remarks and Future Work

We advocate that SDN, compared to traditional networks, can provide more features/infor-
mation to perform more accurate refinements. However, it is worth noting that SDN cannot
solve everything without any manual work. There are still moments where human interven-
tions are necessary, such as, settings for the actions and rules of the controller that will be later
implemented and enforced in the routers and switches.

One of the limitation is the behavior of our toolkit in scenarios with multiple controllers.
Multiple controllers can generate policy conflicts when sharing the management of the same
switches in the topology. As part of our future work, we plan to study this broader applicabil-
ity of our work. In addition, we intend to investigate techniques for detection and resolution
of policy conflicts. Conflicts may arise due to omissions, errors or differing requirements of
administrators when specifying policies. One common source of policy conflicts is the re-
finement process itself, during the translation of high-level goals into implementable low-level
policies (LUPU; SLOMAN, 1999). Moreover, we intend to extend the policy authoring frame-
work to support more terms, expressions, prescriptions, and rules, also expressions supporting

81

to source and destination network elements. Further, our approach is limited to rules triggered
by the occurrence of an event, i.e., a flow receives a specific action. We intend to extend our
grammar to support temporal logic. This will allow the specification of policies defined by an
interval of time.

Finally, we intend to analyze the generality of the formalism when managing other resources
and types of services, such as access control and load balancing. Thus, despite we limit the
scope of our work to QoS management, with some adaptations, the toolkit can be used to
perform configuration and manage services and network functions such as monitoring, access
control, and firewall.

82

REFERENCES

AIB, I.; BOUTABA, R. On leveraging policy-based management for maximizing business
profit. IEEE Transactions on Network and Service Management, New York, v.4, n. 3, p.
25–39, dec. 2007.

BAKSHI, K. Considerations for software defined networking (SDN): Approaches and use
cases. In: IEEE AEROSPACE CONFERENCE, 2013, Big Sky, USA. Proceedings... Big Sky:
IEEE, 2013. p. 1–9.

BANDARA, A. et al. A goal-based approach to policy refinement. In: 5TH IEEE
INTERNATIONAL WORKSHOP ON POLICIES FOR DISTRIBUTED SYSTEMS AND
NETWORKS, 2004, Washington, USA. Proceedings... Washington: IEEE, 2004. v. 5, p. 229
– 239.

BANDARA, A. et al. Policy refinement for diffserv quality of service management. In:
9TH IFIP/IEEE INTERNATIONAL SYMPOSIUM ON INTEGRATED NETWORK
MANAGEMENT, 2005, Nice-Acropolis, France. Proceedings... Nice-Acropolis: IEEE, 2005.
v. 9, p. 469–482.

BANDARA, A. K.; LUPU, E. C.; RUSSO, A. Using event calculus to formalise
policy specification and analysis. In: 4TH IEEE INTERNATIONAL WORKSHOP ON
POLICIES FOR DISTRIBUTED SYSTEMS AND NETWORKS, 2003, Washington, USA.
Proceedings... Washington: IEEE, 2003. v. 4, p. 26–39.

BETTS, M. et al. SDN architecture. Open Networking Foundation, Palo Alto, USA, v.1, n. 2,
p. 1–68, jun. 2014. Available at: <https://www.opennetworking.org/sdn-resources/technical-
library>. Accessed: jan. 21. 2015.

BLAKE, S. et al. An architecture for differentiated services (RFC 2475). IETF Request for
Comments - Network Working Group, Morrisville, USA, v.1, n. 1, p. 1–36, dec. 1998.
Available at: <https://www.ietf.org/rfc/rfc2475.txt>. Accessed: aug. 1. 2014.

BRADEN, R.; CLARK, D.; SHENKER, S. Integrated services in the internet architecture: an
overview (RFC 1633). IETF Request for Comments - Network Working Group, Marina
del Rey, USA, v.1, n. 1, p. 1–33, jun. 1994. Available at: <https://tools.ietf.org/html/rfc1633>.
Accessed: nov. 13. 2014.

BRODIE, C. et al. The coalition policy management portal for policy authoring, verification,
and deployment. In: IEEE WORKSHOP ON POLICIES FOR DISTRIBUTED SYSTEMS
AND NETWORKS, 2008, Palisades, USA. Proceedings... Palisades: IEEE, 2008. p. 247–249.

CAREY, K.; WADE, V. Using automated policy refinement to manage adaptive
composite services. In: 5TH IEEE INTERNATIONAL WORKSHOP ON POLICIES FOR
DISTRIBUTED SYSTEMS AND NETWORKS, 2008, Salvador, Brazil. Proceedings...
Salvador: IEEE, 2008. p. 239–247.

CRAVEN, R. et al. Decomposition techniques for policy refinement. In: IEEE INTERNA-
TIONAL CONFERENCE ON NETWORK AND SERVICE MANAGEMENT, 2010, Niagara
Falls, Canada. Proceedings... Niagara Falls: IEEE, 2010. p. 72–79.

83

CRAVEN, R. et al. Policy refinement: Decomposition and operationalization for dynamic
domains. In: 7TH IEEE INTERNATIONAL CONFERENCE ON NETWORK AND SERVICE
MANAGEMENT, 2011, Paris, France. Proceedings... Paris: IEEE, 2011. v. 7, p. 1–9.

DAVIS, N. et al. Software-defined networking: The new norm for networks. Open
Networking Foundation, Palo Alto, USA, v.2, n. 4, p. 1–68, nov. 2012. Available at:
<https://www.opennetworking.org/sdn-resources/technical-library>. Accessed: jan. 12. 2015.

DIJKSTRA, E. W. A note on two problems in connexion with graphs. Numerische
mathematik, New York, v.1, n. 1, p. 269–271, 1959.

FITO, J. O. et al. Business-driven it management for cloud computing providers. In: 4TH IEEE
INTERNATIONAL CONFERENCE ON CLOUD COMPUTING TECHNOLOGY AND
SCIENCE, 2012, Taipei, China. Proceedings... Taipei: IEEE, 2012. v. 4, p. 193–200.

FOSTER, N. et al. Frenetic: a network programming language. ACM SIGPLAN Notice, New
York, v.46, n. 9, p. 279–291, sep. 2011.

HAN, W.; LEI, C. A survey on policy languages in network and security management. IEEE
Computer Networks, Bridgewater, v.56, n. 1, p. 477–489, jan. 2012.

HYOJOON, K.; FEAMSTER, N. Improving network management with software defined
networking. IEEE Communications Magazine, Bridgewater, v.51, n. 2, p. 114–119, feb.
2013.

JOHNSON, M. et al. Optimizing a policy authoring framework for security and privacy
policies. In: SIXTH SYMPOSIUM ON USABLE PRIVACY AND SECURITY, 2010,
Redmond, Washington. Proceedings... New York: ACM, 2010. v. 6, p. 1–9.

KARN, P.; PARTRIDGE, C. Improving round-trip time estimates in reliable transport
protocols. ACM SIGCOMM Computer Communication Review, Washington, v. 17, n. 5,
p. 2–7, aug. 1987.

KEEPENCE, B. Quality of service for voice over ip. In: IEEE COLLOQUIUM ON
SERVICES OVER THE INTERNET - WHAT DOES QUALITY COST?, 1999, London,
Canada. Proceedings... London: IET, 1999. p. 1–4.

KOWALSKI, R.; SERGOT, M. A logic-based calculus of events. New Generation
Computing, Ohmsha, v.4, n. 1, p. 67–95, jan. 1986.

LEISERSON, C. Fat-trees: Universal networks for hardware-efficient supercomputing. IEEE
Transactions on Computers, Washington, v.34, n. 10, p. 892–901, oct. 1985.

LUPU, E. C.; SLOMAN, M. Conflicts in policy-based distributed systems management. IEEE
Trans. Softw. Eng., Piscataway, v.25, n. 6, p. 852–869, nov. 1999.

MCCAULEY, M. et al. POX OpenFlow controller. NOXRepo, New York, USA, v.1, n. 1, p.
1–43, dec. 2013. Available at: <http://www.noxrepo.org/pox/about-pox/>. Accessed: dec. 2.
2013.

MCKEOWN, N. et al. Openflow: Enabling innovation in campus networks. SIGCOMM
Computer Communincation, v.38, n. 2, p. 69–74, mar. 2008.

84

MIN, S. et al. Implementation of an openflow network virtualization for multi-controller
environment. In: 14TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED
COMMUNICATION TECHNOLOGY, 2012, PyeongChang, South Korea. Proceedings...
PyeongChang: IEEE, 2012. v. 14, p. 589–592.

MOFFETT, J.; SLOMAN, M. Policy hierarchies for distributed systems management. IEEE
Journal on Selected Areas in Communications, New York, v.11, n. 9, p. 1404–1414, dec.
1993.

MONSANTO, C. et al. Composing software-defined networks. In: 10TH USENIX
CONFERENCE ON NETWORKED SYSTEMS DESIGN AND IMPLEMENTATION, 2013,
Berkeley, USA. Proceedings... Lombard: USENIX Association, 2013. v. 10, p. 1–14.

MOORE, B. et al. Policy core information model (RFC 3060). IETF Request for Comments
- Network Working Group, New Jersey, USA, v.1, n. 1, p. 1–100, feb. 2001. Available at:
<https://tools.ietf.org/html/rfc3060>. Accessed: jul. 5. 2014.

NUNES, B. et al. A survey of software-defined networking: Past, present, and future of
programmable networks. IEEE Communications Surveys Tutorials, Bridgewater, v.16, n. 3,
p. 1617–1634, feb. 2014.

PARTRIDGE, C. A Proposed Flow Specification (RFC 1363). IETF Request for Comments
- Network Working Group, Palo Alto, USA, v.1, n. 1, p. 1–20, sep. 1992. Available at:
<https://tools.ietf.org/html/rfc1363>. Accessed: sep. 7. 2014.

PFAFF, B. et al. OpenFlow Switch Specification - Version 1.0.0 (Wire Protocol 0x01).
Open Networking Foundation, New York, USA, v.1, n. 1, p. 1–42, dec. 2009. Available
at: <https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-
specifications/openflow/openflow-spec-v1.0.0.pdf>. Accessed: jan. 21. 2015.

POSTEL, J. Internet control message protocol (RFC 792). IETF Request for Comments
- Network Working Group, New York, USA, v.1, n. 1, p. 1–21, sep. 1981. Available at:
<https://tools.ietf.org/html/rfc792>. Accessed: apr. 12. 2015.

PUESCHEL, T.; PUTZKE, F.; NEUMANN, D. Revenue management for cloud providers–a
policy-based approach under stochastic demand. In: 45TH IEEE HAWAII INTERNATIONAL
CONFERENCE ON SYSTEM SCIENCE, 2012, Maui, Hawaii. Proceedings... Maui: IEEE,
2012. v. 45, p. 1583–1592.

PYTHON, M. Python language reference. Python Software Foundation, New York, USA,
v.2, n. 7, p. 1–50, dec. 2014. Available at: <http://www.python.org>. Accessed: dec. 21. 2014.

REEDER, R. W. et al. Usability challenges in security and privacy policy-authoring interfaces.
In: 11TH IFIP TC 13 INTERNATIONAL CONFERENCE ON HUMAN-COMPUTER
INTERACTION, 2007, Rio de Janeiro, Brazil. Proceedings... Berlin, Heidelberg:
Springer-Verlag, 2007. v. 11, p. 141–155.

REYNOLDS, J. K.; POSTEL, J. Assigned numbers (RFC 1700). IETF Request for
Comments - Network Working Group, Marina del Rey, USA, v.20, n. 1, p. 1–230, oct. 1994.
Available at: <https://www.ietf.org/rfc/rfc1700.txt>. Accessed: may. 25. 2014.

RUBIO-LOYOLA, J. et al. Scalable service deployment on software-defined networks. IEEE
Communications Magazine, New York, v.49, n. 12, p. 84–93, dec. 2011.

85

SEZER, S. et al. Are we ready for SDN? implementation challenges for software-defined
networks. IEEE Communications Magazine, Bridgewater, v.51, n. 7, p. 36–43, jul. 2013.

SHANAHAN, M. An abductive event calculus planner. The Journal of Logic Programming,
v.44, n. 1, p. 207–240, jul. 2000.

SQUICCIARINI, A. C.; PETRACCA, G.; BERTINO, E. Adaptive data management for
self-protecting objects in cloud computing systems. In: 8TH IEEE INTERNATIONAL
CONFERENCE ON NETWORK AND SERVICE MANAGEMENT, 2012, Laxenburg,
Austria. Proceedings... Laxenburg: IEEE, 2012. v. 12, p. 140–144.

VERMA, D. Simplifying network administration using policy-based management. IEEE
Network, Bridgewater, v.16, n. 2, p. 20–26, mar. 2002.

VILLEGAS, D. et al. An analysis of provisioning and allocation policies for infrastructure-as-
a-service clouds. In: 12TH IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER,
CLOUD AND GRID COMPUTING, 2012, Ottawa, Canada. Proceedings... Ottawa:
IEEE/ACM, 2012. v. 12, p. 612–619.

WALLER, A. et al. A functional solution for goal-oriented policy refinement. In: 7TH IEEE
INTERNATIONAL WORKSHOP ON POLICIES FOR DISTRIBUTED SYSTEMS AND
NETWORKS, 2006, London, Canada. Proceedings... London: IEEE, 2006. v. 7, p. 133–144.

WALLER, A. et al. Policy based management for security in cloud computing. In: SECURE
AND TRUST COMPUTING, DATA MANAGEMENT, AND APPLICATIONS, 2011,
Loutraki, Greece. Proceedings... Loutraki: Springer Berlin Heidelberg, 2011. v. 187, p.
130–137.

WESTERINEN, A. et al. Terminology for policy-based management (RFC 3198). IETF
Request for Comments - Network Working Group, Southborough, USA, v.1, n. 1, p. 1–21,
nov. 2001. Available at: <https://www.ietf.org/rfc/rfc3198.txt>. Accessed: may. 14. 2014.

WICKBOLDT, J. et al. Software-defined networking: management requirements and
challenges. IEEE Communications Magazine, Bridgewater, v.53, n. 1, p. 278–285, jan. 2015.

ZHAO, L.; SAKR, S.; LIU, A. A framework for consumer-centric SLA management of
cloud-hosted databases. IEEE Transactions on Services Computing, v.43, n. 9, p. 23–28,
2013.

86

AppendixA PUBLISHED PAPER – AINA 2014

This paper presented the first definitions towards our policy refinement toolkit. This research
focused on customizing an OpenFlow controller to obtain policies from a repository. This
approach was based on an initial manual process performed by an administrator, followed by an
automatic policy refinement process of flow rules executed by an OpenFlow controller. The low-
level policies are understood and enforced by network devices for automatic reconfiguration and
optimization of network resource usage at runtime. As a result, the proposed approach was able
to identify properties and characteristics of applications that require QoS.

• Title –
Towards SLA Policy Refinement for QoS Management in Software-Defined Networking

• Conference –
The 28th IEEE International Conference on Advanced Information Networking and Ap-
plications (AINA-2014)

• Type –
Main track (full-paper)

• Qualis –
A2

• URL –
<http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6838692>

• Date –
May 13-16, 2014

• Held at –
Victoria, Canada

• Digital Object Identifier (DOI) –
<http://dx.doi.org/10.1109/AINA.2014.148>

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6838692
http://dx.doi.org/10.1109/AINA.2014.148

Towards SLA Policy Refinement for QoS
Management in Software-Defined Networking

Cristian Cleder Machado, Lisandro Zambenedetti Granville, Alberto Schaeffer-Filho,
Juliano Araujo Wickboldt

Computer Networks Group
Institute of Informatics

Federal University of Rio Grande do Sul
Porto Alegre, Brazil

Email: {ccmachado, granville, alberto, jwickboldt}@inf.ufrgs.br

Abstract— Software-defined networking (SDN) is a dynamic,
adaptable, controllable and flexible network architecture. It
provides an extensible platform for delivery of network services,
capable of responding quickly to service requirement changes.
As a result, SDN has become a suitable scenario for the appli-
cation of techniques and approaches for improved infrastructure
management, such as policy-based management (PBM). In PBM,
using techniques such as refinement, a high-level policy – e.g.,
specified as a service level agreement (SLA) – can be translated
into a set of corresponding low-level rules, enforceable in various
elements of a system. However, when using SLAs, their translation
to low-level policies, e.g., for controller configuration, is not
straightforward. If this translation is not done properly, the
controller may not be able to meet the implicit requirements
of the SLA, failing to satisfy the goals described in the high-
level policy. This paper proposes a novel approach towards SLA
policy refinement for quality of service (QoS) management (based
on routing) in software-defined networking. It consists of an initial
manual process performed by an administrator, followed by an
automatic policy refinement process executed by an OpenFlow
controller. As a result, our approach is capable of identifying
the requirements and resources that need to be configured in
accordance with SLA refinement, and can successfully configure
and execute reactive dynamic actions for supporting dynamic
infrastructure reconfiguration.

Keywords—refinement; policy; management; sdn;

I. INTRODUCTION

For many years, organizations have been employing man-
agement strategies for dealing with the scale and computational
complexity of their Information and Communications Tech-
nology (ICT) infrastructures [1]. Software-defined network-
ing (SDN) is a dynamic, adaptable, controllable and flexible
network architecture. It provides an extensible platform for
delivery of network services, capable of responding quickly to
service requirement changes. SDN facilitates network opera-
tions based on the idea of controlling and programming the
behavior of network devices, where the rules for packet for-
warding can be controlled by software applications developed
independently from the hardware [2]. SDN enables the deploy-
ment of network applications that perform sophisticated traffic
monitoring and traffic processing. This allows an effective way
for providing dynamically – and at runtime – services that
support, for example, quality of service (QoS) reconfiguration,
access control and load balancing.

SDN is characterized by a centralized control plane, which
allows moving part of the decision-making logic of network
devices to external controllers [3]. This characteristic provides
the controller device with the ability to have an overall view
of the network infrastructure, thus becoming aware of network
elements and network characteristics. As a result, SDN has
become a suitable scenario for the application of techniques
and approaches for improved infrastructure management, such
as policy-based management (PBM). Policies can be analyzed
and modified as necessary at different levels of abstraction,
without changing the functionality implemented in network
devices. The behavior of certain features can be modified
without changing the code or the implementation of the
system, or even, without manual intervention. In addition, at
runtime, policy rules can be triggered by conditions monitored
in the network, thus providing support for the adaptive recon-
figuration of devices enforcing these rules.

Several approaches [4], [5], [6], [7], [8], [9], [10] have
been using policies to introduce control rules that govern the
operation of SDN. Most of these approaches use rules created
directly in a low-level notation, and the rules are introduced
straight into the controller. However, when using service level
agreements (SLAs), their translation to low-level policies,
e.g., for controller configuration, is not straightforward. If
this translation is not done properly, the controller may not
be able to meet the implicit requirements of the SLA, thus
failing to satisfy business level goals. To address this issue,
our goal is to develop techniques for policy refinement, where
a high-level policy specification can be translated into a set
of corresponding low-level policies, which are deployed in
various elements of a network [11]. Thus, controllers can
be configured with the specific objectives, written in a low-
level language (device rules), that accurately satisfy the high-
level policy goals. The use of PBM and especially policy
refinement has been historically investigated [12]. Although
there have been some promising developments in the area of
policy analysis, policy refinement is a nontrivial process and
it remains to a large extent a much neglected research area.

This paper proposes a novel approach to SLA policy re-
finement for QoS management (based on routing) in SDN. Our
approach is based on an initial manual process performed by
an administrator, followed by an automatic policy refinement
process executed by an OpenFlow controller. Therefore, our

87

proposed approach is able to identify properties and character-
istics of applications that require QoS. This is accomplished by
following the specifications of the high-level SLA policies, and
refining them into low-level policies. These low-level policies
are understood and enforced by network devices for automatic
reconfiguration and optimization of network resource usage
at runtime. The controller was designed using POX [13],
written in Python Language [14], and uses the OpenFlow
protocol [15] to coordinate network devices. Experiments have
been performed using the Mininet emulator [16].

To the best of our knowledge, this is the first time that
policy refinement has been applied to SDNs. The development
of a policy refinement strategy specifically for SDNs can ben-
efit from several aspects found in these environments. Firstly,
it is possible to more easily collect monitoring information
and network traffic data, with the aim of checking whether
high-level goals are being fulfilled by low-level rules or not.
Secondly, we have the ability to refine policies to lower level
ones, which can be (re)implemented in all network device,
since the SDN controller uses a standard protocol and interface
to determine rules and actions on any network device.

The paper is organized as follows. Section II provides a
brief description of the main concepts used in our approach.
Section III presents an overview of our policy refinement
approach. Section IV presents the operation of the controller.
Section V describes the scenarios, experiments and initial
results. In Section VI some studies related to our approach
are introduced and discussed. Section VII concludes the paper
with final remarks, along with a proposal for future work.

II. BACKGROUND

This section provides an overview of the main concepts
employed in our approach. Section II-A briefly presents
software-defined networking (SDN) and OpenFlow. Section II-
B explains the notions of policy-based management (PBM) and
policy refinement. Finally, Section II-C describes properties
and requirements for quality of service (QoS).

A. Software-Defined Networking (SDN) and OpenFlow

Software-defined networking is a dynamic, adaptable, con-
trollable and flexible network architecture. It provides an
extensible platform for delivery of network services, capable
of responding quickly to service requirement changes [2].
SDN is characterized by a logically centralized control plane,
which allows moving part of the decision-making logic of
network devices to external controllers (Figure 1). This pro-
vides controller devices with the ability to have an overall
view of the network and its resources, thus becoming aware
of all the network elements and their characteristics. Based
on this centralization, network devices become simple packet
forwarding elements, which can be programmed through an
open interface, such as the OpenFlow protocol [2].

Briefly, the main elements of an OpenFlow-based SDN
architecture are (depicted in Figure 1): (i) a flow table that
contains an input and a specific action to be performed for each
active flow, and (ii) an abstraction layer that communicates
securely with a controller reporting on new input flows that
are not present in the flow table. Each entry in the flow table
consists of: (a) a mask of fields found in the packet header,

which is used to match the incoming packets, (b) counters for
collecting statistics for each specific flow, such as number of
bytes, number of packets received, and flow duration, and (c)
a series of actions to be performed when a packet matches the
corresponding mask [17].

Fig. 1. OpenFlow Architecture.

OpenFlow is an open protocol that allows the development
of programmable mechanisms based on a flow table in different
forwarding devices. The OpenFlow protocol establishes a
secure communication channel between OpenFlow switches
and the controller, using this channel for controlling and
establishing flows according to customizable programs [15].

The OpenFlow controller is the central element of the
approach. The controller runs customized programs to decide
which rules and actions are going to be installed to control
packet forwarding in each switch element. OpenFlow is also
characterized by the separation between the data plane and the
control plane. On the one hand, the data plane is concerned
with the forwarding of packets based on rules, called Open-
Flow actions, associated with each table entry in the switch.
On the other hand, the control plane enables the controller to
manage the entries in the flow table and the rules associated
with the desired traffic [17].

B. Policy-Based Management (PBM) and Policy Refinement

Policies are defined as a collection of rules which express
and enforce the required behavior of a resource. RFC 3198 [18]
provides the following definitions for a policy:

• A defined goal or action that determines how present
and future decisions are taken. Policies are established
or executed within a particular context;

• Policies refer to a set of rules to manage and moni-
tor access to features of a particular ICT infrastruc-
ture [19].

In PBM an administrator specifies the infrastructure ob-
jectives/goals and constraints in the form of rules to guide
the behavior of the elements in a system [20]. The use of
PBM presents three main benefits [21]. Firstly, policies are
predefined by administrators and stored in a repository. When
an event occurs, these policies are requested and accessed au-
tomatically, without the need of manual intervention. Secondly,

88

the formal description of policies permits automated analysis
and verification with the aim of guaranteeing consistency to
some extent. Thirdly, because of the abstraction of technical
details, policies can be inspected and changed dynamically at
runtime without modifying the underlying system implemen-
tation.

Policies may be seen in two principal levels of abstraction:
low-level policies, which are related to a domain or a device,
and high-level policies that are more user-friendly. A simple
example of a low-level policy is the settings on routers so
multimedia traffic packets have higher priority over peer-to-
peer (P2P) [22] traffic packets. An example of high-level
policies are SLAs [23]. Policy refinement aims to translate
a high-level policy into a set of corresponding low-level
policies. In other words, using techniques for refinement, a
high-level policy such as a service level agreement (SLA)
can be translated into low-level policies that are applicable
in various elements of a system [24], [25].

SLAs are generally business-oriented, and they leave aside
the technical details, which are guided by a service level
specification (SLS) and a service level objective (SLO). The
SLS is a technical interpretation of the SLA. The SLO is a
sub-item of the SLS that contains the parameters to achieve
the SLS [26].

SLA - Quality of Service VoIP

SLS - Quality of Service VoIP - Guide

SLO - Priority 1

Quality of Service System

Routers... Switches...

Documentation

Level

System Level

Hardware Level

Fig. 2. Example policy refinement.

Figure 2 presents an overview of the process of refining
SLAs. The SLA, SLS and SLO represent, respectively, the
documentation describing the service in a formal way, the
technical form (guide) for its functioning requirements, and
the parameters aimed at quality and satisfaction. At the system
level, a quality of service system interprets the management
requirements, and enforces policies for the configuration of
elements at the hardware level.

The main objectives of policy refinement are identified by
Moffett and Sloman [25] as:

• To determine what resources are needed to fulfil policy
needs;

• To translate the high-level policy into a set of opera-
tional policies that the system can enforce;

• To examine whether the low-level policies actually
meet precisely the requirements specified by the high-
level policy.

The refinement process typically involves stages of decom-
position, operationalization, implementation, operation and re-
refinement of goals and subgoals [27], [28]. Policy refinement

aims to automate these stages to get the translation of policies
relating to objects and implementable actions, and ensure that
the low-level policies still satisfy the goals defined by the high-
level policy.

C. Quality of Service (QoS)

Quality of service refers to a combination of many prop-
erties or features of a service, such as:

• Availability: related to the percentage of time that a
service is operating;

• Security: includes the presence and types of authen-
tication mechanisms, data confidentiality and data
integrity, non-repudiation of messages, and resilience
to denial-of-service attacks [29];

• Response time: time required for a service to respond
to individual types of requests;

• Throughput: rate at which service requests are pro-
cessed. QoS measurements include full capacity or
a ratio that describes how the throughput is changed
according to load [30].

In computer networks, the term quality of service [31] is
related to a set of standards and mechanisms for ensuring high
performance for critical applications. Through the use of QoS
mechanisms, network administrators can use existing resources
efficiently and thus ensure the required level of service without
the need to expand or over-provision their networks.

III. POLICY REFINEMENT APPROACH

In this section we present our SLA policy refinement
model, and illustrate it with a case-study. We limit ourselves
to a Voice over IP (VoIP) QoS scenario for better presentation
of the approach, but our approach is generic and can be used
for various applications, such as video streaming, replication,
and backup. Similarly, it can be applied to various services,
such as monitoring, access control, and load balancing.

Figure 3 shows an overview of our approach for SLA
policy refinement. We assume as input an SLA that has a high-
level specification and determines which guarantees must be
fulfilled for the optimal operation of the services. Currently,
the refinement process includes a significant amount of manual
labor, in which case it requires an administrator to define the
initial rules, interpreting and translating each policy level, and
identifying the objectives to be fulfilled at the level below,
i.e.., SLA → SLS and SLS → SLOs (top-down process).
The actions and objectives described in lower-levels should
be verified in order to determine whether they are faithfully
related to the levels above (bottom-up process). In addition,
policies can be (re)evaluated based on the feedback provided
by the network controller. Finally, the concrete and executable
policies translated from the high-level policies are stored in a
repository that will serve as input for the implementation of
system elements.

The refinement process comprises three stages, which are
represented in Figure 3 (the manual and the automatic pro-
cesses are also indicated in the diagram). In the first stage, a
high-level policy (SLA) is interpreted and translated manually

89

Switches and
Routers

SLOs Delay, Bandwidth,
Jitter and Priority.

SLA SLS On demand, network infrastructure
must be configured for that VoIP

applications receives Platinum QoS.

LDAP

Repository with the
Application

requirements.

VoIP applications
should receive

Platinum Quality of
Service (QoS).

Startup,
Events and

Analyzis
Phases

Calculates
Standard

Rules

Writes Rules

Controller

Calculates
Specific

Rules

Human
Actions

Query

requirements-values

Import/Export

requirement and values

M
an

u
al

 P
ro

ce
ss

A
u

to
m

at
ic

 P
ro

ce
ss

System
Actions

Interpretation

Translation

In
terp

retatio
n

Tran
slatio

n

Bottom-up
Process

Bottom-up
Process

Bottom-up
Process

First
Stage

Second
Stage

Third
Stage

Delay <= 200ms
Bandwidth >= 128kbps

Jitter <= 20ms
Priority = 9999

Fig. 3. Refinement of QoS VoIP SLAs.

by an administrator so that all its technical requirements
can be defined. In our case-study, the SLA specifies that
“VoIP applications should receive Platinum quality of service
(QoS)”. The interpretation and translation of the SLA result
in the technical SLS: “On demand, the network infrastructure
must be configured so that VoIP applications receives Platinum
QoS.”. Next, the interpretation and translation of the SLS are
performed in order to analyze the possible objectives (SLOs)
that satisfy VoIP Platinum QoS. The value of each objective is
obtained by querying a specific QoS class (in our case Platinum
QoS) in an LDAP repository [32]. We assume that this repos-
itory has been previously populated by an administrator with
(i) the set of QoS classes (e.g., Platinum, Gold, and Silver),
(ii) class requirements (e.g., Delay, Jitter, and Bandwidth) (iii)
and the requirement values (e.g., 200ms, 20ms, and 128kbps).
Through a bottom-up process we can verify that the “Delay
≤ 200ms” is the value of the requirement “SLO - Delay”
for services that require QoS Platinum class. In addition to
QoS classes, the LDAP repository also contains a protocol
list (e.g., FTP, HTTP, SIP, RTP, and RTSP). This list is also
previously supplied by the administrator, using RFC 1700 [33]
recommendations and service analysis that will run in the
infrastructure, along with the ports and protocols that are not
in RFC 1700. The information in this list will be used later,
in the Events Phase and Analysis Phase (see Section IV).

In the second stage, the administrator associates the VoIP
service with a specific protocol (the list of protocols can
have multiple entries because there might be VoIP services
using different protocols). For our tests we set the protocol
H.323 [34] in Platinum class registered in the LDAP repository.
This association is performed to define which protocols receive
Platinum QoS in the controller.

In the third stage, the controller loads the rules of the
repository, filtered by all classes of QoS with all requirements,
values and associated protocols, storing the concrete rules in
a policy dictionary. Next, for each new network flow, the
controller performs an analysis phase to enforce the QoS
requirements for the application. It verifies each requirement in
order to identify the best path in the network, which priority
should be given and what network elements should receive
the rules. To support dynamic reconfigurations, for each valid
change in the second stage, an identifier (Serial #) is incre-
mented to allow version control of the repository. The network
controller is configured to periodically read the repository (e.g.,
every 1 minute), and if the Serial # previously loaded into the
system is equal to the one in the repository, nothing needs to
change. However, if the Serial # has increased, the controller
reloads the services and requirements and applies the new
rules.

In order to apply our approach there was the need to
customize some functionality in the SDN controller. This was
required for collecting information about the network infras-
tructure, which is later used, for example, to calculate optimal
routes. This customization was based on SDN native features
only, and thus can be applied to any controller implementation.
Therefore, our approach is not tied to any specific controller
design or language. For example, topology discovery, which is
available in a POX controller from the discovery module, is a
native feature of SDN achieved by all controllers in different
implementations.

The advantage of our approach, compared to previous
investigations of policy refinement in non-SDN deployments,
is that a controller holds updated information about the domain
and the elements that should be considered for deployment of
the concrete low-level policies. From this, the administrator
has an overview of the current status of the domain, and can
recognize the limits that may affect each SLA beforehand.
We plan to develop a Graphical User Interface (GUI) that
decomposes policies in order to achieve low-level policies
with refinement techniques. Thus, infrastructure operators may
introduce SLAs for automatic decomposition. Subsequently,
developers of controllers can interpret each low-level policy
generated with a system description that indicates the rules
that must be applied by the controller for execution.

IV. CONTROLLER PROTOTYPE

This section presents the operation of the controller, which
is divided into three phases (Figure 4): (i) Startup Phase: dis-
covers services and possible paths between network elements;
(ii) Events Phase: identifies service events and determines
the best path based on the characteristics of the network and
service requirements; and (iii) Analysis Phase: implements the
rules and monitors the network in order to identify possible en-
hancements for the active flows and reconfigure the structure.
The operation of each phase is detailed in the following.

A. Startup Phase

In this phase, the controller reads information from a
repository that contains descriptions and requirements of all
services that are initially scheduled to run in the network.
This information is identified and set by the administrator

90

ControllerController Switches…Switches… Host AHost A Host BHost B

Controller Boot

LLDP Packets

VoIP Packet

Duplicate

VoIP Packet

Duplicate

Calculates
and Saves

Switches Links

St
ar

tu
p

 P
h

as
e

Computes
Service Type

Checks Best
Path by

Service Type
Rules

A
n

al
ys

is
P

h
as

e
(i

n
 lo

o
p

)

Writes Rules

Analyzes
Flows

Check Link

Packets

VoIP Packets

VoIP Packets

VoIP Packets

VoIP Packets

Return Check

Packets

Executes
Verification

Scripts

Checks Best
Path

Writes
Standard

Rules

Rules

VoIP Packets

VoIP Packets

VoIP Packets

VoIP Packets

Ev
en

ts
 P

h
as

e
(i

n
 lo

o
p

)

Fig. 4. Flow Diagram VoIP.

as requirements to perform the low-level policies in order to
fulfill the SLA definitions. Thereafter, the controller monitors
the network in order to discover the devices and topology.
Network devices are instructed to send Link Layer Discovery
Protocol (LLDP) [35] packets to report their location on the
topology, which is stored by the controller in an internal data
structure.

While the LLDP packets are received and stored, a routine
for calculating paths between all elements is performed using
Dijkstra’s Shortest Path Algorithm [36]. We assume at first
that the best path is the one with the smallest number of
hops, because at this stage values such as delay and jitter
are unknown, thus we consider that these values are initially
zero. Subsequently, all paths are sorted from the shortest to
the longest path and stored into a list.

Once all possible paths between network elements have
been calculated, the controller writes rules (which we call
standard rules) in the flow table of the switches that are in the

best path between each of the network elements. The purpose
of these rules is to handle each new service flow in such a
way that its first packet is duplicated, (i) forwarding one copy
of the packet to the controller in order to inform it that there
is a new service flow, which will be further evaluated (see
Section IV-C), but also (ii) handling the duplicate packet with
the idea of best-effort network and no-act delay Round-Trip
Time (RTT) [37]. After setting up the rules in the switches,
the controller inserts in the repository all the update network
information collected at this stage.

B. Events Phase

This phase aims to identify events in the network infras-
tructure. At the moment, (i) Dataflow Event is the only event
handled by our controller, but we may extend it to handle
events such as (ii) New Device Addition to the Topology
and (iii) Dropped Communication Link. Dataflow Events are
generated by a new type of service in the network (e.g., a video
streaming), and are stored in a services dictionary.

The Events Phase stays in a loop during the operation of the
infrastructure. When running a specific protocol, such as VoIP
communication, the first few packets of the communication
are initially treated by the standard rules and switches are
instructed to duplicate the first packet of each new service
flow (e.g., between host A and host B), sending a copy to
the controller. The controller stores in a list the protocols that
are running in a link, which are identified by a function that
reads the IP Packet Header and gets the information from
the Protocol Field. Then, the controller checks what are the
necessary requirements for the proper functioning of such
protocol through the information loaded from the repository
and decides whether the controller should start the Analysis
Phase (see Section IV-C). The Analysis Phase is initiated
immediately if the protocol of the new flow is not yet included
in the list of protocols for the link, or if some other flow is
already sharing the same path but using a different protocol.

C. Analysis Phase

After identifying the service requirements, the controller
calculates the new rules for best path, taking into account the
specific weights of the service. The calculations are carried for
the paths using as weights the bandwidth (BW), throughput
(T), delay (D), jitter (J), loss rate (LR), and number of hops
(NH) in each link of the physical topology [38]. E.g., for
VoIP we define the requirements [39] for calculation of the
best link as an amount of bandwidth that varies according to
the encoding used, low delay and low jitter, and priority (P).
We check the value of each of these requirements using an
analysis function that sends Internet Control Message Protocol
(ICMP) [40] packets and store the return value in a state vector
of links. When calculating the jitter, we store a vector with the
30 last values and calculate the average. For the purposes of
our experiments, the requirements of VoIP SLA goals were
considered as D ≤ 200ms, BW ≥ 128kbps, J ≤ 20ms, and
P = 9999. Each requirement/value pair is presented in order
of importance. The link that satisfies the largest number of
requirements with priority numbered from left to right is
chosen as the best path.

These new rules are reconfigured at runtime and only
on switches that have the flow, aiming to reduce processing

91

overhead where there is no need for such rules. Unlike the
standard rules, these specific rules are configured with a
timeout in the flow table of each element. In our experiments,
we set the value of the timeout to 15s (but it can be easily
adjusted based on the analysis of the services being executed).

Periodically, the controller checks if the the configured
links remain the best choices for the current flow. In our
experiments, we set the checking intervals to 10s (but these can
also be easily adjusted). If at any time the controller identifies
that there is a better alternative path, new rules are sent to
the switches in order to process the flow as efficiently as
possible. If the current path remains the best, the controller
only increases the value of the timeout for the rules on each
switch for the corresponding flow. This phase stays in a loop
during the operation of the infrastructure.

V. SCENARIOS, EXPERIMENTS AND INITIAL RESULTS

This section describes our test environment and some initial
results. The experiments were performed on an Intel 2.4 GHz
QuadCore processor with 6 GB RAM memory. The scenarios
were created using the Mininet emulator. Five scenarios were
created in our experiments. An overview of scenarios A, B, and
C is shown in Figure 5. Due to the large number of elements,
scenarios D and E could not be clearly presented in a figure,
but the elements that comprise each scenario are described in
Table I.

A. Scenarios

The scenarios that we built had increasing numbers of
switches and redundant links, thus increasing path diversity
between any two hosts. Table I shows the number of hosts,
switches and links in each scenario.

TABLE I. NUMBER OF HOSTS, SWITCHES AND LINKS IN EACH
SCENARIO

Scenario A B C D E

Hosts 4 8 16 32 64

Switches L0 2 4 8 16 32

Switches L1 2 4 8 16 32

Switches L2 0 2 4 8 16

Switches L3 0 0 0 4 8

Links 4 12 32 80 96

Total number of switches 4 10 20 44 88

The topologies used in the experiments were based on Fat-
Tree topologies [41] (depicted in Figure 5). By increasing the
number of switches and redundant links, these topologies can
be used to, for example, maintain system availability in the
presence of problematic links and to reduce traffic congestion
in the infrastructure.

B. Experiment 1 - Standard Rules

Experiment 1 measures the time spent on the initial calcu-
lation of all paths between switches and the establishment of
standard rules on all switches in the network. Figure 6 shows

(a) (b)

(c)

Hosts

Switches L0

Switches L1

Switches Ln

Hosts

Switches L0

Switches L1

Switches L2

Switches Ln

Hosts

Switches L0

Switches L1

Switches L2

Switches Ln

Fig. 5. Scenarios for the experiments with increasing number of switches
and link redundancy.

the time for calculation and installation of the standard rules
during the Startup Phase of the controller.

4.11

16.03

34.07

67.17

84.03

0

20

40

60

80

100

120

A B C D E

Ti
m

e
 (

se
co

n
d

s)

Topology/Scenario

Fig. 6. Time for the calculation and installation of standard rules in the
switches in the startup phase and recognition of topology in each experiment.

As can be observed in Figure 6, with the increase in the
number of elements and links in the topology, the time to cal-
culate all paths between any network element increases. Even
with this growth, we justify the execution of this calculation
and installation of these initial standard rules because we want
avoid any delay when new flows arrive. We also take into
consideration that, due to the initial calculation, later, in the
Analysis Phase (see IV-C), we have already all possible flow
paths, which makes the calculation of specific rules faster (as
can be seen in Figure 7).

C. Experiment 2 - Specific Rules

Experiment 2 measures the time spent on calculating and
installing specific rules when a service is identified. The
scenarios used in Experiment 2 are the same as previously
described. Figure 7 shows the calculation and installation time
of specific rules for the identified service.

92

0.449
0.562

0.611 0.653 0.692

0.050

0.150

0.250

0.350

0.450

0.550

0.650

0.750

A B C D E

Ti
m

e
 (

se
co

n
d

s)

Topology/Scenario

Fig. 7. Time for calculation and installation of specific rules in the switches
in each experiment.

The increase in the number of elements in each topology
is reflected in an increase in the time for calculation and
installation of the rules. There is a minimum time necessary for
calculating the specific rules, but that does not delay service
flow processing due to the pre-established standard rules.

These results show that due to the calculations performed
initially, our proposal is able to perform a quick reconfiguration
of specific rules, since we already have a populated list of
the best links between switches. As part of our future work,
we intend to run more experiments that generate background
traffic flows competing with other applications and validate
dynamic reconfigurations in our approach.

VI. RELATED WORK

Rubio-Loyola et al. [5] have investigated the sharing of
virtualized network resources in software-defined networking.
It shows that the ability to program network elements helps
to dynamically adapt the network to both predictable and
unpredictable changes. The authors present an orchestration
plane (OP) which aims to manage the system behavior in
response to context changes, and in accordance with business
goals and policies. However, the authors do not specify if there
is any refinement approach to translate policies in the different
abstraction levels.

Regarding policy refinement, Bandara et al. [12] have pre-
sented the use of goal design and abductive reasoning to derive
strategies that attain a specific high-level goal. Policies can be
refined by combining strategies with events and restrictions.
The authors provide tool support for the refinement process,
and use examples of DiffServ [23] QoS management. The
refinement is built on a systematic approach, making strategies
derived for the lower levels satisfy the requirements of a high-
level policy. As part of our future work, we intend to use
similar techniques for improving our refinement process, and
explore the dynamic aspects of software-defined networking.

VII. CONCLUSIONS AND FUTURE WORK

QoS mechanisms allow network administrators to use
existing resources efficiently and ensure the required level of
service without the need of expanding or over provisioning
their networks. However, to ensure that QoS requirements are

satisfied across the network is difficult, as network devices such
as switches and routers are heterogeneous and have proprietary
interfaces. Moreover, QoS architectures such as DiffServ [23]
and IntServ [42] are built over current networks. These are
based on distributed hop-by-hop routing, without a broader
perception of global, network-wide capabilities. Alternatively,
in SDN networks, the controller element has an overall view
of the infrastructure and the services running on it.

Policy-based management in SDNs can be used to specify
goals and constraints in the form of rules to guide the operation
of network elements. Policy abstractions can be used not
only to adapt the controlled system, but also to adjust the
policies themselves, changing their behavior to better achieve
the system goals. For example, a policy may add QoS control
rules for network monitoring and traffic analysis. If the rate
at which the network is read is too high, communication
costs for monitoring will end up interfering, and generating
more traffic. However, if it is excessively low, the system may
not be sufficiently aware of changes, failing to fulfill specific
objectives. To solve this problem, trends in behavior can be
analyzed and policies adjusted dynamically to better reflect
the needs of specific resources.

In this paper, we advocate the use of policy refinement
techniques in SDNs. We aim to remove much of the manual
workload of administrators in the configuration of network
elements. In particular, we focus on the refinement of QoS
requirements for different applications and services (specified
in SLAs) into the configuration of controllers and switches.
As a result of our approach, we identified the resources that
need to be configured in accordance with the SLAs, and
successfully executed reactive dynamic actions used in the
reconfiguration of the infrastructure. Our experiments have
shown that an initial calculation of best-effort paths between
network elements can increase the performance of the network
during runtime. Certainly there is an overhead related to the
startup phase of the controller. However, this is justifiable as
it improves the performance of the network during runtime.
In a traditional SDN network, the first packet of the a new
service flow is forwarded to the controller, incurring an RTT
delay at the start of each flow, where there is still no rules in
the flow tables of switches. Our standard rules created at the
startup phase of the controller help to mitigate this problem.
Our approach provides an improved flow processing strategy,
by reorganizing flows upon the arrival of new service requests.

The policy refinement approach just described is still a
work in progress. As part of our future work, we plan to
study other case-studies to validate the broader applicability
of our work. We are also going to assess how the work
presented in this paper can be generalized to other types
of SLA and QoS requirements. Furthermore, we are going
to investigate techniques that can be used to automate the
refinement process. We also intend to investigate techniques
for detection and resolution of policy conflicts. Conflicts may
arise due to omissions, errors or differing requirements of
administrators when specifying policies. One common source
of policy conflicts is the refinement process itself, during the
translation of high-level goals into implementable low-level
policies [43].

93

REFERENCES

[1] J. O. Fitó, M. Macias, F. Julia, and J. Guitart, “Business-driven it
management for cloud computing providers,” in Cloud Computing
Technology and Science (CloudCom), 2012 IEEE 4th International
Conference on. IEEE, 2012, pp. 193–200.

[2] O. W. Paper, “Software-Defined Networking: The New Norm for
Networks,” Open Networking Foundation, Tech. Rep., April 2012.

[3] S. Sezer, S. Scott-Hayward, P. Chouhan, B. Fraser, D. Lake, J. Finnegan,
N. Viljoen, M. Miller, and N. Rao, “Are we ready for sdn? imple-
mentation challenges for software-defined networks,” Communications
Magazine, IEEE, vol. 51, no. 7, pp. 36–43, 2013.

[4] A. Patel, P. Ji, and T. Wang, “Qos-aware optical burst switching in
openflow based software-defined optical networks,” in Optical Network
Design and Modeling (ONDM), 2013 17th International Conference on,
2013, pp. 275–280.

[5] J. Rubio-Loyola, A. Galis, A. Astorga, J. Serrat, L. Lefevre, A. Fischer,
A. Paler, and H. Meer, “Scalable service deployment on software-
defined networks,” Communications Magazine, IEEE, vol. 49, no. 12,
pp. 84–93, 2011.

[6] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McK-
eown, and G. Parulkar, “Flowvisor: A network virtualization layer,”
OpenFlow Switch Consortium, Tech. Rep, 2009.

[7] A. Tootoonchian and Y. Ganjali, “Hyperflow: A distributed control plane
for openflow,” in Proceedings of the 2010 internet network management
conference on Research on enterprise networking. USENIX Associa-
tion, 2010.

[8] P. Calyam, S. Rajagopalan, A. Selvadhurai, S. Mohan, A. Venkatara-
man, A. Berryman, and R. Ramnath, “Leveraging openflow for resource
placement of virtual desktop cloud applications,” in Integrated Network
Management (IM 2013), 2013 IFIP/IEEE International Symposium on,
2013, pp. 311–319.

[9] A. Khan and N. Dave, “Enabling hardware exploration in software-
defined networking: A flexible, portable openflow switch,” in Field-
Programmable Custom Computing Machines (FCCM), 2013 IEEE 21st
Annual International Symposium on, 2013, pp. 145–148.

[10] G. Hampel, M. Steiner, and T. Bu, “Applying software-defined network-
ing to the telecom domain,” in INFOCOM, 2013 Proceedings IEEE,
2013, pp. 3339–3344.

[11] N. Mavrogeorgi, S. Gogouvitis, A. Voulodimos, G. Katsaros, S. Kout-
soutos, D. Kiriazis, T. Varvarigou, and E. K. Kolodner, “Content based
slas in cloud computing environments,” in Cloud Computing (CLOUD),
2012 IEEE 5th International Conference on. IEEE, 2012, pp. 977–978.

[12] A. K. Bandara, E. C. Lupu, A. Russo, N. Dulay, M. Sloman, P. Flegkas,
M. Charalambides, and G. Pavlou, “Policy refinement for diffserv
quality of service,” IEEE eTransactions on Network and Service Man-
agement, vol. 3, no. 2, 2005.

[13] POX, “Pox openflow controller,” 2013, Accessed: Sept. 2013. [Online].
Available: http://www.noxrepo.org/pox/about-pox/

[14] Python Software Foundation, “Python language reference, version 2.7,”
2013, Accessed: Sept. 2013. [Online]. Available: http://www.python.org

[15] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[16] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks. ACM, 2010.

[17] K. Bakshi, “Considerations for software defined networking (sdn):
Approaches and use cases,” in Aerospace Conference, 2013 IEEE.
IEEE, 2013, pp. 1–9.

[18] A. Westerinen, J. Schnizlein, J. Strassner, M. Scherling, B. Quinn,
S. Herzog, A. Huynh, M. Carlson, J. Perry, and S. Waldbusser, “Termi-
nology for policy-based management,” RFC Editor, Tech. Rep., 2001.

[19] B. Moore, E. Ellesson, J. Strassner, and A. Westerinen, “Policy core
information model–version 1 specification,” RFC 3060, February, Tech.
Rep., 2001.

[20] D. C. Verma, “Simplifying network administration using policy-based
management,” Network, IEEE, vol. 16, no. 2, pp. 20–26, 2002.

[21] W. Han and C. Lei, “A survey on policy languages in network and
security management,” Computer Networks, vol. 56, no. 1, pp. 477–
489, 2012.

[22] S. Androutsellis-Theotokis and D. Spinellis, “A survey of peer-to-peer
content distribution technologies,” ACM Computing Surveys (CSUR),
vol. 36, no. 4, pp. 335–371, 2004.

[23] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An
architecture for differentiated services,” RFC 2475, December, Tech.
Rep., 1998.

[24] A. Bandara, E. Lupu, J. Moffett, and A. Russo, “A goal-based approach
to policy refinement,” in Policies for Distributed Systems and Networks,
2004. POLICY 2004. Proceedings. Fifth IEEE International Workshop
on, 2004, pp. 229–239.

[25] J. Moffett and M. Sloman, “Policy hierarchies for distributed systems
management,” Selected Areas in Communications, IEEE Journal on,
vol. 11, no. 9, pp. 1404–1414, 1993.

[26] I. Aib and R. Boutaba, “On leveraging policy-based management for
maximizing business profit,” Network and Service Management, IEEE
Transactions on, vol. 4, no. 3, pp. 25–39, 2007.

[27] R. Craven, J. Lobo, E. Lupu, A. Russo, and M. Sloman, “Policy re-
finement: Decomposition and operationalization for dynamic domains,”
in Network and Service Management (CNSM), 2011 7th International
Conference on, 2011, pp. 1–9.

[28] ——, “Decomposition techniques for policy refinement,” in Network
and Service Management (CNSM), 2010 International Conference on,
2010, pp. 72–79.

[29] J. Mirkovic, S. Dietrich, D. Dittrich, and P. Reiher, Internet Denial of
Service: Attack and Defense Mechanisms (Radia Perlman Computer
Networking and Security). Prentice Hall PTR, 2004.

[30] D. A. Menascé, “Qos issues in web services,” Internet Computing,
IEEE, vol. 6, no. 6, pp. 72–75, 2002.

[31] J. Korhonen, H. Tschofenig, M. Arumaithurai, A. Lior, and M. Jones,
“Traffic classification and quality of service (qos) attributes for diame-
ter,” RFC 5777, February, Tech. Rep., 2010.

[32] W. Yeong, T. Howes, and S. Kille, “Lightweight directory access
protocol,” 1995.

[33] J. Postel and J. K. Reynolds, “Rfc 1700 assigned numbers,” Network
Working Group, 1994.

[34] S. Das, E. Lee, K. Basu, and S. Sen, “Performance optimization of
voip calls over wireless links using h.323 protocol,” Computers, IEEE
Transactions on, vol. 52, no. 6, pp. 742–752, 2003.

[35] IEEE, “Ieee draft standard for local and metropolitan area networks–
station and media access control connectivity discovery,” IEEE, Tech.
Rep., 2009.

[36] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[37] P. Karn and C. Partridge, “Improving round-trip time estimates in reli-
able transport protocols,” ACM SIGCOMM Computer Communication
Review, vol. 17, no. 5, pp. 2–7, 1987.

[38] C. Partridge, “A proposed flow specification,” RFC 1363, September,
Tech. Rep., 1992.

[39] B. Keepence, “Quality of service for voice over ip,” in Services Over
the Internet - What Does Quality Cost? (Ref. No. 1999/099), IEE
Colloquium on, 1999, pp. 4/1–4/4.

[40] J. Postel et al., “Rfc 792: Internet control message protocol,” InterNet
Network Working Group, 1981.

[41] C. Leiserson, “Fat-trees: Universal networks for hardware-efficient
supercomputing,” Computers, IEEE Transactions on, vol. C-34, no. 10,
pp. 892–901, 1985.

[42] R. Braden, D. Clark, and S. Shenker, “Rfc 1633: Integrated services in
the internet architecture: an overview, june 1994,” Status: Informational,
1994.

[43] E. C. Lupu and M. Sloman, “Conflicts in policy-based distributed
systems management,” Software Engineering, IEEE Transactions on,
vol. 25, no. 6, pp. 852–869, 1999.

94

95

AppendixB ACCEPTED PAPER – IM 2015

In this paper we presented a Policy Authoring framework for SDN management in which
operators write high-level policies that are refined into lower-level ones. Policy refinement was
accomplished by using logical reasoning for analyzing policy objectives. The Policy Authoring
Framework was integrated with a customized OpenFlow Controller. Thus, the policy authoring
introduced in this paper was a further step toward a comprehensive policy refinement toolkit for
SDN management. As a result, the initial manual process performed by an administrator was
removed, enabling an automatic refinement process of SLAs into a set of rules to be deployed
by our customized OpenFlow controller. As a result, policies are refined with minimal human
intervention, as the framework analyzes regexes in each SLA and applies logical reasoning
based on network conditions that can fulfill the requirements of these SLAs. In addition, SLAs
are specified and rules are deployed through a user-friendly policy authoring framework with
minimal disruption to the network. This paper was accepted to appear in IM 2015.

• Title –
Policy Authoring for Software-Defined Networking Management

• Conference –
The 14th IFIP/IEEE International Symposium on Integrated Network Management (IM-
2015)

• Type –
Main track (full-paper)

• Qualis –
B1

• URL –
<http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=XXXXX>

• Date –
May 11-15, 2015

• Held at –
Ottawa, Canada

• Digital Object Identifier (DOI) –
<http://dx.doi.org/XX.XXXX/IM.2015.X>

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=XXXXX
http://dx.doi.org/XX.XXXX/IM.2015.X

Policy Authoring for Software-Defined Networking
Management

Cristian Cleder Machado, Juliano Araujo Wickboldt, Lisandro Zambenedetti Granville, Alberto Schaeffer-Filho
Computer Networks Group – Institute of Informatics – Federal University of Rio Grande do Sul

Porto Alegre, Brazil
Email: {ccmachado, jwickboldt, granville, alberto}@inf.ufrgs.br

Abstract— Software-Defined Networking (SDN) permits cen-
tralizing part of the decision-logic in controller devices. Thus,
controllers can have an overall view of the network, assisting net-
work programmers to configure network-wide services. Despite
this, the behavior of network devices and their configurations
are often written for specific situations directly in the controller.
As an alternative, techniques such as Policy-Based Network
Management (PBNM) can be used by business-level operators
to write Service Level Agreements (SLAs) in a user-friendly
interface without the need to change the code implemented in
the controllers. In this paper, we introduce a framework for
Policy Authoring to (i) facilitate the specification of business-
level goals and (ii) automate the translation of these goals into
the configuration of system-level components in an SDN. We use
information from the network infrastructure obtained through
SDN features and logic reasoning for analyzing policy objectives.
As a result, experiments demonstrate that the framework per-
forms well even when increasing the number of expressions in
an SLA or increasing the size of the repository.

Keywords—policy authoring; policy refinement; PBNM; SDN;

I. INTRODUCTION

Software-Defined Networking (SDN) [1] has simplified
network administration by logically centralizing part of the
decision making process in a controller element, such as an
OpenFlow controller [2]. Controllers have an overall view
of the network, which assists network operators in managing
network-wide services [3]. However, we argue that SDN alone
does not satisfactory improve the network operator’s ability of
writing concise yet expressive rules for network management.
Despite the benefits of SDN, the intended network behavior
is usually defined by static rules written to cope with specific
situations [4][3]. This ends up hindering the development and
deployment of new network services. Moreover, to deal with
diverse situations, the amount of rules can become prohibitive.

An approach to tackle this problem is the use of Policy-
Based Network Management (PBNM) [5][6]. In PBNM, an op-
erator specifies infrastructure goals and constraints in the form
of high-level policies to guide the behavior of the network.
The use of PBNM aims to reduce the complexity of network
management tasks [7]. Techniques such as policy refinement
can be used to automatically translate high-level policies into
a set of low-level policies for configuration of various devices
of a system [8]. The use of PBNM in computer networks has
been investigated for over a decade [8][9]. However, PBNM
and policy refinement in the novel context of SDN has been
much less explored [4][10]. We argue that PBNM for SDN
management is still in its infancy, and the work in the area
often ignores the vast literature on PBNM produced before

the advent of SDN. Thus, several aspects of PBNM can be
exploited toward more flexible SDN management.

We introduce in this paper a Policy Authoring frame-
work for SDN management in which operators write high-
level policies (expressed in a Controlled Natural Language -
CNL [11]) that are refined into lower-level ones. In previous
work, we have customized features of an OpenFlow controller
aiming to collect information about the network infrastructure
that can assist in improving the refinement process [12]. The
policy authoring process introduced in this paper is a further
step toward a comprehensive policy refinement toolkit for
SDN which enables refining policies into a set of rules to
be deployed by our customized OpenFlow controller. Policy
refinement is accomplished by using logical reasoning [13]
for analyzing policy objectives. On the one hand, inductive
reasoning indicates the goals that should be extracted and
fulfilled at lower-levels of abstraction. On the other hand,
abductive reasoning confronts these goals with the network
characteristics obtained from an SDN controller to indicate
whether the network infrastructure can accommodate such
goals. We developed a prototype as a proof-of-concept.

The main contributions of this paper are: (i) refined poli-
cies with minimal human intervention; (ii) analysis of the
infrastructure’s ability to fulfill the requirements of high-level
policies; (iii) decreased amount of network rules coded into
the controller; and (iv) management and deployment of new
rules with minimal disruption to the network.

In this paper, we have limited the scope of our experiments
and evaluation to QoS management. However, the principles of
policy authoring presented here can be more generally appli-
cable to other areas. We define three different Service Level
Agreements (SLAs) by changing the number of expressions
(amount of requirements, values, services, and QoS classes)
and present experiments in five different scenarios. Results
demonstrate that the policy authoring framework performs
well, even when increasing the number of expressions in an
SLA or increasing the size of the repository of rules.

This paper is organized as follows: in Section II we provide
a briefly description of the main concepts used in our work.
In Section III we present details of our policy authoring
framework for SDN management. In Section IV we present
the experiments and a discussion about the achieved results.
In Section V, related work is discussed. Finally, in Section VI
we conclude the paper with final remarks and future work.

96

II. BACKGROUND: A TOOLKIT FOR POLICY REFINEMENT

In this section, we present an overview of the main con-
cepts, techniques and elements used in our policy refinement
toolkit. We also briefly describe our previous work [12], identi-
fying the benefits of replacing traditional network architectures
with SDN. In order to make the policy refinement toolkit
independent of the network controller implementation or policy
language, we defined a formal representation of high-level
SLA policies using Event Calculus (EC) [14] and applied
logical reasoning [13] to model both the system behavior
and the policy refinement process for SDN management. The
formalization aspects of our work are described elsewhere [15].

A. Policy Refinement Toolkit: An Overview

Our toolkit (see Figure 1) consists of three main elements:
(i) a policy authoring framework (described in Section III),
which is used by infrastructure-level programmers to specify
the technical characteristics of services and by business-level
operators to write SLAs in a controlled natural language
(CNL) [11]; (ii) an OpenFlow controller, which collects in-
formation from the network infrastructure (which is the key to
improve the refinement process); and (iii) a repository to store
information from both the controller and the framework.

Our policy refinement toolkit is based on the research
efforts of Bandara et al. [16] and Craven et al. [17]. These
studies were limited by the characteristics of traditional net-
works, such as the notion of best-effort for QoS and the lack
of a centralized control plane [3]. In traditional networks, the
control plane is executed in each network device. Also, each
device has its proprietary protocols thus becoming difficult to
be programmed.

Instead, our approach introduces the use of Software-
Defined Networking (SDN) [18][19] to enhance the refine-
ment process. In SDN, these limiting factors of traditional
networks can be overcome, since SDN is mainly characterized
by a clear separation between the forwarding and control
planes. Thus, differently from traditional networks, SDN has
a logically centralized control plane which allows moving part
of the decision-making logic of network devices to external
controllers. This provides controller devices with the ability
to have an overall view of the network and its resources,
thus becoming aware of all the network elements and their
characteristics [19][1]. Based on this centralization, network
devices become simple packet forwarding elements, which
can be programmed through an open interface, such as the
OpenFlow protocol [2] SDN architecture in which network
traffic information is centralized by a controller is valuable to
our policy refinement approach. It makes it easier to retrieve
information from the network infrastructure, and to validate
SLA requirements more accurately.

We apply the concept of logical reasoning [13] to support
the business-level operator in the refinement of an SLA.
Logical reasoning has three modes:

• In deductive reasoning, a conclusion is reached by
using a rule that analyzes a premise. For example,
if streaming packets are transmitted the network be-
comes slower; streaming packets are being transmitted
now; therefore, the network is slower.

• In inductive reasoning, the goal is to identify a rule,
starting from a historical set of conclusions generated

from a premise. For example, every time streaming
packets are transmitted the network becomes slower;
so, if streaming packets are transmitted tomorrow, the
network will be slower.

• In abductive reasoning, starting from a conclusion
and a known rule, we can explain a premise. For
example, when streaming packets are transmitted the
network becomes slower; the network is slower now;
so, possibly streaming packets are being transmitted.

Our policy refinement toolkit uses two modes of logical
reasoning: on the one hand, inductive reasoning indicates
the SLA requirements that should be extracted and fulfilled
at lower-levels of abstraction. On the other hand, abduc-
tive reasoning compares these requirements with the network
characteristics obtained from an SDN controller to determine
whether the network infrastructure can accommodate such
requirements.

B. Low-level Controller Configuration

In order to support our policy refinement approach it was
necessary to customize some functionality in the OpenFlow
controller. This was required for collecting information about
the network infrastructure, which is later used, for example,
to calculate optimal routes. This customization was based on
SDN native features only, and thus can be applied to any
controller implementation. Therefore, our solution is not tied
to any specific controller design or language. For example,
topology discovery, which is available in POX [20] is a native
feature of SDN offered by all controllers in different imple-
mentations. We emphasize that even though the commands
supported by the forwarding elements are standardized, the
controllers require different programming languages and/or
support different features. This difference between controllers
can reflect in the effort for customization that must be em-
ployed by an infrastructure-level programmer.

Thus, the behavior of the customized OpenFlow controller
is divided into three phases: (i) Startup Phase: discovers
services and possible paths between network elements and
writes rules (which we call standard rules) in the flow table
of the switches that are in the shortest path between each of
the network elements; (ii) Events Phase: stays in a loop during
the operation of the infrastructure to identify service events and
determine the shortest path based on the characteristics of the
network and service requirements; and (iii) Analysis Phase:
implements the rules and monitors the network in order to
identify possible enhancements for the active flows.

Ultimately, the policy authoring framework (described in
detail in Section III) can be used to derive QoS class require-
ments from business-level SLAs. Policy authoring performs a
process of computing low-level objectives/rules (SLOs Service
Level Objectives) that must meet the high-level goals/policies.
Then, the customized controller is capable of assigning the
specific type of network traffic described by the SLA to its
optimal route, given the set of requirements derived from the
SLA. This QoS management strategy is based on routing (us-
ing the best path between network devices). The calculations
for the best path are carried out using as weights/requirements
the bandwidth, delay, jitter, and number of hops in each
path of the physical topology. Each weight/requirement is
presented in order of importance. If only one occurrence of a

97

Business-level
Operator

Infrastructure-level
Programmer

Inserts/Query
SLA

description

Policy Authoring GUI

Policy
Analyzer

Regexes-based

 {>, high, highest, higher, more, bigger}

 {<, low, lowest, lower, less, smaller}

Inserts/Query
services

and configurations

Configurator GUI

Select, Modify
or

Create

Parser

System behavior configuration

 1 - if Service == VoIP { Priority = 9999 };
 2 - if Packet == P2P { Action = Drop };

System behavior documentation

 1 - VoIP service has priority...
 2 - P2P packets are blocked...

Select, Modify
or

Create

Configuration Parameters

Network Information

G
e

t s
yste

m
 b

e
h

a
vio

r

L
o

w
-le

ve
l R

u
le

s
OpenFlow Controller

Repository

Phases/Analyzer/Parser

Software-Defined Networking Topology

Startup, Events, and Analysis Phases

Requirements Formulation

Encode Deployable policies

P
o

lic
y
 R

e
fin

e
m

e
n

t
T
o

o
lk

it

Fig. 1: Overall Policy Refinement Toolkit.

weight/requirement is found, it will be chosen. Otherwise, the
path that satisfies the largest number of weights/requirements
– compared with the QoS class requirements identified in the
policy authoring process – is chosen as the best path. The best
path is part of the rule that will be configured by the controller
into the flow table of each switch later. Besides informing
which one is the best path, each rule receives the established
priority in each QoS class. This is what establishes fairness and
the distinction between traffic deserving high and low priority
in the network. In summary, our strategy uses a requirements-
based path and a priority for deciding routes.

Each rule is deployed in the flow table of the network
device at runtime, aiming to minimize disruption of the net-
work. Periodically, the controller checks if the configured paths
remain the best choices, aiming to reduce processing overhead
in network devices. In our experiments, each rule is configured
with a timeout. We also set the checking intervals to, for
example, 30s. If at any time the controller identifies that there
is a better alternative path, new rules are sent to the switches. If
the current path remains the best, the controller only increases
the value of the timeout for the rules on each network device.
For further details we refer the reader to Machado et al. [12].

C. Policy Repository

The Policy Repository stores information about the behav-
ior of the infrastructure, which is obtained during the network
configuration process. For example, the repository stores all
the possible links between elements, number of elements,
bandwidth, delay and jitter.

Additionally, the repository maintains a list of all services
and their parameters (e.g., the packet identifier of the HTTP
protocol), all QoS classes and services associated with them.
We use standard TCP/IP information from packet headers to
register a given service in the repository.

III. POLICY AUTHORING FOR SDN

This paper extends our previous work on a refinement
toolkit for high-level policies in SDN. Details on the low-
level controller operation have been described in Machado et
al. [12], and in this paper we focus on the policy authoring
aspects only. In this section we describe in detail our Policy
Authoring framework for SDN management. The main goal
is to enable operators to express business goals, e.g., Service
Level Agreements (SLAs), without having to specify in detail
what elements of the network infrastructure should receive the
configurations and how they should be configured.

To provide a more targeted case-study, we concentrated
our efforts in the support of policy configurations for QoS
classes. The result obtained from the refinement of high-level
policies are QoS-class requirements. Thus, the interpretation
of an SLA is used for extracting the Service Level Objectives
(SLOs). These SLOs are considered QoS-class requirements
(e.g., priority, bandwidth) by the Policy Authoring framework.

A. Controlled Natural Language

In this paper, we identify the business-level goals and high-
level policies as SLAs. We introduce a controlled natural
language (CNL) [11] to establish restrictions and requirements
for writing business-level goals. The grammar of this language
is defined below:

Listing 1: Grammar of the controlled natural language.
1 Language :→(<QoS>|<S e r v i c e >)<P r e p o s i t i o n ><E x p r e s s i o n>
2 QoS :→ qos−r e g e x e s
3 S e r v i c e :→ s e r v i c e−r e g e x e s
4 P r e p o s i t i o n :→ s h o u l d r e c e i v e | s h o u l d n o t r e c e i v e
5 E x p r e s s i o n :→<Term>|<Term><Connec t ive><E x p r e s s i o n>
6 Term :→<Parame te r><Ope ra t o r><Value>
7 P a r a m e t e r :→ r e q u i r e m e n t s−r e g e x e s
8 C o n n e c t i v e :→And |Or
9 O p e r a t o r :→ a d j e c t i v e−r e g e x e s

98

10 Value :→v

Our Policy Authoring framework uses regexes as a concise
and flexible way of identifying strings of interest such as par-
ticular characters (e.g., >, <, =, 6=, ≤, ≥) or words (e.g., high,
low, http, ftp, gold, silver). We defined the following types of
regexes: qos-regexes: regular expression to identify QoS
classes; service-regexes: regular expression to identify
services; requirements-regexes: regular expression to
identify service requirements; adjective-regexes: regu-
lar expression to identify adjectives in service requirements.
Table I shows examples of regular expressions that can be
contained in an SLA.

TABLE I: Examples of regular expression.

Type Expression Operator
qos-regexes Bronze, Silver, Gold, Platinum... N/A
service-regexes VoIP, Streaming, HTTP, FTP, SMTP,

POP, P2P...
N/A

requirements-
regexes

Priority, Bandwidth, Delay, and Jitter N/A

adjective-regexes
more, high, higher, up, over... >

equal, like, even, same, similar... =

less, low, lower, down, below... <

B. Bottom-up and Top-down Phases

We specifically introduce in this paper a policy author-
ing framework where infrastructure-level programmers specify
technical characteristics of services, and business-level opera-
tors write SLAs in a controlled natural language. This frame-
work and a customized controller [12] compose a refinement
toolkit of high-level policies for SDN management. All aspects
of the refinement process both in the framework as in the
controller are automatically performed. The results generated
by the refinement process are a set of rules to be deployed
by the controller for the network infrastructure configurations.
This toolkit is integrated with a formal representation based
on Event Calculus (EC) and applies logical reasoning to
model both the system behavior and the policy refinement
process in SDN. This formalism assists infrastructure-level
programmers to develop refinement tools and configuration
approaches to achieve more robust SDN deployments. The EC-
based formalism is described in [15].

The refinement process is split into two phases (Figure 2):
The first phase, called bottom-up, consists of the network
information (e.g., bandwidth, delay) gathering process. A key
element of this phase is the OpenFlow controller, which
performs the data collection process. Using this information,
the Policy Authoring framework uses abductive reasoning to
indicate to the business-level operator what are the possible
configurations. These indications are provided through settings
performed previously – other SLAs or policies created man-
ually by the operator – along with the characteristics that the
network can support. More details about Policy Authoring are
described in Section III-C.

The second phase, called top-down, refines high-level goals
extracted from SLAs and translate them into achievable goals
(SLOs). An operator writes the SLAs and creates – if necessary
– the QoS classes needed to fulfill them. As mentioned

Goal

(SLA)

SLO1
SLO2 ...

Network

Infrastructure

(SDN)

Router

Switch

Controller

Delay
Jitter

...

Repository

Delay
Jitter ...

Delay < 300

Delay = 200

HTTP services should receive

bandwidth higher than

100kbps and delay lower

than 300ms

Fig. 2: Deriving SLOs/parameters from goal and gathering
network information.

previously, the bottom-up phase will try to indicate using
abductive reasoning which are the best configurations for the
SLA that is being written. Thus, multiple configuration options
will be offered to the operator, who can select or customize
an existing configuration, or even create a new configuration.

C. Policy Authoring Framework

Regarding the Policy Authoring framework, the operator
inserts an SLA that defines explicitly or implicitly business-
level goals. When inserting each policy, the Policy Analyzer
component (Figure 1) uses regexes (regular expressions) –
previously stored in the Policy Repository – to match the
expressions written in natural language, and suggests the more
appropriate QoS class/classes to the SLA. The operator can
create a set of QoS classes beforehand. Each class may have a
number of QoS requirements. For example, Gold QoS class
may contain priority = 20, bandwidth = 512kbps, delay =
2ms, and jitter = 1ms, while Bronze QoS class may contain
bandwidth = 2kbps.

This Policy Authoring framework relies on abductive rea-
soning to suggest QoS classes. As mentioned previously, in
abductive reasoning, starting from a conclusion and a known
rule, it is possible to explain a particular premise. We use the
following SLA to illustrate how logical reasoning works and,
subsequently, we use the same SLA to explain how the Policy
Authoring operates:

“HTTP services should receive bandwidth higher than
100kbps and delay lower than 300ms”.

The conclusion of this SLA is “HTTP services should
receive” certain characteristics. The rules for reaching this
conclusion are “bandwidth > 100kbps” and “delay < 300ms”.
Thus, we present the premise (QoS class in the repository) that
has this rule and which can possibly arrive at this conclusion.

We define a query that assigns weights to results based
on the importance of the regexes contained in the SLA.

99

These expressions are compared to the information stored
in the repository to sort the results and display them. The
ordering thus follows: (i) expressions related to QoS classes;
(ii) expressions related to services, and (iii) expressions related
to service requirements. The steps to query and display the
information to the business-level operator are the following:

Step1 – Check if there is any qos-regexes expression
in the SLA indicating a class, e.g., QoS Gold, Silver. If there
are occurrences of these expressions, the Policy Authoring
framework returns the QoS class values, based on the identified
qos-regexes. For the SLA presented in the example, we
have no expressions of this type.

Step2 – Check if there is any service-regexes ex-
pression in the SLA relating to services, e.g., FTP, VoIP. If
there are occurrences of these expressions, the Policy Au-
thoring framework returns the QoS class values to which the
services are associated. For the SLA in the example, there is a
service-regexes (HTTP), which may be associated with
a QoS class in the repository.

Step3 – Analyze the expressions indicating service re-
quirements, e.g., priority, bandwidth. If there are occurrences
of these expressions, the Policy Authoring framework per-
forms the following operations: (i) identify and count the
requirements-regexes found, and (ii) identify and
count the adjective-regexes that come before and after
any requirements-regexes.

We also developed a technique for identifying and counting
the requirements-regexes, which allows the operator
to optimally match the adjective-regexes found with
their respective requirements. In the SLA above, we can
observe the adjective-regexes higher and lower, which
are related to the requirements-regexes bandwidth
and delay, respectively. The Policy Analyzer identifies any
adjective-regexes and examines the SLA, identifying
the proximity of the adjective-regexes referring to
requirements-regexes. This is performed by check-
ing if adjective-regexes are located before or after
requirements-regexes. At the end, the result is pre-
sented to the business-level operator.

The Policy Authoring framework uses abductive reasoning
to show what are the best configurations for the SLA. Thus, the
Policy Analyzer can identify, for example, that there is already
a QoS class configured with low delay, or that the throughput
for the specified network path already exceeds the network
configuration, indicating that the policy should be reformu-
lated. Also, the operator can be warned of potential conflicts or
even non-compliance with policies. If the operator chooses one
of the suggested QoS classes, the Policy Authoring framework
will store the information extracted from the SLA, e.g., the
service, with the selected class.

Suggestions provided through abductive reasoning are not
mandatory. If after analyzing them the operator decides they
do not meet the high-level goals, the suggestions can be
ignored. At this point, the operator can analyze the information
presented by the Policy Authoring framework and rely on
inductive reasoning to perform the following actions:

• Modify existing policy/class – This action allows the
operator to change a predetermined parameter, e.g.,
priority = 100 to priority = 101, or add a parameter

that does not yet exist, e.g., delay ≤ 120ms. This mod-
ification may impact other policies, and the Analyzer
uses inductive reasoning to identify the classes in the
repository that may be impacted. Thus, the operator
has the opportunity to analyze policy-by-policy and
decide if the change is viable or not.

• Create policy/class based on existing class – This
action is an alternative to modifying an existing class.
Through this action, a new class created by the opera-
tor inherits the parameters of an existing class, which
can be customized as needed. The Policy Analyzer
uses inductive reasoning to automatically check if the
parameter values of this new class are not identical to
the ones in an existing class in the repository. If so,
the existing class is returned instead.

• Create a new policy/class – The creation of new
classes can be conducted (i) if a class that meets the
objectives of the SLA does not exist, or (ii) if the
parameters of other classes retrieved via abductive or
inductive reasoning are not related to the objectives of
the new SLA. Thus, the operator can set the new class
parameter-by-parameter to meet the SLA objectives.

After any of the actions above is executed, the Parser
component (Figure 1) will be executed and the policies/classes
will be stored in the Policy Repository. It is based on this
information that the Policy Authoring framework estimates
the amount of allocated traffic per class and warns if the
infrastructure can support or not new policies. Further, the
policy repository contains a list of services associated with
their TCP/UDP port (e.g., HTTP = [80,8080], SSH = [22],
SMTP = [25,587]). This list was created using RFC 1700 [21].
Subsequently, the OpenFlow controller reads from the reposi-
tory these new policies starting the Analysis Phase for setting
up the appropriate rules in forwarding devices, as explained in
Section II-B.

IV. PROTOTYPE AND EVALUATION

In this section we describe a prototype implementation and
evaluation of our Policy Authoring framework. For details
about the low-level controller implementation we refer the
reader to our previous work [12].

A. Prototype Implementation

We developed the prototype using the Django web frame-
work1. We chose Django due to its support to the Python
language and the support it provides to create web applications.
For the interface design we used the Bootstrap front-end
framework2. The prototype is split into two modules, Policy
Authoring GUI and Configuration GUI, described as follows.

1) Policy Authoring GUI: We developed a user-friendly in-
terface for Policy Authoring in order to allow the configuration
of the network through business goals. Thus, a business-level
operator can use the Policy Authoring GUI to express high-
level goals and receive feedback from his/her requests.

Figure 3 illustrates the home screen of the Policy Authoring
GUI. It presents statistics about the number of policies, classes,

1http://www.djangoproject.com/
2http://getbootstrap.com/

100

Fig. 3: Policy Authoring GUI Dashboard.

services, and users registered. In addition, it shows two charts
about the top 5 services that most appear in policies and the top
5 QoS classes that most have linked policies. The dashboard
is composed of the following items:

• Policies – Used by business-level operators to create,
search, edit, remove, enable or disable policies. Op-
erators can also associate a high-level SLA with the
QoS class that best meets the SLA requirements.

• Classes – Used to specify QoS classes. Infrastructure-
level programmers and business-level operators can
perform the necessary parameter settings for each
class.

• Services – Used by infrastructure-level programmers
to record, edit, and delete services. Also, through this
interface a service can be associated with a QoS class.

• Reports – Used by business-level operators and
infrastructure-level programmers to view reports of
policies, services, and classes. For example, classes
that contain most policies or services that appear less
frequently in policies. Additionally, some reports can
be filtered by specific parameters, e.g., priority, delay.

• Users – Used to create, search, edit, remove, enable
or disable system users.

• Settings – Used to configure system settings, such as
database connection information.

2) Configurator GUI: Our aim is to facilitate not only
the description of business objectives but also the configura-
tion of the infrastructure. The Configurator GUI is designed
to manage the registration of services and parameters. An
infrastructure-level programmer inserts service information,
such as ServiceName and Port (as used in TCP/IP). Subse-
quently, the infrastructure-level programmer may create QoS
classes with parameters and their respective values. The fields
that may be informed are ClassName, Priority, Bandwidth,
Delay, and Jitter.

We decided to group services by class, thus after QoS
classes have been defined, each service is associated with
a QoS class. This step is important because if services are
previously associated with some class, the toolkit will have a
better performance since there will be an entry in the repository

for a group of services as opposed to one entry for each service.
Thus, services with similar requirements can be grouped into
a single class while maintaining fairness among competing in
the same link.

B. Evaluation

We present in this section experiments and initial results
obtained with the implemented toolkit. Our goal is to measure
the response time of the end-to-end process, i.e., from policy
authoring to deployment of low-level rules in the controller
device. In order to perform the experiments, we created three
SLAs (Table II) by changing the number of expressions, where
SLA 2 has more expressions than SLA 1 and SLA 3 has more
expressions than SLA 2. Our goal is to show the robustness
and efficiency of the refinement process when we increase
the number of expressions that should be compared. We also
created three scenarios (Table III) by varying the number of
network devices and adding redundant links between some
network devices. The scenarios used in the experiments were
based on mesh topologies. Our goal was to demonstrate the
ability of the framework to operate in increasingly large
topologies. These scenarios were created using the Mininet
emulator and experiments were performed on an AMD 2.0
GHz Octa Core with 32 GB RAM memory.

TABLE II: Description of SLAs used in the experiments.

SLA Description of SLAs
SLA1 HTTP traffic should receive lower Quality of Service and low

priority compared with other services.
SLA2 Streaming traffic should receive higher priority, low delay and

bandwidth higher than 512kbps.
SLA3 VoIP traffic should receive higher priority, delay less than

200ms, low jitter, and bandwidth higher than 128kbps.

TABLE III: Number of switches and links in each scenario.

Scen. SwL0 SwL1 SwL2 SwL3 SwL4 Hosts Links
X 16 8 8 4 0 32 88
Y 32 16 16 8 4 64 176
Z 64 32 32 16 8 128 210

We applied the three SLAs to five different repositories A-
E and populated each repository according to the number of
classes, where A = 10, B = 100, C = 1, 000, D = 10, 000,
and E = 100, 000 classes. In addition, each experiment
was executed thirty times. We performed experiments on
all variations of SLAs, repositories, and scenarios. Due to
space limitations, we present the most relevant results only.
In particular, the experiments described in this sections intend
to evaluate our prototype in terms of average execution time
and percentage of the total time occupied by each stage of the
policy authoring process.

Figure 4 shows the average response time for SLA 3 in
each scenario. We break the total execution time down in three
categories, namely requirements analysis (i.e., parse the SLAs
and their regexes), repository queries (i.e., search for the best
matching QoS class), and deploy rules (i.e., install the flow
rules in the controller). By increasing the number of classes, it
is possible to observe that the average time spent performing
repository queries also grows. This increase is visible in all

101

 0

 2

 4

 6

 8

 10

 12

 14

 16

10 100 1000 10000 100000

T
im

e
 (

S
e
co

n
d

s)

Number of Classes

Deploy-Rules
Repository-Queries

Requirements-Analysis

(a) SLA 3 (scenario X)

 0

 2

 4

 6

 8

 10

 12

 14

 16

10 100 1000 10000 100000

T
im

e
 (

S
e
co

n
d

s)

Number of Classes

Deploy-Rules
Repository-Queries

Requirements-Analysis

(b) SLA 3 (scenario Y)

 0

 2

 4

 6

 8

 10

 12

 14

 16

10 100 1000 10000 100000

T
im

e
 (

S
e
co

n
d

s)

Number of Classes

Deploy-Rules
Repository-Queries

Requirements-Analysis

(c) SLA 3 (scenario Z)

Fig. 4: Average response time for SLA 3 performed in scenarios X, Y, and Z.

 0

 20

 40

 60

 80

 100

10 100 1000 10000 100000

P
e
rc

e
n
ta

g
e
 (

%
)

Number of Classes

Deploy-Rules
Repository-Queries

Requirements-Analysis

(a) SLA 1 (scenario Z)

 0

 20

 40

 60

 80

 100

10 100 1000 10000 100000

P
e
rc

e
n
ta

g
e
 (

%
)

Number of Classes

Deploy-Rules
Repository-Queries

Requirements-Analysis

(b) SLA 2 (scenario Z)

 0

 20

 40

 60

 80

 100

10 100 1000 10000 100000

P
e
rc

e
n
ta

g
e
 (

%
)

Number of Classes

Deploy-Rules
Repository-Queries

Requirements-Analysis

(c) SLA 3 (scenario Z)

Fig. 5: Percentage of total time for each experiment performed in scenario Z.

 0

 100

 200

 300

 400

 500

 600

Scenario-X Scenario-Y Scenario-Z

N
u
m

b
e
r

o
f

R
u
le

s

SLA-1
SLA-2
SLA-3

(a) Total number of rules deployed by each SLA
performed separately in each scenario.

 0

 100

 200

 300

 400

 500

 600

Scenario-X Scenario-Y Scenario-Z

N
u
m

b
e
r

o
f

R
u
le

s

SLA-1
SLA-2
SLA-3

(b) Total number of rules deployed by each SLA
performed simultaneously in each scenario.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

Scenario-X Scenario-Y Scenario-Z

N
u
m

b
e
r

o
f

R
u
le

s

SLA-1
SLA-2
SLA-3

(c) Total amount of rules deployed by all SLAs in
each scenario.

Fig. 6: Number of rules deployed in each scenario.

experiments performed with SLAs 1, 2, and 3. This behavior
is expected, since the number of classes has influence on the
number of queries to obtain the ideal matches between SLAs
and QoS classes.

In Figure 5 the y-axis shows the percentage of the total
time occupied by each process in the experiments performed
with SLAs 1, 2, and 3 in scenario Z. From these results it is
possible to note that, according to the level of complexity of
each SLA, the percentage of time for analyzing requirements
also increases. This happens due to the increase in the number
of occurrences of regular expressions found in each SLA.

Figure 6(a) shows the total number of rules generated by
refining each SLA separately in each scenario. As can be
observed, each SLA generates practically the same number
of rules in each scenario. SLA 1 shows a small difference in
the number of rules deployed compared to SLAs 2 and 3. This
occurs because SLA 1 has lower QoS requirements (i.e., low
priority) compared to other services, which causes the choice
of routes with more hops and consequently causes rules to be
deployed in more devices. It is worth mentioning that the total
number of rules generated by the policy authoring framework

is smaller than the total number of rules that would have to
be manually created on all network devices. This is because,
as our approach is based on routing, it creates a spanning
tree to find all routes between sources and destinations. Thus,
some routes may be common between different sources and
destinations. As a result, a number of switches do not need to
be configured, thus reducing the total number of rules required
in each scenario.

The growth in the total number of rules in SLA 1 appears
more clearly when we performed simultaneously the refine-
ment of the three SLAs in each scenario (Figure 6(b)). Our
framework attempts to fulfill the requirements of each SLA.
In order to achieve this, it identifies the possibility of routing
(balancing) each SLA by alternative routes without failing to
fulfill their requirements. Thus, SLA 1 receives routes with
more hops in order not to compete with SLAs 2 and 3 which
have higher priority requirement.

Finally, Figure 6(c) shows the total amount of rules gen-
erated by all SLAs in each scenario. This illustrates the
benefits of our policy authoring and refinement approach, in
which the infrastructure-level programmer does not need to

102

be concerned with the number of low-level configuration rules
to be deployed in the network. Our results suggest that the
prototype is able to support the refinement of SLAs and the
installation of flow rules in large-scale deployments. Even if
we consider the scenario with the largest number of switches
and links (Figure 4(c)), and the largest number of QoS classes,
the total measured time remains within acceptable bounds.
Moreover, as mentioned previously, the framework optimizes
the deployment of rules according to the requirements of each
SLA and according to each scenario.

V. RELATED WORK

Policy Authoring approaches to facilitate the writing, anal-
ysis, and implementation of high-level policies have been
proposed in the past. Brodie et al. [22] present a platform-
independent framework to specify, analyze, and deploy secu-
rity and networking policies. A portal prototype for policy
authoring, based on natural language and structured lists,
allows the management of policies from their specification to
enforcement. The policy authoring portal enables web users to
write policies, using a high-level language, which are translated
and mapped to specific low-level configurations. Johnson et
al. [23] present a template-based framework for policy au-
thoring. The work describes the relationship between general
templates and specific policies, and the skills required from
users to produce high-quality policies. Although these research
efforts investigate important issues regarding policy authoring,
none of them presents a formal language for authoring, the
use of logical reasoning to assist the refinement process, or
experimental results.

Zhao et al. [24] describe the design and implementation
of an end-to-end framework for the management of cloud-
hosted databases from a consumer’s perspective. The approach
is based on the interpretation of SLAs to assist the dynamic
provisioning of databases. The framework checks if SLAs
have changed and automatically performs corrective actions
to enforce the new specifications. Villegas et al. [25] present
a framework for the analysis of provisioning and allocation
policies for Infrastructure-as-a-Service clouds, i.e., policies to
dynamically allocate resources which remain largely under-
utilized over time. Oriol Fito et al. [26] introduce a Business-
Driven ICT Management (BDIM) model to satisfy the business
strategies of cloud providers. The objective is to evaluate the
impact of events related to ICT using business-level metrics. A
Policy-Based Management system analyzes these events and is
able to determine automatically the ICT management actions
that are most appropriate. Craven et al. [17] introduced a re-
finement process for obligation and authorization policies that
addresses policy translation, operationalization, re-refinement,
and deployment. The work describes in details how a UML
information-based formalism of system elements, a high-level
policy, and translation rules that relate actions can produce
concrete low-level policies. Bandara et al. [16] presented
a tool support for the refinement process, and used case-
studies based on DiffServ QoS management. The refinement
process introduced the use of goal design and applied abductive
reasoning as a strategy to generate low-level policies that aim
to achieve a specific high-level goal.

Despite the above research efforts have achieved satis-
factory results, they were also limited by the characteristics
imposed by traditional IP networks, such as best-effort packet
delivery and distributed control state. We distinguish our

policy authoring framework from other existing approaches
by exploring the characteristics of SDN architectures, such
as centralized control plane and overall view of the network
infrastructure to enhance the policy refinement process. To
the best of our knowledge, this is the first time that policy
authoring and refinement techniques have been applied to SDN
management.

VI. CONCLUDING REMARKS

In this paper we presented a policy authoring framework
to facilitate the configuration of SDN architectures based on
the interpretation of high-level policies. The proposed policy
authoring framework assists business-level operators to more
easily specify overall service requirements, which can then
be automatically translated into the configuration of an SDN
infrastructure. An important aspect to be emphasized is that our
approach is flexible, and allows the business-level operator to
decide whether to accept or not the suggestions given. Thus,
the operator can fully or partially accept the suggestion, or
create his/her own configuration. Also, our experiments have
showed that the toolkit performs well even with the increase
in the number of QoS classes and in the complexity of the
SLAs.

Different from past research efforts ([22], [23], [16], [17]),
our policy authoring process is based on a policy refinement
technique that analyzes the infrastructure ability to fulfill
the requirements of high-level policies using the information
obtained from an SDN controller. As a result, policies are
refined with minimal human intervention, as the framework
analyzes regexes in each SLA and applies logical reasoning
based on network conditions that can fulfill the requirements of
these SLAs. Thus, manual workload related to SDN manage-
ment can be reduced because the flow rules are automatically
generated and installed, instead of requiring the operator to
directly write and deploy rules. Further, SLAs are specified
and rules are deployed through a user-friendly policy authoring
framework with minimal disruption to the network.

While we relied on the use of SDN architectures to improve
the refinement process, by using the PBNM paradigm we also
indirectly addressed problems typically found in SDN, e.g., the
issue of having static rules and configurations that are often
written for specific situations directly in the controller. From
the viewpoint of the network operation, the use of PBNM aims
to reduce the complexity of the network management tasks
allowing the system to gain a certain level of autonomy [7].
Thus, by using PBNM we reduced the amount of static rules
and configurations. This was achieved by writing reusable code
that deploys specific rules obtained from a repository.

As a part of our future work, we intend to extend the pol-
icy authoring framework to support more terms, expressions,
prescriptions, and rules. In addition, our approach is limited
to rules triggered by the occurrence of an event, i.e., a flow
receives a specific action. We intend to extend our grammar
to support temporal logic. This will allow the specification
of policies defined by an interval of time. Moreover, we also
intend to investigate techniques for detection and resolution
of policy conflicts in different levels of abstraction. Further,
we intend to identify ongoing standardization efforts related
to policy-based management in order to improve the proto-
type. Finally, we intend to analyze the toolkit behavior when
managing other resources and types of services.

103

REFERENCES

[1] Open Networking Foundation, “Software-defined networking: The new
norm for networks,” Open Networking Foundation ONF, Tech. Rep.,
April 2012.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69–74, mar 2008.

[3] S. Sezer, S. Scott-Hayward, P. Chouhan, B. Fraser, D. Lake, J. Finnegan,
N. Viljoen, M. Miller, and N. Rao, “Are we ready for SDN? imple-
mentation challenges for software-defined networks,” Communications
Magazine, IEEE, vol. 51, no. 7, pp. 36–43, July 2013.

[4] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Com-
posing software defined networks,” NSDI, Apr, 2013.

[5] D. Verma, “Simplifying network administration using policy-based
management,” Network, IEEE, vol. 16, no. 2, pp. 20–26, Mar 2002.

[6] R. Neisse, E. Pereira, L. Granville, M. Almeida, and L. Rocken-
bach Tarouco, “An hierarchical policy-based architecture for integrated
management of grids and networks,” in Policies for Distributed Systems
and Networks, 2004. POLICY 2004. Proceedings. Fifth IEEE Interna-
tional Workshop on, June 2004, pp. 103–106.

[7] W. Han and C. Lei, “A survey on policy languages in network and
security management,” Computer Networks, vol. 56, no. 1, pp. 477 –
489, 2012.

[8] A. Bandara, E. Lupu, J. Moffett, and A. Russo, “A goal-based approach
to policy refinement,” in Policies for Distributed Systems and Networks,
2004. POLICY 2004. Proceedings. Fifth IEEE International Workshop
on, 2004, pp. 229–239.

[9] J. Rubio-Loyola, J. Serrat, M. Charalambides, P. Flegkas, and G. Pavlou,
“A functional solution for goal-oriented policy refinement,” in Policies
for Distributed Systems and Networks, 2006. Policy 2006. Seventh IEEE
International Workshop on, June 2006, pp. 133–144.

[10] A. Gupta, L. Vanbever, M. Shahbaz, S. P. Donovan, B. Schlinker,
N. Feamster, J. Rexford, S. Shenker, R. Clark, and E. Katz-Bassett,
“SDX: A software defined internet exchange,” SIGCOMM Comput.
Commun. Rev., 2014, (to appear).

[11] T. Kuhn, “A survey and classification of controlled natural languages,”
Computational Linguistics, vol. 40, no. 1, pp. 121–170, 2013.

[12] C. C. Machado, L. Z. Granville, A. Schaeffer-Filho, and J. A.
Wickboldt, “Towards SLA policy refinement for QoS management in
software-defined networking,” in Advanced Information Networking and
Applications (AINA-2014), 2014 28th IEEE International Conference
on, 2014, pp. 397–404.

[13] M. Shanahan, “An abductive event calculus planner,” The Journal of
Logic Programming, vol. 44, no. 1, pp. 207–240, 2000.

[14] R. Kowalski and M. Sergot, “A logic-based calculus of events,” New
Gen. Comput., vol. 4, no. 1, pp. 67–95, jan 1986. [Online]. Available:
http://dx.doi.org/10.1007/BF03037383

[15] C. C. Machado, J. A. Wickboldt, L. Z. Granville, and A. Schaeffer-
Filho, “An EC-based formalism for policy refinement in software-
defined networking.” 2015, submitted to ISCC 2015.

[16] A. Bandara, E. Lupu, A. Russo, N. Dulay, M. Sloman, P. Flegkas,
M. Charalambides, and G. Pavlou, “Policy refinement for diffserv
quality of service management,” in Integrated Network Management,
2005. IM 2005. 2005 9th IFIP/IEEE International Symposium on, May
2005, pp. 469–482.

[17] R. Craven, J. Lobo, E. Lupu, A. Russo, and M. Sloman, “Policy re-
finement: Decomposition and operationalization for dynamic domains,”
in Network and Service Management (CNSM), 2011 7th International
Conference on, Oct 2011, pp. 1–9.

[18] K. Bakshi, “Considerations for software defined networking (SDN):
Approaches and use cases,” in Aerospace Conference, 2013 IEEE,
March 2013, pp. 1–9.

[19] J. Wickboldt, W. Jesus, P. Isolani, C. Both, J. Rochol, and L. Granville,
“Software-Defined Networking: Management Requirements and Chal-
lenges,” IEEE Communications Magazine - Network & Service Man-
agement Series, January 2015.

[20] POX, “Pox openflow controller,” 2013, Accessed: Sept. 2013. [Online].
Available: http://www.noxrepo.org/pox/about-pox/

[21] J. Postel and J. K. Reynolds, “Rfc 1700 assigned numbers,” Network
Working Group, 1994.

[22] C. Brodie, D. George, C.-M. Karat, J. Karat, J. Lobo, M. Beigi,
X. Wang, S. Calo, D. Verma, A. Schaeffer-Filho, E. Lupu, and M. Slo-
man, “The coalition policy management portal for policy authoring,
verification, and deployment,” in Policies for Distributed Systems and
Networks, 2008. POLICY 2008. IEEE Workshop on, June 2008, pp.
247–249.

[23] M. Johnson, J. Karat, C.-M. Karat, and K. Grueneberg, “Optimizing
a policy authoring framework for security and privacy policies,” in
Proceedings of the Sixth Symposium on Usable Privacy and Security,
ser. SOUPS ’10. New York, NY, USA: ACM, 2010, pp. 8:1–8:9.

[24] L. Zhao, S. Sakr, and A. Liu, “A framework for consumer-centric SLA
management of cloud-hosted databases,” Services Computing, IEEE
Transactions on, vol. PP, no. 99, 2013.

[25] D. Villegas, A. Antoniou, S. Sadjadi, and A. Iosup, “An analysis
of provisioning and allocation policies for infrastructure-as-a-service
clouds,” in Cluster, Cloud and Grid Computing (CCGrid), 2012 12th
IEEE/ACM International Symposium on, May 2012, pp. 612–619.

[26] J. Oriol Fito, M. Macias, F. Julia, and J. Guitart, “Business-driven
it management for cloud computing providers,” in Cloud Computing
Technology and Science (CloudCom), 2012 IEEE 4th International
Conference on, Dec 2012, pp. 193–200.

104

	Acknowledgments
	Agradecimentos
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Problem and Motivation
	1.2 Aims and Main Contributions
	1.3 Document Outline

	2 Background
	2.1 Software-Defined Networking (SDN)
	2.2 Policy-Based Management (PBM)
	2.2.1 Typical Categories of Policy-Based Management
	2.2.2 Policy Languages Paradigms
	2.2.3 Basic Entities
	2.2.4 SLA Policy Refinement

	3 Policy Refinement Toolkit
	3.1 Policy Refinement Toolkit: An Overview
	3.1.1 Main Components
	3.1.2 Controlled Natural Language (CNL)
	3.1.3 Refinement Process: Bottom-up and Top-down Stages

	3.2 Low-level Controller Configuration
	3.2.1 Startup Phase
	3.2.2 Events Phase
	3.2.3 Analysis Phase

	3.3 Policy Authoring Operation
	3.3.1 Matching Process: A Step-by-step to Match Regexes
	3.3.2 Modifying and Creating QoS Class

	4 An EC-Based Formalism for Policy Refinement
	4.1 Event Calculus and Logical Reasoning
	4.2 Extend Event Calculus
	4.3 Policy Refinement Model
	4.4 Modeling Case-studies
	4.4.1 Network Infrastructure Formal Representation
	4.4.2 Services, QoS Classes, and Parameters Formal Representation
	4.4.3 SLA Refinement
	4.4.4 EC-Based Formalism Experimental Evaluation

	5 Prototype and Experimental Evaluation
	5.1 Prototype
	5.1.1 Low-level Controller Prototype
	5.1.2 Policy Authoring Framework Prototype

	5.2 Experimental Evaluation
	5.2.1 Controller Experiments
	5.2.2 Policy Authoring Experiments
	5.2.3 End-to-end Process Experiments

	6 Related Work
	6.1 Software-Defined Networking
	6.2 Policy-Based Management

	7 Concluding Remarks
	7.1 Summary of Contributions
	7.2 Discussion and Lessons Learned
	7.3 Final Remarks and Future Work

	References
	AppendixA Published Paper – AINA 2014
	AppendixB Accepted Paper – IM 2015

