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Abstract

A malicious attack that can prevent establishment of Internet connections to

web servers is termed as a Denial of Service (DoS) attack; volume and inten-

sity of which is rapidly growing thanks to the readily available attack tools

and the ever-increasing network bandwidths. Contemporary web servers are

increasingly vulnerable to such attacks. With the emergence of HTTP/2 as the

successor of HTTP/1.x, existing techniques for detecting DoS attacks will not

be entirely effective. Though nearly 90% of all contemporary web servers as yet

have not migrated to HTTP/2, DoS attack modelling and detection is essential

to prevent impending attacks of such kind from the adversary class. This study

presents a model of DoS attack traffic that can be directed towards HTTP/2 web

servers. The research conducted also extends previous studies that provided DoS

attack models against HTTP/2 services, to present a novel and stealthy DoS

attack variant that can disrupt routine web services, covertly. The attack traffic

analysis conducted in this study employed four machine learning techniques,

namely Näıve Bayes, Decision Tree, JRip and Support Vector Machines, and

stealthy traffic properties are shown through having higher percentages of False
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Alarms. Results obtained through simulation show promise, and arguments are

put forth on how future work can extend the proposed model to create further

attack traffic models that may cause severe web service disruptions.

Key words: HTTP/2, Denial of Service attack, Traffic analysis, Machine

learning techniques

1. Introduction

Businesses and modern society rely on Internet services for their communi-

cation and information needs. Ensuring the availability of these services is a

challenging task due to the growing volume of Internet traffic and the various

communication standards that it supports. The current web browsing standard5

(HTTP/1.1) is reaching its full capacity [1], as it was designed to exchange

text. Web users often experience slow Internet speed; hence, a new standard

(HTTP/2) has been designed to support communication at higher speed [2].

While the web programming software used to build websites remains unchanged,

the HTTP/2 data communication techniques differ from those of HTTP/1.1.10

HTTP/2 architecture introduces binary framing, multiplexing, message inter-

leaving, and application-layer flow control [2]. As such, the traffic it sustains over

the Internet media shows different patterns than what were previously observed

and reported in the literature, for HTTP/1.1. Through this contribution, novel

techniques are proposed and evaluated for detecting malicious network traffic15

that target HTTP/2 services, as part of a Denial of Service (DoS) attack.

For monetary gain, the adversarial threat against the availability of busi-

nesses comprises attempts to bring down web servers and corresponding services

[3, 4]. Such a threat can translate into a Denial of Service (DoS) attack, which

is defined as an explicit attempt of an attacker to prevent legitimate users of a20

service from using the service [5]. Other motivations for launching DoS attacks

include ideological beliefs to uphold one’s views while attempting to suppress the

opposition’s ability to publicise through websites; accepting an intellectual chal-

lenge to learn how to launch attacks; and cyber warfare, i.e. attacks supported
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by military or terrorist organizations [6]. Detecting and bearing the ability to25

prevent DoS attacks against a web server are therefore crucial in order to pro-

vide uninterrupted services to legitimate clients. For network and web hosting

operators, the ability to detect DoS traffic prevents unwanted operational costs,

helps to plan future infrastructure, and allows operators to provide services that

otherwise would have been disrupted by illegitimate traffic.30

In recent times, DoS attacks have been increasing in their volume, ubiquity,

complexity, and use of novel techniques [4]. The attacks can be amplified using

a network of compromised computers (aka botnet) in order to launch a storm

of network traffic [7]. This variant is called a Distributed Denial-of-Service

(DDoS) attack. In fact, flooding attacks reported after 1999 have been mostly35

DDoS in nature [6]. In 2002, the total volume of DDoS attack traffic against

large carriers and content providers around the world was found to be 400

Mbps [8]. In 2013, this attack traffic volume was increased to 60 Gbps [9].

Recently the total worldwide attack traffic volume has been increasingly difficult

to collect as the number has grown exponentially. To illustrate, in the second40

quarter of 2015 alone, DDoS attack volume touched a staggering 1,000 Gbps

[10]. In the beginning of 2016, the British Broadcasting Corporation (BBC)

website was flooded with a high intensity attack that produced attack traffic at

600 Gbps [11]. The threat thus posed to contemporary web servers cannot be

underestimated, and the best approach towards securing web servers from such45

attacks is to have security controls such as intrusion detection systems, perform

attack detection with a high degree of accuracy.

Current detection techniques for DoS attacks against web services are based

on HTTP/1.1 traffic patterns. HTTP/2 opens up a new channel of opportunity

for the adversary class to interrupt the availability of web servers. Analysis50

of HTTP/2 legitimate traffic and modeling and detection of DoS attack traffic

against HTTP/2, are essential. Previous studies show that a flood of HTTP/2

packets can be modelled to bypass a hypothetical intrusion-detection system

that monitors a computing resource’s memory consumption [12] and CPU usage

[13]. In this paper, we propose a model of DoS attack traffic i.e. stealthy55
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attacks, that executes the attack vector through intelligent crafting of network

traffic intensities spread over a longer period of time. Consequently, the attack

remains largely undetected by an intrusion detection system. We rank those

network traffic features that are most relevant for improving the accuracy of

the intelligent intrusion detection systems. The machine learning techniques60

were further evaluated on their ability to distinguish legitimate from attack

traffic.

The contributions of this paper can be summarized as follows:

• Modeling of legitimate network traffic,

• Modeling of two stealthy DoS attack variants,65

• Proposal of an attack detection scheme,

• Simulation of the proposed scheme and analysis of obtained results, and

• Proposal of future directions of research.

2. Background

Hypertext Transfer Protocol (HTTP) has been the protocol of choice for70

web browsing communication. The current version of the protocol, HTTP/1.1,

was designed to transfer text over the Internet (TCP/IP based). As technology

evolved, rich media was being increasingly transferred using the same protocol,

causing the web response time to increase. Furthermore, modern web applica-

tions that use these rich media have created a demand for more user interactions,75

causing the protocol to reach its limit. Consequently, web users experience slow

connections to websites.

The HTTP/2 protocol format is based on binary framing as opposed to the

newline-delimited plain text mechanism of its predecessor. Binary framing al-

lows its parser to efficiently identify the location of the subsequent packets in80

the traffic flow, and quickly identify each packet’s type and flags. The binary

framing also allows multiplexing, i.e., multiple requests/responses in one TCP
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connection per origin. To implement multiplexing, the protocol tags each packet

with a stream ID. Packets with different stream IDs can be communicated in-

dependently, allowing virtual communication streams in one TCP connection.85

HTTP/2 introduces a flow control mechanism in order for the communicat-

ing devices to advertise their susceptibility to congestion. The window_update

frame is an HTTP/2 message that implements flow control. The purpose of

flow control is to moderate the many streams established between a client and

a server, in a single connection. This allows a server to balance packet flows90

between the streams of a single connection. The window update frame is one

such frame that allows a client or a server to communicate the size of data that

the sender can transmit in a single frame, in addition to the current size. These

capabilities did not exist in HTTP/1.1.

Several techniques have been reported in the literature to identify flood-95

based attacks including those using statistics, entropy, and wavelet analysis.

In addition, machine learning techniques are also popular for traffic analysis,

since they are able to classify large data sets that exist in multi-dimensional

spaces. The machine learning techniques employed in this study for legitimate

and attack traffic differentiation are Näıve Bayes (NB), Decision Tree (DT),100

JRip, and Support Vector Machines (SVMs).

Näıve Bayes (NB) is one of the most widely used techniques in data mining

communities [14]. It is used effectively in many studies on traffic analysis and

DoS detection. For instance, a study applied Näıve Bayes to classify traffic

without inspecting the payload of the traffic [15]. The dataset was obtained by105

extracting features from the TCP headers of the observed traffic. The study

also showed that it achieved an accuracy of 95% in classifying the traffic through

application of Näıve Bayes.

One of the biggest challenges in classifying network traffic is the large volume

of data to analyse, given a set of features. One study proposed a feature ranking110

technique using Näıve Bayes [16], thus reducing the dimensionality of the data

for faster computation. To compare the performance of the proposed technique,

other widely used feature ranking techniques, such as Information Gain and
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Gain Ratio, were also applied by the authors. The proposed technique in the

study showed that it outperformed the widely used feature ranking techniques115

when applied on large volumes of data.

In contrast, another study proposed a solution when too few data samples

were available [17]. The study proposed a technique to pre-process traffic before

extracting features to be classified using Näıve Bayes. The technique correlated

traffic flows that were generated from the same application. The study showed120

that the proposed method outperformed other machine learning techniques such

as Decision Tree and k -NN.

Decision Tree (DT) is one of the most popular techniques applied for data

classification [14]. It is a sequence of rules wherein the current selected rule

decides the subsequent rules to be selected by splitting the rule into two or more125

branches forming a tree-like structure. Decision Trees have also been applied

in traffic analysis research for identifying botnets [18] and network anomalies

[19]. Botnets are not only deployed to generate DDoS traffic, but also help

spread spam mails and to steal passwords. A study reported use of Decision

Tree to identify botnet behaviour from generated traffic patterns [18]. The130

scheme compared its performance analysis with Näıve Bayes and concluded

that Decision Trees can produce better classification accuracies. Interestingly,

higher detection rates were achieved when analysis was done on HTTP-filtered

traffic, wherein only HTTP traffic was introduced to the classifier. The study

suggested that the identified bots communicated using the HTTP/1.x protocol.135

JRip is considered a faster machine learning technique than Decision Trees

[20, 21]. It is based on rule-learning techniques, which classify data samples

into a single class and seek a set of rules to best classify data. An extension of

the technique named RIPPER introduced a pruning method that reduces the

complexity of a tree [20]. JRip is a Java-based implementation of RIPPER. It140

was applied for traffic analysis studies to reduce false alarms [22], to select best

traffic features [23] and to efficiently reduce the volume of data introduced to

an intrusion detection system for classification [24].

Support Vector Machines (SVMs) [25] are an example of a supervised learn-
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ing technique. They extend linear regression models to separate datasets whose145

classes are otherwise linearly inseparable. SVMs have been applied to classify

DoS traffic and legitimate traffic in a recent study [26]. The study aimed to

detect DoS in mobile Ad-hoc networks, which is a network of mobile devices

that are connected wirelessly, wherein each device acts as a router in addition

to its normal intended use. Such kinds of networks are very vulnerable to DoS150

attacks since there is no security policy imposed on access to these connected

devices. The study showed that SVMs classify with greater than 90% accuracy

in all conducted experiments.

SVMs can also separate multiclass data. For instance, a study reported in

[27] aimed to classify 7 application types of traffic (bulk, interactive, mail, ser-155

vice, www, p2p, and ’others’). Prior to this study, traffic classification focused

only on HTTP data. Results showed a 96.9% accuracy in classifying the con-

glomerate (legitimate and attack) traffic. The study also showed that the same

method was able to classify homogeneous traffic comprising 87% HTTP traffic

with 99.4% accuracy. This suggests that the method was externally valid, i.e.160

it was able to achieve a desired accuracy level when applied to diverse sets of

data.

These machine learning techniques were used to analyse and detect DoS

attack traffic where devices communicate using HTTP/1.x. In contrast, this

study used machine learning techniques to analyse HTTP/2 attack and normal165

traffic. Two studies have been identified for HTTP/2 attack modelling and

detection analysis. First, a study employed HTTP/2 window update packets to

model flooding-based attack against a target machine running HTTP/2 services

[12]. This is in contrast to employing HTTP Request packets in traditional

DoS attacks where devices communicate using HTTP/1.x. The study showed170

that a flood of HTTP/2 Request packets did not successfully incapacitate the

target machine, while a flood of HTTP/2 window update packets was able to

incapacitate approximately 12 machines. Furthermore, the memory of the target

machines was only consumed up to 2 MB. This suggests that the model was able

to bypass a hypothetical intrusion-detection systems that monitored memory175
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consumption of a target machine.

The second study modelled HTTP/2 DDoS attacks that can bypass hypo-

thetical intrusion-detection systems that monitor CPU usage of a target ma-

chine [13]. A flood was modelled as 131,000 window update packets sent in

38.5 seconds, with its payload window-size-increment set to 16,384. The pay-180

load window-size-increment signified the additional HTTP/2 frame size in bytes

that an attacking machine can send, in addition to its previous value. The study

showed that an attacking machine sending such a flood caused a target machine

to consume 50% of CPU usage. Because any normal computing activities, such

as disk writing, can cause such indication, the traffic produced by the model185

can bypass hypothetical intrusion-detection systems that monitored CPU con-

sumption of a target machine. The study showed that 4 attacking clients, where

each client run 2 processes of traffic generation from the model, caused a target

machine to continually show 100% CPU consumption.

3. Legitimate and Attack Traffic Models190

3.1. Legitimate Traffic Model

While HTTP/2-enabled services are gaining popularity, currently most web

servers still communicate using the HTTP/1.1 protocol. This implies that a

sensor placed at a backbone of a computer network would not be able to tap

much data on HTTP/2 traffic. Through this study, HTTP/2 traffic was sub-195

sequently modelled to mimic real user traffic and was generated as part of the

experiments.

This section explains how legitimate user traffic can be modelled, and how

HTTP/2 traffic can be generated from the defined model. Legitimate traffic

was subsequently built-upon to create flash-crowd traffic, i.e. a large volume of200

legitimate traffic that incapacitates a web server, similar in fashion to a DoS

attack, albeit with non-malicious intent. Figure 1 illustrates the framework of

generating flash-crowd traffic from a model of normal user behaviours. The
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Figure 1: The framework of creating flash-crowd dataset from legitimate traffic model

proposed user behaviours adopted a publicly-available log that described user

actions in the Internet.205

3.1.1. Logs of Online User Browsing Behaviors

Behaviour of a normal Internet user was modelled from DOBBS, a publicly

available log of user actions obtained from online browsing [28]. This log was

comprised of records of user actions when a user is online, such as opening a

new browser, adding a new browser tab, clicking a link or typing a web address,210

etc. The dataset was for a year-long activity record, and was collected from

volunteers from around the world who installed a browser plugin that sent logs

of these actions to a central archiving system.

There are three tables in the DOBBS log representing three types of events:

first, that logged the browser’s window-related data such as window mini-215

mized/maximized, browser tab opened/closed, and whether window is focused;

second, that logged session-related data such as user inactive or idle (for exam-

ple due to reading the information on the browser); and third, that was related

to user actions as a result of browsing activities. Each table has a user ID col-

umn to identify the unique user who performed the actions. For the purpose of220

this study, the three tables were combined and the data was sorted based on the

recorded time-stamp per user ID. This log showed a story-like event illustrating

how a user browsed websites during a given period of time. An example of a

data sample is shown in Table 1.

The table illustrates that a user initialised its browser, opened two tabs,225
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Table 1: A snippet of DOBBS Sample

Time User ID Event ID Event description

20130826181127.900 48115555 100 New browser window opened

20130826181127.900 48115555 200 Session started

20130826181128.400 48115555 110 New browser tab opened

20130826181128.400 48115555 110 New browser tab opened

20130826181143.600 48115555 400 New web page loaded

and initiated web browsing after 15 seconds. The time-stamp for each entry

presented how much time a given event took. In this study, a 3-day DOBBS data

collection between 6 to 8 August 2013 was sampled, which is named DOBBS

Sample. This period has the most number of users and surf entries. The DOBBS

Sample was used to construct a User Model, i.e. a model that mimic normal230

user behaviours when online.

3.1.2. User Model

The User Model was represented in terms of states and transitions. Each

recorded event was represented as a state with its own dwell time in that state,

which was the time an event remained in one state before moving to another235

state. Each state led to one other state or more, and the probability of a

state transitioning to another state was calculated by counting its frequency of

occurrence in the actual DOBBS log. This effectively modelled one sample user

that browsed web sites. Figure 2 shows the model of traffic that was described

in Table 1. In the figure, there was an equal chance of state 110 to transit to240

either state 400 or to itself, because the frequency of those transitions in the data

log was equal. As for the model used in this study, the transition probability

of a state was tallied from the 3-day sample, i.e. the DOBBS Sample, which

accommodates larger data than the example given in Table 1.

The User Model was constructed from a sequence of DOBBS Sample entries.245

As illustrated in Figure 3, the model had 16 states with many edges (transi-
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Figure 2: State Transition representing a User Model

Figure 3: An example of one user model taken from DOBBS Sample

tions). The ”S” state identified the first event observed in the log; therefore,

it pointed to only one state in the model and acted as the starting state. The

data structure of the model was coded using a two-dimensional matrix with I

rows representing the current state, and J columns representing the next state.250

The data structure of each cell cij in the matrix had the dwell-time value for

state i and the probability value to transit to the next state j.

The defined User Model was used to generate legitimate traffic.

3.1.3. Legitimate Traffic Model

This study was to generate a large volume of legitimate traffic that incapac-255

itates a server, known as flash-crowd traffic. Two scenarios were implemented

to generate a large volume of legitimate traffic. The first one was called Ubot,

with the ”U” standing for ”User”. It was defined to replay one User Model and

generate legitimate traffic that mimicked the user. Ubot takes a User Model
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as input, looks for a starting state and transits to other states after a given260

dwell-time. When Ubot is in a state that represents a user requesting a web

page, Ubot generates an HTTP/2 Request packet. Since DOBBS Sample has

21 distinct user IDs in the log, this study was equipped with 21 unique user

models depicting individual web-surfing behaviour. Ubot was run to simulate

any one of these users and generate traffic according to the individual patterns.265

The second scenario was named BotMaster, defined to run a large number

of Ubot modules to generate flash-crowd traffic. Each Ubot module simulates

a user. A number of Ubot modules running in tandem simulate different user

behaviours, generating HTTP/2 traffic patterns that mimic normal users. While

BotMaster was designed to run any number of Ubots, 200 was the optimum270

number to run on each of the virtual machines used in this study. It was

observed that each virtual machine can run 200 Ubots without showing a race

condition, i.e. a situation where the behaviour of one process affected another.

To generate a large traffic volume, the number of virtual machines, where

each machine run a BotMaster, was incrementally added to the client-server sys-275

tem until the server showed signs of resource consumption. The study showed

that the server reached 100% CPU consumption continually when 26 virtual

machines were actively generating traffic directed towards the server. This rep-

resented 26× 200 = 5, 200 normal users visiting a website. The captured traffic

at the server side represented flash-crowd traffic, because it was generated from280

legitimate traffic pattern and it consumed the CPU utilisation of the server.

The generated traffic was captured to create a legitimate dataset. A network

monitoring tool TShark, which is a command-line version of Wireshark [29] was

used to capture the flash-crowd traffic at the server side. The file format was

named packet-capture (pcap); the traffic was captured over 8706 seconds, which285

occupied a pcap file of size 2 GB. Currently this number is the maximum pcap-

format file size, when captured using TShark. The traffic captured by TShark

was filtered twice, through the direction filter and the protocol filter. The first

filter was to retain traffic only from client-to-server. This filtering procedure

ascertained that the packet flow from client to server alone was captured, to290
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represent a DoS attack. The second filter was a protocol filter, which operated

so that only traffic involved in an end-to-end communications was considered.

Messages irrelevant to a remote HTTP/2 server, such as DNS, DHCP, and ARP

messages, were not considered for creating the dataset in this study.

After the traffic was filtered with the direction and protocol filters, it was295

further characterised using the feature extraction procedure. A 3,600-second

flash-crowd traffic was sampled for this purpose. That is, the feature extraction

procedure extracted the 42 feature values of each time frame of length 1 second

of flash-crowd traffic. A 1-second time slice was chosen instead of other arbitrary

interval values (e.g. 2 seconds, 5 seconds), to convenience the data validation300

process during the simulations. For example, a 3,600-second captured traffic

should produce a 3,600-row dataset. The result could be arranged in a table with

its columns representing the feature values, and each of its rows representing 1-

second traffic instances. This 42×3, 600 table represents the HTTP/2 legitimate

dataset. The legitimate dataset feature values can be used to analyse and detect305

other traffic types, such as attacks. Furthermore, the legitimate dataset allows

this study to design stealthy attack traffic models, where some of their features

values overlap with those of legitimate traffic.

3.2. Stealthy Attack Model

This study proposes stealthy attack models. Stealthy traffic is defined as310

traffic that yield higher percentages of False Alarms than the DDoS traffic pro-

posed in a previous study [13], when analysed using machine learning techniques.

It has been shown that the HTTP/2 DDoS attack traffic was able to bypass

intrusion-detection systems that monitor CPU usage of a target machine, as

the attack traffic generated by each attacking client only consumed 50% CPU315

usage of the target machine. However, in this study, we show that the DDoS

traffic can be distinguished through comparing one of its feature values to that

of legitimate traffic. For example, a feature that counts the number of packets

carrying SYN flags per 1-second traffic instance, hereby named the ’count syn’

feature, is distinguishable. This is illustrated in Figure 4.320
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Figure 4: A threshold line can split DDoS and legitimate traffic

In Figure 4, the X-axis shows the number of SYN packets/sec, and the Y-axis

shows the number of instances, or the tally for the X values. The black graph

shows the distribution of the legitimate count syn feature values, and the grey

one shows that of DDoS traffic. It is unambiguous to choose a threshold value

such as a vertical dotted-line to split the two colours as illustrated in the Figure,325

signifying that the DDoS traffic is distinguishable from legitimate traffic.

This study aimed to model attacks whose traffic continually consumed the

victim’s computing resource, yet caused machine learning techniques to incor-

rectly classify some traffic instances thereby yielding false alarms. In addition,

the study tried to find the least possible number of attacking clients to success-330

fully incapacitate a victim machine. In this study, attacking clients are named

as ’bots’.

The study proposed to camouflage attack traffic with features of legitimate

traffic. The stealthy attack model presented herewith comprises two groups

of bots to camouflage attacks. One group attempts to exactly mimic the flash-335

crowd traffic features, and another does the generation of the offending traffic de-

rived from the current understanding [13], i.e.: a flood of 131,000 window update

packets with window-size-increment payload set to 16,384 sent by an attacking

bot for 38.5 ms caused a target server to consume 50% CPU consumption; and

4 attacking bots, where each bot sent such a flood caused a target server to340

consume 100% CPU resources. The mimicking bots are labelled as the mime

group, and the attacking ones are labelled as the offending group.

The study controlled the amount of traffic generated by each group, un-

til instances of 100% CPU consumption were observed at the victim machine.
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To control the amount of traffic, two independent variables were added to the345

packet generator that constructed both the mime and offending bot anatomy.

First, instead of indefinitely transmitting a flood of window update packets as

attempted in the previous sections, the bot sent intermittent floods. A flood

was defined as 131,000 window update packets in 38.5 ms. Here, stealthy factor

is defined as the outcome of rolling an x-sided dice, where a random integer350

was generated between 1 and x. A flood from a bot towards a target server

was launched when x equalled to 1. When x 6= 1, the bot sent only 1 HTTP/2

Request and then disconnected the TCP connection. Higher stealthy factor

numbers imply smaller chances to have an outcome value of 1 out of a given

stealthy factor x; hence, the higher the stealthy factor the less frequently for355

launching a flood. This mechanism created intermittent floods from the bots

towards the victim rather than continuous attack traffic.

Second, a delay variable was introduced. Instead of pausing for 100 ms

between streams as previously proposed [13], the bots disconnected the TCP

connection and reconnected after a given delay. This variable controlled the flow360

of SYN packets/sec from each bot towards the victim. A SYN packet initiates

a client-server TCP connection. Hence, the bots created SYN packets with a

fixed delay between connections. The investigation in this section searched for a

delay value between connections initiated by the mime group and the offending

group. Larger delay values aided the mime group to mimic the number of SYN365

packets/second of flash-crowd traffic. However, larger delay values caused the

offending group to send less attack traffic flow, causing the CPU consumption

of the victim to slide from 100%.

In bot-induced DDoS attacks, the higher the number of bots, the closer

the traffic pattern that they generated is to flash-crowd traffic [30]. This is370

reasonable, since both flash-crowd as well as attack traffic floods are generated

from Internet-connected machines. In this study, a minimum number of bots

were observed when the traffic that the bots generated caused a target machine

to continually show 100% CPU consumption. An attacking bot anatomy is

modelled as being built upon five parameters:375
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Table 2: Stealthy Attack-1 model

Bot 1 Bot 2

Number of threads 1 1

Number of window update 131K 131K

Stealthy factor 50 500

Delay between connections 11 ms 11 ms

• number of threads: the number of simultaneous processes runs on a bot

machine, where each process can independently initiate a TCP connection

with a remote machine, i.e. a target server.

• number of window update: the number of window update packets in each

stream.380

• stealthy factor : the frequency at which a TCP connection is used to send

a flood of packets against a target machine, equals to 1/stealthyfactor .

• delay : a time delay between successive TCP connections.

Two implementations of the model were proposed. The first model, named

Stealthy Attack-1 (SA-1), is shown in Table 2. The table shows that the pro-385

posed stealthy attack traffic could be generated by simply two bots, with one

bot representing the mime group and the other the offending group. One virtual

machine was used to run each bot. Bot 1 acts as the offending group that sends

131K window update packets as attack traffic towards the victim. The attack

traffic is sent periodically with a stealthy factor equals to 50. This means the390

attack traffic is sent when a random variable x yields 1 of 50 chances, otherwise

the bot sent 1 HTTP/2 Request and disconnected its TCP connection with the

victim. Bot 2 sends less frequent attack traffic, as it is assigned a stealthy fac-

tor 500. This number is ten times higher than Bot 1, to maintain the desired

number of TCP connections in its attempt to mimic flash-crowd traffic.395

The second implementation of the stealthy attack model, named Stealthy

Attack-2 (SA-2), is shown in Table 3. The model aimed to have attack traf-
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Table 3: Stealthy Attack-2 model

Bot 1 Bot 2 Bot 3 Bot 4

Number of threads 1 1 2 40

Number of window update 131K 131K 0 0

Stealthy factor 5 5 n.a. n.a.

Delay between connections 1 sec 1 sec 0.001 ms 5 sec

fic mimics another feature value of flash-crowd traffic, i.e. the size of packet

carrying the RSK-ACK flag (henceforth named the ’size rstAck’ feature). This

feature represents the total size of TCP packets with RST and ACK flags set400

observed in a 1-second traffic instance on the victim machine. For connection

termination, a TCP packet with the RST flag set is sent by one bot machine

to a remote machine. RST-ACK packets sent by the bot are essentially RST

packets with the ACK flag set, to also acknowledge a previous packet received

by the same machine. To further mimic the flash-crowd traffic, the Stealthy405

Attack-2 study proposed to have the mime-bot group closely mimic the values

of the size rstAck feature.

The intuition behind mimicking the size rstAck values was due to varying

implementations of the attack and the legitimate traffic. The former was imple-

mented using nghttp2 library [31], while the latter was using curl [32]. TCP410

connections implemented with nghttp2 library closes connections with RST

packets, while connections curl library closes TCP connections with RST-ACK

packets. It is acceptable to have various implementations of a communication

standard, since standards also clearly indicate the implementation requirement

levels that ranged from ”must” to ”optional”, according to RFC 2119 [33]. Con-415

sequently different HTTP/2 libraries, while maintaining the requirements man-

dated by the HTTP/2 standard [2], are not uniform in their implementations,

and subsequently the traffic pattern they produce varies.

The Stealthy Attack-2 model uses curl to implement the mime-bot group,

while maintaining the use of nghttp2 as the engine for the offending group. It420
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was found that 4 bots were sufficient to cause a target server to continually

show 100% CPU usage. Bots 1 and 2 are the offending group, launching a

flood of attacking traffic periodically towards a target machine. The stealthy

factor 5 meant that a flood was sent once every 5 seconds on average by chance.

Hence, there was 1/5×1/5 = 1/25 chance during each second that the two bots425

simultaneously launched a flood of traffic towards a victim. Bots 3 and 4 formed

the mime group that attempted to mimic the flash-crowd traffic. Because these

two bots did not send any window update traffic to the victim, any number

assigned to the stealthy factor did not serve any purpose for launching attack

packets. Hence, Table 3 shows ”n.a.” for the stealthy factors. The number of430

threads indicates the number of instances of the above scenario that were run

by each bot during a given time frame. These threads, although relatively small

in their number (2 for Bot 3, and 40 for Bot 4), were an attempt to mimic the

5,200 users that comprised flash-crowd traffic.

4. Attack Detection Scheme435

In this section, we present the phases of operation of the attack traffic clas-

sification scheme. Figure 5 describes the process for classifying attack and le-

gitimate traffic. Initially, a set of features from both the attack and legitimate

traffic were extracted. The feature extraction yielded a dataset with 549 attack

traffic instances for Stealthy Attack-1, and 254 instances for Stealthy Attack-2.440

The dataset was then merged with the legitimate dataset which consisted of

3,600 instances, yielding two datasets, one with a total of 4,149 instances and

another with 3,854 instances. The features from each dataset were ranked using

two features selection techniques, Information Gain and Gain Ratio. The study

applied four machine learning techniques, i.e. Näıve Bayes (NB), Decision Tree445

J48 (DT), JRip and Support Vector Machines (SVMs), to classify the attack

traffic when subjected to the legitimate traffic.
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Figure 5: Process for legitimate and attack traffic classification

4.1. Feature Extraction

Upon introduction of both attack and legitimate network traffic, features

were extracted and datasets were generated to represent legitimate and mali-450

cious traffic. The study observed patterns from the generated traffic, such as the

packet types and their statistical properties such as the count, size, and lapse

time of each packet since its connection initiation. For each 1-second traffic

instance, the values of these features were obtained as follows.

• The count feature is the number of packets captured, grouped by packet455

type.

• The size feature is the total number of bytes of a packet captured, grouped

by packet type.

• The lapse feature is the time lapse between packet capture and connection

initiation (i.e. the length of time between a packet and the SYN packet460

of a connection), grouped by packet type. For each packet type:

– If there is more than one packet within a connection, only the lapse

value of the first packet is considered.

– Because there can be more than one connection within an instance,

there are as many lapse values as the number of connections. The465

lapse feature considers the minimum, average, as well as maximum

values.
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The values of count and size features characterize the volume of traffic being

analysed. The values of lapse features imply how busy communication resources

are. For example, instances demonstrating a large max-lapse values from the470

average-lapse values means that certain packets are sent from a client to a

server with a larger delay than average. Lapse features do not require deep

packet inspections, i.e. parsing the content of application data, thereby allowing

analysis on encrypted traffic.

The traffic generated in the previous phase yielded 9 packet types, i.e.: ap-475

plication data, client hello, client key exchange, encrypted alert, SYN flag, ACK

flag, RST flag, RST-ACK flag, and FIN-ACK. Each packet type was charac-

terized by its 5 statistical properties (e.g. count, size, min lapse, average lapse,

max lapse), yielding 9 × 5 = 45 features. However, there were no lapse values

for SYN flag packets, because these packets identify connection initiation; the480

value of all 3 lapse features of SYN packets is always 0. The total number of

features used in this study is therefore 45− 3 = 42 features.

A snapshot of traffic within an observed time window was characterised

by the above features. In this study, the time window is one-second. Each

one-second traffic represented an instance, and several instances comprised a485

dataset. Hence, tabular datasets were created with the rows as the instances

of the traffic, and the columns as the features of each instance. One additional

column, usually placed as the last one, contained nominal data that labelled the

class of each instance, i.e. legitimate or attack. These datasets serve as inputs

to the machine learning techniques that show how attack and legitimate traffic490

were classified.

4.2. Feature Ranking and Classification

As part of this phase, features were ranked and machine learning classifica-

tion was analysed. Feature ranking reduces the number of inputs for machine

learning processing and analysis, through finding and ranking the most relevant495

features. Ranked features aid the analysis of this study to find a set of features

that can describe the characteristics of the traffic models. Two feature ranking
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techniques were employed, i.e. Information Gain and Gain Ratio. Information

Gain is a measure of purity when a feature is taken into account. Its value can

be used to measure the degree of information if a new instance were classified500

as a certain class. The relevance value is given by equation (1),

Gain(feature) = Info(training)− Info(feature) (1)

where Info(training) is the amount of information when the whole set of

training example is included, and Info(feature) is the amount of information

when a specific feature is selected. The amount of information is obtained from

an entropy function that measures the degree of coherence with respect to a505

each class k, which is given in equation (2),

Info(x) = −
n∑

k=1

pklog(pk) (2)

where pk is the probability of an occurrence that an instance was classified

as k when feature x is selected. In a two-class scenario as used in this study, the

information of the training example set can be simplified as shown in equation

(3).510

Info(training) = −plegitimatelog(plegitimate)− pattacklog(pattack) (3)

A shortcoming of Information Gain is that features with a large range of

possible values return a near-zero entropy value. Consequently, the Gain value

of the feature becomes greater than any other features causing it to be ranked

higher without truly representing its relevance to the class of data sample.

Gain Ratio is a feature ranking measure that compensates the above draw-515

back. It normalizes the Gain value of the training dataset with the entropy

value of the feature’s subsets, named the IntrinsicV alue. Gain Ratio formula

is given in equation (4).

GainRatio(feature) =
Gain(feature)

IntrinsicV alue
(4)
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The Intrinsic Value represents the information value of the feature. It dis-

regards any information about the class of the data sample. This is given in520

equation (5).

IntrinsicV alue = −
∑

v∈values(ftr)

|x ∈ S, value(x, ftr)|
|S| .log2

|x ∈ S, value(x, ftr)|
|S| (5)

where S is the number of instances in the training dataset, x is a sample of

the training dataset, ftr is the selected feature to measure, values(ftr) is a set

of all possible values of the selected feature, and value(x, ftr) is the value of

the selected feature in sample x.525

The drawback of Gain Ratio is that it can rank a less relevant feature high,

due to the feature’s low intrinsic value. Therefore, this study applied both

Information Gain and Gain Ratio to take the advantages of each measure and

to ascertain comparison of the relevance of features to the classification process.

Different sets of ranked features were investigated to observe performance530

of classifying attack and legitimate traffic. Traffic classification was studied

through employing four machine learning techniques, i.e. Näıve Bayes, Decision

Tree, JRip, and Support Vector Machines. This study used Weka [34] to rank

features and run a range of machine learning algorithms.

To analyse the performance of these machine learning techniques, the ma-535

chine learning False Alarms were measured. This is given in equation 6, which

is the percentage of instances incorrectly classified out of the total number of

the whole instances S. The False Positive FP is the percentage of legitimate

traffic that the machine learning algorithm incorrectly identifies as attack traffic.

The False Negative FN is the percentage of attacks that the machine learning540

algorithm incorrectly identifies as legitimate traffic.

False Alarms =
FP + FN

S
× 100% (6)
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5. Results and Analysis

5.1. Experimental Setup

All devices employed in this study were virtual devices, run on a desktop

computer that serves the host machine. The host runs Windows 10 on Intel-i7545

quad core with 64 GB RAM; and the virtual machine was VMware Player 12.

The host machine could run the whole virtual machines required in this study

without showing any signs of RAM exhaustion or CPU utilisation. The network

connecting the clients and the servers was comprised of VMware machines.

There was no bandwidth limit set on the virtual network.550

The client was used to generate traffic. Various traffic patterns, attacks as

well as normal traffic, were generated and studied to model several client-server

scenarios. Each client ran a Debian Linux Operating System, Ubuntu 15.04, on

the VMware virtual machine.

The server was an HTTP/2 web server. This study used a publicly available555

HTTP/2 server, named libevent-server written by the nghttp2 author [31].

The investigation monitored the server for effects of resource consumption. In

order to detect symptoms of resource consumption, the following measurements

were to be monitored [35]: CPU usage, memory consumption, network through-

put, and packet loss. When a computing resource is under load, CPU usage,560

memory consumption and packet loss indicators can show increasing activities,

while network throughput can decrease.

5.2. Statistical Values of the Mimicked Features

The Stealthy Attack-1 model attempted to mimic the count syn feature val-

ues, while the Stealthy Attack-2 model aimed to mimic the size rstAck feature565

values. Figure 6 shows the visualisation of these stealthy attack feature val-

ues when compared to those of legitimate traffic. In both figures a and b, the

black graph represents the feature values of the legitimate traffic, while the grey

graph shows those of the attack traffic. It can be seen that the Stealthy Attack-1

count syn feature values amalgamate with those of the legitimate traffic (Figure570
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Figure 6: Visualisation of the mimicked feature values

6.a). Similarly, the Stealthy Attack-2 size rstAck feature values mimicked those

of the legitimate traffic (Figure 6.b).

The figure illustrates that it is not trivial to find a threshold value that sep-

arates the attack and legitimate traffic. This means intrusion-detection systems

that depends on a predefined threshold value to separate attack and legiti-575

mate traffic would produce some False Alarms. This finding contrasts with the

HTTP/2 DDoS traffic detection, where a threshold value can be set to sepa-

rate DDoS and legitimate traffic, as shown earlier in Figure 4. Therefore, the

stealthy attack traffic is stealthier than the DDoS traffic.

5.3. Analysis using Machine Learning Techniques580

While the previous discussion analyses attack detection using specific fea-

tures from the stealthy attack models, this subsection uses the proposed 42

features to analyse the number of False Alarms. Four machine learning tech-

niques, i.e. Näıve Bayes Decision Tree, JRip and Support Vector Machines,

were employed to yield the percentage of False Alarms when attack and legiti-585

mate traffic were analysed. The machine learning classifications were executed

on an Intel Core-i3 machine with a 2 GB RAM. Three of the machine learning

techniques, i.e. Näıve Bayes, Decision Tree and JRip, took less than 1 second

to yield classification results. In contrast, Support Vector Machines took more

than 2 minutes to yield classification results.590

The study employed Information Gain technique to rank features. The tech-

nique produced a range of feature set X, where the most relevant [1, x] features

were employed for machine learning analysis. Figure 7 shows the performance of
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(a) Näıve Bayes (b) Decision Tree

(c) JRip (d) Support Vector Machine

Figure 7: Visual inspection to find a range of X-values that yield low False Alarms values.

machine learning techniques in terms of False Alarms (Y-axis), for each feature

set [1, x], where x = 1 . . . 42.595

Visual inspections were applied to find a range of numbers of selected fea-

tures, to yield a low percentage of False Alarms. The reasoning behind this is

that intrusion-detection systems would choose rules that can yield the lowest

False Alarms value. Figure 7 was used to visually choose a number of selected

features. The figure combined the False Alarms (Y-axis) of the 3 attack traffic600

models.

From visually inspecting Figure 7.a, a hypothetical intrusion-detection-system

that employed Näıve Bayes would choose 19 selected features or higher to obtain

low Y values. In this regard, Stealthy Attack-2 was found to be the stealthiest

due to its high Y values, followed by Stealthy Attack-1 and DDoS.605

A visual inspection on Decision Tree (Figure 7.b) also shows that Stealthy
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Attack-2 yielded the highest Y values, hence the stealthiest, when a hypotheti-

cal intrusion-detection-system employed 5 Information Gain-ranked features or

higher. The figure also shows that Stealthy Attack-1 was less stealthy, and

DDoS was the least stealthy.610

JRip (Figure 7.c) graphs show that between 10 and 17 features can be se-

lected to yield low Y values. When these features are selected, Stealthy Attack-2

was the stealthiest (as it showed the highest Y value), followed by DDoS and

Stealthy Attack-1.

Support Vector Machine (Figure 7.d) show otherwise. When 5 or more615

features were employed, DDoS was the stealthiest, as it yielded 0.024% False

Alarms. A hypothetical intrusion-detection-system can distinguish the other

two attack traffic models, Stealthy Attack-1 and Stealthy Attack-2, from flash-

crowd when 5 or more features were employed.

From the visual inspection in this subsection, Näıve Bayes, Decision Tree,620

and JRip show that Stealthy Attack-2 bears the stealthiest traffic among the 3

traffic models analysed. Support Vector Machine yield otherwise, with DDoS

being the stealthiest.

5.4. Boundary Values

This subsection extends the results obtained from the previous analysis to625

examine the boundary values. The boundary performance values were indicated

by the best figure a classifier measured regardless of the number of features se-

lected, i.e. the farthest Y value regardless of X. Hence, these were the lowest

values of False Alarms from each traffic types. This represents the best result

machine learning techniques can be employed to distinguish attack from legiti-630

mate traffic. A higher boundary value signifies stealthier traffic. The intuition

behind this is that attackers would choose attack traffic models that yield higher

False Alarms, given the best detection method was known.

Furthermore, this subsection extends the previous analysis to include Gain

Ratio feature ranking technique. The result is shown in Figure 8. The figure635

shows that Stealthy Attack-2 traffic (SA-2) was the stealthiest when measured
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Figure 8: False Alarms for all 3 attack types

with Näıve Bayes and Decision Tree. However, this result was not uniform

across other classifiers tested. JRip showed that DDoS traffic was stealthier

than Stealthy Attack-2, as DDoS showed a higher bar than Stealthy Attack-

2. Similarly, JRip showed that Stealthy Attack-2 was stealthier than Stealthy640

Attack-1 (SA-1), as the former showed a higher bar than the latter. Support

Vector Machines were able to yield 0% False Alarms when classifying the 2

proposed attack traffic models and the DDoS traffic.

It has been shown that the two attack traffic models presented in this study

can be identified using Support Vector Machines. On the other hand, they645

produced higher percentages of False Alarms than the HTTP/2 DDoS attack

traffic, when analysed using Näıve Bayes, Decision Tree, and JRip. Thus, the

stealthy attack models yield stealthier traffic than the DDoS traffic.

5.5. Feature Ranking Comparison with HTTP/1.1 Features

Current research on DDoS attack classification explores methods to dis-650

tinguish attack traffic from legitimate or flash-crowd traffic operating in an

HTTP/1.1 environment. In contrast, this study operated in HTTP/2 environ-

ment to classify legitimate from attack traffic. This subsection also discusses

how the HTTP/1.1 features can be ranked differently as distinguishing factors

when applied to HTTP/2 traffic.655

To make a comparison, the study investigated features that were used for
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both HTTP/1.1 and HTTP/2 traffic analysis. Listing these common features

was a non-trivial task, because the traffic patterns varied significantly. HTTP/1.1

traffic analysis was reliant on unencrypted packets, while HTTP/2 analysis car-

ried out in this study was applied to encrypted traffic. HTTP/1.1 traffic analysis660

required deep packet inspection, where unencrypted HTTP packets such as the

content of HTTP Requests [36, 37, 38, 39], its distribution [40], or flow [41]

could be analysed. Similarly, the number of resources (i.e. files or pages) that

clients requested from a server was one of the features to model flash-crowd

traffic [42]. Again, these solutions relied on unencrypted HTTP data.665

As a result, many of the previous methods that inspected HTTP/1.1 traf-

fic were no longer applicable when implemented for encrypted traffic analy-

sis of HTTP/2. This is because encrypted traffic conceals the content of the

application-layer data. Hence, browsing behaviour that depended on HTTP

data and packet flow measurements, and required application-data inspection670

could not be analysed through these techniques. Consequently, deep packet in-

spection methods and features that relied on certain HTTP/1.1 packet flow ob-

servations as described above could not be applied to analyse encrypted HTTP/2

traffic.

However, certain aspects were adoptable from HTTP/1.1 traffic analysis675

and applied to HTTP/2 traffic. Both HTTP protocols required IP headers to

deliver client to server HTTP messages. The IP header was not commonly

encrypted in HTTP/2 unless for tunnelling purposes (where client to server

IP headers were encrypted to obscure client-server IP addresses). Hence, IP

header information was valuable analysis. Traditionally, studies observed the680

entropy of the IP address and the port number as the distinguishing features

to detect DDoS attacks against HTTP/1.1 services [43, 44]. The disadvantage

of this solution was that IP address spoofing, or forging the source IP address,

has increasingly been a common practice adopted by adversaries. Attackers

could mimic the statistical properties of legitimate traffic and bypass detection685

methods. Therefore, these features alone are insufficient for categorizing DDoS

attack traffic.
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A more recent approach [45] applied statistical components of the network

headers, i.e. the number of connections and the number of packets, to define

a determining factor using joint-entropy. The method showed high coherence690

between any two factors in a flash-crowd event, while attacks yielded a deviation

from some values that indicated coherency. The study clarified that it only

inspected the IP header field which did not require deep packet inspections.

However, as previously explained, IP header values can be spoofed and the

distribution of the values could be made to mimic flash-crowd properties, making695

it harder to distinguish.

The features used in the above HTTP/1.1 DDoS detection methods that in-

spected IP headers could be applied to compare the stealthiness of the HTTP/2

attack traffic proposed in this study. These HTTP/2 features were the number

of Application Data packets in 1-second traffic instances, or the count app fea-700

tures, and the number of packets carrying SYN flags, or the count syn features,

representing the two HTTP/1.1 features, i.e. the number of packets and the

number of connections, respectively.

Other than these sets of features used for the study, the HTTP/2 traffic

analysis in this study applied machine learning techniques, while the previous705

study [45] used joint-entropy. In this case, the advantage of using machine

learning is that a range of features could be compared and ranked according to

their relevance to detecting and differentiating attack traffic.

The results are presented in Tables 4. The two HTTP/1.1 traffic features are

considered at the top of the rank because they were the most distinguishing fac-710

tors for distinguishing HTTP/1.1 DDoS from flash-crowd traffic. When applied

to analyse HTTP/2 traffic, it can be seen that the count syn feature deviated

significantly from the top ranked feature. This was true for both Information

Gain and Gain Ratio-based feature ranking.

Furthermore, Table 4 shows that the count app feature, remained a highly715

relevant feature as it was still ranked near the top for all three HTTP/2 traffic

types, i.e. the DDoS, Stealthy Attack-1 (SA-1) and Stealthy Attack-2 (SA-2).

This confirmed that the Denial-of-Service attack demonstrated in this study was
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Table 4: Feature ranks for all 3 attack types

Feature HTTP/1.1

HTTP/2

Information Gain Gain Ratio

DDoS SA-1 SA-2 DDoS SA-1 SA-2

count app
top (1 and 2)

1 3 3 1 5 4

count syn 4 8 13 6 7 17

categorized accurately as a flooding-based attack, and the HTTP/2 server was

incapacitated due to a high traffic volume from the attack.720

This led to further discussions on the external validity of the outcomes

achieved. Hence, a comparison with other studies was made to justify how

the standard traffic model used in this study, i.e. the synthetically generated

legitimate traffic, can be differentiated from real flash-crowd traffic. For exam-

ple, the standard traffic used might be too dense because the legitimate traffic725

was generated using 5,200 clients (Subsection 3.1.3) while another study used

only 80 clients to generate similar traffic volume [41]. When the HTTP/2 attack

traffic was compared to a network with such low traffic density, the attack traf-

fic would yield a much higher number of packets and therefore could be easily

distinguishable from legitimate. However, the study that used 80 clients also730

used simulated data; hence, the low number of clients did not mimic real traffic

accurately.

Currently there is no real HTTP/2 dataset available. The closest publicly

available HTTP/1.1 dataset that describes flash-crowd traffic is the World Cup

98 [46]. The data from this dataset was based on more than 3,000 client requests735

generated per second. Assuming user-browsing time was 15 seconds as in what

can be observed from the DOBBS log (Section 3.1.2), the number of clients in

this dataset was equal to 45,000. This number was almost 9 times higher than

the 5,200 clients used to generate legitimate traffic in this study. If real HTTP/2

traffic characteristics were similar to that, the stealthy traffic proposed in this740

study would cause the count app feature to become less relevant. Therefore,
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Table 5: False Alarms (%) by machine learning techniques applied with only HTTP/1.1

features.

Stealthy Attack 1 Stealthy Attack 2

Näıve Bayes 0.2651 0.5189

Decision Tree 0.1687 0.2335

JRip 0.1205 0.2335

Support Vector Machine 0 0.3373

when a machine learning technique is applied to classify legitimate traffic, the

stealthy traffic could yield more stealthy properties such as a higher number of

False Alarms.

5.6. Performance Comparison745

While the previous subsection identified features used in HTTP/1.1 as de-

termining factors for differentiating legitimate traffic from DDoS attack traffic,

this subsection presents how machine learning techniques perform when the

traffic was analysed using only two HTTP/1.1 features, i.e. the count app and

count syn features. Furthermore, it compared the machine learning technique750

performance analysis when using the two HTTP/1.1 features to the 42 HTTP/2

features proposed in this study. The study examined the False Alarms as an

evaluation measure.

The machine learning-based analysis results, when using the HTTP/1.1 fea-

tures as determining factors, is shown in Table 5. It can be seen that Stealthy755

Attack-2 yielded higher percentages of False Alarms than Stealthy Attack-1.

This was another evidence that Stealthy Attack-2 proved to be stealthier than

Stealthy Attack-1.

The methodologies for comparison of the results with the presented attack

models (Section 3.2) are shown in Figure 9 and 10. The former is a comparison760

to the Stealthy Attack-1 performance, while the latter is a comparison to the

Stealthy Attack-2 performance. In the two figures, classification performance

using HTTP/1.1-features from Table 5 is shown as a straight line in all graphs
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(a) Näıve Bayes (b) Decision Tree

(c) JRip (d) Support Vector Machine

Figure 9: A comparison of Stealthy Attack-1 performance when using both HTTP/1.1 features

and HTTP/2 features.

to serve as a baseline value. The baseline value was to visualize gaps to classi-

fication performance results using HTTP/2-features, illustrated by the dotted765

curves in the figures. It can be seen from the figures that the straight lines are

higher, away from the X-axis, than the dotted curves. This means that clas-

sifying the Stealthy Attack-1 and Stealthy Attack-2 from flash crowd yielded

more False Alarms when employing HTTP/1.1 features than when employing

the HTTP/2 features proposed in this study. The HTTP/2 features yielded770

better results than the HTTP/1.1 features, when they were employed by ma-

chine learning techniques to distinguish HTTP/2 attack traffic from flash crowd

traffic.

Another observation drawn from Figures 9 and 10 is that Stealthy Attack-2

is stealthier than Stealthy Attack-1. When the straight lines were set as a base-775

line, larger gaps between the line and the dotted curves are clearly seen on the
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(a) Näıve Bayes (b) Decision Tree

(c) JRip (d) Support Vector Machine

Figure 10: A comparison of Stealthy Attack-2 performance when using both HTTP/1.1 fea-

tures and HTTP/2 features.

Stealthy Attack-2 figures (Figure 10). Therefore, when a hypothetical intrusion-

detection system, equipped with a classifier employing HTTP/1.1 features was

used to measure the False Alarms of the two traffic models proposed in this

study, Stealthy Attack-2 yielded stealthier traffic than Stealthy Attack-1.780

Two conclusions can be drawn from the analysis and discussions in this sub-

section. First, the 42 HTTP/2 features proposed in this study were able to yield

better results than the HTTP/1.1 features proposed in the literature, in distin-

guishing attack from legitimate traffic. This observation was true in all four

cases, i.e. when the analysis used Näıve Bayes, Decision Tree, JRip, and Sup-785

port Vector Machines. This demonstrates that the HTTP/2 features proposed

in this study yielded better results than the HTTP/1.1 features employed in

the literature. Second, the stealthy attack model proposed in this study can be

implemented to yield attack traffic that demonstrate more stealthy properties
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to mimic legitimate traffic features. It was demonstrated that Stealthy Attack-2790

traffic yield higher False Alarms when analysed using HTTP/1.1 features.

6. Conclusion & Future Work

This paper presents two HTTP/2 stealthy attack models that operate by

intelligently distributing network traffic load associated with a Denial of Service

(DoS) attack over an extended period of time, to remain covert. The stealthy795

traffic affected the performance of machine learning classifiers to yield higher

percentages of False Alarms. To show how the stealthy attack traffic were

classified from legitimate traffic, this study also presents an HTTP/2 legitimate

traffic model to generate flash-crowd traffic. Furthermore, this study presented

distinguishing factors for traffic identification through a set of network traffic800

features to characterise the generated stealthy attack traffic and flash-crowd

traffic.

The study showed how features of HTTP/1.1 traffic were not highly relevant

when used to analyse HTTP/2 traffic. Instead, the analysis of the two HTTP/2

stealthy attack models, Stealthy Attack-1 and Stealthy Attack-2, performed805

better when the proposed HTTP/2 features were used as the distinguishing

factors, as machine learning classifiers yielded less percentage of False Alarms

when applying HTTP/2 features than HTTP/1.1 features. It was shown that

the stealthy attack models caused machine learning analysis to yield higher per-

centage of False Alarms than the DDoS model. This showed that the proposed810

stealthy attack models can bypass intrusion-detection systems that employed

machine learning techniques.

Future work in HTTP/2 DoS attack design and analysis can benefit from

actual HTTP/2 flash-crowd traffic. This study has contributed in creating novel,

HTTP/2 legitimate and attack datasets. As Internet-connected devices and815

its heterogeneity are projected to increase significantly in the future, research

focusing on creating, collecting and synthesizing current Internet traffic datasets

will continue to extend knowledge published through this research work. On the
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other hand, HTTP/2 introduces new techniques capable of generating various

traffic patterns, which have been shown in this study to produce DoS attack820

traffic of varying characteristics. These can lead to further investigation on DoS

attack design, analysis, and detection for HTTP/2 services.
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