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Lostrego: A distributed stream-based infrastructure for the real-time
gathering and analysis of heterogeneous educational data

Iria Estévez-Ayres , Jesús Arias Fisteus, Carlos Delgado-Kloos

The quick technological evolution of the last decades has also reached learning environments, where the use of
networked computing devices such as laptops, smartphones, tablets, IoT devices, servers, etc. is continuously
growing. In particular, those computerized learning environments have the potential to track the activity of
teachers and students in them, which enables the development of innovative applications that enrich the
learning process by analyzing the collected data. The majority of related work in this field has been centered on
batch gathering and analysis of the data. However, in order to integrate more reactive applications, there is a
need for an infrastructure that enables the real time collection and analysis of data in learning environments.
Such an infrastructure should be scalable and flexible enough to cope with heterogeneous data coming from
different types of learning settings. This paper presents Lostrego, a stream based, modular, scalable and flexible
distributed infrastructure that allows the gathering and analysis of educational data from heterogeneous data
sources in a real time fashion. Lostrego applications are composed by interconnected services that can be reused
in different courses. The results of the evaluation of Lostrego in two editions of a computer programming course
with 233 students and 384,702 gathered events are also reported.

1. Introduction

Since technology irrupted into the learning landscape, understand
ing the learning process and providing a more individualized learning
experience by using non invasive techniques has become a concern
(Suppes, 1968).

There are two closely related research fields devoted to enhancing
teaching and learning through the study of the learners’ behavior:
learning analytics and educational data mining (EDM). Learning
analytics is defined as “the measurement, collection, analysis and
reporting of data about learners and their contexts, for purposes of
understanding and optimizing learning and the environments in
which it occurs” (Siemens and Gasevic, 2012); while EDM is devoted
to “developing, researching, and applying computerized methods to
detect patterns in large collections of educational data that would
otherwise be hard or impossible to analyze due to the enormous
volume of data within which they exist” (Romero and Ventura, 2013).
Both disciplines rely on collecting learners’ data from different sources
in order to apply their different techniques.

As the learning process is becoming more ubiquitous and learners
engage in different settings through different devices (Pérez Sanagustín
et al., 2012), there is a growing necessity to gather and analyze huge

volumes of data coming from different sources, platforms and tech
nologies, in an effort to capture the whole learning experience
(Ferguson et al., 2016). Moreover, although there are tools to analyze
the learner's experience, they are usually tightly coupled to specific
systems, such as LMS or MOOC platforms, as they need to access to the
internal records of these systems to perform their analysis (Del Blanco
et al., 2013).

The Advanced Distributed Learning (ADL) Initiative of the U.S.
Department of Defense and the IMS Global Learning Consortium are
aware of this problem and propose their respective specifications to
record learning experiences and outcomes: the Experience API speci
fication (xAPI) (Experience, 2014) and the IMS Caliper Analytics
Learning Measurement Framework (Caliper) (Haag et al., 2015).
They try to maximize the interoperability of services that create,
gather, store and process information about learning experiences.
Both specifications use the JSON (JavaScript Object Notation) data
format, both define an API to send learning records (xAPI) or events
(Caliper), both store all this information within repositories (LRS, in
the case of xAPI, Event Stores, within the Caliper framework), which
will be later accessed by others to perform learning analytics, and both
can include privacy controls to access their repositories. In the case of
Caliper, the specification is silent about the protocols to transfer the
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data, while xAPI follows the guidelines of the REST paradigm.
However, both can be viewed as semantic technologies that rely
strongly on the use of data repositories. Moreover, the tracking of
learning experiences as defined in the xAPI specification requires
storing the learning events in a repository in order to make them
available to consumers.

One of the challenges in the field of Technology Enhanced Learning
(TEL) is adapting and providing appropriate support to the learner in
the right place and in the right time (Hwang, 2014). In order to make it
possible, there is not only the need to collect, merge and analyze data
from different sources, but also to provide real time feedback to both
learners and teachers (Kinshuk et al., 2016). In a setting where
continuous updates of the application are needed due to the continuous
arrival of events, a model where the communication is initiated always
by the client can become impractical (Babu and Widom, 2001). It is the
case of the xAPI Query interface implemented by the ADL.Collection
API,1 which offers a set of SQL like queries that force the client to
perform polling. Data streaming is a more natural paradigm when new
data are constantly being collected and need to be processed on the fly
(Tatbul, 2010). Moreover, it eases the development of applications
where the communication is initiated by the infrastructure as soon as a
new event is available (Chandrasekaran et al., 2003), usually following
the publish subscribe paradigm (Ghate and Pati, 2016).

In this paper we present Lostrego, a generic, modular, scalable and
flexible publish subscribe infrastructure that facilitates the gathering
and analysis of educational data from heterogeneous data sources in a
real time fashion. The decoupling nature of the publish subscribe
paradigm enables the development of responsive systems (Kim et al.,
2010). By taking advantage of these benefits, Lostrego enables the
development of applications that require immediacy when dealing with
educational data.

The rest of the paper is organized as follows: Section 2 presents the
Lostrego infrastructure, its design requirements, its architecture and
implementation; Section 3 defines the core services of Lostrego; a case
study where Lostrego was deployed during two semesters is described
in Section 4; Section 5 presents the results, while Section 6 compares
Lostrego with previous approaches; Section 7 discusses the main
advantages and limitations of our proposal; and, finally, Section 8
concludes and presents the future work and directions of this research.

2. The Lostrego infrastructure

This section presents the design of the Lostrego infrastructure and
discusses some of its possible uses.

2.1. Requirements

As educational environments become more complex, the monitor
ing of the learning process of students needs to become even more
ubiquitous. Students and teachers use different tools (virtual campus,
Twitter, IDEs, etc) in many different settings (in the lab, at home, while
commuting, etc.). Thus, if the chosen monitoring system is focused on a
single tool or environment, a lot of valuable data could be missed.
Therefore, there is a needed for an infrastructure that allows the
gathering of many very different sources in an automatic way
(Ferguson et al., 2016).

The usefulness of the gathered data is related to if and when the data
analysis happens. Thus, gathering data is not enough. Ideally, such
infrastructure should support the implementation and integration of
learning analytics tools that, from the gathered data, could give prompt
real time feedback to teachers and students (Lewkow et al., 2016). In
order to allow on the fly interventions and to make all the actors of the
learning process aware when things happen, an infrastructure that

allows not only real time data gathering but also real time data
analysis is needed.

Besides, universities are opening their classrooms to the world
through different initiatives such as MOOCs and SPOCs (Fox, 2013).
The number of students per course is higher in those kinds of courses
than in traditional ones and, although different platforms use their own
learning analytics tools, students frequently use additional external
educational tools in them that should also be monitored. In this
context, the proposed infrastructure should be scalable enough to cope
with large numbers of students.

As different courses require different monitoring (Kinshuk et al.,
2016), the proposed infrastructure should be flexible to allow the
deployment of different reusable modules depending on the require
ments of the course. Moreover, the infrastructure should support the
dynamic composition of modules to create more complex applications,
in order to cope with the inherent dynamism of a course enactment.

The infrastructure should decouple data gathering from data
processing. In this way, the actual gathering of the data could happen
outside the infrastructure (on other platforms or, even, infrastructures)
when needed. Similarly, different external tools could be used to
process the gathered data, as long as the needed data format converter
is provided. Moreover, the infrastructure should be agnostic regarding
data formats, thus allowing the coexistence of data from different
standards and tools.

Taking into account the discussion above, the design of the Lostrego
infrastructure was driven by the following main requirements:

• Gathering of heterogeneous data.

• Automatic and real time data gathering.

• Automatic and real time data processing.

• Scalability in order to cope with large numbers of courses and
students.

• Flexibility for building custom applications on top of it.

• Loosely coupled infrastructure, allowing the decoupling between
data gathering and processing.

2.2. Architecture

As shown in Fig. 1, students interact with different and hetero
geneous educational resources. These resources can be the desktop
environment of their computer, the LMS where the course contents are
hosted, specialized software such as, in computer programming
courses, integrated development environments, and even social net
works where students may have conversations about the course. The
infrastructure has to monitor the interaction of the students with those
resources and, in real time, create and send the data through the
infrastructure in the form of events.

The Lostrego infrastructure follows the publish subscribe para
digm, which decouples data publishers (the educational data sources)
from data consumers (the analysis infrastructure). Data flows through
the infrastructure from educational data sources to the analysis
infrastructure in the form of event streams. We follow the definition
of data stream given by Golab and Özsu (2003): a real time,
continuous, ordered (implicitly by arrival time or explicitly by time
stamp) sequence of items.

Streams are flexible, in the sense that they can easily be filtered,
split, merged, etc. Additionally, new streams can be created with data
derived from other streams. That is, whereas some streams contain the
original events gathered at the educational data sources, other streams
may contain higher level events obtained from their processing. The
latter are produced by modules within the analysis infrastructure. For
example, a session tracking analysis module might process the original
streams, infer working sessions (i.e., periods of time during which a
learner is interacting with the educational resources) and produce a
new stream with events that signal when every learner begins or
finishes a working session. Another example would be a module that,1 https://github.com/adlnet/xAPI-Dashboard/blob/master/API collection.md.
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from that session tracking stream, computes the amount of working
time every learner accumulates in the course.

In order to allow analysis modules to use not only the real time
streams but also historical data, data streams can also be stored in
databases. This is needed, for example, when an analysis module needs
to detect potential student dropouts. This kind of analysis needs,
besides a model of student behavior, the records gathered in the near
past for every student.

This stream based publish subscribe architecture is flexible in the
sense that it imposes no restrictions on the analysis modules and their
connections. Different deployments could plug custom modules in
according to their needs. In addition, end user applications can also
consume the original and derived streams. Typical applications would
be learning analytics dashboards and alarm systems. It is even possible
for end user applications to inject new data back to the system (e.g.,
annotations entered by the instructor through a dashboard).

2.3. Implementation

We have implemented a prototype of the Lostrego architecture
described in the previous section and deployed it as a case study in an
actual course. This section describes our implementation and Section 4
presents its deployment in the case study.

2.3.1. Publish subscribe Infrastructure
The infrastructure has been built on top of the Ztreamy2 publish

subscribe stream middleware because of the following reasons (Fisteus
et al., 2014):

• It is a scalable platform for publishing data streams on the Web,
using HTTP(S) to consume and publish data.

• Communications can be secured by using the HTTPS protocol, since
privacy is usually a requirement in educational environments.

• Consumers and producers can be developed in every major applica
tion development environment and programming language, with the
only requirement of having HTTP(S) support. This simplifies the
integration of different educational resources as data sources, since
events can be sent to the infrastructure from every major program
ming language and platform.

• It supports stream duplication, aggregation and filtering, which are
basic operations the analysis infrastructure needs.

• It is flexible, in the sense that different network layouts can be

deployed depending on the needs of the application.

• It simplifies application development with functionality such as data
serialization/deserialization and built in semantic filtering.

Monitoring agents run within the educational data sources (the
desktop environment of lab computers, virtual machines used by the
student at home, LMSs, web pages that contain class materials, etc.)
They track the actions of the student, represent them as events (see
Section 2.3.2 and the example in Fig. 2) and publish them by sending
HTTP(S) POST requests to an end point within the Ztreamy publish
subscribe server. Examples of such monitoring agents would be:

• In lab computers or virtual machines provided to the students,
wrappers for the programs of interest are installed in the students’
accounts. For example, in a programming course such commands
would be integrated development environments, text editors, com
pilers, debuggers, code analysis tools and version control systems.
Depending on the program, data such as the start and end time of
their execution, command line parameters, standard output and
error streams, working directory and finish status of the processes
would be tracked. Our implementation of this part of Lostrego is
based on (Romero Zaldivar et al., 2012).3

• In a learning management system such as Moodle or in MOOC
platforms every interaction of the student would be tracked by a
module running within the platform itself.

• When class materials are served in HTML format from a web server
the instructors cannot control, a JavaScript agent would be em
bedded into every page to track visits and send the corresponding
events to the infrastructure. If users need to authenticate to access
these materials, the identity of the student can also usually be
obtained by the JavaScript agent.

• Agents monitoring social networks such as Twitter will get data from
the social network API (e.g., by monitoring certain hash tags or
users), create events from the relevant data and inject them into the
infrastructure.

We have implemented three of those types of monitoring agents for
our current prototype of Lostrego, leaving the monitoring of learning
management systems for future versions. Section 4.2 provides further
technical detail about how those agents have been implemented and
deployed in the case study in order to track lab computers, virtual
machines and web materials.

Fig. 1. Lostrego architectural infrastructure.

2 http://www.ztreamy.org/. 3 https://github.com/dleony/PLA
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The Ztreamy publish subscribe server creates a raw event stream
with the events it receives from the educational data sources. Some
analysis modules within the analysis infrastructure consume that
stream. Some of them, such as the session tracking analysis module,
may produce derived higher level streams, which are also served by the
publish subscribe infrastructure. Other analysis modules, as well as the
storage system, consume those derived streams and may produce in
turn new derived streams.

Finally, end user applications consume the high level streams they
need to provide their functionality to students and instructors. They
might even produce new events and push them into the infrastructure.

2.3.2. Lostrego event objects
An event represents in Lostrego an action of the learner upon an

educational resource. For example, a new event could be published
when the learner enters a specific content in the LMS, runs a compiler
in a computer programming course, uploads a submission, etc. Those
events are modeled on top of the Ztreamy event model, which consists
of several headers and a body object. Some of those headers are defined
by Ztreamy (a unique event identifier, an event timestamp, etc.), but
applications are allowed to define their own extension headers. Body
objects are completely managed by applications, and may consist either
of text or binary data.

More specifically, events in Lostrego contain the following headers,
which are common for every action type (see Fig. 2):

• A globally unique event identifier (the header Event Id as shown
in Fig. 2).

• A pair of timestamps with the instants in which the action occurred
(Timestamp header) and the event is actually sent to the server (X
SentAt header).

• The learner's identity (X StudentId header).

• The identity of the environment in which the event was created, e.g.
the identifier assigned to a specific computer, virtual machine, etc.
(Source Id header).

The detailed description of the action is placed in the body of the
event as a JSON object. The information it carries is specific to the type of
action, although actions may share some fields when appropriate. For
example, as shown in Fig. 2, all the actions that involve issuing a
command in the command line may include the user name of the student
in the system, the current working directory, the command typed by the
student, including its command line arguments, the success status of the
process, the data written to its standard output and standard error, etc.

3. Data processing in lostrego

Whereas some analysis modules in Lostrego are course or institu
tion specific, others provide generic functionality that may be useful in

many scenarios. Those reusable modules are called core services of
Lostrego. Scenario specific applications and analysis modules needing
of their functionality may just consume their output. This section
describes some core services that are already part of Lostrego.

3.1. Team annotation service

Because team working is nowadays a demanded soft skill (Andrews
and Higson, 2008), courses with a strong collaborative component are
becoming an essential part of formal education (Sahami et al., 2013).
Thus, having the ability to monitor not only how individuals work but
also how teams of students collaborate to solve problems is important
for instructors.

The team annotation service is meant to bridge the gap between
individual and collaborative work. It annotates incoming events, which
already contain a header with the student's identity, with the identifier
of the team the student belongs to, if any. The output stream of this
service is a copy of its input stream with an additional header that
contains the team identifier. Applications that need to track the
progress of teams in collaborative exercises use this header to map
events to teams.

Instructors configure this service by providing a list of teams and the
identity of their members. The service is also configured with a date
range. It will not annotate events whose timestamp is outside that range.
This supports the reorganization of teams for different activities in a
course, since a separate instance of the service would be deployed for
each activity, configured with a different list of teams and date range.

3.2. Exercise detection service

This service matches an event to an exercise the student is currently
working on. The output of this service is a copy of its input stream
where the matched events include a new header with the exercise and
session identifiers. The instructor may also specify other exercise
related headers, such as whether the exercise is mandatory or intended
as a teamwork activity.

This service is performed in two steps. In the first step, the
instructor configures the service with the list of resources (directories,
file names, web pages, etc.) for each exercise/session in the course. The
service scans the body of every input event looking for mentions to
these resources.

In the second step, which requires the input stream to be annotated
with working sessions (see Section 3.3), those events for which the first
step did not detect the exercise are annotated with the exercise of the
latest event of the same working session annotated by the first stage.
This approach is based on the fact that, in absence of more specific
information, there is a high chance that the student continues with the
same exercise as in the previous events. Since its output is not always
exact, this second step may be optionally disabled by instructors.

Fig. 2. Example of an actual Lostrego event.
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3.3. Working sessions detection service

The knowledge of the time on task for each student can be useful
for instructors in order to detect problems within a team (Petkovic
et al., 2016). Moreover, how a student works on an assignment (e.g., in
computer programming exercises, her behavior when facing compila
tion errors or the amount of time she spends editing) has been proved
to be a successful performance predictor (Jadud, 2006; Watson et al.,
2013; Rodrigo et al., 2009). Furthermore, knowledge about how
students manage their time, i.e., when they work on course activities,
the length of those working sessions and their behavior during them
can be used as early predictors of students’ performance (Willman
et al., 2015).

A student's working session is defined in Lostrego as a period of
time during which a student is continuously working on one or more
activities of the course. The objective of the working session detection
service is grouping events into working sessions. The service takes an
input event stream and generates two output streams: an event stream
composed by events signaling the beginning and end of sessions, and a
copy of the input in which events that have been successfully associated
to a session are enriched with a new header that contains their session
identifier.

Given a student with no active working session, the service
determines that a working session begins with the first event tracked
for her. It determines that a working session ends when a configurable
amount of time (e.g., 30 min) passes without further events from her.
In order to do that, the service keeps a table of active sessions in
memory. Each session in the table is described with a unique identifier,
the identity of the student, the timestamp t0 of its first event and the
timestamp t1 of the most recent event associated to this session. For
each input event with timestamp te, the service looks for the active
session associated to its student:

• If there is no such session, a new session is added to the table and te
is assigned to both t0 and t1. An event signaling the beginning of the
session is published.

• If there is such session and t μ t t τ− < < +e0 1 , the event is asso
ciated to this session. If t t<e 0, t0 is updated to te. If t t>e 1, t1 is
updated to te. The configurable parameter μ accounts for the fact that
events are not guaranteed to arrive in order, for example when they
come from separate monitoring agents or they get delayed because
of network issues (e.g., when the monitoring agent cannot connect to
the server when the event is created, it needs to be re transmitted
later.) The configurable parameter τ represents the maximum period
of time without receiving any event a session can be considered
active.

• If there is such session but t t μ≤ −e 0 , the event is considered to be
too old and is not mapped to any session.

• If there is such session but t t τ≥ +e 0 , the previous session is closed
and a new one is added to the table. Two new events are created: one
signaling the end of the previous session, which includes a summary
with its start time, end time, duration, number of events, exercises
the students worked on, etc., and one signaling the beginning of the
new session.

All the sessions in the table are checked periodically in order to
close those that have been inactive for too long. Being t the current
timestamp, sessions with t t τ> +1 are removed from the table.
Similarly to the last case above, a new event that signals their end is
published.

Since there is no consensus on how to compute the time on task
(Kovanovic et al., 2016), the maximum inactivity period τ can be
configured by the instructor.

Due to the inherent flexibility of the platform, in environments
where instructors preferred to apply alternative session tracking
algorithms, a custom module could be developed and used instead.

4. Case study

As a proof of concept, the Lostrego system was deployed in a second
year computer programming course belonging to the Bachelor's Degree
in Telecommunication Technologies Engineering at the University
Carlos III de Madrid during the Fall semesters of 2015 and 2016.

This course introduces operating systems (focusing on UNIX) and
discusses how to manage multiple processes and tasks that execute
simultaneously and share resources. Students should be able to use
both the Java and C programming languages. Additionally, students
are expected to practice some traversal abilities in this course, namely
teamwork (including the use of version control systems), time manage
ment and verbal communication.

The course follows an active learning approach and applies a
continuous assessment scheme. Therefore, students are expected,
before face to face sessions, to work at home on several activities
related to the concepts those sessions target. The course design has
been improved following a methodology that involves feedback gather
ing from students and teachers at specific milestones, as well as
iterative refinement (Estévez Ayres et al., 2015).

The course material comprises two types of resources: course notes,
available to the students at the website of the course, and practical
material, which includes handouts and auxiliary files. All the practical
material is organized in different folders and delivered to students through
the Subversion4 version control system. Those Subversion repositories are
the de facto workspace for the students. At the beginning of the course,
each team of students is given a personalized URL that points to their
repository. Exercises and assignments are delivered to them through those
repositories as the course advances, and they are expected to submit their
solutions by the same means (Pardo and Kloos, 2011).

Being this course eminently practical, students are expected to work
not only at the University laboratories but also at home. Since the
exercises require a Linux environment and some specific software, they
are provided at the beginning of the course with a Virtualbox5 virtual
machine that replicates the configuration of the computers of the
laboratories. This way students can work at home without having to
install the environment themselves.

4.1. Compliance with data privacy legislation

In the context of this course, in order to comply with the Spanish
data privacy legislation, Organic Law 15/1999 on Personal Data
Protection (Boletín Oficial del Estado, 1999), a document is shown to
the students at the beginning of the course, and before downloading the
virtual machine and the tracking tools. It explains the monitoring
mechanisms, how to temporarily enable and disable them, how to
permanently uninstall them, the events that are recorded, and the use
of the gathered data. Students must agree with these conditions before
continuing. As events were not only used and processed on the fly, but
also a copy of them was stored at university facilities, a contact e mail
was available for the students to exercise their rights to review, amend
or delete the gathered events at any time during or after the course.

4.2. Deployment of the monitoring agents

Since this course follows a practical approach in which doing
programming exercises on a computer is the most important student's
activity, the case study was focused on tracking those programming
activities. Additionally, during the Fall 2016 edition of the course the
system tracked also their access to every page in the website of the
course, which hosts all the course materials. This section provides
further detail about how the monitoring agents (see Section 2.3.1) that

4 https://subversion.apache.org/.
5 http://www.virtualbox.com.

5



6



7



8



separating CLI (Command line Interface) events from the virtual
machines and lab accounts of the students and Web events, as the
Lostrego web event collector was only available for the 2016 edition.

The first stage of the exercise annotation service successfully
matched exercise and lab session for 279, 370 events (74.31% of the
total). The working session annotation service identified a total of
15, 504 working sessions. Only 8, 541 events (2.27%) were left without a
working session, the reason being they reached the publish subscribe
infrastructure with an excessive delay. Finally, the second stage of the
exercise annotation service successfully assigned the exercise and lab
session to 44, 610 more events. Thus, the two stages of this service
combined were able to annotate in real time 323, 980 events out of
375, 927 (86.18%).

The instructors observed that most students choose to bring their
own device to the classroom (with a virtual machine installed on it).
Thus, from the 327, 177 ltg final CLI events, 308, 106 (from 233
students) were gathered from the virtual machines of the students and
19, 071 (from 37 students) from the laboratory computers. It is
important to notice that all students used the virtual machine at home,
except one that withdrew the course at the beginning. The CLI events
came from 371 different sources, where each copy of the virtual
machine and each lab account are considered a separate data source.
All Fall 2016 students (125 students) generated web events. The
number of events by event type is shown in Table 3.

5.2. Relationship with individual academic performance

This section explores the potential of the processed data as a
predictor of a students’ individual academic achievement. A series of
indicators were computed for each student from the gathered data: the
count of invocations to editors, compilers, the GDB debugger, the
Valgrind profiler and the Subversion version control system, the
number of visits to course web pages, the ratio of successful compila
tions (those that finished without errors), the count of working sessions
and the total working time.

In order to understand the presence of a linear relation between
each one of those indicators and the final marks of the students, the
Pearson correlation between them was computed. Table 4 reports,
separately for the Fall 2015 and Fall 2016 editions of the course, the
correlation coefficient (r), the coefficient of determination (r2) and the
significance of the correlation (p). A statistically significant and
moderate to strong correlation is appreciated in both editions for the

number of invocations to the compiler, profiler and version control
system, number of working sessions and total working time, being it
stronger for the number of working sessions.

The correlation analysis above considered each indicator alone.
Since the combination of several indicators is expected to work better
as a predictor, a forward stepwise regression analysis for factor
selection was also applied to both datasets.

For the Fall 2015 dataset the linear model produced by the four
indicators is shown in Table 5. As expected from Pearson correlations,
the number of working sessions has the biggest weight in the linear
model, with a standardized coefficient (β) of 0.75, followed by the
number of invocations to the profiler and editors. This linear model
explains 59.08% (r2) of the variance of the final marks.

For the Fall 2016 dataset the linear model produced also four
indicators, shown in Table 6. The number of working sessions has still
a strong weight in the model, and the access to the course web pages,
which are only available in the 2016 dataset, replace the number of
invocations to editors. This model explains 58.87% of the variance of
the final marks.

It is interesting to notice that the number of working sessions and
profiling have positive coefficients in both linear models. However, the
number of invocations to debuggers, editors and the number of web pages
appear with a negative coefficient, suggesting that, between the students
that present more working sessions and use more the profiler, those who
less frequently need to resort to visiting the course web pages, invoking
editors or invoking the debugger achieve greater marks.

Table 3
Course events by event type per edition (Fall 2015 and Fall 2016).

Type Event Type Number

Ed. 2015 Ed. 2016

Edition emacs/start 14, 985 12, 729
emacs/end 12, 386 10, 579
kate/start 1, 281 3, 526
kate/end 943 2, 986
Total 29, 595 29, 820

Compilation javac 24, 187 19, 187
gcc 35, 942 41, 740
Total 60, 129 60, 927

Execution java/start 18, 400 15, 415
java/end 13, 108 11, 448
Total 31, 508 26, 863

Debugging gdb/start 2, 685 2, 587
gdb/end 2, 445 2, 253
valgrind/start 13, 643 5, 735
valgrind/end 12, 556 4, 895
Total 31, 329 15, 470

Version Control svn 21, 924 19, 612
Web web 48, 750
Total 174, 485 201, 442

Table 4
Correlation analysis between processed events and final marks per edition (Fall 2015,
N = 119, and Fall 2016, N = 126).

Ed. 2015 Ed. 2016

Variable r r2 p r r2 p

Editors 0.189 0.0357 0.04 0.35 0.122 <0.0001
Compilation 0.501 0.251 <0.0001 0.588 0.346 <0.0001
Ratio successful

compilations

0.304 0.093 0.0007 0.178 0.032 0.04

Debugging 0.277 0.077 0.002 0.368 0.135 <0.0001
Profiling 0.523 0.273 <0.0001 0.525 0.276 <0.0001
Subversion 0.671 0.451 <0.0001 0.562 0.316 <0.0001
Web pages 0.342 0.117 <0.0001
Working sessions 0.724 0.524 <0.0001 0.716 0.512 <0.0001
Working time 0.659 0.431 <0.0001 0.616 0.38 <0.0001

Table 5
Fall 2015 multiple regression analysis summary (N = 119).

Variable Estimate Standard Error β t value Pr t( > | |)

(Intercept) 0.810541 0.325043 2.494 0.0141
Profiling 0.002748 0.000908 0.21 3.026 0.0031
Debugging 0.005374 0.003488 0.10 1.541 0.1261
Editors 0.002772 0.000967 0.20 2.866 0.0049
Working sessions 0.060035 0.006592 0.75 9.107 3.33e 15

r = 0.59082 . p e< 2.2 − 16

Table 6
Fall 2016 multiple regression analysis summary (N = 126).

Variable Estimate Standard Error β t value Pr t( > | |)

(Intercept) 0.502594 0.372705 1.349 0.1800
Profiling 0.005169 0.002102 0.20 2.459 0.0153
Debugging 0.009855 0.004438 0.18 2.222 0.0281
Web pages 0.003071 0.000980 0.27 3.135 0.0022
Working sessions 0.062368 0.007332 0.89 8.506 5.63e 14

r = 0.58872 . p e< 2.2 − 16
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be developed for them. Our experience with the case study is,
however, that those agents were not costly to develop, being around
100 lines each and easily reusable for tracking other commands or
the web materials of other courses. The use of HTTP and JSON,
which are conveniently supported in most application platforms and
programming languages, also alleviates the problem. Second, some
environments such as institution wide LMSs and MOOC platforms
require institutional support in order to install the agents. Where
that is not possible, developing the agent as a browser extension,
and relying on the students to install it in their browsers and give it
permission to track their interaction with the LMS or MOOC
platform might be a solution. As explained before, bundling some
value added services for students in those extensions might make
them more willing to collaborate. Third, while our proposal is quite
appropriate for courses with frequent interaction with computer
tools such as learning management systems, computer based la
boratories (e.g. simulators, design tools, programming tools, mathe
matics and statistical tools, educational games, etc.) and MOOC
platforms, it will not be useful in courses in which the majority of the
activities do not happen within a computerized environment.

• Need of qualified technical support and IT infrastructure: The
system requires IT infrastructure to run its server side, and technical
support to deploying and maintaining it, as well as programming
applications tailored to the needs of every course. We believe that, if
the initiative raises enough interest, some companies in the area of
educational technologies could be willing to provide it as a cloud
service, and some universities and other educational institutions
might provide it as another service to their instructors the same way
they currently provide other services such as learning management
systems like Moodle. Their deployment of the system might include
a portfolio of useful analysis services and applications covering the
needs of most courses.

8. Conclusions and future work

This paper presented the Lostrego infrastructure, which allows the
automatic and real time collection and analysis of events from hetero
geneous learning environments. Its main difference with respect to
other approaches in the state of the art is its real time and scalable
delivery and processing of the gathered data, which opens the door to
the development of innovative analysis tools in which immediacy is a
requirement. As a proof of concept, the Lostrego infrastructure was
validated in a second year computer programming course. This case
study shows the usefulness of those kinds of analysis tools and the
suitability of the proposed infrastructure to gather and analyze learning
events in a timely fashion.

The infrastructure has been designed to be generic, modular and
flexible. New monitoring agents and analysis modules can be developed
and plugged into it. A set of core reusable modules have already been
integrated into the infrastructure, such as the working session detec
tion service and the team annotation service. However, other analysis
modules can be developed and plugged according to the needs of each
educational institution or specific course.

Once the Lostrego infrastructure has been developed, deployed and
tested, several research lines arise:

• Other STEM courses from the same institution are using Lostrego to
gather and analyze learning data from students. We plan to analyze
the completeness of the gathered data in these settings.

• Different tools are being developed within the Lostrego ecosystem.
Some are general and suitable for different courses, such as a visual
learning analytics dashboard, while others are tailored to the case
study presented in this paper, such as an error annotation system
that identifies compilation errors (from the output of the gcc and
javac compilers) and memory errors (from the output of Valgrind) of
a given event. We will provide these tools to different teachers and

we plan to measure if the tools effectively increment teacher
awareness during lectures.

• Since the analysis in Section 5.2 suggests that the gathered data
could be used as a predictor of a student's performance, we plan to
explore other statistical learning techniques in order to integrate
such predictors into the platform.

• We are also working on the identification of the patterns followed by
students when learning using process mining (Bannert et al., 2014).

• We plan to analyze the gathered data as a time series, as proposed by
González Nespereira et al. (2015), in order to try to predict students’
results.

• Finally, we plan to develop a visual web application composer, suitable
for teachers with less knowledge in computer technologies, where they
can select and ensemble the Lostrego services to be used in an
application (including the visualizations from the student data).
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