
A sequential pattern mining model for application workload prediction in cloud 
environment
Maryam Amiri a,*, Leyli Mohammad-Khanli a, Raffaela  Mirandola b

a Faculty of Electrical and Computer Engineering, University of Tabriz, 29 Bahman Blvd., Tabriz, Iran
b Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano, Via Golgi 42, 20133 Milan, Italy

AB S T R A C T

The resource provisioning is one of the challenging problems in the cloud environment. The resources should be allocated dynamically according to the demand 
changes of the applications. Over-provisioning increases energy wasting and costs. On the other hand, under-provisioning causes Service Level Agreements (SLA) 
violation and Quality of Service (QoS) dropping. Therefore the allocated resources should be close to the current demand of applications as much as possible. For this 
purpose, the future demand of applications should be determined. Thus, the prediction of the future workload of applications is an essential step before the resource 
provisioning. To the best of our knowledge, for the first time, this paper proposes a novel Prediction mOdel based on SequentIal paTtern mINinG (POSITING) that 
considers correlation between different resources and extracts behavioural patterns of applications independently of the fixed pattern length explicitly. Based on the 
extracted patterns and the recent behaviour of the application, the future demand of resources is predicted. The main goal of this paper is to show that models based 
on pattern mining could offer novel and useful points of view for tackling some of the issues involved in predicting the application workloads. The performance of 
the proposed model is evaluated based on both real and synthetic workloads. The experimental results show that the proposed model could improve the prediction 
accuracy in comparison to the other state-of-the-art methods such as moving average, linear regression, neural networks and hybrid prediction approaches.

1. Introduction

Cloud computing is a computing paradigm based on a pay-as-you-go 
model that handles the growing needs for computation and stor-age in 
an efficient and cost-effective manner (Ghorbani et al., 2014; Coutinho 
et al., 2015). For this purpose, cloud should allocate a suit-able amount 
of resources according to the current demand of applica-tions. Under-
provisioning causes Service Level Agreements (SLA) vio-lation, Quality 
of Service (QoS) dropping and the customer dissatisfac-tion. This may 
lead to the loss of customers and a decrease in revenue. On the other 
hand, Over-provisioning wastes energy and resources and it even 
increases costs like network, cooling and maintenance (Amiri and 
Mohammad-Khanli, 2017). Furthermore, the speed of response to the 
workload changes to achieve the desired performance level is a critical 
issue for cloud elasticity (Coutinho et al., 2015). Although the important 
advantage of elasticity is to match the amount of resources allocated to 
the application with the amount of resources it requires, the time that 
resources take to be ready to use is a potential problem

* Corresponding author.
E-mail addresses: maryam.amiri@tabrizu.ac.ir (M. Amiri), khanli@tabrizu.ac.ir (L. Mohammad-Khanli), raffaela.mirandola@polimi.it (R. Mirandola).

(Galante and Bona, 2012). Cloud elasticity and dynamic resources allo-
cation are based on the virtualization techniques (Hwang et al., 2016). 
The VM provisioning technologies take several minutes (Jiang et al., 
2013). This delay is intolerable for the tasks that need the resources 
scaling during the computation. It might lead to SLA violation, QoS 
dropping and finally a reputation loss of cloud. To reduce the delay, there 
are three approaches. The first approach, VM provisioning tech-nologies, 
assists to ready new VMs in seconds for the requests (Jiang et al., 2013). 
The state of the art VM provisioning technologies, such as streaming VM 
technology (Labonte et al., 2004) and VM cloning  (Lagar-Cavilla et 
al., 2009) cannot decrease time wasting of VM cre-ation (Jiang et al., 
2013). The second approach is about to ask all customers to provide a 
plan of the future resources demand. It is not possible according to the 
cloud obligations and the lack of customers’ knowledge (Jiang et al., 
2013). Due to VM technologies and the limita-tions of the customers’ 
knowledge, the future demand prediction is the only practical and 
effective solution for the fast resources provisioning.

©2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Published Journal Article available at: https://doi.org/10.1016/j.jnca.2017.12.015

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2017.12.015&domain=pdf
mailto: maryam.amiri@tabrizu.ac.ir
mailto: khanli@tabrizu.ac.ir
mailto: raffaela.mirandola@polimi.it
https://doi.org/10.1016/j.jnca.2017.12.015


Fig. 1. Employing the sliding window and machine learning techniques on the time series 
(Amiri and Mohammad-Khanli, 2017).

A proactive prediction method predicts the future demand fluctuations 
in a way that the resource manager has enough time to provide the 
appropriate resources before occurring the workload burstiness (Amiri 
and Mohammad-Khanli, 2017).

If the sudden increase of the future demand is predicted, the resource 
manager scales up the infrastructure and prepares VMs accord-ing to the 
predicted future demand before the surge of demand occurs. In the same 
way, according to the demand reduction, the allocated resources are 
released. The released resources can be used to create new VMs or to 
allocate them to VMs that need more resources. Indeed, allocated 
resources are quickly matched with the demand and the rapid elasticity 
(Mell and Grance, 2011) is accomplished. Thus, SLA is satis-fied, energy 
wasting is avoided and on demand provisioning is fulfilled for systems 
implemented by using cloud services.

However, providing cloud services that guarantee dynamic QoS 
requirements of users and avoid SLA violation is a big challenge. Cur-
rently, the services are provisioned and scheduled according to the 
resources availability, without the guarantee of the expected perfor-
mance (Singh and Chana, 2015). Therefore, the future demand predic-
tion is an indispensable step for the rapid elasticity implementation and 
the effective resource provisioning in the dynamic cloud environment 
(Amiri and Mohammad-Khanli, 2017).

The newest and the most common proposed predictors are based on 
machine learning techniques (Amiri and Mohammad-Khanli, 2017) such 
as Neural Network (NN) (Xu et al., 2013; Yang et al., 2014b; Akindele 
and Samuel, 2013; Jiang et al., 2013; Prevost et al., 2011), Moving 
Average (MA) and Auto-Regression (AR) (Yang et al., 2014a; Saripalli et 
al., 2011; Shi et al., 2012; Miu and Missier, 2012; Mat-sunaga and Fortes, 
2010a) and Hybrid Prediction Approaches (HPAs)(Jiang et al., 2013; Liu 
et al., 2015; Chen et al., 2015; Cetinski and Juric, 2015). The machine 
learning techniques usually model the appli-cation behaviour as a time 
series. Most of the methods are based on a sliding window with length of 
m which includes the previous behaviour of the application in the 
interval of [t − m · · · t − 1] where t is the current time. According to the 
constructed model and the previous behaviour of the application in the 
sliding window, the future status in the time t is predicted. In the next 
step, the sliding window moves rightwards for one position. Fig. 1 
shows the time series and the sliding window with length of m. These 
models cannot extract all useful patterns whose length is less/more than 
the fixed length. Choosing the length of the pattern (the length of the 
sliding window) for different regions of work-loads is one of the most 
important challenges in these methods (Amiri and Mohammad-Khanli, 
2017). Moreover, when they are applied to bursty cloud workloads, they 
have limited accuracy (Di et al., 2014).

The existing prediction models such as NN, Support Vector Machine 
(SVM) and regression based methods are the discriminative learning 
approaches. The discriminative learning approaches do not present and 
understand the behavioural patterns of workloads explicitly. They learn 
the model parameters to optimize a utility function (such as an error

Fig. 2. The scheme of POSITING.

criterion) (Tu, 2007). The model parameters are of little interest to the 
resources manager. So it seems methods are needed to extract knowl-
edge from the model explicitly and improve the model transparency.

To the best of our knowledge, for the first time, this paper pro-poses a 
novel Prediction mOdel based on SequentIal paTtern mIN-inG 
(POSITING) to predict the future demand of cloud applications. As Fig. 
2 shows, firstly POSITING considers the application behaviour in the 
past, investigates the correlation between different resources and 
extracts the behavioural patterns independently of the fixed pat-tern 
length explicitly. Based on the extracted patterns and the recent 
behaviour of the application, POSITING predicts the future demand of 
different resources. POSITING alleviates the shortcomings of the prior 
predictors with its ability to extract the patterns of different length 
explicitly. A comprehensive set of experiments show the effectiveness of 
POSITING in comparison to the recent proposed predictors. The con-
tributions of this paper are as follows:

• For the first time, POSITING focuses on unearthing the behavioural
patterns of the workload variations of cloud applications explicitly.
Thus, the behavioural patterns of workloads are more readily inter-
pretable by the resources manager.

• Unlike the existing predictors, most of the parameters of POSITING
are independent of the model structure. In other words, most of the
parameters depend on the characteristics of cloud data centers. So
they could be estimated from the domain knowledge of the resources
manager easily.

• POSITING investigates the correlation between different resources
and provides more understandable results for the resources man-
ager. Thus, the extracted patterns are detailed and could provide
more precise results.

• For the first time, this paper presents a comprehensive prediction
model based on the pattern mining. The model predicts the status of
all allocated resources in prediction time slots based on the extracted
behavioural patterns.

• This paper proposes a new optimized representation for patterns.
In comparison to the common matrix representation, it needs less
memory and provides complete information about patterns.

• This paper introduces a new type of occurrences for patterns, which
is called the latest occurrence. It is proved that the latest occur-
rence is more efficient than the other types of occurrences.

• The main goal of this paper is to show that models based on the pat-
tern mining could offer novel and useful points of view for tackling
some of the issues involved in predicting the application workloads.
We compare POSITING to widely used predictors such as AR, MA,
NN and HPA and demonstrate its superior performance.

The rest of the paper is organized as follows: Section 2 reviews
related works on the prediction of the application workload in cloud.
Primary concepts and definitions are explained in Section 3. Section



Fig. 3. The Taxonomy of prediction methods (Amiri and Mohammad-Khanli, 2017).

4 describes the pattern mining engine and the extraction of the appli-
cation behaviour. In section 5, the prediction model, the main core of 
POSITING, is described. We present the experimental results based on 
both real and synthetic workloads in Section 6. Finally, the paper is 
concluded with our future work in Section 7.

2. Related work

In general, according to our previous work in (Amiri and Moham-
mad-Khanli, 2017), the prediction models proposed for cloud applica-
tions could be divided into three groups. As it is shown in Fig. 3, the 
taxonomy includes control theory, queuing theory and machine learn-
ing techniques. In the following subsections, each group is introduced.

2.1. Control theory

In (Liu et al., 2005) a Single Input Single Output (SISO) model maps 
the CPU share of the application to the inverse of its response time. Q-
Cloud proposed in (Nathuji et al., 2010) handles the interference among 
VMs hosted on a server using the dynamic adjustment of resources allo-
cated to applications. There is a closed loop controller on each server. It 
maps the resources usage of all VMs to their performance level using a 
Multi Input Multi Output (MIMO) model. Wu et al. in (Wu et al., 2013) 
present a feed back control algorithm whose goal is to maximize the 
profit rate. The cost and the benefit are calculated for different com-
binations of reconfiguration actions and VMs. A combination with the 
maximum profit and the minimum cost is selected.

Some controllers assume a restrictive constraint: the linear con-
trollers assume that the application behaviour is linear (Zhu et al., 
2009). Thus, there is potential of instability. Although the non-linear 
controllers model the application behaviour accurately, their math-
ematical computations are complex (Amiri and Mohammad-Khanli, 
2017). Some controllers such as fuzzy controllers (Cao et al., 2012; Lama 
and Zhou, 2013) are based on the rule based approaches. The rules 
extraction is not easy for the resource management. The ability of the 
controllers depends on the defined rules. Furthermore, the rule based 
approaches do not have the learning capability.

2.2. Queuing network

The Queuing Network (QN) models can be used to predict the per-
formance of applications. These models have parameters such as the 
requests arrival rate and the average resources requirements of requests 
that should be specified (Urgaonkar et al., 2008). These parameters can 
be estimated by solving some equations resulted from the system eval-
uation. In (Bennani and Menasce, 2005) the response time of the trans-
actional workload and the throughput of batch jobs are modeled by

using the open QN and the closed QN respectively. Chalheiros et al. in 
(Calheiros et al., 2011) propose a mechanism for the VM provision-ing. 
In this mechanism, a workload analyzer predicts the arrival ratio of 
requests based on historical data or known workloads. A performance 
modeler models the system as QN. It predicts the response time, the 
reject ratio and the resources utilization. If the estimated parameters are 
below the QoS metrics, the number of VMs allocated to applica-tions is 
updated. In (Zhang et al., 2007) the CPU demand of different types of 
transactions is estimated by using the regression based meth-ods. The 
estimated values are used to parameterize QN. QN determines the 
resources requirements of multi-tier applications according to the 
workload fluctuations. Although QN needs no training phase, it is very 
sensitive to the parameterization. The precise estimation of parameters 
such as the arrival ratio and the service time of requests is expensive and 
difficult. Assuming the specified probability distributions for some 
parameters is not reasonable due to the dynamic nature of cloud (Amiri 
and Mohammad-Khanli, 2017).

2.3. Machine learning techniques

The newest proposed approaches are based on machine learning 
techniques. Garg et al. in (Garg et al., 2014) consider the resources allo-
cation in a data center that includes the non-interactive and the trans-
actional workloads. The proposed method predicts the CPU utilization of 
transactional applications by NN. Chen et al. in (Chen et al., 2015) 
propose a system to predict the resources demand. Due to the work-load 
dynamics in different periods, the base predictors such as the Sec-ond 
Moving Average Model (SMAM), the Exponential Moving Average 
method (EMA), the AR model and the Trend Seasonality Model (TSM) 
are selected. The output of the base predictors is sent to a Fuzzy Neural 
Network (FNN) which improves the accuracy of the prediction results. 
The clustering algorithms are used to optimize the FNN system. Yang et 
al. in (Yang et al., 2014a) propose a method based on Linear Regression 
(LR) to predict the number of requests for each cloud service. Accord-ing 
to the workload fluctuations, the prediction method adjusts itself 
through the recomputation of parameters of the regression model. Tang 
et al. in (Tang et al., 2014) propose a bin-packing algorithm that selects a 
PM for each VM, according to its future memory usage. In addition to 
allocating enough memory to each VM, the number of PMs should be 
minimized. The memory usage of VMs is modeled as a random variable. 
To predict the probability distribution of the future memory demand, 
the AR model is used. The model parameters are updated for each VM 
frequently.

Table 1 shows machine learning based methods employed 
for the workload prediction in some literature. We recommend 
that readers interested in a comprehensive review of predic-
tion models of cloud applications refer to our previous work in



Table 1
The machine learning based methods and techniques used for the application
prediction in different literature.

Methods and Techniques

Methods based on Regression and
Moving Average

Bayesian Theory
K Nearest Neighbor (KNN)
Random Forest
Neural Network (NN)

Support Vector Machine (SVM)

Markov Model

Clustering/Classification

Principal Component Analysis
(PCA)
Reinforcement Learning (RL)

Evolutionary Algorithm (Genetic
Algorithm)
Fuzzy Logic

References

(Yang et al., 2014a), (Akindele and 
Samuel, 2013), (Jiang et al., 2013), (Liu 
et al., 2015), (Shi et al., 2012), (Tang et 
al., 2014)
(Di et al., 2014), (Duan et al., 2009)
(Akindele and Samuel, 2013)
(Cetinski and Juric, 2015)
(Xu et al., 2013), (Yang et al., 2014b),
(Akindele and Samuel, 2013), (Jiang et al., 
2013), (Islam et al., 2012)
(Akindele and Samuel, 2013), (Kundu et 
al., 2012), (Jiang et al., 2013), (Liu et al., 
2015), (Matsunaga and Fortes, 2010b)
(Xu et al., 2013), (Zhenhuan et al., 2010),
(Khan et al., 2012), (Lu et al., 2015)
(Xu et al., 2013), (Khan et al., 2012), (Bey 
et al., 2009), (Kundu et al., 2012)
(Gursun et al., 2011)

(Xu et al., 2012), (Huang et al., 2014a),
(Amiri et al., 2016)
(Yang et al., 2014b), (Jiang et al., 2013),
(Antonescu et al., 2013)
(Bey et al., 2009), (Chen et al., 2015)

(Amiri and Mohammad-Khanli, 2017) for more detail.
POSITING has been developed in the direction of improving the 

existing methods. It is able to extract all the behavioural patterns of 
workloads independently of the fixed pattern length explicitly. It does 
not need to make any assumptions about the workload behaviour. So 
POSITING is a general predictor and could be used for the different types 
of workloads. The next section describes the foundation and for-mulation 
of POSITING in detail.

3. Background and primary concepts

Sequential data is data ordered with respect to some indexes. The 
time series is a type of sequential data, where records are indexed by 
time (Laxman and Sastry, 2006). Pattern mining of sequential data sets 
is called Sequential Patten Mining (SPM). In this section, primary con-
cepts and definitions of POSITING are introduced.

3.1. Abstraction representation

To predict the future workload of applications, the behaviour of allo-
cated resources is modeled as a time series (Andreolini et al., 2015). So 
we encounter multivariate temporal data sets, where the data points are 
traces of complicated behaviour characterized by time series of resources 
(Batal et al., 2016). Batal et al. in (Batal et al., 2016) define  temporal 
patterns for time-interval data and employ the value abstrac-tion to 
handle the complex temporal data. The value abstractions are used to 
segment the time series based on its values. As Fig. 4 shows the value 
abstraction converts a numeric time series into a sequence of
abstractions < S1[st1, et1],… , Sn[stn, etn] > where Si ∈

∑
,1 ≤ i ≤ n is an

abstraction that holds from time sti to time eti and
∑

is the abstraction
alphabet. Therefore the numeric time series of all allocated resources is 
converted into the symbolic (discretized) time series (Batal et al., 2016).

Let Status = {S1, … , SM} be a set of the abstract values (the abstrac-
tion alphabet) and ResourceType = {R1, … , RN} be a set of all the 
resources allocated to the application. So M is the number of the abstract 
values and N is the number of allocated resources. Without loss of 
generality, we define an arbitrary order on ResourceType, for
example R1 < R2 < · · · < RN . Inspired by the definitions presented in 
(Batal et al., 2016), we generalize the concepts state interval to event

Fig. 4. Converting a time series into a symbolic (discretized) time series by the value
abstraction that

∑
= {Very Low, Low,Medium,High} and blue dashed lines show the bor-

der of the values (Batal et al., 2016). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.)

Fig. 5. An example of a multivariate stream with ResourceType = {CPU, Memory, Disk} 
and Status = {Very Low, Low, Medium, High} (Batal et al., 2016).

and multivariate state sequence to stream in this paper.

Definition 1. An event ei is defined as a 4-tuple < ri, si, sti, eti > that 
means the abstract value of ri ∈ ResourceType is si ∈ Status from the start 
time sti to the end time eti.

Definition 2. The span of the event ei =< ri, si, sti, eti > is Δei = eti − 
sti > 𝜖  ≥ 0.

All discretized time series of resources are represented as a multi-
variate stream. Note that the value of 𝜖 depends on the length of sam-
pling intervals. In coarse grained sampling, 𝜖 is set to small values. For 
fine grained sampling, 𝜖 could be set to larger values.

Definition 3. A multivariate  stream E =< e1, e2, … , en >, where n is 
the index of the latest observed event, is a sequence of events that are 
ordered according to their start time:

∀ei, ej ∈ E that  1 ≤ i < j ≤ n ∶ (sti < stj)or(sti = stj and ri < rj)

Example 1. Fig. 5 shows a multivariate stream E with ResourceType 
= {CPU, Memory, Disk} and Status = {Very Low, Low, Medium, 
High}. If  the  order  on  ResourceType is defined as CPU < 
Memory < Disk, according to Definition 3, E =< (CPU, Very Low, 0,2), 
(Memory, Medium, 0,3), (Disk, Very Low, 0,4), (CPU, High, 2,5),(Disk, 
Medium, 3,7), (Memory, High, 4,7), (CPU, Low, 5,7) >.

Definition 4. A state is an ordered pair of (r, s), where  r ∈ 
ResourceType and s ∈ Status.

Definition 5. The Resource-Status (RS) is a set of all possible states:

RS = {(r, s)∣∀r ∈ ResourceType, ∀s ∈ Status}.

According to Definition 2, the span of each event is at least 𝜖 + 1 
time slots. For the smooth regions of workloads, the span of the events 
is large. It might lead to the inability to extract all hidden useful pat-
terns. So if the span of events is large, they are decomposed based on 
the decomposition unit 𝜇. For example the event (Disk, Medium, 3,7)



Fig. 6. Temporal relations between two events e1 and e2 (Allen, 1984).

with 𝜇 = 3 is decomposed into two events (Disk, Medium, 3,6) and (Disk, 
Medium, 6,7). If the span of the event e is L (Δe = L), based on the 
decomposition unit 𝜇, L = k𝜇 + 𝜃 that k ∈ ℕ and 0 ≤ 𝜃 ≤ 𝜇 − 1. Since the 
span of each event should be greater than 𝜖 (according to Definition 2),
then we limit 𝜃 as 𝜖 + 1 ≤ 𝜃 ≤ 𝜇 − 1. So we have 𝜇 ≥ 𝜖 + 2. However, after 
decomposing the event e, the span of the last decomposed event might 
be less than 𝜖. Here, to satisfy Definition 2, the latest and penul-timate 
decomposed events merge together to create an event with the span 𝜇 + 
𝜃.

Lemma 1. For the event e = (r, s, st, et) ∶  1 + 𝜖 ≤ Δe ≤ 𝜇 + 𝜖 .1

3.2. Temporal relations

Allen in (Allen, 1984) considers 13 possible relations between two 
events. Fig. 6 shows 7 relations before, meets, overlaps, is − finished − by, 
contains, starts, equals and their inverse (Hoppner; Moskovitch and 
Shahar, 2009; Batal et al., 2016). If time information of data is not very 
precise, according to Allen’s relations, different patterns could be 
extracted that they describe similar behaviour of the application work-
load (Moerchen, 2006). So if Allen’s relations are used, the search space 
of patterns becomes extremely large (Batal et al., 2016). On the other 
hand, time and the space complexities of the prediction model should be 
reasonable in a way that its deployment is affordable (Weingartner et al., 
2015). Therefore, inspired by the temporal rela-tions defined in (Batal 
et al., 2016), we classify Allen’s relations into two groups concurrent 
and consecutive based on the start time of events.
Definition 6. Given the stream E =< e1, … , en >, two events ei and ej, 1 ≤ 
i, j ≤ n, are  concurrent iff |sti − stj| ≤ 𝜖.

Definition 7. Given the stream E =< e1, … , en >, two events ei and ej, 1 ≤ 
i, j ≤ n, are  consecutive iff |sti − stj| > 𝜖.

For example, in example 1 for 𝜖 = 0, events (CPU, Very Low, 0,2) and 
(Memory, Medium, 0,3) are concurrent and events (Disk, Medium, 3,7) and 
(Memory, High, 4,7) are consecutive.

3.3. Episode

In the field of SPM, discovering patterns in sequences is called the 
episode mining (Han et al., 2007). Mannila et al. in (Mannila et al., 
1997) define an episode as a partially ordered collection of events that 
occur together. So the main goal of the episode mining is to extract 
episodes that occur frequently in the sequence. Note that we use terms 
“pattern” and “episode” interchangeably in this paper. The serial 
episodes are the most appropriate type of episodes for prediction

1 The Proof of lemmas, theorems and corollaries could be found in Appendix A.

Fig. 7. The graphical representation of the episode 𝛼 =
(
CPU,High

) (
Memory,Medium

)
→

(CPU, Low)
(
Disk, Low

)
.

(Toma et al., 2007; Laxman et al., 2008; Fahed et al., 2014; Huang et al., 
2014b). In the rest of the paper, the term “episode” is used instead of the 
term “serial episode” concisely. Inspired by the definition of the episode 
in (Mannila et al., 1997), a detailed definition of the episode is presented 
based on our problem domain.

Definition 8. A Concurrent Nodes Group (CNG) G = A1, A2, … , Al is 
a group of  nodes  that ∀Aj, Am ∈ G, 1 ≤ j, m ≤ l, there is no partial order 
between Aj and Am.

Definition 9. The episode 𝛼 is defined as a directed acyclic graph 𝛼 
= (V𝛼 , ≺  𝛼 , g𝛼 ), where V𝛼 is a set of nodes, ≺ 𝛼 is a partial order on V𝛼 
and g𝛼 ∶ V𝛼 → RS is a function that maps each node into one state. The 
episode 𝛼 is composed of k(> 1) CNGs in the form  of
G1 = A1

1, A
1
2, … , Al

1
1 
, …, Gk = Ak

1, A
k
2, … , Al

k
k 

that:

1. |Gi| = li
2. V𝛼 = {A1

1 … ,A1
l1
,A2

1 … ,A2
l2
,… ,Ak

1 … ,Ak
lk
}

3. ∀Ai
j ∈ Gi, ∀Am

n ∈ Gm, 1 ≤ i < m ≤ k, j ∈ {1,… , li},
n ∈ {1,… , lm} ∶ Ai

j ≺ 𝛼Am
n

4. |CNG𝛼| = k
5. G′

i = {(r, s) ∈ RS ∣g𝛼(v) = (r, s) , ∀v ∈ Gi}

Note that the episode 𝛼 could be represented as a general form 𝛼 =

i j

G′
1 → G′

2 → · ·  · → G′
k that means there is a partial order between every 

state in G′ (1 ≤ i < k) and every state in G′(i + 1 ≤ j ≤ k).

Definition 10. The size of episode 𝛼, ‖𝛼‖, is  |V𝛼 |.
Example 2. Consider the episode 𝛼 = (V𝛼 , ≺  𝛼 , g𝛼 ) in Fig. 7. The  set 
V𝛼 contains four nodes. As it is shown, the function g𝛼 maps
the nodes into the states and A1

1 ≺ 𝛼A2
1, A1

1 ≺ 𝛼A2
2, A1

2 ≺ 𝛼A2
1 and

A1
2 ≺ 𝛼A2

2. As a simple graphical notation, this episode is represented as
𝛼 =

(
CPU,High

) (
Memory,Medium

)
→ (CPU, Low)

(
Disk, Low

)
. Note that

𝛼 discloses the correlation between CPU, Memory and Disk explicitly. It 
declares that if CPU is High and Memory is Medium concurrently, after 
that the future status of both CPU and Disk is Low.

3.4. Episode occurrence

Informally, the occurrence of an episode in the stream means that 
the nodes of the episode have the corresponding events in the 
stream such that the partial order of the episode is preserved 
(Mannila et al., 1997).

Definition 11. The episode 𝛼 = (V𝛼 , ≺  𝛼 , g𝛼 ) occurs in the stream 
E =< e1, … , en > that ei = (ri, si, sti, eti), 1 ≤ i ≤ n if there exists an injec-
tive mapping h ∶ {Ai

j ∣∀i ∈ {1, … , k}, ∀j ∈ {1, … , li}} → {1,2, … , n} such
that:

1. g𝛼(Ai
j).r = rh(Ai

j)
, g𝛼 (Ai

j).s = sh(Ai
j)

2. ∀Ai
k,A

i
j, 1 ≤ k, j ≤ li,1 ≤ i ≤ k ∶ |sth(Ai

j)
− sth(Ai

k)
| ≤ 𝜖

3. ∀i,1 ≤ i < k ∶ min{sth(Ai+1
j )}

li+1
j=1 − max{sth(Ai

j)
}li

j=1 > 𝜖



Example 3. Consider the stream E =< e1 = (CPU, High, 0,3), e2 = 
(Memory, Medium, 0,4), e3 = (Network, Low, 0,2), e4 = (Disk, Medium, 0,3), 
e5 = (Network, Medium, 2,5), e6 = (CPU, 3,5, Low), e7 = (Disk, Low, 3,5), 
e8 = (Memory, Very Low, 4,5) >. For the episode 𝛼 given in example 2 
and 𝜖 = 0, the injective mapping function h is as follows:

h(A1
1) = 1, h(A1

2) =  2, h(A2
1) = 6, h(A2

2) =  7.

So there is an occurrence of the episode 𝛼 in the stream E.

Lemma 2. For the episode 𝛼 = (V𝛼 , ≺  𝛼 , g𝛼 ):
∀v1, v2 ∈ V𝛼 that v1, v2 ∈ Gi, i ∈ {1,… , k}, if g𝛼(v1).r = g𝛼(v2).r,

there is no occurrence for 𝛼.

Definition 12. Given the episode 𝛼 that |CNG𝛼| = k, for each occur-
rence of 𝛼, the starting interval of the occurrence of Gi, (1 ≤ i ≤ k),
[ti1, t

i
2], is:

ti1 = min{sth(Ai
j)
}li

j=1, ti2 = max{sth(Ai
j)
}li

j=1 (3.1)

Definition 13. Given the episode 𝛼 that |CNG𝛼| = k, the span of the
occurrence of 𝛼, [t𝛼1 , t

𝛼
2 ], is:

[t𝛼1 , t
𝛼
2 ] = [min{sth(A1

j )
}l1

j=1 = t11 ,max{sth(Ak
j )
}lk

j=1 = tk2] (3.2)

Definition 14. Given the episode 𝛼 that |CNG𝛼| = k, each occurrence
O of 𝛼 is determined as a sequence of the starting intervals of CNGs and
the span of O:

O = (([ti1, t
i
2])

k
i=1[t

𝛼
1 , t

𝛼
2 ]) (3.3)

Definition 15. OS et(𝛼) is a set of all occurrences of the episode 𝛼 in
the stream.

Example 4. Consider the example 3. Based on the injective mapping
function h, the starting intervals of the occurrence of G1 and G2 are
[t11 , t

1
2 ] = [0, 0] and [t21 , t

2
2 ] = [3, 3] respectively. The span of the occur-

rence is [t𝛼1 , t
𝛼
2 ] = [0,3].

Consider two episodes 𝛼1 = (CPU, Low)
(
Memory,High

)
→(

Network,High
)

and 𝛼2 =
(
Memory,High

)
(CPU, Low) →

(
Network,High

)
.

It is clear that these episodes are equivalent. To get a unique form of
episodes, states mapped to nodes of each CNG are sorted based on
the order defined on ResourceType. So if CPU < Memory, 𝛼1 shows the
unique form.
The sub-episode is a main concept to construct and prune the episodes.
This concept is defined formally as follows:

Definition 16. The episode 𝛽 = (V𝛽 , ≺ 𝛽 , g𝛽 ) is a sub-episode of the
episode 𝛼 = (V𝛼, ≺ 𝛼, g𝛼), denoted by 𝛽 ⊑ 𝛼, iff there exists an injective
mapping F ∶ V𝛽 → V𝛼 such that:

1. ∀v1 ∈ V𝛽 ∶ g𝛽 (v1) = g𝛼(F(v1))
2. ∀v1, v2 ∈ V𝛽 ∶

(2.1) if v1 ≺ 𝛽v2 then F(v1) ≺ 𝛼F(v2)
(2.2) if there is no partial order between v1 and v2, then there

should be no partial order between F(v1) and F(v2).

Based on Definition 16, the episode 𝛼 is a super-episode of the episode 
𝛽 iff 𝛽 ⊑ 𝛼. Note that  𝛽 ⊑ 𝛼  means that all states of 𝛽 and the partial 
order between them exist in 𝛼.

Example 5. Consider the episodes 𝛼 =
(
Memory,High

) (
Disk,Medium

)
→ (CPU,Low)

(
Network,Low

)
, 𝛽 = (Disk,Medium) → (CPU, Low) and

𝛾 =
(
Memory,High

) (
Disk,Medium

)
→ (CPU, Low). According to

Definition 16, we have 𝛽 ⊑ 𝛾  ⊑ 𝛼.

Lemma 3. In each occurrence of the episode 𝛼 in the stream E, there exists 
an occurrence of all the sub-episodes of 𝛼.

Fig. 8. The matrix representation of the episode 𝛼 =
(
CPU,High

) (
Memory,Medium

)
→

(CPU, Low)
(
Disk, Low

)
.

3.5. Episode representation

The matrix representation is a common unambiguous representa-tion 
of time-interval patterns (Hoppner; Moskovitch and Shahar, 2009; 
Huang et al., 2014b; Batal et al., 2012). In this representation, the 
episode 𝛼 is represented by (W𝛼 , R𝛼) where W𝛼 is an ordered list of states 
based on their appearance in 𝛼 and R𝛼 is an upper triangular matrix that 
includes information of the partial order between each state and all of its 
following states. If two states are in the same group, there is no partial 
order between them. So the corresponding entry in the upper triangular 
matrix is set to 0. If two states are in different groups, there exists the 
serial relation between them. So the corresponding entry in the upper 
triangular matrix is set to 1. It could be proved simply that the space 
complexity of the matrix representation for the episode 𝛼 is
O(‖𝛼‖2).

Example 6. Consider the episode 𝛼 =
(
CPU,High

) (
Memory,Medium

)
→ (CPU, Low)

(
Disk, Low

)
. Fig. 8 shows the matrix representa-

tion of the episode 𝛼. For example, W𝛼[1] = (CPU,High),W𝛼[2] =
(Memory,Medium) and R𝛼(W𝛼[1],W𝛼[2]) = 0.

Definition 17. The Following Nodes of the node Ai
j of the episode 𝛼,

FN(Ai
j), is a sequence of all the nodes of Gi that appear after Ai

j and all
the nodes of Gn, i + 1 ≤ n ≤ k:

FN(Ai
j) = ((Ai

u)
li
u=j+1((A

n
m)

ln
m=1)

k
n=i+1) (3.4)

Theorem 1. Given the episode 𝛼 = G′
1 → · · · → G′

k in the form of 𝛼 =
(W𝛼,R𝛼), the number of inferable and redundant entries of R𝛼 is:

k∑
i=1

(li − 1)

( k∑
t=i

lt −
(

li
2
+ 1

))
(3.5)

This paper proposes a new representation for episodes, which is
called repreSentAtiVe rEpresentation (SAVE). SAVE is based on the vec-
tor.

Definition 18. Given the episode 𝛼 = G′
1 → · · · → G′

k, SAVE is com-
posed of one Representative Array (RArray) and k Group Lists (GLists):

• Each entry i, 1 ≤ i ≤ k of RArray includes a representative member
of G′

i . RArray[i].x is the representative member of the entry i.
• Each entry i,1 ≤ i ≤ k of RArray is linked into one GList.

RArray[i].GList is the corresponding GList of the entry i.
• RArray[i].GList,1 ≤ i ≤ k includes all members of G′

i except the rep-
resentative member.

• 𝛼 =< RArray𝛼 > means that the episode 𝛼 is represented in the form
of SAVE.

Note that to offer a unique representation for episodes, the repre-
sentative member of each G′

i , 1 ≤ i ≤ k is the first member of G′
i sorted

based on the order on ResourceType. The other members of G′
i are also

inserted in RArray[i].GList based on the order on ResourceType.

Example 7. Consider the episode 𝛼 =
(
CPU,High

) (
Memory,Medium

)(
Network,High

)
→ (CPU, Low)

(
Disk, Low

)
→

(
Network,Very Low

)
. Fig. 9

shows the representation of the episode 𝛼 in the form of SAVE. Note that
RArray[i].x,1 ≤ i ≤ 3 is the first member of G′

i .



Fig. 9. The representation of the episode 𝛼 =
(
CPU,High

) (
Memory,Medium

)(
Network,High

)
→ (CPU, Low)

(
Disk, Low

)
→

(
Network,Very Low

)
in the form of SAVE.

Lemma 4. The space complexity of SAVE for the episode 𝛼 is O(‖𝛼‖).
As Corollary 2 in Appendix A shows SAVE improves the time com-

plexity of the episode processing, in addition to decreasing the memory 
consumption.

3.6. Frequent episode

A frequent episode occurs often enough in the stream. Given a fre-
quency threshold, the goal of the frequent episodes discovery is to 
extract all frequent episodes in the stream (Achar et al., 2012a). For this 
purpose, the frequency of the episode should be defined. The episode 
frequency is defined in different ways such as the window-based fre-
quency (Mannila et al., 1997), minimal occurrence-based frequency 
(Mannila et al., 1997), head frequency and total frequency (Iwanuma et 
al., 2004), Non-Overlapped (NO) frequency (Laxman et al., 2005), non-
interleaved frequency (Laxman, 2006) and distinct occurrence-based 
frequency (Karypis et al., 1999). The simplest and the most efficient 
algorithm for the frequency counting is the algorithm of the NO fre-
quency (Achar et al., 2012a). So we choose the NO frequency to com-
pute the frequency of episodes. Since the NO frequency is computed 
based on minimal occurrences, firstly the definition of minimal occur-
rences is presented.

Definition 19. Given the episode 𝛼 = G′
1 → · ·  · → G′

k, the occurrence
O of the episode 𝛼, O = (([ti1, t

i
2])

k
i=1[t

𝛼
1 , t

𝛼
2 ]), is a Minimal Occurrence

(MO) iff

∄O′ = (([t′ i1, t
′ i
2])

k
i=1[t

′𝛼
1, t

′𝛼
2]) ∈ OS et(𝛼) such that (t′𝛼1 ≠ t𝛼1 or t′𝛼2 ≠ t𝛼2 )

and(t𝛼1 ≤ t′𝛼1 < t′𝛼2 ≤ t𝛼2 ) (3.6)

Definition 20. MOS et(𝛼) is a set of all minimal occurrences of the 
episode 𝛼 in the stream.

Definition 21. An equivalent class of minimal occurrences includes 
all minimal occurrences whose spans are equal.

Lemma 5. Given the episode 𝛼 that |CNG𝛼 | = k and 𝜇 ≥ max(2𝜖 + 1, 𝜖  + 
2), the successive starting intervals of Gi, 1 ≤ i ≤ k have no overlap.

Lemma 6. Given the episode 𝛼 that |CNG𝛼 | = k, 𝜇 ≥ max(2𝜖 + 1, 𝜖  + 2) 
and two occurrences O, O′ ∈ OS et(𝛼), if [u, u′] is the starting interval of 
Gi, 1 ≤ i ≤ k in  O, the following starting interval of Gi in O′ is [w, w′] that 
w > 2𝜖 + u.

Note that the condition 𝜇 > 2𝜖 is reasonable because the minimum 
span of events is 𝜖 + 1 according to Lemma 1. So the decomposition unit 
of events, 𝜇, could be twice more than the minimum span.

Definition 22. Given the episode 𝛼 that |CNG𝛼 | = k, ∀O1, O2 ∈ 
OS et(𝛼) that O1 = (([wi

1, w
i
2])i

k
=1[w

𝛼
1, w

𝛼
2]) and O2 = (([ui

1, u
i
2])i

k
=1[u

𝛼
1, u

𝛼
2]), O1 < O2 iff:

∃p, 1 ≤ p ≤ k such that ∀1 ≤ j < p [wj
1,w

j
2] = [uj

1, u
j
2] and wp

1 < up
1 (3.7)

Definition 23. Given the episode 𝛼 that |CNG𝛼| = k, two occur-
rences O1, O2 ∈ OS et(𝛼) that O1 = (([wi

1,w
i
2])

k
i=1[w

𝛼
1,w

𝛼
2]) and O2 =

(([ui
1,u

i
2])

k
i=1[u

𝛼
1,u

𝛼
2]) are said to be non-overlapped iff w𝛼

2 ≤ u𝛼1.

Definition 24. The frequency of the episode 𝛼 in the stream, freq(𝛼), is
defined as the cardinality of a maximal non-overlapped set of minimal
occurrences of 𝛼 in the stream. A set of occurrences is said to be non-
overlapped if every pair of occurrences in the set is non-overlapped.

Definition 25. OS etNM(𝛼) = {O1,… ,OL} is a set of all non-overlapped
minimal occurrences that O1 is the first minimal occurrence of 𝛼 and
Oi+1, 1 ≤ i < L is the first non-overlapped minimal occurrence after Oi.
Furthermore, there is no non-overlapped minimal occurrence after OL.

Lemma 7. If O′(𝛼) = {O′
1,… ,O′

F} is a set of non-overlapped minimal
occurrences where O′

i ,1 < i ≤ F is the first non-overlapped minimal occur-
rence after O′

i−1 and O′
1 ∉ OS etNM(𝛼), then for O′

1 with the span of [w1,w′
1],

there is a unique occurrence Oz ∈ OS etNM ,1 ≤ z ≤ L with the span of [uz, u′z]
where uz < w1 < u′z < w′

1. For O′
i , i > 1 with the span of [wi,w′

i ], there is a
unique occurrence Ot ∈ OS etNM , z < t ≤ L with the span of [ut , u′t] where
ut < wi < u′t < w′

i or (ut = wi and u′t = w′
i ).

Theorem 2. OS etNM(𝛼) is a maximal non-overlapped set of minimal occur-
rences of the episode 𝛼 in the stream: freq(𝛼) = |OS etNM(𝛼)|

M

Definition 26. A constraint  C is anti-monotonic if the episode 𝛼 sat-
isfying C implies that every sub-episode of 𝛼 also satisfies C (Pei et al., 
2007).

Lemma 8. Given the episodes 𝛼 and 𝛽 and the threshold 𝜃 ∈ ℝ≥0, if 𝛽 ⊑ 𝛼  
and freq(𝛼) ≥ 𝜃, then 𝜃 ≤ freq(𝛼) ≤ freq(𝛽) (the anti-monotonic constraint).

Example 8. Let ResourceType = {CPU, Memory}, Status = {Low(L), 
Medium(M), High(H)} and CPU < Memory. Consider the stream E =< 
(CPU, L, 0,1), (Memory, M, 0,3), (CPU, H, 1,2), (CPU, L, 2,3), (CPU, M, 3,4),
(Memory, H, 3,4), (CPU, L, 4,6), (Memory, L, 4,5), (Memory, High, 5,6) > 
and the episode 𝛼 = (CPU, Low) → (Memory, High),. We have OS et(𝛼) =  
{([0, 0], [3, 3], [0, 3]), ([2, 2], [3, 3], [2, 3]), ([0, 0], [5, 5], [0, 5]), ([2, 2], [5, 5],
[2, 5]), ([4, 4], [5, 5], [4, 5])}, MOS et(𝛼) =  {([2, 2], [3, 3], [2, 3]), ([4, 4],
[5, 5], [4, 5])} and OS etN (𝛼) =  {([2, 2], [3, 3], [2, 3]), ([4, 4], [5, 5], [4, 5])}.
freq(𝛼) = 2.

3.7. Stream representation

The stream can be represented in different forms. In this paper, the 
stream is represented in the vertical format (Zaki, 2001). In the vertical 
representation, each (r, s) ∈ RS is associated with a list whose entries 
include the starting intervals of that (r, s).

Example 9. Consider the stream of the example 8. Fig. 10 shows the 
vertical representation of the stream E.

3.8. Pattern tree

In this section, the lexicographic tree of episodes (pattern tree), the 
main core of POSITING, is described. Based on the set lexicographic 
order proposed in (Yan et al., 2003), to construct the lexicographic tree, 
a lexicographic order on RS should be defined. Firstly, different types 
of the episode extension are defined.

Definition 27. Given the episode 𝛼 = G′
1 → G′

2 → · · · → G′
k and (r, s) ∈  

RS, the  serial extension of 𝛼 with (r, s) is:

𝛼 ⊕ (r, s) = G′
1 → G′

2 → · · · → G′
k → (r, s) (3.8)



Fig. 10. The vertical representation of the stream of the example 8.

Definition 28. Given the episode 𝛼 = G′
1 → G′

2 → · ·  · → G′
k−1 → G′

k 
and (r, s) ∈  RS, the  concurrent extension of 𝛼 with (r, s) is:

𝛼 ⊙ (r, s) = G′
1 → G′

2 → · · · → G′
k−1 → G″ that G″ = G′

k ∪ (r, s) (3.9)

Definition 29. Given G1 =
(
R1, S1

)
· · ·

(
Ri, Si

)
and G2 =(

R′
1, S

′
1
)
· · ·

(
R′

j , S
′
j

)
that (Rx, Sx) ∈ RS,1 ≤ x ≤ i and (R′

y, S
′
y) ∈ RS,1 ≤

y ≤ j, it is said that G1 < G2 iff any of the conditions below is true (Yan et 
al., 2003):

• ∃h, 0 ≤ h ≤ min (i, j) such that
(
Rh,Sh

)
<
(

R′
h,S

′
h

)
and ∀r < h,(

Rr , Sr
)
=
(
R′

r ,S
′
r
)

• i < j, ∀r, 1 ≤ r ≤ i, (Rr , Sr) = (R′
r ,S

′
r)

j

Definition 30. Given two episodes 𝛼 = G1 → G2 → · ·  · → Gi and 𝛽 = 
G′

1 → G′
2 → · · · → G′, it is said  𝛼 < 𝛽  iff any of the conditions below is 

true (Yan et al., 2003):

• ∃h, 0 ≤ h ≤ min (i, j) such that Gh < G′
h and ∀r < h, Gr = G′

r
• i < j, ∀r, 1 ≤ r ≤ i,Gr = G′

r

Given (r, s), (r′, s′) ∈ RS and based on the lexicographic order
described in Definition 30, it can be concluded (Yan et al., 2003):

• if 𝛽 = 𝛼 ⊕ (r, s), then 𝛼 < 𝛽.
• if 𝛽 = 𝛼 ⊕ (r, s) and 𝛾 = 𝛼 ⊙ (r′, s′), then 𝛾 < 𝛽.
• if 𝛽 = 𝛼 ⊕ (r, s), 𝛾 = 𝛼 ⊕ (r′, s′) and (r′ , s′) < (r, s) then 𝛾 < 𝛽.
• if 𝛽 = 𝛼 ⊙ (r, s), 𝛾 = 𝛼 ⊙ (r′, s′) and (r′, s′) < (r, s) then 𝛾 < 𝛽.

Definition 31. The lexicographic tree is constructed as follows (Yan et 
al., 2003):

• The root is labeled with ∅.
• Each node n of the tree is labeled with a state. Label(n) is the corre-

sponding label of the node n.

• Each node n of the tree corresponds to an episode. Pattern(n) is the
corresponding episode of the node n.

• If Pattern(n) = 𝛼, the corresponding episode of each child of n is
either a serial extension or a concurrent extension of 𝛼.

• The left sibling is less than the right sibling.

Fig. 11 shows a part of the pattern tree constructed on
RS =

{(
Ri, Sj

)
∣Ri ∈ ResourceType,Sj ∈ Status,1 ≤ i ≤ N, 1 ≤ j ≤ M

}
. Here,

the lexicographic order is defined on RS as (R1, S1) < · · · < (R1, SM) <
(R2, S1) < · · · < (R2, SM) < · ·  · < (RN , S1) < · · · < (RN , SM). The root of
the tree is null. All episodes in the tree are generated only by the 
serial extension or the concurrent extension. For example the episode
((R1, S1)(R2, S1)) is generated from the concurrent extension of (R1, S1) 
with (R2, S1) and the episode ((R1, S1) → (RN , SM )) is generated from the 
serial extension of (R1, S1) with (RN , SM). In the next sections, we will 
propose algorithms to construct and traverse the tree in more detail. 
For each node n of the pattern tree, two sets of states are determined to 
extend Pattern(n). Based  on Lemma 3 and to avoid generating 
redundant nodes (nodes with the same episodes), two sets of valid states 
for the concurrent and the serial extensions are defined as follows:

Definition 32. For each node n of the pattern tree, SExt(n) is a set of 
all the states for the serial extensions of Pattern(n):

S Ext(n) = {(r, s)∣(r, s) ∈ RS} (3.10)

Definition 33. Given the episode 𝛼 = G′
1 → G′

2 → · · · → G′
k,

LGroup(𝛼) = G′
k.

Definition 34. For each node n of the pattern tree, CExt(n) is a set of
valid states for the concurrent extensions of Pattern(n).

CExt(n) =
{
(r, s)∣(r, s) ∈ RS, (r, s) > Label(n)

and ∄(r′ , s′) ∈ LGroup(Pattern(n)) such that r′ = r
}

(3.11)

3.9. Gap constraint

Cloud should allocate a suitable amount of resources according to 
the current demand of applications. Under-provisioning causes SLA vio-
lation, QoS dropping and the customer dissatisfaction. This might lead 
to the loss of customers and a decrease in revenue. On the other hand, 
overprovisioning wastes energy and resources and it even increases 
costs like network, cooling and maintenance (Amiri and Moham-
mad-Khanli, 2017). So, the resource manager should have enough time 
to provide the appropriate resources before occurring the workload 
burstiness. Dynamic resources allocation is based on the 
virtualization techniques (Hwang et al., 2016). The time it takes to 
instantiate a new VM instance is about 5–15 min (Li et al., 2010). 
Therefore, based on

Fig. 11. A part of the lexicographic pattern tree.



Fig. 12. Gap constraints on an occurrence O = ([wi
1,w

i
2]

k
i=1[w

𝛼
1 ,w

𝛼
2]) of the episode 𝛼.

time spent on booting VMs, episodes should be extracted from the appli-
cation behaviour in a way that SLA is satisfied and energy wasting is
avoided. Given the episode 𝛼 = G′

1 → G′
2 → · · · → G′

k and an occurrence
O = ([wi

1,w
i
2]

k
i=1[w

𝛼
1,w

𝛼
2]) of 𝛼, if the time it takes to instantiate a new

VM instance is 𝛿(> 𝜖) time slots, the starting interval of G′
i , 1 < i ≤ k

should begin after 𝛿 + wi−1
2 . Thus, the resources manager has enough

time to instantiate a new VM instance. On the other hand, if resources
are allocated before occurring the workload burstiness for a long time,
the energy and resources are wasted. According to the discretion of
the resources manager and characteristics of the cloud data center, the
gap constraint Δ(≥ 𝛿) determines that resources might be allocated at
most Δ − 𝛿 time slots before occurring the workload burstiness. There-
fore, the starting interval of Gi should begin before Δ + wi−1

2 . As Fig. 12
shows, the valid interval of wi

1 is [wi−1
2 + 𝛿,wi−1

2 + Δ] to satisfy QoS and
SLA and avoid wasting energy. Based on the valid intervals, a valid
occurrence is defined as follows:

Definition 35. Given the episode 𝛼 = G′
1 → G′

2 → · · · → G′
k and the

internal gaps 𝛿 and Δ, an occurrence O = ([wi
1,w

i
2]

k
i=1[w

𝛼
1,w

𝛼
2]) of 𝛼 is a

valid occurrence iff ∀i,1 ≤ i < k,wi
2 + 𝛿 ≤ wi+1

1 ≤ wi
2 + Δ.

The resources manager defines the parameters Δ and 𝛿 based on the
characteristics and goals of the cloud data center. 𝛿 and Δ are called the
minimum internal gap and the maximum internal gap respectively.

3.10. Latest occurrence

To compute the NO frequency of episodes under gap constraints, we
should propose a method for finding the minimal occurrences under
gap constraints. For this purpose, we introduce a new type of the occur-
rence for episodes, called the latest occurrence. It could be proved that
this type of the occurrence is more efficient than the other types of
occurrences because it considers the only one member of each equiva-
lent class of minimal occurrences instead of checking all the members
of the equivalent classes.

Based on the definitions of the serial extension and the concurrent
extension, if nodes n′ and n″ are the serial extension and the concurrent
extension of the node n respectively, then we have:

Pattern(n′)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝛼

= Pattern(n)
⏟⏞⏞⏟⏞⏞⏟

𝛽

⊕ Label(n′)
⏟⏞⏟⏞⏟

x

(3.12)

Pattern(n″)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝛾

= Pattern(n)
⏟⏞⏞⏟⏞⏞⏟

𝛽

⊙ Label(n″)
⏟⏞⏞⏟⏞⏞⏟

y

(3.13)

So without scanning the stream, a maximal non-overlapped set of min-
imal occurrences of 𝛼 and 𝛾 can be determined by using the join of 
minimal occurrences of 𝛽 with minimal occurrences of x and y respec-
tively (Achar et al., 2013).

To present the definition of the latest occurrence, the prefix and the 
suffix of episodes are defined in a similar way to (Han et al., 2001) 
firstly. Then concepts of the valid interval for the starting intervals of 
CNGs and the latest prefix occurrence are defined.

Definition 36. Given the episode 𝛼 = G′
1 → G′

2 → · · · → G′
k,

Prefix(𝛼, i), 1 ≤ i ≤ k is G′
1 → G′

2 → · · · → G′
i .

Definition 37. Given the episode 𝛼 = G′
1 → G′

2 → · · · → G′
k, Suffix(𝛼, i),

1 ≤ i ≤ k is G′
i → G′

i+1 → · · · → G′
k.

Definition 38. Given the episode 𝛼 = G′
1 → G′

2 → · · · → G′
k, if the

starting interval of G′
i ,1 ≤ i < k is [t, t′], then the Valid Interval (VI)

for the starting interval of G′
i+1 is VI([t, t′], i + 1) = [t′ + 𝛿, t′ + Δ].

Definition 39. Given the episode 𝛼 = G′
1 → G′

2 → · · · → G′
k, in each

occurrence O = (([ti1, t
i
2])

k
i=1, [t

𝛼
1 , t

𝛼
2 ]) of 𝛼, [t11 , t

u
2], 1 ≤ u ≤ k is the starting

interval of Prefix(𝛼, u).

Definition 40. Given the episode 𝛼 = G′
1 → G′

2 → · · · → G′
k, if for a

valid occurrence O = (([ti1, t
i
2])

k
i=1, [t

𝛼
1 , t

𝛼
2 ]) of 𝛼 there exists no valid

occurrence of 𝛼 such as Q = (([wi
1,w

i
2])

k−1
i=1 , [t

k
1, t

k
2], [w

𝛼
1,w

𝛼
2]) that ∃j, 1 ≤

j < k,wj
1 > tj1, it is said that O includes the latest prefix occurrence.

Definition 41. Each valid occurrence of the episode 𝛼 that includes the
latest prefix occurrence, is called the Latest Occurrence (LO). LO(𝛼) is
a set of all the latest occurrences of 𝛼.

To prove that the NO frequency of the episodes could be computed
based on their LOs correctly, the following lemmas and theorem are
presented.

Definition 42. Given the episode 𝛼 = G′
1 → G′

2 → · · · → G′
k, each

starting interval [ti1, t
i
2] of G′

i ,2 ≤ i ≤ k − 1 in the occurrence O =
(([ti1, t

i
2])

k
i=1, [t

𝛼
1 , t

𝛼
2 ]) is a valid occurrence of G′

i iff the gap constraints
𝛿 and Δ are satisfied between the starting intervals of (G′

i and G′
i+1) and

(G′
i−1 and G′

i ).

Lemma 9. Given the episode 𝛼 = G′
1 → G′

2 → · · · → G′
k, an occurrence

O = (([ti1, t
i
2])

k
i=1, [t

𝛼
1 , t

𝛼
2 ]) of 𝛼 is an LO iff ∀ i,1 ≤ i ≤ k − 1, [ti1, t

i
2] is the

most recent valid occurrence of G′
i .

Corollary 1. There is only one occurrence from each equivalent class of
minimal occurrences in LO(𝛼).

Lemma 10. The first latest occurrence of the episode 𝛼 is a minimal occur-
rence of the first equivalent class of the minimal occurrences.

Lemma 11. For each episode 𝛼, there is at most one member of each
equivalent class of minimal occurrences in OS etN

M(𝛼).

Theorem 3. For each episode 𝛼, if the latest occurrences of equivalent
classes of minimal occurrences are in OS etN

M(𝛼), then OS etN
M(𝛼) ⊆ LO(𝛼).

Definition 43. Given the episode 𝛼 = G′
1 → G′

2 → · · · → G′
k,

LOList(𝛼) includes a 4-tuple (tk−1
2 , tk1, t

k
2, t

𝛼
1 ) for each occurrence

O = (
[
ti1, t

i
2
]k
i=1 ,

[
t𝛼1 , t

𝛼
2
]
) ∈ LO (𝛼). LOList(𝛼, i) is the i − th member of

LOList(𝛼).

4. Foundation and formulation of POSITING

As Fig. 2 shows, the pattern mining engine and the extraction of the 
application behaviour are two essential steps for the prediction module. 
In this section, at first, the pattern mining engine is explained. In the 
following section, the extraction of the recent behaviour of the applica-
tion is described.

4.1. Pattern discovery

The first step of POSITING is to extract the frequent episodes. For 
this purpose, the pattern tree is constructed and the frequent episodes 
are extracted. In section 4.1.1, two algorithms are proposed to identify 
LOList of episodes. Section 4.1.2 presents the main algorithms to extract 
the episodes for prediction. The frequency threshold of episodes and the 
valid interval of Δ are discussed in sections 4.1.3 and 4.1.4 respectively.



4.1.1. Computing frequency
Algorithms 1 and 2 are proposed to extract LOList of episodes. Algo-

rithm 1 (SSMakeLOList) extracts the LOList of episodes using the serial 
extension. The algorithm receives LOList(𝛼) and LOList(G) that 𝛼 is an 
episode and G ∈ RS, and  computes  LOList(𝛽) that 𝛽 = 𝛼 ⊕ G without 
scanning the stream. Note that LOList(G) is  the occurrence list of  G 
in the vertical representation of the stream. The counters i and j traverse 
the LOLists of 𝛼 and G. Lines 3 to 23 consider for each LO of 𝛼 which 
LOs of G could create an LO for 𝛽. Lines 5 to 9 check whether the i − th 
LO of 𝛼 could be the latest prefix occurrence for j − th occurrence of G or 
not. If it is not, this LO of 𝛼 could not be the latest prefix occurrence for 
the next LOs of G. So the next LOs of 𝛼 are considered. For new LOs of 
𝛼, we  start  from  LOs of G that there is no latest prefix occurrence 
for them. In lines 10 to 12, if an LO of 𝛼 is the latest prefix occurrence for 
an LO of G, the corresponding LO of 𝛽 is generated and inserted in
LOList(𝛽).

Algorithm 1 SSMakeLOList

Input: LOList(𝛼),LOList(G) % 𝛼 is an episode,G ∈ RS %
LOList(G, i) = (vi, vi) % LOList(𝛼, i) = (xi, ti, t′i , t

𝛼
i )

Output: LOList(𝛽)
1: i ← 1
2: j ← 1;
3: while (i ≤ |LOList(𝛼)|) do
4: while (j ≤ |LOList(G)|) do
5: if (i < |LOList(𝛼)|) then
6: if (t′i+1 + 𝛿 ≤ vj) then
7: break;
8: end if
9: end if
10: if (t′i + 𝛿 ≤ vj ≤ t′i + Δ) then
11: add (t′i , vj, vj, t𝛼i ) into LOList(𝛽)
12: j + +
13: else if (vj > t′i + Δ) then
14: break
15: else if (vj < t′i + 𝛿) then
16: j + +;
17: end if
18: end while
19: if (j > |LOList(G) ∣) then
20: break;
21: end if
22: i + +;
23: end while
24: return LOList(𝛽);

Theorem 4. Given the episode 𝛼 = G′
1 → G′

2 → · · · → G′
k−1 and G ∈ RS, 

the algorithm SSMakeLOList finds LOList(𝛽 = 𝛼 ⊕ G) correctly.

Lemma 12. Given the episode 𝛼 and G ∈ RS, if |LOList(𝛼)| = q and  |LOList(G)| = p, then the time complexity of algorithm SSMakeLOList is 
O(p + q) in the worst case and O(p) or O(q) in the best cases.

Algorithm 2 (SCMakeLOList) extracts LOList of episodes using the 
concurrent extension. The algorithm receives LOList(𝛼) and LOList(G) 
that 𝛼 is an episode and G ∈ RS, and  computes  LOList(𝛽) that 𝛽 = 𝛼 ⊙ G 
without scanning the stream. As it is shown in Algorithm 2, there are 
three cases for LOList(𝛼) and LOList(G). In lines 4 to 7, if the correspond-
ing entries of LOList(𝛼, i) and LOList(G, j) could generate an LO of 𝛽 = 
𝛼 ⊙ G, it  is inserted in LOList(𝛽) and both the counters i and j increase by
+1. In lines 8 to 9, if LOList(G, j) occurs after LOList(𝛼, i), then LOList(𝛼, i) 
should not be considered for the members after LOList(G, j). So the next  
LO of 𝛼 is checked. In lines 10 and 11, if LOList(G, j) occurs before

LOList(𝛼, i), the next LOs of G are considered for LOList(𝛼, i).

Theorem 5. Given the episode 𝛼 = G′
1 → G′

2 → · · · → G′
k and G ∈ RS, the

algorithm SCMakeLOList finds LOList(𝛽 = 𝛼 ⊙ G) correctly.

Lemma 13. Given the episode 𝛼 and G ∈ RS, if |LOList(𝛼)| = q and|LOList(G)| = p, then the time complexity of the algorithm SCMakeLOList
is O(p + q) in the worst case and O(min(p,q)) in the best case.

Algorithm 2 SCMakeLOList

Input: LOList(𝛼),LOList(G) % 𝛼 is an episode,G ∈ RS %
LOList(G, i) = (vi, vi) % LOList(𝛼, i) = (xi, ti, t′i , t

𝛼
i )

Output: LOList(𝛽)
1: i ← 1;
2: j ← 1;
3: while(i ≤ |LOList(𝛼)| and j ≤ |LOList(G))do
4: if(|vj − ti| ≤ 𝜖 and |vj − t′i | ≤ 𝜖 and xi + 𝛿 ≤ min(ti, vj) ≤
xi + Δ)then
5: add(xi,min(ti, vj),max(t′i , vj), t𝛼i ) into LOList(𝛽);
6: i + +;
7: j + +;
8: elseifvj > t′i then
9: i + +;
10: else
11: j + +;
12: endif
13: endwhile
14: returnLOList(𝛽);

M

After extracting LOList of episodes, the frequency of episodes could 
be computed. Algorithm 3 receives LOList of the episode 𝛼 and com-
putes its frequency. The correctness of this algorithm is proved by the 
following lemmas.

Lemma 14. Given the episode 𝛼, the first non-overlapped LO after a mini-
mal occurrence in LOList(𝛼) is a minimal occurrence.

Lemma 15. Given the episode 𝛼, the algorithm ComputeFreq (algorithm 
3) computes |OS etN (𝛼)| and its time complexity is O(|LOList(𝛼)|).

Algorithm 3 ComputeFreq

Input: LOList(𝛼) % 𝛼 is an episode % LoList(𝛼, i) = (xi, ti, t′i , t
𝛼
i )

Output: freq(𝛼)
1: i ← 1;
2: freq ← 0;
3: endT ← 0;
4: while (i ≤ |LOList(𝛼)|) do
5: if (t𝛼i ) ≥ endT then
6: freq + +;
7: endT ← t′i
8: end if
9: i + +
10: end while
11: return freq;

4.1.2. Closed episodes discovery
Mining frequent episodes might lead to extract a huge number of 

episodes. To improve the mining efficiency and avoid information loss, a 
compressed set of episodes, called closed episodes, is extracted (Tatti 
and Cule, 2012).

Definition 44. The episode 𝛼 is closed iff there is no episode such as 𝛽 
that 𝛼 ⊏ 𝛽  and freq(𝛼) = freq(𝛽) (Wang and Han, 2004).



Under gap constraints 𝛿 and Δ, in each occurrence of the episode 𝛼, 
there is not one occurrence for each sub-episode of 𝛼 necessarily (Achar et 
al., 2013). It could be proved that under gap constraints, in each 
occurrence of 𝛼, there is an occurrence for prefixes and suffixes of 𝛼. So 
if there is no other episode such as 𝛽 that 𝛼 is its prefix or suffix and 
freq(𝛼) =  freq(𝛽), then 𝛼 is a closed episode. In (Achar et al., 2013), a 
two-step approach is proposed to generate closed episodes under gap 
constraints. In the first step, candidate closed episodes are extracted. In 
the next step, candidate closed episodes are considered and closed 
episodes are determined by using a hashing procedure with the fre-
quency as the key (Yan et al., 2003). Based on this approach, we present 
Algorithms 4 and 5 to extract closed episodes by the complete traverse 
of the pattern tree in a depth-first way. At first, in line 2 of Algorithm 4, 
all the 1-node episodes (denoted by P) are extracted. Then, the pat-tern 
tree is traversed in a depth-first manner from each of the 1-node episodes 
using the recursive calls of the algorithm FindFreqEpisode (lines 5–6, 
Algorithm 4). Note that LOList(p) is the corresponding list of p in the 
vertical representation of the stream. The algorithm FindFreqEpisode 
(Algorithm 5) receives the threshold values 𝜃 and Level, the episode 𝛼 
and LOList(𝛼), forms the concurrent and serial extensions of 𝛼 (lines 6 and 
20, Algorithm 5) as the episode 𝛽 and computes LOList(𝛽) by calling 
SCMakeLOList and SSMakeLOList (lines 7 and 21, Algorithm 5). Then the 
NO frequency of 𝛽 is computed by calling ComputeFreq (lines 8 and 22, 
Algorithm 5). If fre(𝛽) is above the threshold c (computed based on 𝜃), the 
tree is traversed further down by calling FindFreqEpisode in lines 13 and 
27 recursively with 𝛽 and LOList(𝛽) as parameters. When the serial and 
the concurrent extensions of 𝛼 are constructed, it is checked (in lines 9 
and 23, Algorithm 5) whether any of the super patterns 𝛽 formed from 𝛼 
has the same frequency as 𝛼’s or not; if not, we add 𝛼 to the list of 
CandidateClosed (line 32, Algorithm 5). Note that to avoid enlarging the 
pattern tree, we could limit the number of CNGs of episodes. We define 
Level as the maximum number of CNGs of episodes. After extracting the 
final CandidateClosed, a post process-ing step is performed on 
CandidateClosed using a hashing procedure with the frequency as the key 
(line 8, Algorithm 4) (Yan et al., 2003). In this step, all the candidates 
with the same frequency are hashed to the same bucket in the hash table. 
Among the candidate episodes which are hashed to the same bucket, 
those episodes for which a super-episode with the same frequency is 
found, are discarded. Finally, a set of all the frequent closed episodes are 
extracted. Note that the episodes are represented in the form of SAVE to 
expedite the episode extraction.

Lemma 16. Given the episode 𝛼 = G′
1 → · · · → G′

k and (r, s) ∈  RS, the time 
complexity of SAVE and the matrix representation for the serial/concurrent 
extension of 𝛼 with (r, s) is O(1) and O(‖𝛼‖) respectively if the time 
complexity of duplicating the representation of 𝛼 is ignored.

Algorithm 4 AllEpisodes

Global Variables: CandidateClosed;
Input: 𝜃, Level % user-defined threshold, 0 ≤

𝜃 ≤ 1
Output: ClosedSet

1: CandidateClosed ← ∅;
2: P ← {x|x ∈ RS ∧ |LOList(x)| > 0};
3: Sort P Based on Order Defined on RS;
4: CandidateClosed ← CandidateClosed∪ P
5: for each (p ∈ P) do
6: FindFreqEpisode(𝜃,Level, p, LOList(p));
7: end for
8: ClosedSet ← CandidateProcessing(CandidateClosed)
9: return ClosedSet

4.1.3. Frequency threshold c
In the previous works such as (Mannila et al., 1997; Toma et al., 

2007; Laxman et al., 2008; Fahed et al., 2014; Achar et al., 2012a), the 
frequency threshold, to identify the frequent episodes, is a user-defined 
threshold which is selected statically. This might lead to lose some 
useful episodes for prediction. Since our main goal is prediction, the 
frequency threshold should be selected intelligently to avoid miss-ing 
episodes. For each episode 𝛼, we select c in Algorithm 5 based on the 
minimum of frequencies of its states. Therefore, if the minimum of 
frequencies of states of the episode 𝛼 is small, c is also small. For exam-
ple, assume 𝛼 = (CPU, Low) → (Memory, High), |LOList(CPU, Low)| = 40 
and |LOList(Memory, High), | = 100. For 𝛼, we  have  c = min(40,100) × 
𝜃 where 0 ≤ 𝜃 ≤ 1. Note that the coefficient 𝜃 is the user-defined thresh-
old which is selected statically.

Algorithm 5 FindFreqEpisode

Input: 𝜃, Level, 𝛼, LOList(𝛼); % The threshold c is computed
based on 𝜃.
Output: CandidateClosed

1: Flag ← True;
2: if (|𝛼.RArray| ≤ Level) then
3: F𝛼 ← ComputeFreq(LOList(𝛼));
4: Q ← CExt(𝛼);
5: for each (q ∈ Q) do
6: 𝛽 ← 𝛼 ⊙ q;
7: L ← SCMakeLOList(LOList(𝛼), LOList(q));
8: F ← ComputeFreq(L);
9: if (F = F𝛼) then
10: Flag ← False;
11: end if
12: if (F > c) then
13: FindFreqEpisode(𝜃,Level, 𝛽, L);
14: end if
15: end for
16: end if
17: if (|𝛼.RArray| < Level) then
18: Q ← SExt(𝛼);
19: for each (q ∈ Q) do
20: 𝛽 ← 𝛼 ⊕ q;
21: L ← SSMakeLOList(LOList(𝛼), LOList(q));
22: F ← ComputeFreq(L);
23: if (F = F𝛼 ) then
24: Flag ← False;
25: end if
26: if (F > c) then
27: FindFreqEpisode(𝜃,Level, 𝛽, L);
28: end if
29: end for
30: end if
31: if (Flag) then
32: add 𝛼 to CandidateClosed
33: end if

4.1.4. Maximum internal gap
One of the most important goals of cloud is to avoid the energy

and resource wasting. If the maximum internal gap, Δ, is big, there
are two problems: 1) the next time slot in which the future sta-
tus will occur, is not specified exactly. So resources might be allo-
cated to applications before the workload burstiness for a long time,
which leads to the resources and energy wasting. 2) Given the episode
𝛼 = G′

1 → G′
2 → · · · → G′

k, k ≥ 2, suppose [ti, t′i ] is the starting interval of
G′

i , 1 ≤ i ≤ k − 1. Since for each event e, we have Δe ≥ 𝜖 + 1, some sta-
tus might exist for resources in VI([ti, t′i ], i + 1). For example, as Fig. 13
shows two events with different status s and s′ are observed for the
resource r in VI([ti, t′i ], i + 1). Although the states (r, s) and (r, s′) could
be predicted by the extracted episodes, the episodes could not deter-



Fig. 13. The valid interval of VI([ti, t′i ], i + 1) of the episode 𝛼 = G′
1 → G′

2 → · · · → G′
k,

k ≥ 2,1 ≤ i ≤ k − 1 under gap constraints and the events observed for the resource r.

mine the order of observing the states. Since the future status of the
resources should be predicted precisely, Δ should be defined in a way
that at most one event for each resource could be observed. For this
purpose, as (4.1) implies Δ should be in the interval of [𝛿, 𝛿 + 𝜖]:

Δe ≥ 𝜖 + 1

VI([ti, t′i ], i + 1) = [t′i + 𝛿, t′i + Δ]

}
→

Δ − 𝛿 + 1
𝜖 + 1

≤ 1

→ Δ ≤ 𝛿 + 𝜖 → Δ ∈ [𝛿, 𝛿 + 𝜖] (4.1)

4.2. Observation extraction

As Fig. 2 shows, the recent behaviour of the application should be 
determined to predict the future behaviour based on extracted episodes.

Definition 45. An observation OB is a list of states which describe the 
recent status of resources allocated to the application. It satisfies three 
conditions below:

• The states of each entry of the list OB, OB[i], 1 ≤ i ≤ |OB| are corre-
sponding to events that are concurrent.

• The states of each entry are in ascending order based on the start
time of their corresponding events. The entries are in ascending
order based on the minimum start time of their events.

• There are at least two states in each two consecutive entries whose
corresponding events are not concurrent. The corresponding events
of states of each two consecutive entries satisfy the gap constraint
Δ.

Definition 46. Given the observation OB, |OB| = k, 1 ≤ i ≤ k, OB[i] =
xi

1 · · · xi
li and xi

l ∈ RS,1 ≤ l ≤ li, if ei
l is the corresponding event of xi

l, the
intersection of OB[i] and OB[j], 1 ≤ i < j ≤ k is defined as follows:

OB[i] ∩ OB[j] = {xi
p ∣ xi

p ∈ OB[i], 1 ≤ p ≤ li that

∀q, p ≤ q ≤ li, e
j
1.st − ei

q.st < 𝛿}

OB[j] ∩ OB[i] = {xj
p ∣ xj

p ∈ OB[j], 1 ≤ p ≤ lj that

∀q,1 ≤ q ≤ p, ej
q.st − ei

li .st < 𝛿}

Lemma 17. Given the observation OB that |OB| = k and 1 ≤ i < k, if
OB[i] ∩ OB[i + 1] ≠ ∅ then one of three occurrences below is possible:

1. The occurrence of the episode (OB[i] → OB[i + 1] − (OB[i + 1] ∩ OB[i]))
2. The occurrence of (OB[i + 1])
3. The occurrence of the episode (OB[i] − (OB[i ] ∩ OB[i + 1]) → states of

OB
[
i + 1

]
that satisfy the gap constraint 𝛿

)
Given the Observation OB that |OB| = k, it could be proved simply

that ∄i, j, 1 ≤ i, j ≤ k such that OB[i] ⊆ OB[j]. If the gap constraints 𝛿 and
Δ are satisfied, there also exists at least one serial relationship between
some states of each two consecutive entries.

Lemma 18. Given the observation OB and 1 ≤ k < u ≤ |OB|, if OB[k] ∩
OB[u] = m ≠ ∅ and OB[u] ∩ OB[k] = n ≠ ∅ then

1. m is in the last part of OB[k] and n is in the first part of OB[u].

2. ∀j, k + 1 ≤ j ≤ u − 1, OB[k] ∩ OB[j] ≠ ∅ and OB[j] ∩ OB[u] ≠ ∅.
3. For 𝜖 ≥ 2, a serial relationship might exist between OB[k + 1] and OB[u]. 

∀j, k + 2 ≤ j ≤ u − 1, there is no serial relationship between OB[j] and 
OB[u] that is not covered.
The algorithm ExtractObservation in section Appendix B.1, is pro-

posed to extract the observation from the recent history of the stream.

4.2.1. Consistent observation
To predict the future behaviour of applications, the most appropri-

ate episodes should be selected from among extracted episodes based 
on the last behavioural observation of applications. So the form of 
the last behavioural observation should be consistent with episodes’. 
Unlike episodes, it might be no serial relationship under gap constraints 
between each two consecutive entries of OB necessarily. So we define 
consistent observations.

Definition 47. Given the observation OB, an observation OB′ that 
OB′ ⊆ OB is a consistent observation of OB iff there is a serial relation 
under the gap constraints between each two consecutive entries.

Definition 48. If OB′ is a consistent observation of OB and there is no 
other consistent observation of OB such as OB″ that OB′ ⊂ OB″, then  
OB′ is the Longest Consistent Observation (LCO) of OB.

Algorithm 6 is a recursive function that extracts LCOs of the obser-
vation. It has three parameters Set, Suffix and Prefix. Set includes 
LCOs, Prefix includes the processed entries of the observation and Suf-
fix includes the entries that have not been processed yet. In the first 
call of the function, Set and Prefix are empty and Suffix includes the 
observation OB. In each call of the function, the first element of Suf-
fix is processed and is added into the end of Prefix. After extracting all 
LCOs, Suffix is empty and Prefix includes the observation completely. In
line 10 of the algorithm, Oj, 1 ≤ j ≤ |Prefix|, the first  entry of Prefix that 
intersects with Suffix[1] is found. The algorithm considers three cases:

1. The LCOs whose last element is OB[k], 1 ≤ k < j (line 13, Algo-
rithm 6): There is no intersection between these LCOs and Suffix[1]. 
Therefore, Suffix[1] is inserted in the end of these LCOs (line 14, 
Algorithm 6).

2. The LCOs whose last element is a subset of Oj (line 15, Algorithm 6): 
These LCOs could be extended by the concurrent states of Suffix[1]
(line 16, Algorithm 6).

3. The LCOs whose last element is Oj or Oj+1, which is the first entry 
after Oj (line 17, Algorithm 6): According to Lemma 18, if 𝜖 ≥ 2, 
then a serial relationship might exist between Oj+1 and Suffix[1]. In 
this case, according to Lemma 17, three occurrences could occur. So, 
the LCO is serially extended with the states of Suffix[1] that satisfy 
the gap constraints and two new LCOs are created (lines 18 to 25, 
Algorithm 6).
According to Lemma 18, the LCOs whose last element is Prefix[p], j +

1 < p ≤ |Prefix|, should not be considered. Note that in line 14 of Algo-
rithm 6, if  x[L] is Prefix[p], then there is no state in Suffix[1] that sat-
isfies the gap constraints with x[L]. So these  LCOs don’t change. The 
new generated LCOs are added into a temporary list, Bag, which is later 
emptied into Set on coming out of the loop (lines 21 and 25) (Laxman et 
al., 2005). In line 3, consistent observations that are the longest, are 
returned.

Table 2
The last events of the stream.

Resource Status Start Time

CPU Low 16
Disk Low 17
Memory High 18
CPU High 19
Network Medium 20



Example 10. Table 2 shows the recent events of the stream. Assume Δ =  𝛿 
= 3. Fig. 14 shows OBs and LCOs that are extracted from the stream (Table 
2) for different values of 𝜖. Note that since the span of the event (CPU, Low, 
16,19) is 3, then 𝜖 + 1 ≤ 3.

Lemma 19. Given the observation OB, |OB| = k and 1 ≤ i ≤ k, if T(i) is the 
number of LCOs that are extracted by processing OB[i], then we have:

{T(i) ≤ T(i − 1) + 2(F(OB[j]) + F(OB[j + 1])), if i > 1
T(i) = 1, if i = 1

(4.2)

where OB[j], 1 ≤ j < i, is the first element of OB that OB[j] ∩ OB[i] ≠ ∅, and 
F(OB[p]), 1 ≤ p ≤ k, is the number of extracted LCOs whose last element is 
OB[p].

Theorem 6. The algorithm ExtractLCO (Algorithm 6) extracts all LCOs 
from the observation OB.

Lemma 20. Given the observation OB that |OB| = T < Level, the time 
complexity of the algorithm ExtractLCO is O(T) in the best case and O(3T ) 
in the worst case.

Lemma 21. Given the observation OB that |OB| = T < Level, the number 
of LCOs extracted from OB by the algorithm ExtractLCO is 1 in the best case

and O(3 
T
2 ) in the worst case.

Algorithm 6 ExtractLCO

Input: Set,Prefix,Suffix;
Output: LCOs

1: Bag ← ∅;
2: if (suffix = ∅) then
3: return {x|x ∈ Set,∄y ∈ Set that x ⊆ y};
4: end if
5: if (set = ∅) then
6: Set← suffix [1]∪ Set;
7: Prefix← suffix [1];
8: ExtractLCO(Set,Prefix,Suffix[2‥|Suffix|]);
9: else
10: Oj ← The first element of Prefix which intersects with
Suffix[1];
11: for each (x ∈ Set) do
12: L ← |x|;
13: if (x[L]nsubeOj) then
14: x[L + 1] ← elements of Suffix[1] that satisfy the
gap constraints with x[L];
15: else if (x[L] ⊂ Oj) then
16: x[L] ← x[L]∪ elements of Suffix[1] that are
concurrent with x[L];
17: else if (x[L] = Oj or (𝜖 ≥ 2 and x[L] = Oj+1)) then
18: x[L + 1] ← elements of Suffix[1] that satisfy the
gap constraints with x[L];
19: y[1‥L − 1] ← x[1‥L − 1];
20: y[L] ← elements of Suffix[1] that satisfy the gap
constraints with y[L − 1];
21: add y to Bag;
22: z[1‥L − 1] ← x[1‥L − 1];
23: z[L] ← x[L] − (Oj ∩ suffix[1]);
24: z[L + 1] ← elements of Suffix[1] that satisfy the
gap constraints with z[L];
25: add z to Bag;
26: end if
27: end for
28: end if
29: Set ← Set ∪ Bag;
30: add Suffix[1] to the end of Prefix;
31: ExtractLCO(Set,Prefix, Suffix[2‥|Suffix|]);

5. Prediction model

In this section, the prediction module of POSITING is presented.
Firstly, criteria used to evaluate the selected episodes and data struc-
tures used by the prediction module are explained. Then, the main core
of the prediction module is presented.

5.1. Criteria for episode evaluation

To predict the future behaviour of the application precisely, we
should select the most appropriate episodes based on the recent
behaviour of the application. For this purpose, we should measure the
strength of the episodes in terms of appropriate criteria. Given the
episode 𝛼 = G′

1 → · · · → G′
k, we use two criteria to evaluate episodes:

1. MatchScore: It determines that how much the episode 𝛼 matches
the longest consistent observation LCO. If the episode includes more
states of LCO, it receives more MatchScore. The criterion MatchScore
is defined in (5.1) where Index is the index of the start of LCO in
𝛼. As we will explain in the following section, the selected episodes
should be consistent with LCO. If 𝛼 is also consistent with the recent
history before LCO, then Index > 1 and 𝛼 receives higher MatchScore.

MatchScore(𝛼) = |state ∈ (LCO ∩ 𝛼)||state ∈ LCO| + Index − 1|CNG𝛼| (5.1)

2. Confidence: it measures the reliability of the inference made by

ithe episode. For two sub-episodes 𝛾 = G′
1 → · · · → G′ and 𝛽 = 

Gi
′
+1 → · · · → G′

k where 1 ≤ i < k, Confidence could be interpreted
as the conditional probability of occurring 𝛽, having occurred 𝛾.
Confidence(𝛼) is computed as (5.2) (Mannila et al., 1997). It is
clear that freq(𝛼) ≤ freq(𝛾) based on Lemma 8. So higher Confidence 
implies that occurring 𝛽 after 𝛾 is more probable.

Confidence(𝛼) = freq(𝛼)
freq(𝛾)

(5.2)

5.2. Data structure

We introduce four data structures used by the prediction model. 
Fig. 15 shows the data structures Result, PredictionStep, Last  Event 
Group (LEG) and  ListFreq:

• LEG: It includes the most recent observed behaviour of resources.
The resources that are in the PrevSection are sampled in each time
slot. The EventSection includes events whose start time is in the inter-
val of [I1 − 1, I2 − 1]. I2 is the current time, t, and I1 = t − 𝜖. Since
the span of each event is at least 𝜖 + 1 and the start time of events,
st, is in the interval of [I1 − 1, I2 − 1], we have t ≤ st + 𝜖 + 1 ≤ t + 𝜖.
It means that status of resources that are in the EventSection, is
unchanged until the time slot t. So they are not sampled. Note
that EventSection ∩ Prev Section = ∅ and the union of two sections
includes the most recent events of all the resources. LEG will be
discussed in more detail in the following section.

• Result: It is composed of four parts: Outcome includes the predicted
status of all the resources. I1 and I2 determine the occurrence inter-
val of Outcome. Note that Outcome could start in each time slot of
the interval of [I1, I2]. To compute the precision of prediction, a LEG
that is the most consistent with Outcome is found in the interval of
[I1, I2]. For this purpose, Max is defined as the maximum percentage
of LEG resources that are consistent with Outcome.

• PredictionStep: It is a list of all the states that could occur in the
next time slot. The list includes possible states (Outcome) and their
information such as Confidence and MatchScore.

• ListFreq: It is a list of pairs of (Prefix, Freq) that maintains the fre-
quency (Freq) of sub-episodes (Prefix). The confidence of episodes is
computed based on this list.



Fig. 14. The observations (OB) and the longest consistent observations (LCOs) extracted from Table 2 for 𝜖 = 0,1,2.

Fig. 15. Data structures used by the prediction model of POSITING.

Lemma 22. The prediction should be performed in the  steps of  𝜖 + 1 time 
slots.

5.3. Main core of the prediction model

Algorithm 7 explains the main core of POSITING to predict the future 
behaviour of the applications. The algorithm has three global variables 
PredictionCount, CorrectCount and ResultTable. PredictionCount counts the 
number of predictions and CorrectCount counts the percent-age of 
resources that have been predicted correctly in each predic-tion slot. 
ResultTable is a list of the data structure Result. The  function  receives 
three threshold values 𝜃, Level and 𝜂 (to select episodes) and three 
parameters 𝛿, Δ and 𝜖 and predicts the future status of resources. T is the 
time slot in which the future behaviour of the application is predicted for 
the first time. t is the time slot in which prediction is per-formed for the 
first time. For prediction, we need to access the recent history of the 
stream. So, history defined in line 4 includes the recent history of the 
stream of the application. In each repeat of the while loop (lines 7 to 26) 
the future behaviour of the resources is predicted. In line 8, history is 
updated based on the new observed events. In line 9, LastObservation 
includes the most recent events of all the resources. LastPredicting 
determines the time slot in which the last prediction has been performed. 
Observation is found in line 12 and LCOs are extracted in line 13. In lines 
14 to 16, for extracted LCOs, the most appropri-ate episodes 
are selected for  the prediction.  The function Evaluating in line 17, 
evaluates the matched episodes and predicts the future behaviour. In 
lines 18 to 25, based on observed events, the matched episodes are 
pruned and the precision of the prediction is computed. If the prediction 
results derived by a matched episode is consistent with the future 
behaviour, the corresponding entry of the episode is
fill with ✽. Otherwise, the episode is omitted. In the following section, 
the functions EpisodeSelection, Evaluating, CreateLEG, UpdateHistory, 
ComputePrecision and UpdateMatchedEpisodes are explained in more 
detail.

Algorithm 7 Main Algorithm

Global Variables: PredictionCount ← 0; CorrectCount ← 0;
ResultTable: a list of Results
Input: 𝜃, Level, 𝜂, 𝛿,Δ, 𝜖;

1: PatternBase ← AllEpisodes(𝜃,Level);
2: LEG ← Null
3: t ← T − 𝛿; % T is the first time slot that is predicted, t is
the first time that prediction is performed (the current time)
4: history ← Null;
5: MatchedEpisodes ← Null;
6: ResultTable ← ∅
7: while (1) do
8: history ← UpdateHistory(history,LEG); % Observed
events are added into history
9: LastObservation ← FindLastObservation(); % It finds the
most recent events of resources
10: LastPredicting ← t; % It is the time that last prediction
has been performed
11: Set ← Null,Prefix ← Null;
12: Suffix ← ExtractObservation(history,Level);
13: ExtractLCO(Set,Prefix,Suffix);
14: for each (LCO in Set) do
15: MatchedEpisodes ← MatchedEpisodes ∪
EpisodeSelection(LCO,PatternBase);
16: end for
17: Evaluating(LastObservation,MatchedEpisodes, t, 𝜂);
18: LEG ← CreateLEG(LastObservation, true, LEG);
19: while (LEG.I1 ≤ LastPredicting) do
20: ComputePrecision(LEG);
21: UpdateMatchedEpisodes(LEG,MatchedEpisodes);
22: LEG ← CreateLEG(LastObservation, false, LEG);
23: end while
24: ComputePrecision(LEG);
25: UpdateMatchedEpisodes(LEG,MatchedEpisodes);
26: end while



Fig. 16. An example to select and evaluate episodes based on LCO.

1. Function EpisodeSelection: Based on two defined criteria, the most
appropriate episodes should be selected for prediction. We should 
select episodes that match LCO. For this purpose, the correspon-
dence between the entries of LCO and the episode should be con-
sidered. Since the main goal is to predict the future behaviour, two 
groups of episodes are selected: 1) the episodes that LCO is in their 
first part and 2) the episodes that LCO is in their middle part and 
their first part is consistent with the events observed before LCO. 
The function EpisodeSelection (Algorithm 9 in section Appendix B.2) 
is proposed to select these episodes. As Lemma 23 in Appendix A 
shows, SAVE expedites the episode selection in compared to the 
matrix representation.

Example 11. Fig. 16 shows LCO and ListFreq. Assume the last time of the 
starting interval of LCO is t′. Since  LCO is in the first part of the episode 
𝛽 and is in the middle part of the episode 𝛼 (suppose the history is 
consistent with (CPU, Very Low)(Memory, Low)), 𝛼 and 𝛽 are selected for 
the prediction. Note that 𝛼.I and 𝛽.I are the matching time of episodes 
with LCO. According to freq(𝛼), freq(𝛽) and ListFreq, the  Confidence and 
MatchScore of episodes are computed.

2. Function Evaluating: The  function Evaluating (see Algorithm 10
in section Appendix B.3) evaluates the matched episodes and predicts 
the future behaviour of the application. It receives the 
LastObservation, MatchedEpisodes, t that is the current time slot and 
the threshold value 𝜂 that is used to select the most confident 
episodes for prediction. If the future status of a resource cannot 
be predicted by selected episodes, the Most Recent Event (MRE) is  
extracted for prediction. MRE is the most recent events observed 
in history that match the events of LastObservation based on their 
span. The future status of each resource is predicted as the status 
which is spontaneously observed after MRE. If MRE is not found, 
the observed status of resources in LastObservation is considered as 
the future status. Finally, Result, which includes the predicted status 
of all the resources, is added into ResultTable.

Example 12. Consider the example 11 again. Based on Algorithm 10, 
the confidence of episodes in Fig. 16 and 𝜂 = 0.8, the next status of Disk 
would be Medium (Fig. 17a). Since the other resources are not predicted 
by the extracted episodes, their future status is predicted based on MRE. 
Assume the observed status of CPU, memory and network after MRE is 
Low, Low and High respectively. The data structure Result in Fig. 17b 
includes the future status of resources and shows their starting interval 
is in the interval of [t + 𝛿, t + Δ]  that t is the current time. Note that the 
initial value of Max is 0. It is updated while computing the precision of 
prediction.

3. Function CreateLEG: As it has been mentioned, LEG includes the
most recent events of resources. Pruning and updating the matched 
episodes and computing the precision of the predicted results are 
based on LEG. The EventSection includes events whose start time is in 
the interval of [I1 − 1, I2 − 1]. I2 is set to the current time, t, and  I1 = t 
− 𝜖. The  EventSection is a list with 𝜖 + 1 entries. Each entry i, 0 ≤ i ≤ 
𝜖 includes events with the start time I1 − 1 + i. Since  the  span of 
each event is at least 𝜖 + 1 and the start time of events, st, is in the 
interval of [I1 − 1, I2 − 1], we  have  t ≤ st + 𝜖 + 1 ≤ t + 𝜖. It means 
that status of resources that are in the EventSection, is  unchanged 
until the time slot t. So the corresponding resources of these events do 
not require sampling. On the other hand, based on Lemma 22, the step 
of the prediction is 𝜖 + 1. So, the next predic-tion is performed in the 
time slot t + 𝜖 + 1. So for this new pre-diction, we have I2 = t + 𝜖 + 
1 and I1 = t + 1. As it is observed in Algorithm 7, when the prediction 
is performed flag is true to call the function CreateLEG. When the flag 
is true (see Algorithm 11 in section Appendix B.4) all the resources 
are sampled. Note that when flag is false, it means that status of 
resources in EventSection is unchanged. So the only resources of 
PrevSection are sampled.

Example 13. Assume the current time slot is 19, 𝜖 = 0, 𝛿 = Δ = 1 and 𝜇 = 
3. So the next status of resources is predicted for time slot
20. LastObservation, which includes the last events of resources in the 
stream, is shown in Fig. 18. As  Fig. 18 shows, in the first call of the 
function CreateLEG, all the resources are sampled. So the current time 
slot is 20 now. Based on the status of sampled resources, LEG

Fig. 17. The predicted status of resources based on the LCO and 
extracted episodes in Fig. 16.



Fig. 18. An example to create LEG.

includes the updated last events of resources. LEG.EventSection includes
events whose start time is in the interval of [LEG.I1 − 1, LEG.I2 − 1] and
LEG.PrevtSection includes events whose start time is before LEG.I1 − 1.

4. Function UpdateHistory: The  function UpdateHistory (see Algo-
rithm 12 in section Appendix B.5) updates history based on LEG. In 
the first call of the function, the history is empty. So it is filled with 
the recent events of the stream. In the following calls, the end time of 
the most recent observed events is updated (events of 
LEG.EventSection) and the events are added into history. For  exam-
ple, all the events of LEG.EventSection in the example 13 are added 
into history.

5. Function ComputePrecision: The  function  ComputePrecision (see 
Algo-rithm 13 in section Appendix B.6) prunes the entries of 
ResultTable and updates two counters PredictionCount and 
CorrectCount, which are used to compute the precision of prediction. It 
considers the entries of ResultTable. Each  entry  of  ResultTable 
that has predicted the status of resources in the recent time slot is 
investigated. The function finds a LEG that is the most consistent with 
the predicted status of resources in the interval of [I1, I2]. Since one 
time slot has been observed, I1 of the entry increases by +1. If I1 > 
I2, it means  that the time interval predicted by the entry has 
passed. So one prediction has been performed and PredictionCount 
increases by +1. CorrectCount also increases by Max.

Example 14. Consider the example 13 again. Fig. 19 (a) shows the
corresponding entry of ResultTable that predicts the time slot 20. It pre-
dicts the status of CPU is Very Low, Memory is High, Disk is Medium and
Network is Very Low in the time slot 20. Since 𝛿 = Δ, there is one LEG in
the interval of [20, 20]. According to the observed status of resources
(LEG in Fig. 18), the status of all the resources except memory has been
predicted correctly. So as Fig. 19 (b) shows Max is set to 3

4 because
three resources are consistent with LEG. As Fig. 19 (c) shows, I1 of the
entry increases by +1. Since I1 > I2, it means that the time interval pre-
dicted by the entry has passed. So PredictionCount increases by +1 and
CorrectCount increases by Max. Since I1 > I2, this entry is removed from
ResultTable.

6. Function UpdateMatchedEpisodes: The function
UpdateMatchedEpisodes (see Algorithm 14 in section Appendix B.7)
investigates all the matched episodes. The first element after ✽ of the 
episodes that have predicted the recent time slot is considered. If 
this element is consistent with LEG (the observed events), it is
filled with ✽ and the matching time of the episodes is updated based 
on the start time of events of LEG. Finally, the episodes that
have been filled with ✽ completely, are removed.

Example 15. Assume Fig. 20 (a) shows episodes used to predict time 
slot 20 in example 14 and the last time of the starting interval of LCO

Fig. 19. Updating an entry of ResultTable that predicts the time slot 20.

is 18. Note that the first part of the episodes that match LCO is ignored 
(shaded rectangles). 𝛼 and 𝛽 predict the status of Memory and Disk is Low 
and Medium respectively in the time slot 20 (the first element
after ✽ in 𝛼 and 𝛽 is (Memory, Low) and (Disk, Medium) respectively). 
According to LEG in Fig. 18, 𝛼 does not predict the status of memory 
correctly. So it is removed from MatchedEpisodes in the next call of the 
function Evaluating (Fig. 20(b)). The prediction result of 𝛽 is consistent 
with LEG. As Fig. 20(c) shows the corresponding entry of predicted
result is filled with ✽ and the matching time of 𝛽 (𝛽.I) is updated based 
on the maximum of the start time of events of LEG.

6. Evaluation

In this section, we provide a comprehensive evaluation of POSIT-ING. 
The prediction precision of POSITING and the effect of the most 
important parameters on the episodes extraction are considered in this 
section. In the field of pattern mining, two types of data sets are used for 
evaluation: real data sets and the synthetic data generated by embed-
ding specific patterns in noise. So we evaluate POSITING on the real and 
synthetic workloads. There are some parameters for POSITING: 𝛿, Δ, 𝜖, 𝜇, 
Level, 𝜃 and 𝜂. The parameters setting for the evaluation of POSITING is 
as follows:

• Δ and 𝛿: POSITING is compared to the state-of-the-art predictors 
such as SMA (Simple Moving Average), LR, NN and HPA. Since 
these methods predict the status of resources in one certain time 
slot, we have to set 𝛿 = Δ  to provide the comparable results. The 
values of 𝛿 depend on the time spent on booting VMs.

• 𝜖: As it has been mentioned, 𝜖 should be determined based on the 
length of sampling intervals. According to our consideration, in most 
of the real workloads such as Grid Workloads Archive (Iosup et al., 
2008) and Google traces (Alam et al., 2015), the resources are sam-
pled every 5 min for each VM. Since the traces are coarse-grained,



Fig. 20. Updating episodes of MatchedEpisodes that predicts
the time slot 20.

we set 𝜖 = 0 in all experiments.
• 𝜇: For smooth workloads, the small values of 𝜇 might lead to gener-

ate many events, which could increase the duration of the training
phase (episodes extraction). On the other hand, the large values of 𝜇
might lead to the inability to extract all the hidden useful episodes.
We consider the impact of 𝜇 on the training phase of POSITING for
both real and synthetic workloads.

• 𝜃: It is a threshold value that is used to extract the frequent episodes.
It is clear that the small values of 𝜃 might lead to identify the
huge number of episodes, which might be very time consuming.
On the other hand, the large values of 𝜃 could lead to loss the use-
ful episodes for prediction. The impact of 𝜃 on the training phase is
evaluated on both real and synthetic workloads.

• Level: To avoid enlarging the pattern tree, Level limits the length of
episodes. However, a larger value of Level could lead to extract more
useful episodes. So we choose the mediocre value 6 for it in all the
experiments.

• 𝜂: The episodes are selected for the prediction based on 𝜂. The value
of 𝜂 should be selected in a way that an appropriate confident sub-
set of episodes is used for prediction. The small values of 𝜂 cause
many episodes with low confidence to be used for prediction. It
could decrease the prediction precision. On the other hand, the large
values of 𝜂 cause less episodes to be used for prediction and the
future behaviour to be predicted based on MRE frequently. There-
fore an appropriate value for 𝜂 could provide more reliable results.
The impact of 𝜂 on the prediction precision is evaluated on both real
and synthetic workloads.

According to the effective utilization reported for resources in some
literature such as (Xi et al., 2015; Utilization), we define the abstraction 
alphabet as Table 3. Note that this alphabet is not unique and more/less 
abstract values could be defined. Furthermore, without loss of general-
ity, the abstraction alphabet could be defined for each resource exclu-
sively.

POSITING is compared with the state-of-the-art methods such as 
NN, SMA, LR and HPA. These methods are based on the sliding win-dow. 
Fig. 21a shows the structure of the sliding window. If the current time 
slot is t and the length of the sliding window is h > 0, each entry xij, 1 ≤ i 
≤ N, t − 1 ≤ j ≤ t − h of the window is the status of the resource Ri in the 
time slot j. Based on the sliding window, each method is imple-mented 
as follows:

• NN: In most of the literature such as (Jiang et al., 2013; Islam et al., 
2012; Amiri et al., 2016), the typical three-layer neural network is 
used for prediction. The neurons of the input layer take the infor-

mation of the sliding window as input variables and nodes of the 
output layer predict the future status of resources. So as Fig. 21b 
shows, the number of the nodes of the input and the output layers is 
h × N and N respectively. The length of the sliding window (h) and  
the number of nodes in the hidden layer (Nodes) are  two  effective  
parameters of NNs that should be selected carefully. To select the
parameters, for each pair of (h, Nodes), the average precision of 5 
runs of NN is considered.

• SMA: In much literature such as (Jiang et al., 2013; Vazquez et al., 
2015), SMA is used as a naive predictor for evaluation. For the cur-
rent time slot t and the resource Ri, 1 ≤ i ≤ N, SMA predicts the next

status of Ri based on the sliding window as xit =
∑h

j=1 xi(t−j)

h .
• LR: Yang et al. in (Yang et al., 2014a) propose a linear regression 

model to predict the workload. According to the workload fluctua-
tions in the sliding window, their method adjusts itself through the re-
computation of parameters of the regression model. The authors show 
their method provides more reliable results than common regression 
based methods. The readers can refer to (Yang et al., 2014a) for more 
detail.

• HPA: Jiang et al. in (Jiang et al., 2013) propose a hybrid approach for 
the future demand prediction of VMs and the capacity planning. 
They use several prediction models to predict the future workload. 
The results predicted by different methods are merged by a weighted 
linear combination strategy. The initial weights of predictors are 
equal. According to the prediction error of the methods, the weights 
are updated. To implement this method, we use SMA, NN and LR as 
predictors. The readers could refer to (Jiang et al., 2013) for more 
detail.
Since the parameters have a significant effect on the prediction

results of the predictors (Amiri and Mohammad-Khanli, 2017), each 
method is evaluated by using different values of its parameters. For 
SMA and AR, the length of the sliding window and for NN, the num-ber 
of nodes in the hidden layer and the length of the sliding window are 
considered. Note that these methods receive the numerical time series 
and predict the future status of resources as numeral. To com-pare 
POSITING with these methods, the final results predicted by the 
predictors are converted into the abstract values by using a simple map-
ping function.

In both real and synthetic workloads, without loss of generality, we 
assume that each application is encapsulated inside one VM as it is 
reported in much literature such as (Jiang et al., 2013; Garg et al., 2014; 
Jheng et al., 2014). The trace of each VM is considered for one month. 
For each VM, the stream is constructed on the first 15 days of

Table 3
The abstraction alphabet for the abstraction representation.

abstract value Very Low Low Medium High

range [0,20%) [20%,50%) [50%,80%) [80%,1]



Fig. 21. The structure of the sliding window and NN.

the month. The closed episodes are extracted from the stream by calling
algorithm 4. In the last 15 days of the month, the future behaviour of
the application is predicted by calling algorithm 7. Note that when the
prediction is performed, counters CorrectCount and PredictionCount are
updated based on the predicted results. Finally, the final precision of
POSITING is computed as follows:

Precision = CorrectCount
PredictionCount

(6.1)

As it has been mentioned, the time it takes to instantiate a new VM 
instance is about 5–15 min. On the other hand, VMs are sampled every 5 
min. So three values 1,2 and 3 are evaluated for 𝛿.

6.1. Real workload

Remarkably few workload traces are publicly available. It could 
also be observed that few traces include information about requested 
resources, and rarely include network and disk information (Shen et 
al., 2015). The data set GWA-T-12 Bitbrains2 contains the performance 
metrics of 1750 VMs from a distributed data center from Bitbrains, 
which is a service provider that specializes in managed hosting and 
business computation for enterprises. The examples of customers are 
many major banks, credit card operators and insurers. Bitbrains hosts 
the applications used in the solvency domain.

The workload traces are corresponding to requested and actually used 
resources in a distributed data center servicing business-critical 
workloads. The data set focuses on four key types of resources, which 
can become bottlenecks for business-critical applications: CPU, disk I/O, 
memory and network I/O. In general, Bitbrains hosts three types of VMs: 
management servers, application servers, and compute nodes. 
Management servers are used for the daily operation of the customer 
environments such as firewalls. Database servers, web servers, and head-
nodes (for compute clusters) are classified as the application servers. 
Compute nodes are mainly used to do simulation and compute-intensive 
computations, such as Monte-Carlo based financial risk assess-ment (Shen 
et al., 2015).

For each VM, the performance metrics are sampled every 5 min. 
The traces include data for 1750 nodes, with over 5000 cores and 
20 TB of memory, and operationally include over 5 million CPU hours 
in 4 operational months. So they are long-term and large-scale time 
series. Table 4 shows the performance metrics reported for each VM. 
The resource utilization is the fraction of the used resource that is allo-
cated to a VM (Kaur and Chana, 2014). Before the stream construction, 
the utilization of resources should be extracted from the traces. Accord-
ing to Table 4, for each time slot t, we compute the resources utilization 
as follows:

• The traces include the CPU utilization (CPUU).
• The memory utilization is computed as MemU

MemP

2 These traces can be accessed at http://gwa.ewi.tudelft.nl/datasets/Bitbrains.

Table 4
The performance metrics and their corresponding symbols of traces
in GWA-T-12.

No Metric Symbol

1 time stamp t
2 CPU core CPUCo
3 CPU capacity CPUCa
4 CPU usage (in terms of MHZ) CPUUM
5 CPU usage (in terms of percentage) CPUU
6 memory provisioned MemP
7 memory used MemU
8 disk read throughput DiskRT
9 disk write throughput DiskWT
10 network received throughput NetRT
11 network transmitted throughput NetTT

• Since the usage of the disk is defined as the sum of the read through-
put and the write throughput (VMware), we define the disk utiliza-
tion as DiskRT+DiskWT

X , where X is the maximum of observed usage of
the disk.

• Since the usage of the network is defined as the sum of the received 
throughput and the transmitted throughput (VMware), we define
the network utilization as NetRT+NetTT

Y , where Y is the maximum of
observed usage of the network.

6.1.1. Impact of parameters 𝜃, 𝜇 and 𝜂

One VM, called VMR, is selected randomly from GWA-T-12 to eval-
uate the impact of parameters 𝜃, 𝜇 and 𝜂:

• Impact of 𝜃: Table 5 shows the impact of 𝜃 on the training phase of 
VMR for 𝜇 = 3 and different values of 𝛿: the number of episodes, 
candidate closed and closed episodes and time consumed (in sec-onds) 
to extract the closed episodes. As Table 5 shows, the small values of 𝜃 
increase the number of extracted episodes (and closed episodes) and 
the processing time to extract these episodes.
Note that the number of closed episodes is much fewer than episodes’. 
Since the number of the candidate closed episodes for small values of 
𝜃 increases, the efficiency of the hash table based method used to 
identify the closed episodes decreases. In the future work, we will 
focus on presenting a novel efficient method to extract closed 
episodes directly. Although the small values of 𝜃 might lead to extract 
useful episodes that could predict the infrequent behaviour of the 
application, the training phase needs more time. So 𝜃 should be 
selected in way that there should be a trade-off between the pro-
cessing time (to extract the closed episodes) and the prediction pre-
cision.

• Impact of 𝜇: To evaluate the impact of 𝜇, we set 𝜃 = 0.1. Since 𝜇 ≥ 
max(2𝜖 + 1, 𝜖  + 2) and 𝜖 = 0, then we have 𝜇 ≥ 2. Since the parameter 
𝜇 shows similar behaviour for different values of 𝛿, we  show the 
results only for one of them (𝛿 = 3). Table 6 shows the impact of 𝜇 in 
the interval of [2, 10] on the training phase of

http://gwa.ewi.tudelft.nl/datasets/Bitbrains


Table 5
Impact of 𝜃 on the training phase of POSITING for VMR (𝜇 = 3).

𝛿 𝜃 |Episodes| |CandidateClosedEpisodes| |ClosedEpisodes| Time(s)

1 0.1 3826 1774 247 26.1
0.2 1214 577 133 15
0.3 203 125 80 7.6
0.4 101 78 56 7.1
0.5 50 40 35 2.9
0.6 28 23 22 2.6
0.7 23 20 19 2.6
0.8 20 17 16 2
0.9 11 10 10 0.89
1 11 10 10 0.88

2 0.1 4372 2080 261 47.6
0.2 611 341 136 9.1
0.3 96 76 64 3.8
0.4 55 51 47 3.6
0.5 33 30 27 1.6
0.6 18 17 17 1.5
0.7 17 16 16 1.5
0.8 13 16 13 1.4
0.9 10 10 10 0.9
1 10 10 10 0.9

3 0.1 40290 21174 435 210.4
0.2 10283 4825 176 40.4
0.3 6920 3149 84 24.3
0.4 4525 2051 53 16.5
0.5 4404 1988 41 14.1
0.6 38 22 3 1.8
0.7 18 18 18 1.7
0.8 16 16 16 1.7
0.9 14 14 14 1.7
1 10 10 10 0.9

POSITING. Since the real workloads are almost smooth, it is clear
that as 𝜇 increases, the span of events increases and the number of
events decreases subsequently. So the number of episodes decreases
as 𝜇 increases. It seems that for 𝜇 = 3, in addition to the tolerable
training time, the behavioural patterns of the workloads are also
extracted.

• Impact of 𝜂: To evaluate the impact of 𝜂 on the prediction preci-sion 
of VMR, the parameters 𝜃 and 𝜇 should be determined. Since the 
main goal of cloud is to avoid SLA violation and QoS dropping, the 
small values of 𝜃 could extract the useful episodes to predict the rare 
behaviour of the application. Therefore we set 𝜃 = 0.1 and 𝜇 = 3. Fig. 
22 shows the impact of 𝜂 for different values of 𝛿 on the

Table 6
Impact of 𝜇 on the training phase of POSITING for VMR (𝜃 = 0.1 and 𝛿 = 3).

𝜇 |Episodes| |CandidateClosedEpisodes| |ClosedEpisodes| Time(s)

2 130980 62917 861 884.2
3 40290 21174 435 210.4
4 2061 1211 161 9.5
5 2662 1387 135 11.6
6 1061 724 111 5.6
7 793 456 105 3.9
8 778 441 93 3.4
9 576 371 89 2.9
10 592 352 89 2.8

Fig. 22. Impact of 𝜂 on the prediction precision of VMR
for 𝛿 = 1,2,3 and 𝜃 = 0.1.



Fig. 23. The impact of the length of the sliding window (h)
on the precision of the methods to predict the real work-
loads for different values of 𝛿.

prediction precision of POSITING. 𝜂 = 0 means that all the closed
episodes, regardless of their confidence, are used for prediction. As
𝜂 increases a confident sub-set of closed episodes are used for predic-
tion. Since the workload variations of VMs in GWA-T-12 are smooth,
there is no significant change in the precision for 𝜂 ≥ 0.1.

6.1.2. Experimental results
We select 200 VMs from GWA-T-12 randomly using a uniform distri-

bution. To provide a fair comparison between POSITING and the other 
predictors, the parameters of NN, LR, SMA and HPA should also be 
determined carefully. The common parameter of all the methods is the 
length of the sliding window. For NN, the best number of nodes for the 
hidden layer is also found. Fig. 23 shows the impact of the length of the 
sliding window (h) on the methods for different values of 𝛿. Note that  
since the workload variations of VMs in GWA-T-12 are smooth, there is 
no significant changes in the precision for different values of h. In the

evaluation of the synthetic workloads, the significant influence of h on 
the prediction results will be shown. To compare POSITING with the 
other methods, we consider the average precision of results predicted by 
different methods on 200 VMs. According to the impact of 𝜃 and 𝜇 in 
Tables 5 and 6 and 𝜂 in Fig. 22, we set 𝜃 = 0.1, 𝜇 = 3 and  𝜂 = 0.8. Fig. 
24 shows the average precision of POSITING, NN, SMA, LR and HPA on 
the predicted results of 200 VMs for different values of 𝛿. As  it is shown 
in Fig. 24, all the methods provide the reliable results and their precision 
is more than 0.96. POSITING, NN and HPA provide the most accurate 
results. LR has the smallest precision in compared to the other methods.

The other public workload traces such as Google workload data 
set (Reiss et al., 2012), include only CPU and memory characteris-
tics (Shen et al., 2015). The evaluation results in (Shen et al., 2015) 
show the business-critical workloads are more dynamic than the other 
classes of hosted workloads. For example, according to results reported



Fig. 24. The average precision of POSITING, NN,
SMA, LR and HPA on the predicted results of 200
VMs.

Fig. 25. The schema of the synthetic workload generator.

in (Shen et al., 2015), the actual workload of the Google trace is rela-
tively stable, whereas the results indicate that CPU and memory work-
loads of GWA-T-12 Bitbrains are very unpredictable for business-critical 
applications. As Fig. 24 shows POSITING and the other methods could 
predict the future status of resources accurately. Since the workloads of 
GWA-T-12 is more dynamic than the other public workloads, it is clear 
that similar results would be achieved for the other public workloads 
to evaluate POSITING and the other predictors. Therefore, we generate 
the synthetic workloads with episodes embedded in noise and compare 
POSITING with the other predictors.

6.2. Synthetic workload

In the field of the pattern mining, to evaluate the effectiveness and 
efficiency of the algorithms, extensive experiments are performed on 
both synthetic and real data sets (Laxman et al., 2005; Laxman, 2006; 
Achar et al., 2012b). The main goal of the experiments presented in this 
section is to empirically demonstrate the advantage of POSITING to 
extract the hidden patterns and predict the future behaviour.

In a similar way to the real workloads, the synthetic workloads are 
generated for one month with the sampling intervals of 5 min. So there 
are 8640 time slots for each generated trace. The synthetic workload 
generator used in this paper is similar to the data generator employed in 
(Achar et al., 2012b). Fig. 25 shows the general schema of the synthetic

Table 8
The evaluated values of the window length (h) and the number of
nodes in the hidden layer (Nodes).

The Length of Window (h) The number of Nodes (Nodes)

4 8,10,16,24,32
6 12,18,26,32,40,48
8 16,26,36,46,56,64
10 20,30,40,50,60,70,80

workload generator:

• In the first phase, based on the defined ResourceType and Status, the 
episode generator generates the episodes such as 𝛼 that are embed-
ded in the stream. For each episode 𝛼, it receives |CNG𝛼 | and gen-
erates 𝛼 randomly in a way that 𝛼 is consistent with the principles 
defined in the paper.

• At first, the stream has 8640 empty time slots. The stream gener-ator 
receives the generated episodes. In a similar way to (Achar et al., 
2012b), the list of non-overlapped occurrences of the episodes is 
generated based on the parameters 𝜖 and 𝜎, where 𝜎 is the gap 
between each two consecutive CNGs. The time between the end of an 
occurrence and the start of the next occurrence of the episodes is 
distributed geometrically with a parameter that is generated by

Table 7
The types of synthetic workloads and their embedded episodes.

Embedded episodes Type of the synthetic workload Parameters of the episode

𝛼 ∶ (Memory, Low)(Disk,Verylow) →
(CPU, Low)(Network,High)

SWT1𝜎1 𝜎 = 1, 𝜖 = 0

SWT1𝜎2 𝜎 = 2, 𝜖 = 0
SWT1𝜎3 𝜎 = 3, 𝜖 = 0

𝛽 ∶ (CPU, Low)(Network, Low) →
(Memory,High), (Disk,Medium) →
(CPU,High), (Network,Medium)

SWT2𝜎1 𝜎 = 1, 𝜖 = 0

SWT2𝜎2 𝜎 = 2, 𝜖 = 0
SWT2𝜎3 𝜎 = 3, 𝜖 = 0

𝛼 ∶ (Memory, Low)(Disk,Verylow) →
(CPU, Low)(Network,High)𝛽 ∶
(CPU, Low)(Network, Low) →
(Memory,High), (Disk,Medium) →
(CPU,High), (Network,Medium)

SWT3𝜎1 𝜎 = 1, 𝜖 = 0

SWT3𝜎2 𝜎 = 2, 𝜖 = 0
SWT3𝜎3 𝜎 = 3, 𝜖 = 0



Fig. 26. The impact of h and Nodes on the
precision of NN for TraceR′ .

using a uniform distribution randomly. After filling the stream with
the episodes based on their occurrence lists, the empty slots of the
stream is filled with noise, which is the events that are generated
randomly based on ResourceType and Status. We have to ignore
detail due to space limitation. Note that the synthetic stream is com-
pletely consistent with the principles defined in the paper.

• Although the constructed stream is the input of POSITING, the input 
of NN, SMA, LR and HPA is the numerical time series. Therefore, for 
each resource, the abstract value observed in each time slot of the 
stream is mapped to a numeric value based on its range randomly. 
Finally, the stream is converted into N numeric time series where 
N = |ResourceType|.
Most of the literature in the field of episode mining such as (Laxman

2

et al., 2005; Laxman, 2006; Achar et al., 2012b) generate two types of 
synthetic data sets with embedding separately episodes with different 
length. We also generate two episodes 𝛼 and 𝛽 where |CNG𝛼 | = 2 and  |
CNG𝛽 | = 3 using the episode generator. Table 7 shows the types of the 
generated synthetic workloads and their corresponding embedded 
episodes. To present a more comprehensive evaluation, we generate 
SWT3 in which both the episodes 𝛼 and 𝛽 are embedded. Since the valid 
values of 𝛿 could be 1, 2 or 3, we also set these values for 𝜎 to evaluate the 
ability of POSITING to extract episodes under different values of 𝛿. So, 
for each type of workloads, three experiments with different values of 𝛿 
are conducted. To avoid chance results, three different traces are 
generated for each type of workloads. The trace k of the workload type i 
(SWTi) with  𝜎 = j is called SWTi𝜎jNk. Therefore, totally 81 experiments 
are conducted on the synthetic workloads. Note that due to the length of 
the sampling intervals, 𝜖 is set to 0 in all experiments.

6.2.1. Impact of Nodes and h on the predictors
In a similar way to the real workloads, POSITING is compared with NN, 

SMA, LR and HPA. To demonstrate the influence of parameters on
the precision of these methods, we select one trace (TraceR′) from 27 
generated traces randomly. The length of the sliding window (h) and the 
number of nodes in the hidden layer (Nodes) are two important param-
eters of NN. The valid interval of Nodes is usually defined as [ Oi , 2 × Oi]where Oi is the number of nodes in the input layer of NN (Kaastra and 
Boyd, 1996; Wang, 1994). According to Table 8, we consider values 4, 
6, 8 and 10 for h. For each value of h, based on the valid interval, some 
values for Nodes are evaluated. As Fig. 26 shows, h and Nodes have the
significant influence on the precision of NN for TraceR′ . Fig. 27 shows the 
impact of h on the precision of SMA, LR and HPA. So to provide a fair 
comparison, the best parameters are determined for NN, SMA, LR and 
HPA in all the experiments.

6.2.2. Impact of parameters 𝜃, 𝜇 and 𝜂
In this section, the impact of three parameters 𝜃, 𝜇 and 𝜂 on the num-ber 

of episodes, the processing time and the precision of POSITING is

considered. We select the traces from different types of workloads ran-
domly and compare the time consumed to extract the closed episodes of 
POSITING with time consumed to train NN for these traces.

As Table 9 shows, for each workload type, we select one trace from 
different types of workloads randomly. For each trace, the best struc-ture 
of NN should be determined by evaluating different values of h and 
Nodes. We consider the sum of the time consumed to select the parameters 
of NN as the training time of NN.

To investigate the impact of 𝜃, 𝜇 is set to 3. For different values of 𝜃, Table 
10 shows the number of episodes, candidate closed and closed episodes and 
the total processing time of POSITING (TimeP). The table also includes the 
training time of NN (TimeNN). According to Table 10, as 𝜃 increases the 
number of episodes, candidate closed episodes and closed episodes 
decreases. Subsequently, the time required to extract the episodes decreases. 
It is clear that smaller values of 𝜃 could extract the useful episodes that 
predict the rare behaviour of the application. As Table 10 shows the time 
required to extract episodes with 𝜃 = 0.1 is less than the time consumed for 
the parameter setting and training of NN in all the traces.

To evaluate the impact of 𝜇, we set  𝜃 = 0.1. Since 𝜇 ≥ max(2𝜖 + 1, 𝜖 
+ 2) and 𝜖 = 0, then we have 𝜇 ≥ 2. Table 11 shows the impact of 𝜇 in the 
interval of [2, 10] on the training phase of POSITING. Unlike the smooth 
workloads, there is no clear behaviour of the impact of 𝜇 on the selected 
traces. The increase of 𝜇 does not show clear behaviour on the training 
phase of TraceA. On the other hand, for 𝜇 ≥ 3, there is no significant 
change on the training phase of TraceB. For 𝜇 ≥ 8, there is no significant 
change on the training phase of TraceC. As Table 11 shows, for all the 
types of the synthetic workloads, 𝜇 = 3 could extract  the behavioural 
patterns of the workloads in the tolerable training time.
So according to Tables 11 and 12, 𝜇 = 3 is a good choice for both real and 
synthetic workloads.

Fig. 28 shows the impact of 𝜂 on the precision of POSITING for 𝜃 = 0.1 
and 𝜇 = 3. As 𝜂 decreases, the precision also decreases because more 
unreliable episodes are used for prediction regardless of their con-
fidence. On the other hand, as 𝜂 increases more confident episodes are 
used for prediction. It might also cause the future behaviour to be pre-
dicted based on MRE frequently. As Fig. 28 shows, it seems that 𝜂 = 0.8 is 
a good choice for all the traces.

Table 12 includes the best structure found for NN, the precision of 
POSITING (with 𝜃 = 0.1, 𝜇 = 3 and 𝜂 = 0.8) and the best precision of NN. 
According to Tables 10 and 12, POSITING provides more precise results 
with less time to extract episodes in compared to NN. According to our 
experiment results, the time that POSITING takes to predict each time 
slot is almost 60 ms.3 So it is appropriate for prediction due to the real-
time nature of the cloud environment.

3 All of the experiments run on a machine with an Intel Core 2 Duo 2.53 GHz processor 

and 4 GB of RAM.



Fig. 27. The impact of h on the precision of SMA, LR and HAP for TraceR′ .

Table 9
The traces selected from different types of workloads.

Name Type of synthetic workload 𝛿

TraceA SWT1𝜎1 𝛿 = 3
TraceB SWT2𝜎1 𝛿 = 1
TraceC SWT3𝜎1 𝛿 = 2

6.2.3. Experimental results
As it has been mentioned, for each workload type, three traces are 

generated. Due to space limitation, we report the average precision of 
three traces for each workload type. According to the experiment results 
in the previous section, we set 𝜃 = 0.1, 𝜇 = 3 and 𝜂 = 0.8.
Synthetic Workloads of Type 1 (SWT1): As Table 7 shows, the episode 

𝛼 is embedded with 𝜎 = 1, 2, 3 in this type of workloads. For

each workload type of this group, we evaluate the prediction precision 
for different values of 𝛿. Fig. 29 compares the precision of POSITING 
with the other methods’ for 𝛼 embedded with different values of 𝜎 and 
valid values of 𝛿. As it is shown  in Fig. 29, POSITING outperforms the 
other methods to predict the future behaviour of resources for different 
values of 𝛿. It is clear that due to simplicity of SMA and LR, they cannot 
model the dynamic behaviour of the workloads. The results also show 
that NN cannot model the application behaviour very well for 𝛿 = 2 and
3. HPA is a hybrid approach that weak predictors such as SMA and LR 
causes its results to be worse than NN. Note that all the methods 
provide their most precise results when 𝛿 is equal to 𝜎. However, 
POSITING also provides good results when 𝜎 ≠ 𝛿.

Synthetic Workloads of Type 2 (SWT2): According to Table 7, the
episode 𝛽 is embedded with 𝜎 = 1, 2, 3 in this type of workloads. The 
precision of POSITING with the other methods’ is compared in Fig. 30

Table 10
The impact of 𝜃 on POSITING and NN for the synthetic workloads of different types (𝜇 = 3).

Trace TimeNN(s) 𝜃 |Episodes| |CandidateClosedEpisodes| |ClosedEpisodes| TimeP(s)

TraceA 9856 0.1 169511 127195 42 6716.508
0.2 4623 3836 158 234.527
0.3 514 417 79 45.158
0.4 391 321 70 25.796
0.5 49 44 24 5.85
0.6 40 36 21 5.396
0.7 40 36 21 5.399
0.8 40 36 21 5.325
0.9 22 18 12 3.759
1 9 8 7 1.53

TraceB 16537 0.1 743676 473002 298 15667
0.2 681603 435283 279 12232.903
0.3 44972 28290 119 1779.56
0.4 38526 23500 89 1577.375
0.5 196 167 25 15.539
0.6 69 60 14 7.538
0.7 60 54 10 6.289
0.8 60 54 10 6.239
0.9 60 54 10 6.32
1 58 52 8 6.094

TraceC 36785 0.1 120647 69262 1134 650.4
0.2 8344 5040 493 118.426
0.3 1730 1163 245 32.29
0.4 349 286 115 9.212
0.5 162 135 67 5.479
0.6 84 67 46 3.383
0.7 58 45 34 2.677
0.8 39 32 26 2.262
0.9 29 24 20 1.824
1 23 19 16 1.566



Table 11
Impact of 𝜇 on the training phase of POSITING for TraceA, TraceB and Tracec (𝜃 = 0.1).

Trace 𝜇 |Episodes| |CandidateClosedEpisodes| |ClosedEpisodes| Time(s)

TraceA 2 135477 109218 1782 5027.755
3 169511 127195 442 6716.508
4 98293 77649 1154 3401.059
5 105317 88275 891 3453.204
6 107382 87118 903 3865.474
7 98142 78100 886 2899.272
8 101336 80229 966 2967.372
9 106493 85118 891 3177.512
10 113295 92323 819 3513.268

TraceB 2 3248758 1745792 113563 30468.63
3 743676 473002 298 15667
4 743676 473002 298 15684.232
5 743676 473002 296 15407.071
6 743676 473002 292 15289.511
7 743676 473002 292 15258.174
8 743676 473002 292 15274.727
9 743676 473002 292 15286.739
10 743676 473002 292 15279.727

TraceC 2 459717 295821 62920 3754.895
3 120647 69262 1134 650.4
4 8912 5948 444 68.01
5 18786 11895 499 165.179
6 1388 1062 252 22.666
7 1140 881 188 17.645
8 1118 866 174 17.189
9 1118 866 174 15.848
10 1118 866 174 15.071

for different values of 𝛿 and 𝜎. Fig. 30 shows the prediction results of 
POSITING is comparable with NN’s. For 𝛿 = 1, POSITING outper-forms 
NN significantly. For 𝛿 = 2 and 3, results of POSITING are similar to 
NN’s. For different values of 𝛿, SMA and LR  provide  similar  weak 
results. So HPA cannot provide the good prediction results. Unlike the 
other predictors, POSITING could provide the reliable results for differ-
ent values of 𝛿.

Synthetic Workloads of Type 3 (SWT3): In this type of workloads, 
two episodes 𝛼 and 𝛽 are embedded with 𝜎 = 1, 2, 3. Fig. 31 shows the 
precision of POSITING and the other methods for different values of 𝛿 
and 𝜎. According to Fig. 31, POSITING outperforms the other methods. 
Since this type of workloads is more dynamic and complicated than 
workloads of types 1 and 2, the precision of all methods for this type is 
less than two other types’. The results imply that POSITING could be a

Fig. 28. Impact of 𝜂 on the prediction precision of TraceA, TraceB and TraceC for 𝜃 = 0.1.

Table 12
The traces selected from different types of workloads.

Trace Precision of POSITING (𝜃 = 0.1, 𝜇 = 3, 𝜂 = 0.8) Precision of NN Best Structure of NN:(h,Nodes)

TraceA 0.93 0.93 (4,16)
TraceB 0.916 0.76 (6,18)
TraceC 0.734 0.47 (10,50)



Fig. 29. The prediction precision of POSITING
and the other methods for 𝜎 = 1,2,3 and 𝛿 =
1,2,3 on the synthetic workloads of type 1.

good predictor for the dynamic workloads.
The Results Summary: It is clear that SMA is not a good predic-

tor for dynamic workloads. Although LR is simple, its reliance is based
on the oversimplified assumptions of the workload (the linear relation-
ship). Furthermore, LR only considers the workload fluctuations in the
sliding window and ignores the correlation between different resources.
Therefore LR cannot capture the behavioural changes of applications

very well. NN explores the history of the application behaviour for
training. Although NN improves the restrictions of LR and SMA, it is not
effective for extrapolation, which is very important because the existing
data used to train NN might not cover the application behaviour com-
pletely. So for behaviour of the application that has not been observed
in the past, the output of NN is not reliable. Furthermore, according
to experiment results, the parameters setting of NN is very important



Fig. 30. The prediction precision of POSITING
and the other methods for 𝜎 = 1,2,3 and 𝛿 =
1,2,3 on the synthetic workloads of type 2.

for dynamic workloads. On the contrary, POSITING extracts all the
behavioural patterns of workloads independently of the fixed pattern
length, observes the recent behaviour of the application and decides
whether prediction should be performed based on the extracted confi-
dent patterns or MRE. Thus, POSITING solves the problem of extrap-

olation. As the prediction results show, POSITING predicts the future
behaviour of the resources reliably. Furthermore, it extracts the inter-
esting trends or patterns of the workload variations explicitly. Thus, the
behavioural patterns of workloads are more readily interpretable by the
resources manager.



Fig. 31. The prediction precision of POSITING
and the other methods for 𝜎 = 1,2,3 and 𝛿 =
1,2,3 on the synthetic workloads of type 3.

7. Conclusion and future work

The future demand prediction is an indispensable step for the rapid
elasticity implementation and the effective resource provisioning in the
dynamic cloud environment. Most of the prevalent predictors such as
NN and LR are based on the fixed pattern length. They cannot extract all
useful patterns whose length is less/more than the fixed length. Choos-
ing the length of the pattern (the length of the sliding window) for
different regions of workloads is one of the most important challenges
in these methods. For the first time, this paper proposes POSITING that

extracts all the behavioural patterns of workloads independently of the
fixed pattern length. It focuses on unearthing the interesting trends or
patterns of the workload variations explicitly. POSITING investigates
the correlation between resources and extracts the corresponding pat-
terns. Thus, the behavioural patterns of workloads are more readily
interpretable by the resources manager. The experiment results show
that POSITING outperforms the state-of-the-art predictors and provides
reliable results.

In the future work, we focus on proposing a new approach to extract
the closed episodes directly in a way that closed episodes are extracted



Acknowledgement

The GWA-T-12 Bitbrains traces are provided by Bitbrains IT Services
Inc., which is a service provider that specializes in managed hosting and
business computation for enterprises. We thank the GWA team and all
those who have graciously provided the data for us.

more efficient. Furthermore, the behavioural changes of the applica-
tion workload might start after extracting the episodes. To adapt to the 
workload changes, POSITING should be able to be adapted according 
to the workload variations. For this purpose, we plan to investigate the 
capabilities of online learning and decreasing the prediction error with 
time for POSITING.

Appendix A. Proofs

The proof of all of the theorems, lemmas and corollaries are presented in this appendix. Furthermore, we present some new lemmas that are 
used to prove the other lemmas and theorems.

Lemma 1. For the event e = (r, s, st, et) ∶  1 + 𝜖 ≤ Δe ≤ 𝜇 + 𝜖.

Proof. According to Definition 2, Δe ≥ 𝜖 + 1. If Δe > 𝜇, the event e is decomposed based on 𝜇 ∶ Δe = k𝜇 + 𝜍, k ∈ ℕ. If  𝜍 ≤ 𝜖, then the latest and 
penultimate decomposed events merge together to create an event e′ that Δe′ = 𝜇 + 𝜍. Since 𝜍 ≤ 𝜖, then  Δe′ ≤ 𝜇 + 𝜖. 

Lemma 2. For the episode 𝛼 = (V𝛼 , ≺  𝛼 , g𝛼 ):

∀v1, v2 ∈ V𝛼 that v1, v2 ∈ Gi, i ∈ {1,… , k}, if g𝛼(v1).r = g𝛼(v2).r, there is no occurrence for 𝛼.

Proof. The proof is by contradiction: suppose there is at least one occurrence for 𝛼. According to Definition 11, nodes of the episode have the 
corresponding events in the stream such that the partial order of the episode is preserved. So for v1 and v2 there exist the corresponding events 
such as e′ = (r, s′, st′, et′) and e = (r, s, st, et) that st − st′ ≤ 𝜖. Since each resource has specified status in each time slot, et′ ≤ st. So Δe′ ≤ 𝜖, which is in 
contradiction to Δe′ > 𝜖. 

Lemma 3. In each occurrence of the episode 𝛼 in the stream E, there exists an occurrence of all the sub-episodes of 𝛼.

Proof. According to Definition 16, all states of each sub-episode and the partial order between them exist in 𝛼. In each occurrence of 𝛼, all states of  𝛼 
have the corresponding events in the stream such that the partial order of 𝛼 is preserved. So in each occurrence of 𝛼, there exists an occurrence of all 
the sub-episodes of 𝛼. 

Lemma 23. Given the episode 𝛼 = (V𝛼 , ≺  𝛼 , g𝛼 ) in the form of the matrix representation (W𝛼 , R𝛼):

1.
∑‖𝛼‖−1

p=1
∑‖𝛼‖

q=p+1 R𝛼(W𝛼[p],W𝛼[q]) =
∑k−1

i=1
∑k

j=i+1 lilj.

2. ∀Ai
j, i ∈ {1,… , k}, j ∈ {1,… , li} ∶

∑
v∈FN(Ai

j)
R𝛼(g𝛼(Ai

j), g𝛼(v)) =
∑k

t=i+1 lt

3. ∀Ai
j, i ∈ {1,… , k}, j ∈ {1,… , li} ∶ |FN(Ai

j)| −∑k
t=i+1 lt = li − j

4.
∑‖𝛼‖

z=2 R𝛼(W𝛼[1],W𝛼[z]) ≥ 1

Proof

1. Since each node of Gi, 1 ≤ i < k has the consecutive relation with all the nodes of Gj, i + 1 ≤ j ≤ k, the number of the consecutive relations for all
the nodes of Gi is

∑k
j=i+1 lilj. Since 1 ≤ i < k, then the number of all consecutive relations of the episode 𝛼 is

∑k−1
i=1

∑k
j=i+1 lilj.

2. Since each Ai
j has the consecutive relation with all nodes of Gt , i + 1 ≤ t ≤ k, the sum of values 1 in the corresponding row of Ai

j is
∑k

t=i+1 lt .
3. The number of entries of the corresponding row of g𝛼(Ai

j) is |FN(Ai
j)|. According to the previous item, the number of values 1 in this row is∑k

t=i+1 lt . Therefore, the number of values 0 in this row is |FN(Ai
j)| −∑k

t=i+1 lt . It is clear that the number of values 0 is equal to the number of
nodes Ai

z, j + 1 ≤ z ≤ li.
4. The Proof is by contradiction: suppose

∑‖𝛼‖
z=2 R𝛼(W𝛼[1],W𝛼[z]) = 0. It means |CNG𝛼 | = 1, which is in contradiction to Definition 9.

Lemma 24. Given the episode 𝛼 = (V𝛼, ≺ 𝛼, g𝛼 ) ∶
∀Ai

j ∈ V𝛼, i ∈ {1,… , k}, j ∈ {1,… , li} if v1 ∈ FN(Ai
j) then FN(v1) ⊂ FN(Ai

j)

Proof. since  v1 ∈ FN(Ai
j), ∀w ∈ FN(v1), w is also the following node of Ai

j. So w ∈ FN(Ai
j). Since there is at least one member such as v1 that v1 ∈ FN(Ai

j) 

and v1 ∉ FN(v1), so  we have FN(v1) ⊂ FN(Ai
j). □

Lemma 25. Given the episode 𝛼 = (W𝛼 , R𝛼), ∀ 1 ≤ i < j < z ≤ ‖𝛼‖ ∶ if R𝛼 (W𝛼 [i], W𝛼[j]) = 0 and R𝛼 (W𝛼[i], W𝛼 [z]) = 0, then R𝛼 (W𝛼 [j], W𝛼 [z]) = 0

Proof. The proof is by contradiction: suppose R𝛼 (W𝛼 [j], W𝛼 [z]) = 1. It means W𝛼 [z] and W𝛼[j] have the consecutive relation. So W𝛼 [z] appears in the 
CNGs after W𝛼 [j]’s. On the other hand, R𝛼 (W𝛼 [i], W𝛼[j]) = 0, which means W𝛼[i] and W𝛼 [j] are in the same CNG. So R𝛼 (W𝛼[i], W𝛼 [z]) = 1, which is in 
contradiction to R𝛼 (W𝛼 [i], W𝛼[z]) = 0. 

Lemma 26. Given the episode 𝛼 = (W𝛼 , R𝛼 ), ∀ 1 ≤ i < j < z ≤ ‖𝛼‖ ∶ if R𝛼(W𝛼 [i], W𝛼 [j]) = 0 and R𝛼 (W𝛼 [i], W𝛼 [z]) = 1, then R𝛼(W𝛼 [j], W𝛼 [z]) = 1

Proof. Since  W𝛼 [i] and W𝛼 [j] are in the same CNG and W𝛼 [i] and W𝛼 [z] are in the sequential CNGs, then W𝛼[j] and W𝛼 [z] are also in the sequential 
CNGs. Therefore, R𝛼 (W𝛼 [j], W𝛼 [z]) = 1. 



Lemma 27. Given the episode 𝛼 = (W𝛼 , R𝛼):
∀Ai

z ∈ V𝛼, i ∈ {1,… , k}, j < z ≤ li and v1 ∈ FN(Ai
z) ∶ R𝛼(g𝛼(Ai

z), g𝛼(v1)) = R𝛼(g𝛼 (Ai
j), g𝛼 (v1))

Proof. According to Definition 17, Ai
z ∈ FN(Ai

j). Since v1 ∈ FN(Ai
z), according to Lemma 24, we have v1 ∈ FN(Ai

j). Therefore R𝛼 (g𝛼 (Ai
j), g𝛼 (Ai

z)) = 0 and 

according to Lemmas 25 and 26 R𝛼 (g𝛼 (Ai
z), g𝛼 (v1)) = R𝛼 (g𝛼 (Ai

j), g𝛼 (v1)). 

Theorem 1. Given the episode 𝛼 = G′
1 → · · · → G′

k in the form of 𝛼 = (W𝛼 , R𝛼 ), the number of inferable and redundant entries of R𝛼 is:

k∑
i=1

(li − 1)

( k∑
t=i

lt −
(

li
2
+ 1

))
(3.5)

Proof. According to Lemma 8, all entries of the corresponding rows of g𝛼 (Ai
j), i ∈ {1, … , k}, 1 < j ≤ li could be inferred from R𝛼(g𝛼 (Ai

1), g𝛼 (v1)) that v1 ∈ 

FN(Ai
1). According to Lemma 4, the number of redundant values 0 for each Gi, 1 ≤ i ≤ k, is:

li∑
t=2

(li − t) = (li − 1)(li − 2)
2

(A.1)

According to Lemma 23, the number of redundant values 1 for each Gi, 1 ≤ i ≤ k, is:

(li − 1)
k∑

t=i+1
lt (A.2)

Based on (A.1) and (A.2), the total number of redundant values 1 and 0 in R𝛼 is:

k∑
i=1

((
li − 1

) (
li − 2

)
2

+
(
li − 1

) k∑
t=i+1

lt

)
=

k∑
i=1

(li − 1)

( k∑
t=i

lt −
(

li
2
+ 1

))
(A.3)

i i

Lemma 28. Given the episode 𝛼 = G′
1 → · · · → G′

k in the form of 𝛼 =< RArray𝛼 >, ∀i, 1 ≤ i ≤ k ∶ |RArray[i].GList| = li − 1.

Proof. The first member of each G′, 1 ≤ i ≤ k is inserted in RArray[i].x. So the other li − 1 members of G′ are inserted in RArray[i].GList. 
Lemma 4. The space complexity of SAVE for the episode 𝛼 is O(‖𝛼‖).
Proof. Based  on  Lemma 28:

k∑
i=1

|RArray[i].GList| = k∑
i=1

(li − 1) = ‖𝛼‖− k (A.4)

According to Definition 18, |RArray| = k. Therefore the space complexity of SAVE is O(‖𝛼‖).
s

1 2

1 2 2 1 2

1 1

1

i

Lemma 29. Given the stream E =< e1, … , en >, ∀ei, ej ∈ E, 1 ≤ i < j ≤ n, if ri = rj and stj = eti, then (si ≠ sj and eti − sti ≤ 𝜇 + 𝜖) or  (  i = sj and eti − sti = 
𝜇).

Proof. According to the abstraction representation of the time series, if si = sj, it means that the status of the resource ri has not changed in the 
interval of [sti, etj). Indeed, the main event is (ri, si, sti, etj) that is decomposed based on 𝜇. So Δei = 𝜇. If si ≠ sj, the maximum span of the event ei is 𝜇 + 𝜖. 

Lemma 5. Given the episode 𝛼 that |CNG𝛼 | = k and  𝜇 ≥ max(2𝜖 + 1, 𝜖  + 2), the successive starting intervals of Gi, 1 ≤ i ≤ k have no overlap.

Proof. The proof is by contradiction: suppose there are two starting intervals of Gi such as [t1, t2] and [t′ , t′ ], that there is overlap between them: t1 ≤ t′ 
≤ t2 < t′ . According to Definition 11, t2 − t1 ≤ 𝜖 and t′ − t′ ≤ 𝜖. ∀e = (r, s, st, et) ∈  E that t2 < st ≤ t′ , then there should exist the other events such as e′ 
= (r, s′, st′, et′) such that s′ = s and t1 ≤ st′ ≤ t2. Since et′ ≤ st, if  t′ ≤ st′ ≤ t2 then Δe′ < 𝜖. If  t1 ≤ st′ < t′ and et′ = st, according to Lemma 29, Δe′ = 𝜇 < 2𝜖, 
which is in contradiction to 𝜇 > 2𝜖. If  t1 ≤ st′ < t′ and et′ < st, there should exist the other event such as e″ = (r, s″ ≠ s, st″, et″) where et′ ≤ st″ < et″ ≤ st
′. Since Δe′ > 𝜖, we  have  et′ > t2 and Δe″ < 𝜖. These show that the successive starting intervals of Gi have no overlap. 

Lemma 6. Given the episode 𝛼 that |CNG𝛼 | = k, 𝜇 ≥ max(2𝜖 + 1, 𝜖  + 2) and two occurrences O, O′ ∈ OS et(𝛼), if [u, u′] is the starting interval of Gi, 1 ≤ i ≤ 
k in O, the following starting interval of Gi in O′ is [w, w′] that w > 2𝜖 + u.

Proof. According to Definition 11 for the occurrence O, ∃Ai
j ∈ Gi, 1 ≤ i ≤ k, j ∈ {1, … , li} that g𝛼 (Ai

j) = (r, s), h(Ai
j) = a and ea = (r, s, st = u, et). Since

Δea > 𝜖, et > 𝜖 + u. According to Lemma 5, w > u′. For the occurrence O′, h′(Ai
j) =  b such that e′b = (r′ = r, s′ = s, st′ = v, et′), w ≤ v ≤ w′, Δe′b > 𝜖  and

et′ > v + 𝜖. If st′ > et, there should exist the other event such as em = (r, sm ≠ s, stm, etm) that stm = et. Since  Δea > 𝜖  and Δem > 𝜖, then w > 2𝜖 + u. If  st′ 
= et, according to Lemma 29, Δea = 𝜇. So w − u = 𝜇 > 2𝜖. □

Lemma 7. If O′(𝛼) =  {O′
1, … , O′

F } is a set of non-overlapped minimal occurrences where O′, 1 < i ≤ F is the first non-overlapped minimal occurrence

after O′
i−1 and O′

1 ∉ OS etNM(𝛼), then for O′
1 with the span of [w1,w′

1], there is a unique occurrence Oz ∈ OS etNM , 1 ≤ z ≤ L with the span of [uz, u′z]
where uz < w1 < u′z < w′

1. For O′
i , i > 1 with the span of [wi,w′

i ], there is a unique occurrence Ot ∈ OS etNM , z < t ≤ L with the span of [ut , u′t ] where
ut < wi < u′t < w′

i or (ut = wi and u′t = w′
i ).

Proof. The proof is by induction. Base case for O′
1: Since O′

1 ∉ OS etNM(𝛼) and O1 ∈ OS etNM(𝛼) is the first minimal occurrence of 𝛼, O1 < O′
1. Since

O1 < O′
1, there are three cases:

1. if u1 < w1 < u′1 < w′
1, the lemma is proved.



2. if u1 < u′1 < w1 < w′
1, the proof is by contradiction. Suppose ∄ Oz ∈ OS etNM(𝛼) that uz < w1 < u′z < w′

1. It means that ∀Op ∈ OS etNM(𝛼),1 ≤ p ≤ L
that up < w1, we have u′p < w1 and ∀Oq ∈ OS etNM(𝛼),1 ≤ q ≤ L that uq ≥ w1, we have uq > w′

1. Assume OM ∈ OS etNM(𝛼), 1 ≤ M ≤ L, is the last
occurrence before O′

1 and ON ∈ OS etNM(𝛼), 1 ≤ N ≤ L, is the first occurrence after O′
1. Since OM < O′

1 < ON and there is no overlap between them,
then O′

1 is the first non-overlapped minimal occurrence after OM . So we should have O′
1 ∈ OS etNM(𝛼), which is in contradiction to O′

1 ∉ OS etNM(𝛼).
3. if u1 < u′1 = w1 < w′

1, according to Definition 23, O1 and O′
1 are non-overlapped occurrences. So O′

1 ∈ OS etNM(𝛼), which is in contradiction to
O′

1 ∉ OS etNM(𝛼).

Therefore, for O′
1, ∃ Oz ∈ OS etNM(𝛼),1 ≤ z ≤ L that uk < w1 < u′k < w′

1. Induction step: Assume it is true for O′
2,… ,O′

i . Then there are two cases:

1. ∃Op ∈ OS etNM(𝛼), z < p < L that up = wi and u′p = w′
i . Since Op+1 is the first minimal occurrence after Op and [up, u′p] = [wi,w′

i ], Op+1 is the first
minimal occurrence after O′

i . So [up+1,u′p+1] = [wi+1,w′
i+1]. Note that if p = L, since [up, u′p] = [wi,w′

i ], O′
i+1 is a non-overlapped minimal occurrence

after OL. This is a contradiction since there is no non-overlapped minimal occurrence after OL.
2. ∃Op ∈ OS etNM(𝛼), z < p < L that up < wi < u′p < w′

i . If w′
i < up+1, Op+1 is the first non-overlapped minimal occurrence after both Op and w′

i and
[up+1, u′p+1] = [wi+1,w′

i+1]. If w′
i > up+1, since O′

i is a minimal occurrence, we have w′
i < u′p+1. Here, up+1 < wi+1 < u′p+1 < w′

i+1 or (wi+1 = up+2 and
w′

i+1 = u′p+2). Note that O′
i+1 cannot start in the span of [u′p+1, up+2] because if wi+1 < up+2, then Op+2 is not the first minimal occurrence after

Op+1.

Now, we should prove that there is an injective mapping between each O′
z ∈ O′(𝛼),1 ≤ z ≤ F and its corresponding Oi ∈ OS etNM(𝛼), 1 ≤ i ≤ L. Two

cases should be considered:

1. The proof is by contradiction: Suppose ∃Oz ∈ OS etNM(𝛼),1 ≤ z ≤ L that is mapped into both O′
i ,O

′
j ∈ O′(𝛼),1 ≤ i < j ≤ L. Since occurrences are

non-overlapped, we have wi < w′
i < wj < w′

j . Since Oz is mapped into both O′
i and O′

j , then uz < wi < w′
i < wj < u′z. It means that Oz is not the

minimal occurrence. If uz = wi and u′z = w′
i , we have wj > u′k that means both O′

i and O′
j are not mapped into Oz.

2. The proof is by contradiction: Suppose both Oi,Oj ∈ OS etNM(𝛼),1 ≤ i < j ≤ L are mapped into one O′
z ∈ O′(𝛼),1 ≤ z ≤ F. So Oi and Oj are not

non-overlapped or one of them cannot be the minimal occurrence.

Theorem 2. OS etNM(𝛼) is a maximal non-overlapped set of minimal occurrences of the episode 𝛼 in the stream: freq(𝛼) = |OS etN
M(𝛼)|

Proof. Let O′(𝛼) = {O′
1,… ,O′

F} is a set of non-overlapped minimal occurrences that O′
i , 1 < i ≤ F, is the first non-overlapped minimal occurrence after

O′
i−1. Since O1 ∈ OS etNM(𝛼) is the first minimal occurrence of 𝛼, we have O1 < O′

1 or O1 = O′
1. If O1 < O′

1, according to Lemma 7, for each member of
O′(𝛼) there is a unique corresponding member of OS etN

M(𝛼). So F ≤ L. If O1 = O′
1, each Oi ∈ OS etNM(𝛼), 2 ≤ i ≤ min(L, F), is the first non-overlapped

minimal occurrence after both Oi−1 and O′
i−1. Since there is no non-overlapped minimal occurrence after OL, we have F ≤ L. Therefore, OS etNM(𝛼) is

a maximal non-overlapped set of minimal occurrences of the episode 𝛼.

Lemma 8. Given the episodes 𝛼 and 𝛽 and the threshold 𝜃∈ ℝ≥0, if 𝛽 ⊑ 𝛼 and freq(𝛼) ≥ 𝜃, then 𝜃 ≤ freq(𝛼) ≤ freq(𝛽) (the anti-monotonic constraint).

Proof. Since 𝛽 ⊑ 𝛼, according to Lemma 3, each occurrence of the episode 𝛼 includes an occurrence of 𝛽. So ∀Oi ∈ OS etNM(𝛼),∃O′
i ⊆ Oi that O′

i ∈
OS etNM(𝛽). Therefore, |OS etNM(𝛼)| ≤ |OS etNM(𝛽)| or freq(𝛼) ≤ freq(𝛽).

Lemma 9. Given the episode 𝛼 = G′
1 → G′

2 → · · · → G′
k, an occurrence O = (([ti1, t

i
2])

k
i=1, [t

𝛼
1 , t

𝛼
2 ]) of 𝛼 is an LO iff ∀ i,1 ≤ i ≤ k − 1, [ti1, t

i
2] is the most

recent valid occurrence of G′
i .

Proof. Since this is an “If, and Only If” lemma, we must prove two implications. Proof “Only if” by contradiction: suppose ∃j, 1 ≤ j ≤ k − 1 so that
[tj1, t

j
2] is not the most recent valid occurrence of G′

j . So there is the other valid occurrence of G′
j such as [wj

1,w
j
2] that wj

1 > tj1. Therefore, there is the

other valid occurrence of 𝛼 such as Q = (([ti1, t
i
2])

j−1
i=1 , ([w

j
1,w

j
2]), ([t

i
1, t

i
2])

k
i=j+1, [t

𝛼
1 , t

𝛼
2 ]). Then O ∉ LO(𝛼).

Proof ”if” by contradiction: assume O ∉ LO(𝛼). It means that there is a valid occurrence of 𝛼 such as Q = (([wi
1,w

i
2])

k−1
i=1 , [t

k
1, t

k
2], [w

𝛼
1,w

𝛼
2]) that

∃j, 1 ≤ j ≤ k − 1,wj
1 > tj1. So ([tj1, t

j
2]) is not the most recent valid occurrence of G′

j .

Corollary 1. There is only one occurrence from each equivalent class of minimal occurrences in LO(𝛼).

Proof. There is at least one occurrence such as O from each equivalent class of minimal occurrences whose starting intervals are the most recent valid 
occurrences. So we have O ∈ LO(𝛼). It is clear that there does not exist the other occurrence (such as Q) of this equivalent class that Q ∈ LO(𝛼) because 
the starting interval of at least one CNG of O is greater than Q’s. 

Lemma 10. The first latest occurrence of the episode 𝛼 is a minimal occurrence of the first equivalent class of the minimal occurrences.

Proof. The proof is by contradiction: assume the first latest occurrence of 𝛼 is not a minimal occurrence of the first equivalent class of minimal 
occurrences. According to corollary 1, there is a member of each equivalent class of minimal occurrences in LO(𝛼). There are two cases: 1) The first 
latest occurrence is not a minimal occurrence. If an LO is not a minimal occurrence, then there exists the other latest occurrence before that. This is a 
contradiction since it is not the first latest occurrence. So the first latest occurrence of 𝛼 is a minimal occurrence. 2) It is not a minimal occurrence of 
the first equivalent class. So according to corollary 1, there are the minimal occurrences of the previous equivalent classes. Then it is not the first 
member of LO(𝛼). 



Lemma 11. For each episode 𝛼, there is at most one member of each equivalent class of minimal occurrences in OS etN
M(𝛼).

Proof. The proof is by contradiction: assume there are at least two minimal occurrences of an equivalent class in OS etN
M(𝛼). So there is over-

lap between them, which is in contradiction to Definition 23. Therefore, there is at most one minimal occurrence of each equivalent class in
OS etNM(𝛼).

Theorem 3. For each episode 𝛼, if the latest occurrences of equivalent classes of minimal occurrences are in OS etN
M(𝛼), then OS etN

M(𝛼) ⊆ LO(𝛼).

Proof. According to Definition 25, OS etNM(𝛼) = {O1,… ,OL}. Based on Lemma 10, O1 ∈ LO(𝛼). Based on corollary 1, there is one member of each
equivalent class in LO(𝛼) and based on Lemma 11, there is at most one member of each equivalent class in OS etN

M(𝛼). On the other hand, an arbitrary
member of each equivalent class could be in OS etNM(𝛼). So if the latest occurrences of equivalent classes of minimal occurrences are in OS etN

M(𝛼),
then OS etNM(𝛼) ⊆ LO(𝛼).

Theorem 4. Given the episode 𝛼 = G′
1 → G′

2 → · · · → G′
k−1 and G ∈ RS, the algorithm SSMakeLOList finds LOList(𝛽 = 𝛼 ⊕ G) correctly.

Proof. To prove this theorem, we focus on the span of LOs in LOList of episodes. The proof of the theorem includes two parts: 1) Occurrences extracted
by the algorithm are LO. Given 𝛼 = G′

1 → G′
2 → · · · → G′

k−1 and G′ ∈ RS, we have 𝛽 = G′
1 → G′

2 → · · ·G′
k−1 → G′. The proof is by contradiction: there

is at least one extracted occurrence of 𝛽 that is not the latest occurrence. For this occurrence, assume there are corresponding occurrences O𝛼 and
OG of 𝛼 and G whose span is [r, r′] and [x,x′] respectively. There are two cases: a) The gap constraints have not been satisfied, which is impossible
due to line 10 of the algorithm. b) There is the other LO of the episode 𝛼 such as Q𝛼 with the span [u, u′] for the episode 𝛼 that satisfies the gap
constraints for [x,x′] and u ≥ r, u′ > r′. Otherwise, [r, r′] and [x,x′] could form an LO for 𝛽. So, we have:

r′ + 𝛿 ≤ x ≤ r′ + Δ

u ≥ r, u′ > r′

u′ + 𝛿 ≤ x ≤ u′ + Δ

⎫⎪⎪⎬⎪⎪⎭
→ r′ + 𝛿 < u′ + 𝛿 ≤ x ≤ r′ + Δ < u′ + Δ (A.5)

Since [r, r′] is before [u, u′], ∀[f , f ′] ∈ LOList(𝛼) that r ≤ f ≤ u, we have:

r′ < f ′ < u′ and r′ + 𝛿 < f ′ + 𝛿 < u′ + 𝛿 ≤ x ≤ r′ + Δ < f ′ + Δ < u′ + Δ (A.6)

Since line 6 of the algorithm is satisfied for O𝛼 , so [r, r′] could not be the latest prefix occurrence. 2) All the latest occurrences of 𝛽 are extracted.
The Proof is by contradiction: there is at least an LO of 𝛽 such as O𝛽 , composed of O𝛼 and OG with spans [r, r′] and [x,x′] respectively, which is not
extracted. Since LOList(G) is complete, there are two cases for O𝛼 : a) [r, r′] ∈ LOList(𝛼): it is checked in the first while loop. If [x, x′] is not checked
for [r, r′], it means that the other latest prefix occurrence has been found for it previously. So [r, r′] could not be the latest Prefix occurrence. When
[x,x′] is checked for [r, r′], if [u,u′] is after [r, r′] in LOList(𝛼), then u′ > r′. If u′ + 𝛿 < x, then an LO with the span [r, x′] could not be created. If
x > u′ + Δ, then x > r′ + Δ and [r, r′] could not be the latest prefix occurrence. If x ≤ u′ + Δ, [r, x′] could not also be the latest occurrence for 𝛼. So if
[r, r′] ∈ LOList(𝛼), [r, x′] is extracted by the algorithm for LOList(𝛽) b) If [r, r′] ∉ LOList(𝛼), so there is the latest occurrence with the span [u, r′] that

j

u ≥ r. Since r′ satisfies the gap constraints with x′, the latest occurrence with the span [u, r′] also satisfies the gap constraints with [x, x′]. So there is 
another valid occurrence with the span [u, x′] that ∃j, 1 ≤ j ≤ k − 2 that the starting interval of G′ in the span [u, r′] is greater than its corresponding 
starting interval in [r, r′]. So the occurrence with the span [r, x′] is not an LO. 

Lemma 12. Given the episode 𝛼 and G ∈ RS, if |LOList(𝛼)| = q and |LOList(G)| = p, then the time complexity of algorithm SSMakeLOList is O(p + q) in 
the worst case and O(p) or O(q) in the best cases.

Proof. Generally, the time complexity of the algorithm SSMakeLOList is O(k% × p + q − f ), 0 ≤ k ≤ 100, 0 ≤ f ≤ q. It implies that there is a direct 
relationship between f and k. It means that when k% of LOList(G) have been traversed by f elements of LOList(𝛼), a member of LOList(G) is met 
that should be compared with q − f elements of LOList(𝛼). The worst case is when the first element of LOList(𝛼) connects to all p − 1 elements of  
LOList(G) and the last element of LOList(G) connects to no element of LOList(𝛼). So the time complexity is O(p + q). The best case is when the first 
element of LOList(𝛼) connects to all members of LOList(G) or the first element of LOList(G) connects to no element of LOList(𝛼). For these cases, the time 
complexity is O(p) and O(q) respectively. 

Theorem 5. Given the episode 𝛼 = G′
1 → G′

2 → · · · → G′
k and G ∈ RS, the algorithm SCMakeLOList finds LOList(𝛽 = 𝛼 ⊙ G) correctly.

Proof. The proof of the theorem includes two parts: 1) Occurrences extracted by the algorithm are LO. According to the definition of the concurrent 
extension, we have 𝛽 = G′

1 → G′
2 → · ·  · → (G′

k ∪ G = G′). Since  LOList(𝛽) is constructed based on LOList(𝛼), so all the occurrences extracted by the 
algorithm satisfy the definition of LO. 2) All the latest occurrences of 𝛽 are extracted. The proof is by contradiction: there is at least an LO of 𝛽 that 
is not extracted. Since each LO of 𝛽 includes one LO of 𝛼 and one LO of G, then it means  that  LOList(𝛼) or LOList(G) is not complete or the algorithm 
could not  find this  LO of 𝛽. Since LOList(𝛼) and LOList(G) are complete and line 4 of the algorithm checks the concurrent extensions of 𝛼 with G, all 
possible LOs of 𝛽 are extracted. 

Lemma 13. Given the episode 𝛼 and G ∈ RS, if |LOList(𝛼)| = q and |LOList(G)| = p, then the time complexity of the algorithm SCMakeLOList is O(p + q) 
in the worst case and O(min(p, q)) in the best case.

Proof. In the best case, each element of LOList(𝛼) matches an element of LOList(G) and both the counters i and j increase. So, the loop repeats 
min(p, q) times. In the worst case, one element of LOList(𝛼) is checked with t, 1 ≤ t ≤ p elements of LOList(G), then one element of LOList(G) is 
checked with n, 1 ≤ n ≤ q elements of LOList(𝛼) and the process is repeated in the same way. Thus, both the LOList(𝛼) and LOList(𝛽) are considered. So 
the time complexity is O(p + q). 

Lemma 14. Given the episode 𝛼, the first non-overlapped LO after a minimal occurrence in LOList(𝛼) is a minimal occurrence.

Proof. The proof is by contradiction: assume O is a minimal LO of 𝛼 with span [x, r′] ([r, r′] is the starting interval of the last CNG of 𝛼) and Q with



span [y, u′] ([u, u′] is the starting interval of the last CNG of 𝛼) is the first non-overlapped occurrence after O which is not minimal. So there is a 
starting interval for the last CNG of 𝛼 such as [z, z′] that z < u. Therefore, there is another occurrence such as H with span [y, z′] that causes Q not to 
be minimal. Since y > r′, then H is also a non-overlapped occurrence and since z < u, then Q could not be the first non-overlapped occurrence after [x, 
r′]. So, the first non-overlapped occurrence after O is a minimal occurrence. 

Lemma 15. Given the episode 𝛼, the first non-overlapped LO after a minimal occurrence in LOList(𝛼) is a minimal occurrence.

Proof. Based on theorem 3, we have OS etNM(𝛼) ⊆ LOList(𝛼). Based on Lemma 10, the first member of LOList(𝛼) is the first member of OS etN
M(𝛼). Since

t𝛼1 > 0, so the frequency of 𝛼 increases by +1. According to lemma 14, the first non-overlapped occurrence after a minimal occurrence in LOList(𝛼) is
a minimal occurrence. Thus, the algorithm counts the number of non-overlapped minimal occurrences with the start of the first minimal occurrence.

M(𝛼)|. Since the algorithm traverses LOList(𝛼), so its time complexity is O(|LOList(𝛼)|)It is equivalent to |OS etN 

Lemma 16. Given the episode 𝛼 = G′
1 → · · · → G′

k and (r, s) ∈ RS, the time complexity of SAVE and the matrix representation for the serial/concurrent
extension of 𝛼 with (r, s) is O(1) and O(‖𝛼‖) respectively if the time complexity of duplicating the representation of 𝛼 is ignored.

Proof. For the serial extension of 𝛼 with the state (r, s) ∈ RS, a new entry is added to the end of RArray𝛼. It means that RArray𝛼[|CNG𝛼| + 1].x is set
to (r, s) and RArray𝛼[|CNG𝛼| + 1].GList is empty. For the concurrent extension of 𝛼 with (r, s), this state is added to the end of RArray𝛼[|CNG𝛼 |].GList
easily. On the contrary, in the matrix representation, the matrix should be reconstructed for the extensions because the number of rows and columns
of the matrix changes. Furthermore, the entries of the matrix should be filled based on partial order between states. Therefore, if the time complexity
of duplicating the representation of 𝛼 is ignored:

• The time complexity of the pattern extension is O(1) for SAVE.
• Since in the matrix representation, the new row and column added for (r, s) should be filled based on the partial order between (r, s) and the

other states, the time complexity of the matrix representation is O(‖𝛼‖).
Lemma 17. Given the observation OB that |OB| = k and 1 ≤ i < k, if OB[i] ∩ OB[i + 1] ≠ ∅ then one of three occurrences below is possible:

1. The occurrence of the episode (OB[i] → OB[i + 1] − (OB[i + 1] ∩ OB[i]))
2. The occurrence of (OB[i + 1])
3. The occurrence of the episode

(
OB[i] − (OB[i ] ∩ OB[i + 1]) → states of OB

[
i + 1

]
that satisfy the gap constraint 𝛿

)
Proof. Since OB[i] ∩ OB[i + 1] ≠ ∅, it means that OB[i] has not occurred before OB[i + 1] under gap constraints. So The occurrence of the episode
(OB[i] → OB[i + 1] − (OB[i + 1] ∩ OB[i])) or OB[i + 1] is possible. If OB[i] ∩ OB[i + 1] is ignored and the gap constraints are satisfied, then according
to Definition 45, OB[i] − (OB[i] ∩ OB[i + 1]) has occurred before states of OB[i + 1] that satisfy the gap constraint 𝛿. Therefore there is an occurrence
of the episode

(
OB[i] −

(
OB[i] ∩ OB

[
i + 1

])
→ states of OB

[
i + 1

]
that satisfy the gap constraint 𝛿

)
.

Lemma 18. Given the observation OB and 1 ≤ k < u ≤ |OB|, if OB[k] ∩ OB[u] = m ≠ ∅ and OB[u] ∩ OB[k] = n ≠ ∅ then

1. m is in the last part of OB[k] and n is in the first part of OB[u].
2. ∀j, k + 1 ≤ j ≤ u − 1, OB[k] ∩ OB[j] ≠ ∅ and OB[j] ∩ OB[u] ≠ ∅.
3. For 𝜖 ≥ 2, a serial relationship might exist between OB[k + 1] and OB[u]. ∀j, k + 2 ≤ j ≤ u − 1, there is no serial relationship between OB[j] and OB[u]

that is not covered.

Proof.

1. According to Definition 46, it is clear that m is in the last part of OB[k] and n is in the first part of OB[u].
2. According to Definition 45, the start times of the corresponding events of OB[j] are between the start time of the second event of OB[k] and the start 

time of the penultimate event of OB[u]. If OB[j] includes the corresponding state of an event of OB[k], it certainly includes the corresponding state of 
the last event of OB[k]. In a similar  way, If OB[j] includes the corresponding state of an event of OB[u], it also includes the corresponding state of 
the first event of OB[u]. Therefore, there are some events in OB[j] whose start times are equal to or greater than the start time of the last event of 
OB[k] or start times are less than or equal to the start time of the first event of OB[u]. Since OB[k] ∩ OB[u] ≠ ∅, it is clear that OB[k] ∩ OB[j] ≠ ∅ 
and OB[j] ∩ OB[u] ≠ ∅.

3. Suppose there is an event such as e in OB[p], k < p < u, in a way that e is not in OB[k], x is its start time and there is a serial relationship between it 
and an event of OB[u]. Let A be the maximum of the start times of the corresponding events of m, B be the minimum of the start times of the 
corresponding events of n and C be the start time of the event of OB[u] that x + 𝛿 ≤ C (the serial relationship). Since C − B ≤ 𝜖 and B < A + 𝛿, we 
have C − 𝛿 < A + 𝜖. So  x ≤ C − 𝛿 < A + 𝜖. It  means  that  e is concurrent with the last event of OB[k] and they are in OB[k + 1]. It is clear that for 
𝜖 ≤ 1, there is no event such as e in OB[k + 1]. So, for 𝜖 ≥ 2, a serial relationship might exist between OB[k + 1] and OB[u]. Since e might also be in 
OB[j], the serial relationships between OB[j] and OB[u] are subsets of the serial relationship between OB[k + 1] and OB[u].

Lemma 19. Given the observation OB, |OB| = k and 1 ≤ i ≤ k, if T(i) is the number of LCOs that are extracted by processing OB[i], then we have:{
T(i) ≤ T(i − 1) + 2(F(OB[j]) + F(OB[j + 1])), if i > 1
T(i) = 1, if i = 1

(4.2)

where OB[j], 1 ≤ j < i, is the first element of OB that OB[j] ∩ OB[i] ≠ ∅, and F(OB[p]), 1 ≤ p ≤ k, is the number of extracted LCOs whose last element is
OB[p].

To prove the lemma, we focus on the corresponding events of the states of OB without loss of generality.

Proof. The proof is by induction. Base case for i = 2: It is clear that for i = 2 there are at most three LCOs, which satisfies 4.2. Induction step:
assume that the number of extracted LCOs for i − 1 satisfies 4.2. To process OB[i], in the first step, OB[j] is found. There are four cases:



1. The LCOs whose last element is OB[k], 1 ≤ k < j (line 13, Algorithm 6): There is no intersection between these LCOs and OB[i]. So OB[i] is inserted
in the end of these LCOs. Here, the number of LCOs is unchanged (line 14, Algorithm 6).

2. The LCOs whose last element is a subset of OB[j] (line 15, Algorithm 6): According to Lemma 17, these LCOs could be extended by the concurrent
states of OB[i] (line 16, Algorithm 6). In this case, the number of extracted LCOs is unchanged.

3. The LCOs whose last element is OB[j] or OB[j + 1] for 𝜖 ≥ 2 (line 17, Algorithm 6): According to Lemma 17, three occurrences are possible. So,
two new LCOs are created (lines 19–25, Algorithm 6).

4. The LCOs whose last element is OB[p], j + 1 < p < i: According to Lemma 18, these LCOs are not considered.

So, if the number of LCOs after processing OB[i − 1] is T(i − 1), they could be divided into three parts A, B and C, where |A| = m, |B| = n, |C| = r
and T(i − 1) = m + n + r. The part A includes the LCOs that OB[i] could be added to the end of them if the gap constraints are satisfied. The part B 
includes the LCOs whose last element is OB[j] (|B| = n = F(OB[j])). The part C includes the LCOs whose last element is OB[j + 1] (|C| = r = F(OB[j + 
1])). In the worst case, 𝜖 ≥ 2 and for  each  LCO in the parts B and C, two  other  LCOs are created. Therefore, we have: T(i) ≤ m + n + 2n + r + 2r ⇒ 
T(i) ≤ (m + n + r) + 2n + 2r ⇒ T(i) ≤ T(i − 1) +  2(F(OB[j]) + F(OB[j + 1])). Note that for 𝜖 ≤ 1, we have T(i) ≤ T(i − 1) +  2F(OB[j]). □

Theorem 6. The algorithm ExtractLCO (Algorithm 6) extracts all LCOs from the observation OB.

Proof. This theorem could be proved simply based on the proof of Lemma 19. According to the proof of Lemma 19, the algorithm considers all the 
possible situations. So it extracts all LCOs from OB. 

Lemma 20. Given the observation OB that |OB| = T < Level, the time complexity of the algorithm ExtractLCO is O(T) in the best case and O(3T ) in the 
worst case.
Proof. Consider  Algorithm 6. The best case is when OB is an LCO. It means that in each repeat, Oj is not found and gap constraints are satisfied 
between x[L] and Suffix[1]. In this case, the time complexity is O(T). The worst case is when the last element of all the extracted LCOs is Oj or Oj+1. So 
according to Lemma 19 we have T(i + 1) = 3T(i). It means that the time complexity of the algorithm is O(3T ) in the worst case. 

Lemma 21. Given the observation OB that |OB| = T < Level, the number of LCOs extracted from OB by the algorithm ExtractLCO is 1 in the best case and

O(3 
T
2 ) in the worst case.

Proof. Consider  Algorithm 6. The best case is when OB is an LCO. It means one LCO is identified by the algorithm. The worst case is when the 
last element of all the extracted LCOs intersects with Suffix[1]. This case occurs when there is no intersection between Suffix[1] and x[L] and 
gap constraints are satisfied. So, Suffix[1] is added to all the extracted LCOs. To process OB[i + 1] in the next call, if OB[i] ∩ OB[i + 1] ≠ ∅ and 
gap constraints are satisfied, according to Lemma 19 we have T(i + 1) = 3T(i). This situation occurs when ∀i, 1 ≤ i ≤ T

2 , OB[2i] ∩  OB[2i − 1] ≠ ∅ and

OB[2i] ∩  OB[2i + 1] = ∅. It means that there are T
2 distinct groups of entries. Therefore, the number of LCOs extracted by the algorithm is O(3 

T
2 ) in

the worst case.

Lemma 22. The prediction should be performed in the steps of 𝜖 + 1 time slots.

Proof. If the prediction is performed in the time slot t, then the starting interval of the predicted group is [t + 𝛿, t + Δ]. Since the span of each event 
is at least 𝜖 + 1, a new event might occur after the time slot t + 𝛿 + 𝜖 + 1. On the other hand, 𝛿 is the time it takes to instantiate a new VM instance. 
So we should predict the future behaviour at the time slot t + 𝛿 + 𝜖 + 1 − 𝛿 = t + 𝜖 + 1. □

Lemma 30. The time complexity of SAVE and the matrix representation to check  the correspondence between the entries of LCO and the episode is
O(‖LCO‖) and O(‖LCO‖2) respectively.

Proof. Note that  LCO is in the representation form of episodes. In SAVE, each CNG of the episode is inserted in RArray𝛼 based on the order defined 
on resources. In lines 7 and 10 in Algorithm 9, the correspondence between the entries of LCO and the episode is considered. It is clear that the time 
complexity of SAVE for checking this correspondence is O(‖LCO‖). On the contrary, the time complexity for the matrix representation is O(‖LCO‖2) 
because the partial order between all the states should be checked in the matrix. □

Corollary 2. SAVE expedites the episode processing in compared to the matrix representation.

Proof. There are two steps in which episodes are processed directly: 1) traversing the pattern tree and 2) the episode selection for prediction. As 
Lemmas 16 and 30 show SAVE expedites the episode extensions in traversing the pattern tree and the episode selection for prediction in compared 
to the matrix representation. □

Appendix B. Algorithms

In this appendix, we present all the functions called by the algorithm Main (algorithm 7) in a canonical form and explain them in 
detail.

Appendix B.1. Function ExtractObservation

Algorithm 8 is proposed to extract the observation from the recent history of the stream. It receives the recent history of the stream and Level. Since 
the goal is to predict the future behaviour of the application, the algorithm returns an observation whose length is at most Level − 1. Group is a group 
of concurrent events. EventStartGroup is the index of the latest event of Group in List. Max and Min are the maximum and minimum of the start time of 
events of Group. In lines 8 to 21, the events before the current event are considered whether could be in the same Group or not. In lines 22 to 25, the 
events after the current event are considered to complete Group. Lines 26 to 34 consider whether Group could be inserted in OB under the gap 
constraint Δ. Finally, in lines 39 to 41, the corresponding states of events are returned as the observation.



Algorithm 8 ExtractObservation

Input: Recent History of the Stream, Level;
Output: Observation OB′

1: List ← Recent History of the stream;
2: OB ← ∅;
3: EventStartGroup ← |List| + 1;
4: Group ← ∅;
5: i ← |List| + 1;
6: count ← 1;
7: while (i > 1 and |OB| < Level) do
8: if (Group = ∅) then
9: j ← EventStartGroup− 1;
10: i − −;
11: while (j >= i) do
12: if (List[j].st − List[i].st ≤ 𝜖) then
13: add from List[j] to List[i] into Group;
14: Max ← List[j].st;
15: Min ← List[i].st;
16: EventStartGroup ← j;
17: break;
18: else
19: j − −;
20: end if
21: end while
22: else if (Group ≠ ∅ and Max − List[i − 1].st ≤ 𝜖) then
23: add List[i − 1] into Group;
24: Min ← List[i − 1].st;
25: i − −;
26: else if (Group ≠ ∅ and Max − List[i − 1] > 𝜖) then
27: if (OB = ∅) or Min Of StartTime(OB[count − 1]) − Max ≤

Δ) then
28: OB[count] ← Group;
29: count + +;
30: Group ← ∅;
31: else
32: break;
33: end if
34: end if
35: end while
36: if (Group ≠ ∅ and ((OB = ∅) or Min Of StartTime(OB[count −
1]) − Max ≤ Δ)) then
37: OB[count] ← Group;
38: end if
39: for (i = |B|; i ≥ 1; i − −) do
40: OB′[|B| − i + 1] ← corresponding states of OB[i];
41: end for
42: return OB′;

Appendix B.2. Function EpisodeSelection

The function receives LCO and PatternBase. PatternBase is a set of extracted patterns. Each pattern includes one episode and its information such
as frequency, MatchScore and Confidence. For each matched pattern, the last time of the starting interval of the last entry of LCO is also maintained.
Each entry freq[i],1 ≤ i ≤ |LCO| includes the frequency of LCO[i‥|LCO|]. As it was implied ListFreq is a list of pairs of (Prefix, Freq) that Prefix is the
Prefix of episodes and Freq is its frequency. This list is used to compute the confidence of episodes. In lines 4 to 26 of the algorithm, ∀k,2 ≤ k ≤ |LCO|
the episodes whose left hand side matches LCO[k‥|LCO|] are selected. At the same time, lines 13 and 14 update the frequency of subsequences
of LCO. In lines 27 to 46, episodes whose left hand side matches LCO[1‥|LCO|] are considered. Lines 37 to 39 update the frequency of LCO. In
lines 47 to 60, episodes whose middle part matches LCO and left hand side is consistent with the history of the stream are considered. In lines 48
to 52, for each of these episodes, a new entry is inserted in MatchedEpisodes. Lines 53 to 60 update ListFreq. In lines 61 to 71, ListFreq is updated
based on the frequency of episodes whose last part matches LCO. Finally, the function ComputeConfidence computes the confidence of episodes
without scanning PatternBase to find the frequency of the episodes. It could be proved that the algorithm finds unique episodes and computes their
confidence correctly. The detail of the function ComputeConfidence is omitted due to space limitation.



Algorithm 9 EpisodeSelection

Input: LCO,PatternBase; % LCO is the longest Consistent Observation
Output: MatchedEpisodes; % A set of selected episodes

1: freq is an array of |LCO| integers that is initialized by 0;
2: ListFreq is a list of pairs of (Prefix, Freq), which is empty firstly;
3: MatchedEpisodes ← ∅;
4: for (j = |LCO|; j > 1; j − −) do
5: for (i = 1; i ≤ |PatternBase|; i + +) do
6: A ← False,B ← False;
7: if (PatternBase[i].Episode[1‥|LCO| − j + 1] = LCO[j‥|LCO|]) then
8: A ← True;
9: end if
10: if (PatternBase[i].Episode[|PatternBase[i].Episode|− (|LCO| − j)‥|PatternBase[i].Episode|] =
LCO[j‥|LCO|]) then
11: B ← True;
12: end if
13: if (A or B) and freq[j] < PatternBase[i].freq then
14: freq[j] ← PatternBase[i].freq;
15: end if
16: if (A) then
17: if (PatternBase[i].Episode.FindIndex(LCO) = 0) then
18: define the new pattern r;
19: r ← PatternBase[i];

20: r.MatchScore ←
∑|LCO|

k=j LCO[k]|states∈LCO| ;
21: r.I ← the last time of the starting interval of the last entry of LCO;
22: add r to MatchedEpisodes;
23: end if
24: end if
25: end for
26: end for
27: for (j = 1; j ≤ |PatternBase|; j + +) do
28: Index ← PatternBase[j].Episode.FindIndex(LCO);
29: A ← False,B ← False;
30: if (Index = 1) then
31: A ← True;
32: end if
33: if (Index > 1 and Index + 1 = |PatternBase[j].Episode|− |LCO|) then
34: B ← True;
35: end if
36: if (A or B) then
37: if (freq[1] < PatternBase[j].freq) then
38: freq[1] ← PatternBase[i].freq;
39: end if
40: end if
41: if (A and |PatternBase[j].Episode| > |LCO|) then
42: define the new pattern r;
43: r ← PatternBase[j];
44: r.MatchScore ← 1;
45: r.I ← the last time of the starting interval of the last entry of LCO;
46: add r to MatchedEpisodes;
47: else if (Index > 1 and Index + |LCO| − 1 < PatternBase[j].Episode| and HistoryConsistent(PatternBase[j].Episode,Index −
1)) then
48: define the new pattern r;
49: r ← PatternBase[j];
50: r.MatchScore ← 1 + Index−1|PatternBase[j].Episode| ;
51: r.I ← the last time of the starting interval of the last entry of LCO;
52: add r to MatchedEpisodes;
53: K ← ListFreq.FindIndex(PatternBase[j].Episode[1‥Index − 1]);
54: if (K ≠ 0) then
55: if (ListFreq[K].freq < PatternBase[j].freq) then
56: ListFreq[K].Freq ← PatternBase[j].freq;



57: end if
58: else
59: add (PatternBase[j].Episode[0‥Index − 1], PatternBase[j].freq) into ListFreq;
60: end if
61: else if (B) then
62: for each (x ∈ ListFreq) do
63: if (x.Prefix = PatternBase[j].Episode[Index− |x.Prefix|‥Index − 1]) then
64: if (x.Freq < PatternBase[j].freq) then
65: x.Freq ← PatternBase[j].freq;
66: break;
67: end if
68: end if
69: end for
70: end if
71: end for
72: Compute Confidence
(MatchedEpisodes,ListFreq);
73: return Matched Episodes;

Appendix B.3. Function Evaluating

The main goal of Algorithm 10 is to predict the future status of resources. In lines 4 to 24, the algorithm considers the matched episodes. In line 5, 
it checks whether the matching time of the episode is equal to t − 1 or not. If the matching time of the episode is equal to t − 1, then the episode could 
be used for prediction. In line 6, the index of the last ✽ in the episode is determined (Index). In lines 8 to 20, Episode[Index + 1] of MatchedEpisodes[i] 
(the first entry after the last ✽) is searched in PredictionStep. If  PredictionStep includes it, the maxi-mum values of Confidence and MatchScore are 
maintained for it. Otherwise, the corresponding entry of MatchedEpisodes[i].Episode[Index + 1] is inserted in PredictionStep. In lines 21 to 23 and 25 to 
27, the matched episodes whose prediction results have not been consistent with the observed behaviour, are determined and deleted. In lines 28 
and 29, the valid interval of the future status of resources is determined. In lines 30 and 31, based on the threshold 𝜂 the most confident episodes are 
maintained and sorted in PredictionStep. In line 34, the most confident status of resources is considered as prediction results. In lines 36 to 38, for 
resources that are not in PredictionStep, the  future  sta-tus is predicted based  on  MRE. If MRE is not found, according to line 40, the last 
observed status of resources is considered as the future status.

Algorithm 10 Evaluating

Input: LastObservation,MatchedEpisodes, t, 𝜂;
Output: It predicts the future status of resources;

1: DeleteList ← ∅;
2: PredictionStep ← ∅;
3: MRE ← ∅;
4: for (i = 1; i ≤ |MatchedEpisodes|; i + +) do
5: if (MatchedEpisodes[i].I + 1 = t) then
6: Index ← MatchedEpisodes[i].Episode.FindLastIndex(✽);
7: L ← |MatchedEpisodes[i].Episode|− Index;
8: for (k = Index + 1; k ≤ Index + min(L, 1); k + +) do
9: j ← PredictionStep.Outcome.FindIndex(MatchedEpisodes[i].Episode[k]);
10: if (j > 0) then
11: PredictionStep[j].Confidence ← max(PredictionStep[j].Confidence,MatchedEpisodes[i].Confidenece);
12: PredictionStep[j].MatchScore ← max(PredictionStep[j].MatchScore,MatchedEpisodes[i].MatchScore);
13: else
14: create a new entry e for PredictionStep;
15: e.Episode ← MatchedEpisodes[i].Episode
16: e.Confidence ← MatchedEpisodes[i].Confidence;
17: e.MatchScore ← MatchedEpisodes[i].MatchScore;
18: add e to PredictionStep;
19: end if
20: end for
21: else if (MatchedEpisodes[i].I + Δ < t) then
22: add i to DeleteList;
23: end if
24: end for



25: for (j = |DeleteList|; j ≥ 0; j − −) do
26: Delete MatchedEpisodes[DeleteList[j]];
27: end for
28: Result.I1 = t + 𝛿;
29: Result.I2 = t + Δ;
30: PredictionStep ← Rows of PredictionStep with corresponding Confidence ≥ 𝜂;
31: Sort PredictionStep in descending order based on Confidence, If some entries have
the equal Confidence, sort them based on MatchScore;
32: for each (Resource x ∈ Result.Outcome) do
33: if (x ∈ PredictionStep.Outcome) then
34: Result.Outcome[x]← The first status of x in PredictionStep.Outcome;
35: else
36: MRE ← The most recent event in history that matches the status and the
span of the event of x in LastObservation;
37: if (MRE ≠ ∅) then
38: Result.Outcome[x]← The observed status of the resource x after MRE;
39: else
40: Result.Outcome[x]← the status of the resource x in LastObservation
41: end if
42: end if
43: end for
44: add Result into ResultTable;

Appendix B.4. Function CreateLEG

Pruning and updating the matched episodes and computing the precision of the predicted results are based on LEG. In Algorithm 7, when the 
prediction is performed, flag is true. So in line 4 of Algorithm 11, LastObservation is copied in the PrevSection of LEG. In line 6, the status of resources 
is sampled in the next time slot. It means that t increases by +1. In line 7, the interval of LEG is determined. In lines 8 to 30, the corresponding events of 
the sampled resources in PrevSection are considered. In lines 10 to 16, if the status of resources is not unchanged, it means that there are new events. 
Therefore they are omitted from PrevSection and added to the list L that will be inserted in EventSec later. In lines 17 to 27, the events that have the 
large span are decomposed into two events based on the composition unit 𝜇. The  PrevSection, LastObservation and the list L are also
updated. In lines 27 to 29, if there is no change in the corresponding event of the resource of eR (eR.Resource), the end time of the event is update in the 
LastObservation and history. In lines 31 to 32, the oldest entry of LEG.EventSec is deleted and L is inserted in its last entry. Note that the function 
CreateLEG is called in lines 18 and 22 of Algorithm 7. Since the step of the prediction is 𝜖 + 1, the time slots between two predictions, t and t + 𝜖 + 1, 
are processed in lines 19 to 23 of Algorithm 7. So calling the function CreateLEG is performed by the false value of flag.

Algorithm 11 CreateLEG

Input: LastObservation,flag, LEG;
Output: LEG; % It Updates LEG

1: SampledRes ← ∅;
2: L ← ∅;
3: if (flag) then
4: LEG.PrevSection ← LastObservation;
5: end if
6: SampledRes ← Sample resources whose corresponding events are in
LEG.PrevSection in the next time slot; % the current time increases by +1 slot.
It means t ← t + 1;
7: LEG.I1 ← t − 𝜖, LEG.I2 ← t;
8: for each ((Resource,Status) ∈ SampledRes) do
9: eR ← event e = (r, s, st, et) in LEG.PrevSection that e.r = Resource;
10: if (Status ≠ e.s) then % It checks the change of status of resources
11: Create the new event E=(r,s,st,et);
12: E.r ← Resource;
13: E.s ← Status;
14: E.st ← t − 1, E.et ← t;
15: add E to L;



16: delete the corresponding event of Resource in LEG.PrevSection;
17: else if ((t − 1) − (𝜇 + 𝜖) = eR.st) then
18: Update eR as (eR.Resource, eR.Status, t − 1 − 𝜖, t) in LEG.PrevSection
and LastObservation;
19: Decompose (eR.Resource,eR.Status, t − 1 − (𝜇 + 𝜖), t) into
two events A = (eR.Resource,eR.Status, t − 1 − (𝜇 + 𝜖), t − 𝜖 − 1) and
B = (eR.Resource, eR.Status, t − 1 − 𝜖, t);
20: Remove the event A from LEG.PrevSection and insert it into history;
21: if (B.st = LEG.I2 − 1) then 22: add the event B into L;
23: delete the corresponding event of B.Resource in LEG.PrevSection;
24: else
25: add the event B into history;
26: end if
27: else if ((t − 1) − (𝜇 + 𝜖) < eR.st) then
28: Update et (end time) of the corresponding event of eR.Resource in
LastObservation and history;
29: end if
30: end for
31: LEG.EventSec[0‥𝜖 − 1] ← LEG.EventSec[1‥𝜖];
32: LEG.EventSec[𝜖] ← L;
33: return LEG;

Appendix B.5. Function UpdateHistory

Algorithm 12 updates history based on LEG. In lines 1 to 2, if history is empty, history is filled with the recent events of the stream. If history is not 
empty, in lines 4 to 9, the end time of the most recent observed events is updated (events of LEG.EventSection) and the events are added into history.

Algorithm 12 UpdateHistory

Input: history,LEG;
Output: It updates history

1: if (history = ∅) then
2: history ← recent events of stream;
3: else
4: for (i = 0; i ≤ 𝜖; i + +) do
5: for each (event x ∈ LEG.EventSection[i]) do
6: x.et ← LEG.I2;
7: insert x into history;
8: end for
9: end for
10: end if

Appendix B.6. Function ComputePrecision

Algorithm 13 updates two counters PredictionCount and CorrectCount, which are essential to compute the prediction precision, and prunes the 
entries of ResultTable. In lines 2 to 20, the entries of ResultTable are considered. In line 3, each entry of ResultTable that has predicted the status 
of resources in the recent time slots is investigated. In lines 5 to 9, the counter sum counts the number of resources whose status is consistent 
with LEG. In lines 10 to 12, ResultTable[i].Max is updated based on sum to find a LEG that is the most consistent with ResultTable[i].Outcome in the 
interval of [ResultTable[i].I1, ResultTable[i].I2]. Since one time slot has been observed, ResultTable[i].I1 increases by +1 in line 13. In lines 14 to 18,  
if ResultTable[i].I1 > ResultTable[i].I2, it means that the time interval predicted by ResultTable[i] has passed. So one prediction has been performed 
and PredictionCount increases by +1. Furthermore, CorrectCount increases by ResultTable[i].Max. Finally, in lines 21 to 23, the entries of ResultTable 
whose time interval has  passed,  are removed.



Algorithm 13 ComputePrecision

Input: LEG;
Output: It updates two counters PredictionCount and CorrectCount;

1: DeleteList ← ∅;
2: for (i = 1; i ≤ |ResultTable|; i + +) do
3: if (ResultTable[i].I1 ≤ LEG.I1 ≤ ResultTable[i].I2) then
4: sum ← 0;
5: for each (Resouce R ∈ ResultTable[i].Outcome) do
6: if (state (R,ResultTable[i].Outcome[R]) occurs in LEG) then
7: sum ← sum + 1;
8: end if
9: end for
10: if ( sum|ResourceType| > ResultTable[i].Max) then
11: ResultTable[i].Max ← sum|ResourceType| ;
12: end if
13: ResultTable[i].I1 ← ResultTable[i].I1 + 1;
14: if (ResultTable[i].I1 > ResultTable[i].I2) then
15: PredictionCount + +;
16: CorrectCount ← CorrectCount + ResultTable[i].Max;
17: add i into DeleteList;
18: end if
19: end if
20: end for
21: for (i = |DeleteList|; i > 0; i − −) do
22: Delete ResultTable[DeleteList[i]];
23: end for

Appendix B.7. Function UpdateMatchedEpisodes

Algorithm 14 shows the function used to update the matched episodes. In lines 2 to 13, all the matched episodes are considered. In lines 3 and 4, 
the first element after ✽ of episodes that have predicted the events of the recent time slots, is considered. In lines 5 to 7, if this element is consistent 
with LEG, the element is filled with ✽ and the matching time of the episode is updated based on the start times of events of LEG. Finally, the episodes 
that have been filled with ✽ completely, are deleted in lines 14 to 16.

Algorithm 14 UpdateMatchedEpisodes

Input: LEG,MatchedEpisodes;
Output: It updates MatchedEpisodes;

1: DeleteList ← ∅;
2: for (i = 1; i ≤ |MatchedEpisodes|; i + +) do
3: if (MatchedEpisodes[i].I + 𝛿 ≤ LEG.I1 − 1 ≤ MatchedEpisodes[i].I + Δ) then
4: j ← MatchedEpisodes[i].Episode.FindIndex(✽);
5: if (MatchedEpisodes[i].Episode[j+ 1]) is consistent with LEG then
6: MatchedEpisodes[i].Episode[j+ 1] ← ✽;
7: MatchedEpisodes[i].I ← max of start times of events of LEG that are
consistent with MatchedEpisodes[i].Episode[j+ 1];
8: if (j + 1 = |MatchedEpisodes[i].Episode|) then
9: add i to DeleteList;
10: end if
11: end if
12: end if
13: end for
14: for (i = |DeleteList|; i > 0; i − −) do
15: delete MatchedEpisodes[DeleteList[i]];
16: end for



References

Achar, A., Ibrahim, A., Sastry, P., 2013. Pattern-growth based frequent serial episode
discovery. Data Knowl. Eng. 87, 91–108. https://doi.org/10.1016/j.datak.2013.06. 
005. 0169–023X http://www.sciencedirect.com/science/article/pii/
S0169023X13000724.

Achar, A., Laxman, S., Sastry, P.S., 2012. A unified view of the apriori-based algorithms
for frequent episode discovery. Knowl. Inf. Syst. 31 (2), 223–250. https://doi.org/ 

10.1007/s10115-011-0408-2 0219–3116.
Achar, A., Laxman, S., Viswanathan, R., Sastry, P.S., 2012. Discovering injective

episodes with general partial orders. Data Min. Knowl. Discov. 25 (1), 67–108. 
https://doi.org/10.1007/s10618-011-0233-y 1384–5810.

Akindele, A.B., Samuel, A.A., 2013. Predicting cloud resource provisioning using
machine learning techniques. In: 2013 26th IEEE Canadian Conference on Electrical 

and Computer Engineering (CCECE), pp. 1–4 Vancouver, Canada.
Alam, M., Shakil, K.A., Sethi, S., 2015. Analysis and Clustering of Workload in Google

Cluster Trace Based on Resource Usage. arXiv preprint arXiv:1501.01426, 
http://arxiv.org/abs/1501.01426.

Allen, J.F., 1984. Towards a general theory of action and time. Artif. Intell. 23 (2),
123–154. 0004–3702 https://doi.org/10.1016/0004-3702(84)90008-0. http://
www.sciencedirect.com/science/article/pii/0004370284900080.

Amiri, M., Mohammad-Khanli, L., 2017. Survey on prediction models of applications for
resources provisioning in cloud. J. Netw. Comp. Appl. 82, 93–113. 1084–8045 
https://doi.org/10.1016/j.jnca.2017.01.016. http://www.sciencedirect.com/
science/article/pii/S1084804517300231.

Amiri, M., Feizi-Derakhshi, M.R., Mohammad-Khanli, L., 2016. IDS fitted Q
improvement using fuzzy approach for resource provisioning in cloud. J. Intell. 
Fuzzy Syst. Prepr. Prepr. 1–12. https://doi.org/10.3233/JIFS-151445. http://
content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs151445.

Andreolini, M., Colajanni, M., Pietri, M., Tosi, S., 2015. Adaptive, scalable and reliable
monitoring of big data on clouds. J. Parallel Distrib. Comp. 79–80, 67–79.
0743–7315 https://doi.org/10.1016/j.jpdc.2014.08.007. http://www.sciencedirect. 
com/science/article/pii/S074373151400149X.

Antonescu, A.F., Robinson, P., Braun, T., 2013. Dynamic SLA management with
forecasting using multi-objective optimization. In: 2013 IFIP/IEEE International 
Symposium on Integrated Network Management (IM 2013), pp. 457–463 Ghent, 
Belgium.

Batal, I., Fradkin, D., Harrison, J., Moerchen, F., Hauskrecht, M., 2012. Mining recent
temporal patterns for event detection in multivariate time series data. In: 
Proceedings of the 18th ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining, KDD ’12. ACM, Beijing, China, pp. 280–288. 
https://doi.org/10.1145/2339530.2339578. 978-1-4503-1462-6 http://
doi.acm.org/10. 1145/2339530.2339578.

Batal, I., Cooper, G.F., Fradkin, D., Harrison Jr., J., Moerchen, F., Hauskrecht, M., Jan.
2016. An efficient pattern mining approach for event detection in multivariate 
temporal data. Knowl. Inf. Syst. 46 (1), 115–150. https://doi.org/10.1007/
s10115-015-0819-6 0219–1377.

Bennani, M.N., Menasce, D.A., 2005. Resource allocation for autonomic data centers
using analytic performance models. In: Proceedings of the Second International 
Conference on Automatic Computing, ICAC ’05. IEEE Computer Society, 
Washington, DC, USA, pp. 229–240. https://doi.org/10.1109/icac.2005.50.

Bey, K.B., Benhammadi, F., Mokhtari, A., Guessoum, Z., 2009. CPU load prediction
model for distributed computing. In: 2009 Eighth International Symposium on 
Parallel and Distributed Computing, pp. 39–45. https://doi.org/10.1109/ISPDC. 
2009.8 Lisbon, Portugal.

Calheiros, R.N., Ranjan, R., Beloglazov, A., Rose, C.A.F.D., Buyya, R., 2011. Cloud Sim: a
toolkit for modeling and simulation of cloud computing environments and 
evaluation of resource provisioning algorithms. Softw. Pract. Exp. 41 (1), 23–50. 
https://doi.org/10.1002/spe.995 0038–0644.

Cao, J., Zhang, W., Tan, W., 2012. Dynamic control of data streaming and processing in
a virtualized environment. IEEE Trans. Autom. Sci. Eng. 9 (2), 365–376.

Cetinski, K., Juric, M.B., 2015. AME-WPC: advanced model for efficient workload
prediction in the cloud. J. Net. Comp. Appl. 55, 191–201. https://
doi.org/10.1016/j.jnca.2015.06.001.

Chen, Z., Zhu, Y., Di, Y., Feng, S., 2015. Self-adaptive prediction of cloud resource
demands using ensemble model and subtractive-fuzzy clustering based fuzzy neural 
network. Comp. Intell. Neurosci. https://doi.org/10.1155/2015/919805
1687–5265.

Coutinho, E.F., de Carvalho Sousa, F.R., Rego, P.A.L., Gomes, D.G., de Souza, J.N., 
2015. Elasticity in cloud computing: a survey. Ann. Telecommun. Ann. des Télécommun.
70 (7), 289–309. https://doi.org/10.1007/s12243-014-0450-7 1958–9395.
Di, S., Kondo, D., Cirne, W., 2014. Google host load prediction based on Bayesian model

with optimized feature combination. J. Parallel Distrib. Comp. 74 (1), 1820–1832. 
https://doi.org/10.1016/j.jpdc.2013.10.001 0743–7315.

Duan, R., Nadeem, F., Wang, J., Zhang, Y., Prodan, R., Fahringer, T., 2009. In:
Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster 
Computing and the Grid, CCGRID ’09. IEEE Computer Society, Shanghai, China, pp. 
339–347. https://doi.org/10.1109/CCGRID.2009.58. 978-0-7695-3622-4.

Fahed, L., Brun, A., Boyer, A., 2014. Episode Rules Mining Algorithm for Distant Event
Prediction Technical Report hal-01062542. HAL.

Galante, G., Bona, L. C. E. d., 2012. A survey on cloud computing elasticity. In: 2012
IEEE Fifth International Conference on Utility and Cloud Computing, pp. 263–270. 
https://doi.org/10.1109/UCC.2012.30 Chicago, IL, USA.

Garg, S.K., Toosi, A.N., Gopalaiyengar, S.K., Buyya, R., 2014. SLA-based virtual machine
management for heterogeneous workloads in a cloud data center. J. Net. Comp. 
Appl. 45, 108–120. 1084–8045 https://doi.org/10.1016/j.jnca.2014.07.030. http://
www.sciencedirect.com/science/article/pii/S1084804514001787.

Ghorbani, M., Wang, Y., Xue, Y., Pedram, M., Bogdan, P., 2014. Prediction and control
of bursty cloud workloads: a fractal framework. In: Proceedings of the 2014 
International Conference on Hardware/Software Codesign and System Synthesis, 
CODES ’14. ACM, New Delhi, India, pp. 12:1–12:9. https://doi.org/10.1145/ 
2656075.2656095. 978-1-4503-3051-0 http://doi.acm.org/10.1145/2656075. 
2656095.

Gursun, G., Crovella, M., Matta, I., 2011. Describing and forecasting video access
patterns. In: 30th IEEE International Conference on Computer Communications
(INFOCOM 2011), pp. 16–20 Shanghai, China.

Han, J., Pei, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.C., 2001. Prefix
span: mining sequential patterns efficiently by Prefix-projected pattern growth. In: 
Proceedings of the 17th International Conference on Data Engineering. , pp. 215–
224. http://hanj.cs.illinois.edu/pdf/span01.pdf.

Han, J., Cheng, H., Xin, D., Yan, X., Aug 2007. Frequent pattern mining: current status
and future directions. Data Min. Knowl. Discov. 15 (1), 55–86. https://doi.org/10. 
1007/s10618-006-0059-1. 1573–756X https://doi.org/10.1007/
s10618-006-0059-1.

F. Hoppner. Learning temporal rules from state sequences. In Seventeenth International
Joint Conference on Artificial Intelligence, IJCAI-01.

Huang, D., He, B., Miao, C., 2014. A survey of resource management in multi-tier web
applications. IEEE Commun. Surv. Tutor. 16 (3), 1574–1590. https://doi.org/10. 

1109/SURV.2014.010814.000601553–877X.
Huang, P., Liu, C.J., Yang, X., Xiao, L., Chen, J., 2014. Wireless spectrum occupancy

prediction based on partial periodic pattern mining. IEEE Trans. Parallel Distrib. 
Syst. 25 (7), 1925–1934. https://doi.org/10.1109/TPDS.2013.283 1045–9219.

Hwang, K., Bai, X., Shi, M., Li, Y., Chen, W.G., Wu, Y., 2016. Cloud performance
modeling and benchmark evaluation of elastic scaling strategies. IEEE Trans. Parallel 

Distrib. Syst. 27 (1), 130–143. https://doi.org/10.1109/TPDS.2015.2398438.
Iosup, A., Li, H., Jan, M., Anoep, S., Dumitrescu, C., Wolters, L., Epema, D.H., 2008. The

grid workloads archive. Future Gen. Comp. Syst. 24 (7), 672–686. 0167–739X 
https://doi.org/10.1016/j.future.2008.02.003. http://
www.sciencedirect.com/science/article/pii/S0167739X08000125.

Islam, S., Keung, J., Lee, K., Liu, A., 2012. Empirical prediction models for adaptive
resource provisioning in the cloud. Future Gen. Comp. Syst. 28 (1), 155–162.
https://doi.org/10.1016/j.future.2011.05.027 0167–739X.

Iwanuma, K., Takano, Y., Nabeshima, H., 2004. On anti-monotone frequency measures
for extracting sequential patterns from a single very-long data sequence. In: IEEE 
Conference on Cybernetics and Intelligent Systems, 2004, vol. 1, pp. 213–217. 
https://doi.org/10.1109/ICCIS.2004.1460414 Singapore, Singapore.

Jheng, J., Tseng, F., Chao, H., Chou, L., Feb 2014. A novel vm workload prediction using
grey forecasting model in cloud data center. In: The International Conference on 
Information Networking 2014 (ICOIN2014), pp. 40–45. https://
doi.org/10.1109/ICOIN.2014.6799662.

Jiang, Y., Perng, C.-S., Li, T., Chang, R.N., 2013. Cloud analytics for capacity planning
and instant VM provisioning. IEEE Trans. Net. Serv. Manag. 10 (3), 312–325. Kaastra, 

I., Boyd, M., 1996. Designing a neural network for forecasting financial and
economic time series. Neurocomputing 10 (3), 215–236. 0925–2312 https://doi. 
org/10.1016/0925-2312(95)00039-9. http://www.sciencedirect.com/science/
article/pii/0925231295000399 Financial Applications, Part {II}.

Karypis, G., Joshi, M.V., Kumar, V., 1999. Universal formulation of sequential patterns
Technical Report TR 99–9021. Department of Computer Science, University of
Minnesota, Minneapolis.

Kaur, P.D., Chana, I., 2014. A resource elasticity framework for qos-aware execution of
cloud applications. Future Gen. Comp. Syst. 37, 14–25. 0167-739X https://doi.org/ 
10.1016/j.future.2014.02.018. http://www.sciencedirect.com/science/article/pii/
S0167739X14000430.

Khan, A., Yan, X., Tao, S., Anerousis, N., 2012. Workload characterization and
prediction in the cloud: a multiple time series approach. In: 2012 IEEE Network

Operations and Management Symposium, pp. 1287–1294 Maui, HI, USA.
Kundu, S., Rangaswami, R., Gulati, A., Zhao, M., Dutta, K., 2012. Modeling virtualized

applications using machine learning techniques. In: Proceedings of the 8th ACM 
SIGPLAN/SIGOPS Conference on Virtual Execution Environments, VEE ’12. ACM, 
pp. 3–14. https://doi.org/10.1145/2151024.2151028. 2151028.

Labonte, F., Mattson, P., Thies, W., Buck, I., Kozyrakis, C., Horowitz, M., 2004. The
stream virtual machine. In: Proceedings of 13th International Conference on Parallel 
Architecture and Compilation Techniques, PACT ’04, pp. 267–277. https://doi.org/ 
10.1109/PACT.2004.1342560 Antibes Juan-les-Pins, France, ISBN: 1089-795X.

Lagar-Cavilla, H.A., Whitney, J.A., Scannell, A.M., Patchin, P., Rumble, S.M., de Lara, E.,
Brudno, M., Satyanarayanan, M., 2009. Snow flock: rapid virtual machine cloning for 
cloud computing. In: Proceedings of the 4th ACM European Conference on Computer 
Systems, EuroSys ’09. ACM, pp. 1–12. https://doi.org/10.1145/1519065. 1519067. 
Nuremberg, Germany.

Lama, P., Zhou, X., 2013. Autonomic provisioning with self-adaptive neural fuzzy
control for end-to-end delay guarantee. In: Proceedings of IEEE International 
Symposium on Modeling, Analysis & Simulation of Computer and 
Telecommunication Systems (MASCOTS), San Francisco, California, US.

Laxman, S., 2006. Discovering frequent episodes: fast algorithms, connections with
HMMs and generalizations PhD Thesis. Department of Computer Science, University 

of Victoria, Bangalore, India.
Laxman, S., Sastry, P.S., 2006. A survey of temporal data mining. Sadhana 31 (2),

173–198. https://doi.org/10.1007/BF02719780 0973–7677.

https://doi.org/10.1016/j.datak.2013.06.005
https://doi.org/10.1016/j.datak.2013.06.005
http://www.sciencedirect.com/science/article/pii/S0169023X13000724
http://www.sciencedirect.com/science/article/pii/S0169023X13000724
https://doi.org/10.1007/s10115-011-0408-2
https://doi.org/10.1007/s10115-011-0408-2
https://doi.org/10.1007/s10618-011-0233-y
http://refhub.elsevier.com/S1084-8045(17)30419-8/sref4
http://arxiv.org/abs/1501.01426
http://arxiv.org/abs/1501.01426
https://doi.org/10.1016/0004-3702(84)90008-0
http://www.sciencedirect.com/science/article/pii/0004370284900080
http://www.sciencedirect.com/science/article/pii/0004370284900080
https://doi.org/10.1016/j.jnca.2017.01.016
http://www.sciencedirect.com/science/article/pii/S1084804517300231
http://www.sciencedirect.com/science/article/pii/S1084804517300231
https://doi.org/10.3233/JIFS-151445
http://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs151445
http://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs151445
https://doi.org/10.1016/j.jpdc.2014.08.007
http://www.sciencedirect.com/science/article/pii/S074373151400149X
http://www.sciencedirect.com/science/article/pii/S074373151400149X
http://refhub.elsevier.com/S1084-8045(17)30419-8/sref10
https://doi.org/10.1145/2339530.2339578
https://doi.org/10.1145/2339530.2339578
http://doi.acm.org/10.1145/2339530.2339578
http://doi.acm.org/10.1145/2339530.2339578
https://doi.org/10.1007/s10115-015-0819-6
https://doi.org/10.1007/s10115-015-0819-6
https://doi.org/10.1109/icac.2005.50
https://doi.org/10.1109/ISPDC.2009.8
https://doi.org/10.1109/ISPDC.2009.8
https://doi.org/10.1002/spe.995
http://refhub.elsevier.com/S1084-8045(17)30419-8/sref16
https://doi.org/10.1016/j.jnca.2015.06.001
https://doi.org/10.1016/j.jnca.2015.06.001
https://doi.org/10.1155/2015/919805
https://doi.org/10.1007/s12243-014-0450-7
https://doi.org/10.1016/j.jpdc.2013.10.001
https://doi.org/10.1109/CCGRID.2009.58
http://refhub.elsevier.com/S1084-8045(17)30419-8/sref22
https://doi.org/10.1109/UCC.2012.30
https://doi.org/10.1016/j.jnca.2014.07.030
http://www.sciencedirect.com/science/article/pii/S1084804514001787
http://www.sciencedirect.com/science/article/pii/S1084804514001787
https://doi.org/10.1145/2656075.2656095
https://doi.org/10.1145/2656075.2656095
http://doi.acm.org/10.1145/2656075.2656095
http://doi.acm.org/10.1145/2656075.2656095
http://refhub.elsevier.com/S1084-8045(17)30419-8/sref26
http://hanj.cs.illinois.edu/pdf/span01.pdf
https://doi.org/10.1007/s10618-006-0059-1
https://doi.org/10.1007/s10618-006-0059-1
https://doi.org/10.1007/s10618-006-0059-1
https://doi.org/10.1007/s10618-006-0059-1
https://doi.org/10.1109/SURV.2014.010814.00060
https://doi.org/10.1109/SURV.2014.010814.00060
https://doi.org/10.1109/TPDS.2013.283
https://doi.org/10.1109/TPDS.2015.2398438
https://doi.org/10.1016/j.future.2008.02.003
http://www.sciencedirect.com/science/article/pii/S0167739X08000125
http://www.sciencedirect.com/science/article/pii/S0167739X08000125
https://doi.org/10.1016/j.future.2011.05.027
https://doi.org/10.1109/ICCIS.2004.1460414
https://doi.org/10.1109/ICOIN.2014.6799662
https://doi.org/10.1109/ICOIN.2014.6799662
http://refhub.elsevier.com/S1084-8045(17)30419-8/sref37
https://doi.org/10.1016/0925-2312(95)00039-9
https://doi.org/10.1016/0925-2312(95)00039-9
http://www.sciencedirect.com/science/article/pii/0925231295000399
http://www.sciencedirect.com/science/article/pii/0925231295000399
http://refhub.elsevier.com/S1084-8045(17)30419-8/sref39
https://doi.org/10.1016/j.future.2014.02.018
https://doi.org/10.1016/j.future.2014.02.018
http://www.sciencedirect.com/science/article/pii/S0167739X14000430
http://www.sciencedirect.com/science/article/pii/S0167739X14000430
http://refhub.elsevier.com/S1084-8045(17)30419-8/sref41
https://doi.org/10.1145/2151024.2151028
https://doi.org/10.1109/PACT.2004.1342560
https://doi.org/10.1109/PACT.2004.1342560
https://doi.org/10.1145/1519065.1519067
https://doi.org/10.1145/1519065.1519067
http://refhub.elsevier.com/S1084-8045(17)30419-8/sref45
http://refhub.elsevier.com/S1084-8045(17)30419-8/sref46
https://doi.org/10.1007/BF02719780


Laxman, S., Sastry, P.S., Unnikrishnan, K.P., 2005. Discovering frequent episodes and
learning hidden markov models: a formal connection. IEEE Trans. on Knowl. and 
Data Eng. 17 (11), 1505–1517. https://doi.org/10.1109/TKDE.2005.181
1041-4347.

Laxman, S., Tankasali, V., White, R.W., 2008. Stream prediction using a generative
model based on frequent episodes in event sequences. In: Proceedings of the 14th 
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 
KDD ’08. ACM, Las Vegas, Nevada, USA, pp. 453–461. https://doi.org/10.1145/ 
1401890.1401947. 978-1-60558-193-4 http://doi.acm.org/10.1145/1401890. 
1401947.

Li, A., Yang, X., Kandula, S., Zhang, M., 2010. Cloudcmp: comparing public cloud
providers. In: Proceedings of the 10th ACM SIGCOMM Conference on Internet 
Measurement, IMC ’10. ACM, Melbourne, Australia, pp. 1–14. https://doi.org/10. 
1145/1879141.1879143. 978-1-4503-0483-2 http://doi.acm.org/10.1145/ 
1879141.1879143.

Liu, X., Zhu, X., Singhal, S., Arlitt, M., 2005. Adaptive entitlement control of resource
containers on shared servers. In: 2005 9th IFIP/IEEE International Symposium on 
Integrated Network Management, 2005. IM 2005, pp. 163–176. https://doi.org/10. 
1109/INM.2005.1440783 Nice, France.

Liu, C., Shang, Y., Duan, L., Chen, S., Liu, C., Chen, J., 2015. Optimizing workload
category for adaptive workload prediction in service clouds. In: Proceedings of the 
13th International Conference on Service-oriented Computing (ICSOC 2015). 
Springer-Verlag, Goa, India, pp. 87–104. Berlin Heidelberg.

Lu, C.T., Chang, C.W., Chang, J.S., 2015. VM scaling based on Hurst exponent and
Markov transition with empirical cloud data. J. Syst. Soft. 99, 199–207 0164–1212. 

Mannila, H., Toivonen, H., Inkeri Verkamo, A., 1997. Discovery of frequent episodes in
event sequences. Data Min. Knowl. Discov. 1 (3), 259–289. https://doi.org/10.
1023/A:1009748302351 1573-756X.

Matsunaga, A., Fortes, J.A.B., 2010. On the use of machine learning to predict the time
and resources consumed by applications. In: Proceedings of the 2010 10th
IEEE/ACM International Conference on Cluster, Cloud and Grid Computing. IEEE 
Computer Society, Melbourne, Victoria, Australia, pp. 495–504. https://doi.org/10. 
1109/CCGRID.2010.98.

Matsunaga, A., Fortes, J.A.B., 2010. On the use of machine learning to predict the time
and resources consumed by applications. In: Proceedings of the 2010 10th
IEEE/ACM International Conference on Cluster, Cloud and Grid Computing. IEEE 
Computer Society, Melbourne, Victoria, Australia, pp. 495–504. https://doi.org/10. 
1109/CCGRID.2010.98.

Mell, P., Grance, T., 2011. NIST Special Publication 800-145. http://csrc.nist.gov/
publications/nistpubs/800-145/SP800-145.pdf.

Miu, T., Missier, P., 2012. Predicting the execution time of workflow activities based on
their input features. In: Proceedings of the 2012 SC Companion: High Performance 
Computing, Networking Storage and Analysis, SCC ’12. IEEE Computer Society, Salt 
Lake City, UT, USA, pp. 64–72. https://doi.org/10.1109/SC.Companion.2012.21.

Moerchen, F., 2006. Algorithms for time series knowledge mining. In: Proceedings of the
12th ACM SIGKDD International Conference on Knowledge Discovery and Data 
Mining, KDD ’06. ACM, Philadelphia, PA, USA, pp. 668–673. https://doi.org/10. 
1145/1150402.1150485. 1-59593-339-5.

Moskovitch, R., Shahar, Y., 2009. Medical temporal-knowledge discovery via temporal
abstraction. In: Proceedings of 2009 AMIA Annual Symposium, pp. 452–456 San 

Francisco, CA.
Nathuji, R., Kansal, A., Ghaffarkhah, A., 2010. Q-clouds: managing performance

interference effects for qos-aware clouds. In: Proceedings of the 5th European 
Conference on Computer Systems, EuroSys ’10. ACM, Paris, France, pp. 237–250. 
https://doi.org/10.1145/1755913.1755938.

Pei, J., Han, J., Wang, W., 2007. Constraint-based sequential pattern mining: the
pattern-growth methods. J. Intell. Inf. Syst. 28 (2), 133–160. https://doi.org/10.
1007/s10844-006-0006-z 0925–9902.

Prevost, J.J., Nagothu, K., Kelley, B., Jamshidi, M., 2011. Prediction of cloud data center
networks loads using stochastic and neural models. In: 2011 6th International 
Conference on System of Systems Engineering, pp. 276–281 Albuquerque, New 
Mexico, USA.

Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H., Kozuch, M.A., 2012. Heterogeneity and
dynamicity of clouds at scale: google trace analysis. In: Proceedings of the Third 
ACM Symposium on Cloud Computing, SoCC ’12. ACM, San Jose, California, pp. 
7:1–7:13. https://doi.org/10.1145/2391229.2391236. 978-1-4503-1761-0, 
http://doi.acm.org/10.1145/2391229.2391236.

Saripalli, P., Kiran, G.V.R., Shankar, R.R., Narware, H., Bindal, N., 2011. Load prediction
and hot spot detection models for autonomic cloud computing. In: Proceedings of 
the 2011 Fourth IEEE International Conference on Utility and Cloud Computing. 
IEEE Computer Society, Melbourne, Victoria, Australia, pp. 397–402. https://doi. 
org/10.1109/ucc.2011.66.

Shen, S., Beek, V. v., Iosup, A., May 2015. Statistical characterization of business-critical
workloads hosted in cloud data centers. In: 2015 15th IEEE/ACM International 
Symposium on Cluster, Cloud and Grid Computing, pp. 465–474. https://doi.org/ 
10.1109/CCGrid.2015.60.

Shi, P., Wang, H., Yin, G., Lu, F., Wang, T., 2012. Prediction-based federated
management of multi-scale resources in cloud. Adv. Inf. Sci. Serv. Sci. 4 (6), 

324–334.
Singh, S., Chana, I., 2015. QoS-aware autonomic resource management in cloud

computing: a systematic review. ACM Comp. Surv. 48 (3) https://doi.org/10.1145/ 
2843889.

Tang, Z., Mo, Y., Li, K., Li, K., 2014. Dynamic forecast scheduling algorithm for virtual
machine placement in cloud computing environment. The J. Supercomput. 70 (3), 

1279–1296. https://doi.org/10.1007/s11227-014-1227-5 0920–8542.
Tatti, N., Cule, B., 2012. Mining closed strict episodes. Data Min. Knowl. Discov. 25 (1),

34–66. https://doi.org/10.1007/s10618-011-0232-z 1384–5810.
Toma, T., Abu-Hanna, A., Bosman, R.-J., 2007. Discovery and inclusion of {SOFA} score

episodes in mortality prediction. J. Biomedical Inf. 40 (6), 649–660. https://doi. 
org/10.1016/j.jbi.2007.03.007. 1532–0464 http://www.sciencedirect.com/
science/article/pii/S153204640700024X Intelligent Data Analysis in Biomedicine.

Tu, Z., 2007. Learning generative models via discriminative approaches. In: 2007 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 

2007). IEEE Computer Society, Minneapolis, Minnesota, USA.
Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P., Wood, T., 2008. Agile dynamic

provisioning of multi-tier internet applications. ACM Trans. Auton. Adapt. Syst. 3 
(1), 1–39. https://doi.org/10.1145/1342171.1342172 1556–4665.

Utilization. http://h17007.www1.hpe.com/device_help/HPJ3298A/utilization.htm.
(Accessed 06 06 2017) .

Vazquez, C., Krishnan, R., John, E., 2015. Time series forecasting of cloud data center
workloads for dynamic resource provisioning. J. Wirel. Mob. Net. Ubiquitous Comp. 

Depend. Appl. JoWUA 6 (3), 87–110.
VMware vRealize Operations Manager 6.0.1 Documentation Center. https://pubs.

vmware.com/vrealizeoperationsmanager-6/index.jsp#com.vmware.vcom.core.doc/
GUID-41603CD6-453B-4E26-A237-34E733BAB00C.html. Accessed 7 June 2017.

Wang, C., 1994. A Theory of Generalization in Learning Machines with Neural Network
Applications PhD thesis, Philadelphia, PA, USA. AAI9521138.

Wang, J., Han, J., 2004. BIDE: efficient mining of frequent closed sequences. In:
Proceedings of the 20th International Conference on Data Engineering, ICDE ’04. 
IEEE Computer Society, Boston, Massachusetts, USA. 0-7695-2065-0 http://dl.acm. 
org/citation.cfm?id=977401.978142.

Weingartner, R., Brascher, G.B., Westphall, C.B., 2015. Cloud resource management: a 
survey on forecasting and profiling models. J. Net. Comp. Appl. 47, 99–106.
Wu, H., Zhang, W., Zhang, J., Wei, J., Huang, T., 2013. A benefit-aware on-demand

provisioning approach for multi-tier applications in cloud computing. Front. Comp.
Sci. 7 (4), 459–474. https://doi.org/10.1007/s11704-013-2201-8 2095–2228.

Xi, S., Li, C., Lu, C., Gill, C.D., Xu, M., Phan, L.T.X., Lee, I., Sokolsky, O., 2015. Rt-open
stack: cpu resource management for real-time cloud computing. In: 2015 IEEE 8th 
International Conference on Cloud Computing, pp. 179–186. https://doi.org/10. 
1109/CLOUD.2015.33.

Xu, C.-Z., Rao, J., Bu, X., 2012. URL: a unified reinforcement learning approach for
autonomic cloud management. J. Parallel Distrib. Comp. 72 (2), 95–105. https://
doi.org/10.1016/j.jpdc.2011.10.003. 0743–7315 http://
www.sciencedirect.com/science/article/pii/S0743731511001924.

Xu, D.Y., Yang, S.L., Liu, R.P., 2013. A mixture of HMM, GA, and Elman network for
load prediction in cloud-oriented data centers. J. Zhejiang Univ. SCIENCE C 14 (11), 

845–858. https://doi.org/10.1631/jzus.C1300109 1869–1951.
Yan, X., Han, J., Afshar, R., 2003. CloSpan: mining: Closed sequential patterns in large

datasets. In: Proceedings of the 2003 SIAM International Conference on Data 
Mining, pp. 166–177. https://doi.org/10.1137/1.9781611972733.15 San Francisco, 
CA, USA.

Yang, J., Liu, C., Shang, Y., Cheng, B., Mao, Z., Liu, C., Niu, L., Chen, J., 2014. A
cost-aware auto-scaling approach using the workload prediction in service clouds. 
Inf. Syst. Front. 16 (1), 7–18. https://doi.org/10.1007/s10796-013-9459-0 1387–
3326.

Yang, Q., Peng, C., Zhao, H., Yu, Y., Zhou, Y., Wang, Z., Du, S., 2014. A new method
based on PSR and EA-GMDH for host load prediction in cloud computing system. 
The J. Supercomputing 68 (3), 1402–1417. https://doi.org/10.1007/
s11227-014-1097-x 0920–8542.

Zaki, M.J., 2001. Spade: an efficient algorithm for mining frequent sequences. Mach.
Learn. 42 (1–2), 31–60. https://doi.org/10.1023/A:1007652502315 0885–6125. 

Zhang, Q., Cherkasova, L., Smirni, E., 2007. A regression-based analytic model for
dynamic resource provisioning of multi-tier applications. In: Proceedings of the 
Fourth International Conference on Autonomic Computing, ICAC ’07, p. 27. https://
doi.org/10.1109/ICAC.2007.1 Jacksonville, Florida, USA.

Zhenhuan, G., Xiaohui, G., Wilkes, J., 2010. PRESS: PRedictive elastic ReSource scaling
for cloud systems. In: Proceedings of the 6th International Conference on Network 
and Service Management, CNSM 2010, pp. 9–16. https://doi.org/10.1109/CNSM. 
2010.5691343 Niagara Falls, Canada.

Zhu, X., Uysal, M., Wang, Z., Singhal, S., Merchant, A., Padala, P., Shin, K., 2009. What
does control theory bring to systems research? SIGOPS Oper. Syst. Rev. 43 (1), 
62–69. https://doi.org/10.1145/1496909.1496922 0163–5980.

https://doi.org/10.1109/TKDE.2005.181
https://doi.org/10.1145/1401890.1401947
https://doi.org/10.1145/1401890.1401947
http://doi.acm.org/10.1145/1401890.1401947
http://doi.acm.org/10.1145/1401890.1401947
https://doi.org/10.1145/1879141.1879143
https://doi.org/10.1145/1879141.1879143
http://doi.acm.org/10.1145/1879141.1879143
http://doi.acm.org/10.1145/1879141.1879143
https://doi.org/10.1109/INM.2005.1440783
https://doi.org/10.1109/INM.2005.1440783
http://refhub.elsevier.com/S1084-8045(17)30419-8/sref52
http://refhub.elsevier.com/S1084-8045(17)30419-8/sref53
https://doi.org/10.1023/A:1009748302351
https://doi.org/10.1023/A:1009748302351
https://doi.org/10.1109/CCGRID.2010.98
https://doi.org/10.1109/CCGRID.2010.98
https://doi.org/10.1109/CCGRID.2010.98
https://doi.org/10.1109/CCGRID.2010.98
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
https://doi.org/10.1109/SC.Companion.2012.21
https://doi.org/10.1145/1150402.1150485
https://doi.org/10.1145/1150402.1150485
http://refhub.elsevier.com/S1084-8045(17)30419-8/sref60
https://doi.org/10.1145/1755913.1755938
https://doi.org/10.1007/s10844-006-0006-z
https://doi.org/10.1007/s10844-006-0006-z
http://refhub.elsevier.com/S1084-8045(17)30419-8/sref63
https://doi.org/10.1145/2391229.2391236
http://doi.acm.org/10.1145/2391229.2391236
http://doi.acm.org/10.1145/2391229.2391236
https://doi.org/10.1109/ucc.2011.66
https://doi.org/10.1109/ucc.2011.66
https://doi.org/10.1109/CCGrid.2015.60
https://doi.org/10.1109/CCGrid.2015.60
http://refhub.elsevier.com/S1084-8045(17)30419-8/sref67
https://doi.org/10.1145/2843889
https://doi.org/10.1145/2843889
https://doi.org/10.1007/s11227-014-1227-5
https://doi.org/10.1007/s10618-011-0232-z
https://doi.org/10.1016/j.jbi.2007.03.007
https://doi.org/10.1016/j.jbi.2007.03.007
http://www.sciencedirect.com/science/article/pii/S153204640700024X
http://www.sciencedirect.com/science/article/pii/S153204640700024X
http://refhub.elsevier.com/S1084-8045(17)30419-8/sref72
https://doi.org/10.1145/1342171.1342172
http://h17007.www1.hpe.com/device_help/HPJ3298A/utilization.htm
http://refhub.elsevier.com/S1084-8045(17)30419-8/sref75
https://pubs.vmware.com/vrealizeoperationsmanager-6/index.jsp#com.vmware.vcom.core.doc/GUID-41603CD6-453B-4E26-A237-34E733BAB00C.html
https://pubs.vmware.com/vrealizeoperationsmanager-6/index.jsp#com.vmware.vcom.core.doc/GUID-41603CD6-453B-4E26-A237-34E733BAB00C.html
https://pubs.vmware.com/vrealizeoperationsmanager-6/index.jsp#com.vmware.vcom.core.doc/GUID-41603CD6-453B-4E26-A237-34E733BAB00C.html
http://refhub.elsevier.com/S1084-8045(17)30419-8/sref77
http://dl.acm.org/citation.cfm?id=977401.978142
http://dl.acm.org/citation.cfm?id=977401.978142
http://refhub.elsevier.com/S1084-8045(17)30419-8/sref79
https://doi.org/10.1007/s11704-013-2201-8
https://doi.org/10.1109/CLOUD.2015.33
https://doi.org/10.1109/CLOUD.2015.33
https://doi.org/10.1016/j.jpdc.2011.10.003
https://doi.org/10.1016/j.jpdc.2011.10.003
http://www.sciencedirect.com/science/article/pii/S0743731511001924
http://www.sciencedirect.com/science/article/pii/S0743731511001924
https://doi.org/10.1631/jzus.C1300109
https://doi.org/10.1137/1.9781611972733.15
https://doi.org/10.1007/s10796-013-9459-0
https://doi.org/10.1007/s11227-014-1097-x
https://doi.org/10.1007/s11227-014-1097-x
https://doi.org/10.1023/A:1007652502315
https://doi.org/10.1109/ICAC.2007.1
https://doi.org/10.1109/ICAC.2007.1
https://doi.org/10.1109/CNSM.2010.5691343
https://doi.org/10.1109/CNSM.2010.5691343
https://doi.org/10.1145/1496909.1496922

	A sequential pattern mining model for application workload prediction in cloud environment
	1. Introduction
	2. Related work
	2.1. Control theory
	2.2. Queuing network
	2.3. Machine learning techniques

	3. Background and primary concepts
	3.1. Abstraction representation
	3.2. Temporal relations
	3.3. Episode
	3.4. Episode occurrence
	3.5. Episode representation
	3.6. Frequent episode
	3.7. Stream representation
	3.8. Pattern tree
	3.9. Gap constraint
	3.10. Latest occurrence

	4. Foundation and formulation of POSITING
	4.1. Pattern discovery
	4.1.1. Computing frequency
	4.1.2. Closed episodes discovery


	Frequency threshold c
	4.2. Observation extraction
	4.2.1. Consistent observation


	5. Prediction model
	5.1. Criteria for episode evaluation
	5.2. Data structure
	5.3. Main core of the prediction model

	6. Evaluation
	6.1. Real workload

	Impact of parameters theta;, mu; and eta;
	6.2. Synthetic workload

	Impact of Nodes and h on the predictors
	Impact of parameters theta;, mu; and eta;
	7. Conclusion and future work
	Acknowledgement
	Proofs
	Algorithms
	Function ExtractObservation
	Function EpisodeSelection
	Function Evaluating
	Function CreateLEG
	Function UpdateHistory
	Function ComputePrecision
	Function UpdateMatchedEpisodes
	References




