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Abstract

In this paper, we propose the Modular Robot Time Protocol (MRTP), a network-wide time synchronization
protocol for modular robots (a class of distributed embedded systems) with neighbor-to-neighbor commu-
nications and potentially low-precision clocks. Our protocol achieves its performance by combining several
mechanisms: central time master election, fast and recursive propagation of synchronization waves along the
edges of a breadth-first spanning-tree, low-level timestamping and per-hop compensation for communication
delays using the most-appropriate method, and clock skew compensation using linear regression. We eval-
uate our protocol on the Blinky Blocks system both on hardware and through simulations. Experimental
results show that MRTP can potentially manage real systems composed of up to 27, 775 Blinky Blocks. We
observe that the synchronization precision depends on the hop distance to the time master, the synchro-
nization periods and the number of synchronization points used for the linear regressions. Furthermore, we
show that our protocol is able to keep a Blinky Blocks system synchronized to a few milliseconds, using few
network resources at runtime, even-though the Blinky Blocks hardware clocks exhibit very poor accuracy
and resolution. We compare MRTP to existing synchronization protocols ported to fit our system model.
Simulation results show that MRTP can achieve better synchronization precision than the most precise
compared protocols while sending more than half less messages in compact systems.

Keywords: Time synchronization, Distributed embedded systems, Modular robotics

1. Introduction

Technological advances, especially in the minia-
turization of robotic devices, foreshadow the
emergence of large-scale ensembles of small-size
and resource-constrained robots that will self-
organize and distributively cooperate to achieve
complex tasks (e.g., modular robotic systems (Yim
et al., 2009), swarm robotic systems (Şahin,
2004), distributed micro-electro-mechanical sys-
tems (Bourgeois and Goldstein, 2012), robotic ma-
terials (McEvoy and Correll, 2015), programmable
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matter (Goldstein and Mowry, 2004; Bourgeois
et al., 2016), etc.). These ensembles are formed
from independent, intelligent and communicating
robots which act as a whole. In addition, these
robots are able to re-arrange their connectivity in
order to adapt the global structure of their ensemble
to specific applications, providing robustness and
versatility.

We believe that lots of innovative and com-
plex applications based on large-scale ensembles of
robots are to appear and will be fully integrated
in our daily-life environment. In (Goldstein and
Mowry, 2004; Bourgeois et al., 2016), it is, for
example, envisioned to use thousands to millions
of micro modules to build programmable matter,
i.e., matter that can change its physical properties
in response to external and programmed events.
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Programmable matter promises synthetic reality
and has a wide range of applications (e.g., send-
ing/downloading copies of physical objects, mor-
pheable objects re-shapable at our will, injectable
surgical instruments, 3-D interactive life-size TV,
etc.) (Goldstein and Mowry, 2004).
Coordination among a group of distributed

robots often rely on time synchronization. For in-
stance, (Habibi et al., 2012) proposes to attach sev-
eral modular robots together, each one equipped
with a conveyance surface, to build a large dis-
tributed and modular system to convey small and
fragile objects. Modules cooperate to convey the
object using distributed real-time control. Modules
have to remain synchronized in order to satisfy tim-
ing constraints, otherwise the object may get out
of the trajectory, hit obstacles or fall off the sur-
face. A distributed self-reconfiguration algorithm
in which cubic modules arranged in a 2D plane
cooperatively move to change the global organiza-
tion of the modular robot is proposed in (Piranda
and Bourgeois, 2016). In this algorithm, lines of
modules are translated. A line translation requires
modules in that line to be synchronized in order to
move quasi-simultaneously in the same direction.
In (Hosseinmardi et al., 2012), the authors propose
to realize amorphous intelligent façades composed
of many actuating sensor/actuator cells, each one
equipped with RGB leds. One can imagine to use
this façade as a large-scale distributed display in
which every cell is a pixel and the cells collabora-
tively render images and sound in a synchronous
fashion. Coordination of these robots will require
synchronized clocks.
In this paper, we focus our attention on modular

robots composed of identical modules that commu-
nicate together using neighbor-to-neighbor commu-
nications. The term “neighbors” designates neigh-
bors in the physical network and refers to directly
connected modules (one-hop). Modules can share a
common timing signal through dedicated pins, but
this requires a specific hardware design. We con-
sider a system without a global clock signal. Ev-
ery module has its own notion of time provided
by its own hardware clock. Since common hard-
ware clocks are imperfect, local clocks tend to run
at slightly different and variable frequencies, drift-
ing apart from each other over time. Consequently,
a distributed time synchronization is necessary to
keep modules local clock synchronized. The offset
of two clocks denotes the time difference between
them whereas the skew of two clocks denotes their

frequency difference.
Several approaches to time synchronization exist

(continuous vs on-demand, network-wide vs cluster-
ing, timescale transformation vs clock synchroniza-
tion, etc.) (Römer et al., 2005). The approach to
use depends on the target application. In the con-
tinuous model, nodes strive to kept synchronized at
all time. This model is opposed to the on-demand
synchronization model where nodes can either a
posteriori agree on the time at which an event has
occurred or anticipate synchronizations in order to
trigger some coordinated actions at a given time.
Here, our goal is to achieve network-wide and con-
tinuous time synchronization. This is indeed the
most general approach, in our opinion.
Synchronization protocols based on this approach

aim to keep a small offset between local clocks and
a global reference time. In most of the existing pro-
tocols, devices exchange timestamped messages in
order to estimate the current global time. Since
time keeps going during communications, modules
have to correctly compensate for network delays in
order to evaluate the current global time upon re-
ception of synchronization messages. Although it
is non-trivial to accurately estimate communication
delays, especially in presence of unpredictable de-
lays (due for example, to queueing or retransmis-
sions), it is crucial in order to achieve high precision
performance.
Our contribution is to propose the Modular

Robot Time Protocol (MRTP), a network-wide
time synchronization protocol for modular robots.
This work is an extension of our previous one pre-
sented in (Naz et al., 2015a, 2016b). In (Naz et al.,
2015a, 2016b), we evaluate the precision of MRTP
in small-scale hardware systems and we announce
by extrapolation that MRTP can efficiently man-
age systems with up to 27, 775 modules. The ac-
tual contribution of this article is twofold. First,
we build an accurate simulation model of our target
platform and evaluate the performance of MRTP on
larger-scale systems through simulations. We con-
sider various performance metrics, namely, the syn-
chronization precision, the time of convergence and
the communication efficiency. Second, we compare
MRTP to different existing synchronization proto-
cols. We show in Section 6.2 that MRTP can effec-
tively synchronize systems with up to 27, 775 mod-
ules to a few milliseconds. Moreover, simulations
results show that MRTP can achieve better syn-
chronization precision than the most precise com-
pared protocols while sending more than half less
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messages in compact systems.
MRTP is intended to synchronize large-scale and

fairly stable systems where changes in the network
topology, due for instance to module mobility, or
potential module or link failures, are infrequent.
Our protocol assumes every module has a local
clock, which can be low precision and low resolu-
tion, typically in the order of the millisecond. Mod-
ules can use low communication bitrates (e.g, 38.4
kbit/s). Such a low resolution, low precision and
high communication latency make accurate syn-
chronization challenging. First, the local time can-
not be accurately read. Second, it is hard to ac-
curately compensate for network delays if they are
not negligible and, at the same time, only roughly
measurable. Third, clock skew and clock instability
may not be negligible during high-latency (multi-
hop) communications.

To the best of our knowledge, MRTP is the first
protocol for modular robots that provides an ac-
curate low-skew global timescale without dedicated
hardware. Our protocol combines new ideas with
existing methods proposed in the domains of com-
puter networks and wireless sensor networks. In our
protocol, a dynamically elected central module pe-
riodically broadcasts the current global time along
the edges of a breadth-first spanning-tree. Plac-
ing the time master close to the network center of
the system reduces the time of the synchronization
phases and increases the overall precision as cumu-
lative estimations are made every hop. It is partic-
ularly efficient in our context, because, as explained
in Section 3.1, large-scale ensembles of modular
robotic ensembles where modules use neighbor-to-
neighbor communications tend to exhibit large hop
distances. At each hop, the propagated estimation
of the current global time is updated to take into ac-
count communication delays and time of residence
in intermediate modules. Any approach to compen-
sate for these delays can be used in MRTP. Most of
the existing approaches use low-level timestamping
to suppress the main sources of uncertainty in de-
lay estimations. The best-suited technique to use
in MRTP depends on the target platform (i.e., the
clock precision, its resolution and the communica-
tion mechanism) and should be carefully selected
as it has a direct impact on the performance of our
protocol. Section 6.1.3 provides a method to experi-
mentally evaluate the precision of a given approach
over multiple hops. In the system we use for our
experiments, the most precise method is based on
data-link layer timestamping and predictions of the

transfer time (as defined in Section 3.3). With this
approach, a module gets synchronized by a single
timestamped message from its parent in the syn-
chronization tree incurring little message overhead.
Furthermore, modules use linear regression to com-
pensate for clock skew.
We implemented our protocol and evaluated it

on the Blinky Blocks system (Kirby et al., 2011),
both on hardware1 and in the VisibleSim simula-
tor2 (Dhoutaut et al., 2013). We provide two videos
of MRTP running on the Blinky Blocks hardware
platform to illustrate the necessity, the effectiveness
and the robustness of MRTP3,4. In this article, we
show that MRTP is able to manage systems com-
posed of up to 27, 775 Blinky Blocks. Furthermore,
experimental results show that MRTP is able to
successfully maintain a Blinky Blocks system syn-
chronized to a few milliseconds, using few network
resources at runtime, although the Blinky Blocks
use low-bitrate communications (38.4 kbit/s) and
are equipped with a very low accuracy (10, 000
parts per million (ppm)) and poor resolution (1 mil-
lisecond) clocks.
The rest of this paper is organized as follows. Sec-

tion 2 offers an overview of the existing time syn-
chronization protocols. Section 3 details the sys-
tem model and assumptions. Section 4 describes
MRTP. Section 5 describes the technical charac-
teristics of the Blinky Blocks, the target platform.
Section 6 presents experimental results. Section 7
concludes our work and discusses its general appli-
cability. Section 8 suggests future research direc-
tions.

2. Related Work

Time synchronization has been extensively stud-
ied in various sub-domains. Many algorithms

1The source code of MRTP is included in the Blinky
Blocks firmware, available online at https://github.com/
claytronics/oldbb

2The source code of VisibleSim and the applications writ-
ten for the evaluation of our protocol is available online at
https://github.com/nazandre/thesis

3A video illustrating the necessity of time synchro-
nization in Blinky Blocks systems and the robustness of
MRTP over time is available online at: https://youtu.be/
X6QzivsmJBo

4A video illustrating the effectiveness of MRTP and its
robustness to network dynamics is available online at: https:
//youtu.be/xpbnbeJVz08. In this video, 72 Blinky Blocks
are assembled to build a distributed and extensible bitmap
scroller.
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and protocols have been proposed for computer
networks such as Cristian’s algorithm (Cristian,
1989), the Berkeley algorithm (Gusella and Zatt,
1989), the Network Time Protocol (NTP) (Mills,
1991) and the IEEE 1588 Precise Time Protocol
(PTP) (IEEE, 2008). Time synchronization is also
an important topic of interest in Wireless Sensor
Networks (WSN) where many protocols have been
proposed, e.g., Reference Broadcast Synchroniza-
tion (RBS) (Elson et al., 2002), the Timing-sync
Protocol for Sensor Networks (TPSN) (Ganeriwal
et al., 2003), the Flooding Time Synchronization
Protocol (FTSP) (Maróti et al., 2004), the Time-
Diffusion Synchronization Protocol (TDP) (Su and
Akyildiz, 2005), the Rapid Time Synchronization
(RATS) (Kusy, 2007), the PulseSync (Lenzen et al.,
2009, 2015), the Asynchronous Diffusion algorithm
(AD) (Li and Rus, 2006), the Gradient Time Syn-
chronization Protocol (GTSP) (Sommer and Wat-
tenhofer, 2009), the Average TimeSynch (ATS)
protocol (Schenato and Fiorentin, 2011) and the
Maximum Time Synchronization (MTS) (He et al.,
2014a). Like modular robots, WSN generally form
spontaneous peer-to-peer networks of resource con-
strained devices.
To the best of our knowledge, time synchro-

nization has not attracted any attention in the
modular robotic community. Methods to provide
a global metronome-like signal in modular robots
have been proposed in (Kokaji et al., 1996; Baca
et al., 2010). However, these mechanisms synchro-
nize clock phase or/and frequency but not actual
clock time. Moreover, (Kokaji et al., 1996) is purely
theoretical, the authors consider ideal clocks run-
ning at the same exact frequency and do not pro-
vide any performance evaluation.

2.1. Architecture : from master/slave to fully dis-
tributed protocols

Existing time synchronization protocols differ by
the network architecture they adopt. NTP, PTP,
TPSN, FTSP, RBS and TDP adopt a master/slave
approach. In a master/slave approach, one or more
masters are in charge of synchronizing slave nodes.
In NTP, PTP, TPSN, FTSP and TDP, slave node
clocks are adjusted to a reference time held by the
time master(s). The reference time can be the Co-
ordinated Universal Time or the master local clock.
In the Berkeley algorithm, slave node clocks are ad-
justed to an aggregated value of some or all the sys-
tem clock values. These approaches aim at perform-
ing global synchronization, i.e., keeping all nodes

synchronized together. These protocols provide a
satisfactory synchronization precision between arbi-
trary nodes but may poorly synchronize neighbor-
ing nodes. This is due to the fact that two neigh-
boring nodes can be synchronized by messages that
have traveled on almost independent paths causing
the error accumulated at every hop to be propa-
gated differently.
In contrast, AD, ATS, GTSP and MTS are fully

distributed. In these protocols, nodes exchange
timing information with all their one-hop neighbors
on a regular basis. In AD, every node frequently ad-
justs its clock to the average value of its neighbors’
clock. ATS and GTSP use a similar consensus-
based averaging technique. These average-based
approaches primarily aim at achieving local syn-
chronization, i.e., keeping neighboring nodes syn-
chronized together, allowing nodes to have a larger
pairwise synchronization error with nodes that are
far away. MTS and its variants proposed in (He
et al., 2014a,b) use extremum-value based consen-
sus to achieve faster convergence. In general, fully
distributed methods are naturally fault tolerant and
robust to node mobility. However, they can lead to
a long convergence time and to a high message com-
plexity, especially in point-to-point networks with-
out broadcast support. Indeed, in systems without
local nor global shared broadcast medium, a node
has to send individual messages to all neighbors in
order to broadcast messages.

2.2. Infrastructure of master/slave protocols

Master/slave time synchronization protocols dif-
fer by the infrastructure they use. Protocols can
use tree-like structures, cluster-based structures or
be infras-tructure-less.

Tree-like structures. NTP, PTP and TPSN use
tree-like hierarchical structures rooted at the time
master(s) to spread timing information. Logical
neighbors in the tree(s) can be neighbors in the
physical network as in TPSN, or potentially dis-
tant as in NTP. The latter case may require multi-
hop communications that rely on the existence of
an underlying routing service. In our case, we as-
sume no routing service. In TPSN, nodes are re-
cursively synchronized hop-by-hop along the edges
of the synchronization tree starting from the time
master. Hence, during each synchronization phase,
the current global time gets quickly disseminated
through the entire network. In addition to pro-
vide a relatively quick synchronization convergence,
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this reduces the impact of clock inaccuracies (due
to noise, skew variations, time-increasing errors in
the local estimation of the global time) on the syn-
chronization process.

Clustering based on broadcast domains. In RBS,
nodes maintain relative timescales of their neigh-
borhood using reference pulses broadcasted by
some master nodes. In multi-hop networks, nodes
can be grouped into overlapping clusters based on
broadcast domains and border nodes act as gate-
ways to translate clock values.

Infrastructure-less approaches. In contrast, FTSP,
RATS and PulseSync are infrastructure-less. They
provide robustness to network topology changes
and to link failures using either periodic local
broadcasts or periodic network-wide floodings. In
FTSP, the time master and the synchronized nodes
periodically broadcast their estimation of the cur-
rent global time to all their neighbors, in an asyn-
chronous fashion. Synchronization waves propagate
with a limited speed through the network. Indeed,
after having received a new synchronization mes-
sage, a node has to wait until the expiration of its
broadcast period to transmit the information to its
neighbors. As a consequence, the time-increasing
estimation error of the global time is amplified
at every hop and FTSP exhibits a synchroniza-
tion error that grows exponentially with the size
of the network (Lenzen et al., 2009). Hence, op-
timal synchronization requires fast network flood-
ing (Lenzen et al., 2009). RATS and PulseSync
employs rapid network-wide floodings using recur-
sive broadcasts to quickly disseminate the global
time through the network. The time master period-
ically launches synchronization waves using broad-
casts. Slave modules re-broadcast new synchro-
nization messages shortly after reception. In reli-
able and fairly static point-to-point networks with-
out broadcast support, recursive synchronization
using a tree-like structure is more communication-
efficient than network-wide flooding.

2.3. Communication delay compensation methods

Time synchronization protocols also differ by the
methods they use to compensate for communication
delays. The method to use depends on the target
platform and directly impacts the precision of the
synchronization protocol. Existing methods can be
divided in three categories: approaches based on
the round-trip time, methods based on byte-level

timestamping and approaches based on reference
broadcasts.

Round-trip time based methods. Cristian’s algo-
rithm, the Berkeley algorithm, NTP, PTP, TPSN
and TDP measure half the round-trip time to es-
timate one-way communication delays. Cristian’s
algorithm and NTP perform end-to-end synchro-
nization on possibly multi-hop paths. They use
statistical analysis to mitigate variation in delays
do to retransmission(s), queueing, route selection,
etc. These methods are expensive in communica-
tions and in computations. PTP and TPSN pro-
pose to perform per-hop synchronization with low-
level timestamping to prevent unpredictable delays
induced at the different layers of the network stack
from affecting delay measurements. PTP can use
timestamps recorded at the physical layer to achieve
high accuracy if dedicated hardware is available.
In TPSN, a node exchanges a single bidirectional
message timestamped at the boundary of the data-
link layer to synchronize itself to another node and
compensates for communication delays using half
of the round-trip time. We call this method RTT
(for Round-Trip Time). Round-trip time methods
assume symmetrical nominal delays and neglect the
effect of clock skew during the round-trip.

Byte-level timestamp based methods. FTSP,
PulseSync and the practical implementations of
ATS (Schenato and Fiorentin, 2011) and MTS (He
et al., 2014b) use byte-level time-stamping, which
requires an intimate access to the data-link layer.
In the last two, nodes exchange a single unidirec-

tional message timestamped just before the trans-
mission of the first byte (i.e., the Frame Delimiter
byte) and upon reception of this byte. The time
elapsed between the transmission and the recep-
tion of the frame delimiter byte is neglected and
ATS / MTS consider that the two timestamps refers
to the same real time. We call this method FD (for
Frame Delimiter). This method neglects the inter-
rupt handling time, the frame delimiter byte trans-
mission / reception, the propagation time and the
time required to detect the frame delimiter byte.
Although FD works well in low-latency networks,
the neglected time can be important in higher-
latency systems. For instance, our target system
uses 38.4 kbit/s connections while WSN that use
IEEE 802.11b communications have a maximal bi-
trate of 11 Mbit/s. At 38.4 kbit/s, a byte is trans-
mitted in roughly 208µs while at 11 Mbit/s a byte

5



ACCEPTED MANUSCRIPT

is sent in less than 1 µs.
FTSP goes one step further in order to eliminate

most of the sources of delays in message transmis-
sion (except the propagation time). FTSP synchro-
nizes neighbors using a single message broadcast
with statistical operations on timestamps captured
at the byte boundary during interrupts at the data-
link layer. The latest version of PulseSync (Lenzen
et al., 2015) is based on an enhanced version of the
FD method. The authors use the slotted program-
ming approach (Flury and Wattenhofer, 2010) to
minimize interrupt latency and use a static value
measured experimentally during a calibration phase
to compensate for the time between the insertion of
the timestamp, just before transmitting the frame
delimiter byte, and its detection upon reception.
However, the method proposed in FTSP and Pulse-
Sync can not be applied directly to our target sys-
tem. Indeed, we assume low-resolution clocks, typ-
ically in the order of the millisecond, that can not
efficiently capture phenomena at the byte transmis-
sion level which occurs at the microsecond scale.

Reference broadcast. In RBS, some reference nodes
periodically broadcast reference messages. Neglect-
ing propagation delays, receiving nodes use the
data-link reception times as reference points to
compare their clock values all together. This re-
quires a shared broadcast medium and it is not us-
able in point-to-point networks.

Discussion. We argue that the method to compen-
sate for communication delays has to be selected in
function of the target system. If we assume pre-
dictable transfer time between neighboring mod-
ules, we propose to perform per-hop synchroniza-
tion using a single unidirectional message times-
tamped at the data-link layer and predictive com-
munication delay compensation (see Section 3.4).
We call this method PRED (for Predictive). We
show in Section 6.1.3 that, in our target system,
PRED is in average more precise than the two other
methods which can be applied to our target system,
namely FD and RTT. Note that this is mainly due
to the fact that the average transfer delay of a frame
is almost a round number (at the millisecond scale)
in this system.

2.4. Clock model: from clock offset adjustment only
to clock skew compensation

Furthermore, time synchronization protocols dif-
fer in the clock model they use. In some protocols,

e.g., AD and TPSN, nodes perform clock offset ad-
justment only and do not take into account clock
skew. Compensation for clock skew enables mod-
ules to be synchronized less frequently without de-
grading the synchronization precision.

NTP uses phase-locked loops and/or frequency-
locked loops. In (Kim et al., 2012), the authors use
a Kalman filter to track clock offset and skew with
low-precision oscillators and time-varying skew. In-
deed, in the presence of ambient environment varia-
tions (e.g., temperature variations), the clock skew
may vary over-time.

ATS, BP (Etzlinger et al., 2014), GTSP, MF (Et-
zlinger et al., 2014), MTS, FTSP, RBS, PulseSync,
RATS and (Noh et al., 2007; Leng and Wu, 2010)
propose to model clock using a linear model com-
puted on recent observations, assuming that oscil-
lators have high short-term stability. Indeed, if we
assume that environment changes do not happen or
happen gradually, clock skew will change smoothly.
RBS, FTSP, PulseSync and RATS use least-square
linear regression on recent window of observations.
ATS and GTSP use averaging technique to estimate
clock skew based on the previous synchronization
points. In (Noh et al., 2007; Leng and Wu, 2010),
the authors propose to enhance TPSN by using a
linear model and maximum likelihood estimators.
BP and MF derive maximum a posteriori estima-
tors of the clock parameters using respectively, be-
lief propagation and mean field on factor graphs.
Different methods for clock skew compensation in-
cluding linear regression, exponential averaging and
phase-locked loops have been evaluated in (Amund-
son et al., 2008). Although results are nearly identi-
cal, experiments suggest that linear regression leads
to slightly more precision.

Note that in addition to compensate for clock
skew, these aggregating techniques also tend to re-
duce the impact of the measurement errors.

2.5. Time master election

Master/slave time synchronization protocols also
differ by the mechanisms they employ to select the
time master. In NTP and RATS, time masters are
pre-configured. In our case, it is more flexible if
the system itself elects its time master. In PTP
and TDP, elections are based on the quality of the
clocks. In addition, TDP periodically re-elects time
masters to balance the load. FTSP and PulseSync
implicitly elect the minimum-identifier node as the
time master during the synchronization phases.

6
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In our case, we consider systems where all mod-
ules are identical and equipped with the same hard-
ware clocks. Although these clocks slightly differ in
their accuracy and stability (Naz et al., 2016b), we
consider that with a careful selection of the hard-
ware, the impact of cumulative errors made in net-
work delay compensations will be predominant in
large-diameter systems. Indeed, a random error is
experienced at each hop. If we us assume that these
per-hop errors are independent and identically dis-
tributed with a mean of λ and a standard-deviation
of σ, then the Central Limit theorem states that
the error accumulated over k hops follows a nor-
mal distribution with a mean of λk and a standard-
deviation of δ

√
k. Experimental results presented

in Section 6.1.3 confirm this trend. Hence, we pro-
pose to elect a central module as the time master.

2.6. Summary

Table 1 summarizes the related work. Existing
protocols contain interesting ideas but fail to effi-
ciently adapt to modular robot systems where mod-
ules use low-bitrate neighbor-to-neighbor commu-
nications, hardware clocks have low precision and
the network diameter can be large. In the ab-
sence of a (locally) shared communication medium,
infrastructure-less approaches are too expensive in
terms of communication compared to tree-based ap-
proaches. The method to compensate for network
delays has to be carefully selected in function of the
target platform. Furthermore, criteria considered
for time master election are not adapted to mod-
ular robots running under our assumptions. Node
centrality can be considered for the election in order
to increase the overall synchronization precision.

3. System Model and Assumptions

3.1. General system model

In this article, we consider modular recon-
figurable robots that form asynchronous non-
anonymous point-to-point connected networks in
which modules use neighbor-to-neighbor commu-
nications. We assume every module has a unique
identifier and maintains a consistent list of its neigh-
bors using an external algorithm. Module identi-
fiers are used in the suggested external algorithms
to elect the time master (see Section 4.2.1). The
network has neither local nor global shared broad-
cast medium. In particular, to broadcast a message,
a module has to send an individual copy of that

message to all neighbors. A remarkable advantage
of the absence of shared communication medium is
that we do not have to deal with potential network
collisions/interferences.
A modular robot can be modeled by an undi-

rected and unweighted graph of interconnected en-
tities G = (V,E) with V the set of vertices repre-
senting the modules, E the set of edges representing
the connections, |V | = n, the number of vertices
and |E| = m, the number of edges. We use the
general concepts of graph theory such as the dis-
tance between two nodes and the diameter, d, of
the graph.

In modular robotic systems where modules use
neighbor-to-neighbor communications, the module
spatial arrangement directly reflects the connectiv-
ity graph. Moreover, these systems often have a
bounded number of connectors, i.e., of potential
neighbors. As a direct consequence, large-scale en-
sembles tend to exhibit large hop distances. In (Naz
et al., 2016c), we show that when arranged in a 3D
lattice, the typical network distance between two
random nodes is O( 3

√
n) and the diameter is lower

bounded by Ω( 3
√
n). This property should be con-

sidered in the design of synchronization protocol
because, as explained in Section 2.5, the achievable
synchronization precision is function of the hop dis-
tance.
Furthermore, our protocol is intended to synchro-

nize fairly stable systems where changes in the net-
work topology, due for instance to module mobility,
or potential module or link failures, are infrequent.

3.2. Clocks: notation and assumptions

Each moduleMi is equipped with its own internal
clock and has its own local time LMi(t), an approx-
imation of the real time t. The goal of MRTP is to
maintain a global timescale G(t) across the system.
We denote GMi(t) module Mi’s estimation of G(t).
MRTP preserves time monotonicity and prevents
time from running backward, i.e., for any module
Mi, ∀(t, t′), t ≥ t′, GMi(t) ≥ GMi(t′). Moreover,
we consider clocks which have high short-term fre-
quency stability but which can be low precision and
can have high skew relative to one another. Such
clocks tend to drift apart from each other in a quasi-
linear fashion over a short period of time.
We consider two synchronization error metrics.

We define module Mi’s relative synchronization er-
ror to the global time at real time t as:

ǫMi(t) = GMi(t)−G(t) (1)

7
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We define the maximum pairwise synchronization
error at real time t, ǫ(t), as the maximum difference
between any two global clocks in the system:

ǫ(t) = max
Mi,Mj

∣∣GMi(t)−GMj (t)
∣∣ (2)

Since our goal is to achieve global synchroniza-
tion, we do not consider local-synchronization error
metrics such as the maximum pairwise synchroniza-
tion error between neighboring nodes (Lenzen et al.,
2009).

3.3. Assumptions about network delays

AccessSender: Transmission

Reception Receive

Propagation

Send
Time

Receiver:

t
s

m
t
r

m

Figure 1: Sources of delivery delays in the exchange of a
message m between two neighbor modules.

As indicated in (Ganeriwal et al., 2003; Maróti
et al., 2004; Amundson et al., 2008), the exchange
of a single message m between two neighbor mod-
ules can typically be characterized by the steps pre-
sented in Figure 1. Sending and receiving times rep-
resent the times for the message to travel from the
application to the data-link layers. These delays are
introduced by the operating system and are highly
non-deterministic. The access time represents the
waiting time at the data-link layer for accessing the
communication channel. This time is also highly
non-deterministic. The transmission and reception
times represent respectively the times to transmit
and to receive the frame using a bit by bit transmis-
sion at the physical layer. These delays are mainly
deterministic and depend on the length of the frame
and the bit rate. The propagation time represents
the time for the bits to travel from the sender to the
receiver over the physical link. This delay is highly
deterministic and depends on the distance between
the modules involved in the communication and on
the propagation speed over the physical link. We
define the transfer time, Tm

transfer, as the sum of the
transmission, propagation and reception times for
a message m. These times are highly deterministic.

3.4. Predictive Method to Compensate for Commu-
nication Delays

We propose to use the predictive method
(PRED) to compensate for communication delays
whenever they can be predicted. PRED is a naive
method that relies on the assumption that Tm

transfer

is predictable with a certain accuracy that directly
impacts the precision of our protocol. Moreover, it
assumes messages can be timestamped at the data-
link layer, shortly before the beginning of the trans-
mission at time tms and upon complete reception
at time tmr . If we neglect interrupt handling time,
Tm
transfer = tmr − tms .
To compensate for communication delays, the

predictive method (PRED) works as following. Let
us assume that a module Mi receives a message m
from a module Mj and that m was timestamped at
the data-link layer on both sides (i.e., m contains
LMj (tms ) and LMi(tmr )). Then, the module Mi can
compensate for communication delays of m and es-
timate the local time of Mj at the reception of m
by:

LMj (tmr ) ≈ LMj (tms ) + Tm
transfer (3)

4. The Modular Robot Time Protocol
(MRTP)

MRTP works in two steps: The first step initial-
izes the system: election of a central module as the
time master TM, construction of a spanning-tree
and initialization of the global clock. In the second
step, the time master periodically synchronizes the
slave modules.

4.1. Method to compensate for communication de-
lays

The method to compensate for communication
delays in MRTP has to be carefully selected de-
pending on the target system. The choice of the
technique to use has a direct impact on both the
synchronization precision and the communication
efficiency of MRTP. The precision of an approach
mainly depends on the clock precision, its resolu-
tion and the communication mechanism. In Sec-
tion 6.1.3, we describe a procedure to experimen-
tally evaluate the precision of a given approach over
multiple hops.
In that section, we also show that, in our target

systems, the Blinky Blocks, PRED is in average
more precise than the two other existing methods
that can be applied to this system (i.e., FD and
RTT). Moreover, PRED uses an unidirectional mes-
sage exchange while RTT requires a bidirectional

8
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message exchanges, thus incurring a larger commu-
nication overhead. In the rest of this section, we
describe MRTP assuming PRED is used. Note that
in practice, any method compatible with the target
system can be used.

4.2. Step 1: Initialization

4.2.1. Time master election

A module is elected as the time master using an
external algorithm. Different criteria can be used
for the election of the time master (e.g., minimum-
identifier node, etc.). As explained in Section 3.1,
modular robotic systems with neighbor-to-neighbor
communications form large-diameter networks. To
achieve a better synchronization precision, we rec-
ommend to elect a central module as the time mas-
ter, i.e., a node that tends to minimize the maxi-
mum or the average hop distance to any other mod-
ule. Placing the time master close to the center
of the system reduces the time of the synchroniza-
tion phases and increases the overall precision, be-
cause cumulative estimations are made every hop.
Any center election algorithm can be used. We
suggest to use ABC-Center (Naz et al., 2015b),
E2ACE (Naz et al., 2016a) or the algorithm pre-
sented in (Kim and Wu, 2013). These algorithms
scale well in terms of memory usage and execu-
tion time. In our experimental evaluation, we use
a modified version of E2ACE (see Section 6.2.2).
Note that these three algorithms require every mod-
ule has a unique identifier.
To handle dynamic topology changes, a module

launches a time master re-election if it detects a new
neighbor or a neighbor departure, and the system
goes through the whole initialization process again.
The technique based on an election index proposed
in (Vasudevan et al., 2004) can be used for this
purpose.

4.2.2. Breadth-first spanning-tree construction

At the end of the election process, our protocol
creates a breadth-first spanning-tree rooted at the
time master. The algorithm presented in (Cheung,
1983) combined with the optimizations described
in Section 6.2.2 can be used. This algorithm guar-
antees that modules at distance dTM hops of the
time master in the physical configuration, are at
distance dTM hops in the tree. Logical neighbors
in the tree are neighbors in the physical configura-
tion. At this point, every module knows its parent
and children in the tree. This tree will be used to

recursively propagate synchronization waves from
the time master through the system. As explained
in Section 2.2, this approach is, in systems running
under our assumptions, more communication effi-
cient than infrastructure-less network-wide flooding
based approaches.

4.2.3. Global clock initialization

Slave modules. Initially, slave modules estimate the
global time with their local time. Slave modules ad-
just their estimation of the global time during syn-
chronization phases, in the second step of MRTP.
When a new time master is elected, modules keep
their previous estimation of the global time but
do not keep previous corrections of the clock skew.
They can indeed disturb the synchronization pro-
cess when two distinct systems are merged together.

Time master. Since time cannot run backward,
clocks in advance of the global timescale have to
slow down or to wait during synchronization pro-
cess, and clocks behind the global timescale have
to jump to it. To make time synchronization con-
vergence faster, the global time is initially set to
an estimation of the most advanced global time in
the system using the convergecast-time-max algo-
rithm inspired by (Raynal, 2013). This approach
can cause important jumps into the future.

The pseudo-code of convergecast-time-max for
any module Mi is provided in Algorithm 1. At any
time, a module Mi estimates the maximum global
time with:

Y Mi(t) = LMi(t) + offsetMi(t) (4)

With offsetMi(t) the estimated offset between
Mi’s estimation of the maximum global time in
the system and Mi’s local clock at time t. Ini-
tially, Mi considers it has the maximum global
time (line 2). This algorithm uses a single type
of message, namely BACK message. Every BACK
message m is timestamped twice at the data-link
layer: the sender Mj inserts Y Mj (tms ) just be-
fore transmission start and the receiver Mk inserts
LMk(tmr ) upon complete reception (see Figure 1).
Each leaf module sends a BACK message to its
parent (line 6). Every non-leaf module waits for
a BACK message from all its children. When
Mi receives a BACK (Y Mc(tms ), LMi(tmr )) message
m from one of its children Mc, Mi estimates
Y Mc(tmr ) ≈ Y Mc(tms ) + Tm

transfer using the PRED
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method (line 9) and adjusts offsetMi(t) accord-
ingly (line 10).When Mi has received a BACK mes-
sage from all its children, it sends in turn a BACK
message to its parent. When the convergecast ter-
minates (lines 4 or 13), the time master has an es-
timation of the maximum global time in the sys-
tem Y TM(t). The time master then sets the global
timescale G(t) to Y TM(t). The convergecast-time-
max algorithm neglects the effect of clock skew, and
considers offsets to be constant in the system during
convergecast.

Input: Mp // parent in the tree

Children // set of children in the tree

1 Initialization of Mi at time tinit:

2 offset← GMi (tinit)− LMi (tinit);
Wait← Children;

3 if Mp =⊥ then

44 // convergecast-max-time terminates

5 else if Wait = ∅ then
6 send m = BACK( , ) to Mp;

// Mp will receive BACK(Y Mi (tms ) =

LMi (tms ) + offsetMi (tms ), LMp (tmr )) at the

application layer. Y Mi (tms ) is inserted

by Mi at the data-link layer, just

before transmission start. Mp will

insert LMp (tmr ) upon reception, at the

data-link layer.

7 end

8 When m = BACK(Y Mc (tms ), LMi (tmr )) is received

by Mi from Mc such that Mc ∈ Children do:
9 Y Mc (tmr )← Y Mc (tms ) + Tm

transfer
;

10 offset← max(offset, Y Mc (tmr )− LMi (tmr ));
11 Wait←Wait− {Mc};
12 if Mp =⊥ then

1313 // convergecast-max-time terminates

14 else if Wait = ∅ then
15 send m′ = BACK( , ) to Mp;

// As explain in comment line 6, Mp will

receive BACK(Y Mi (tm
′

s ), LMp (tm
′

r )) at the

application layer.

16 end

Algorithm 1: The convergecast-max-time algorithm

for a module, Mi.

4.3. Step 2: Periodic synchronization

The time master holds the global timescale and
periodically initiates synchronization phases. Dur-
ing each synchronization phase, the time master
quickly disseminates the current global time along
the edges of the breath-first spanning-tree built in
the first step. G̃(t), an estimation of the global time
is recursively disseminated through the spanning-
tree, module-by-module, starting from the time

master. At each hop, the transmitted time is
updated to take into account communication de-
lays and time of residence in intermediate modules.
Slave modules use a linear model to compensate for
clock skew. As explained in the related-work sec-
tion, this is a common choice.
The time master starts synchronization phases

by sending all its children the current global time.
Algorithm 2 details the synchronization process of
any slave module Mi.

Input: Mp // parent in the tree

Children // set of children in the tree

w // maximum number of synchronization

points used for linear regressions

1 Initialization of Mi:
2 a← 1.0; b← 0; W ← ∅;

3 When m = SYNC(G̃(tms ),LMi (tmr )) is received by

Mi from its parent Mp do:

4 G̃(tmr ) = G̃(tms ) + Tm
transfer

;

5 if |W | = w then

6 W ←W − {argmin
G̃(t)

W (<G̃(t), L(t)>)};

7 end

8 W ←W ∪ <G̃(tmr ), LMi (tmr )>;
9 computeLinearRegression(a, b,W );

10 for each Mc ∈ Children do

11 send m′ = SYNC( , ) to Mc;

// Mc will receive SYNC(G̃(tm
′

s ), LMc (tm
′

r ))
at the application layer.

G̃(tm
′

s ) = G̃(tmr ) + aMi (WMi (tm
′

s )) ∗

(LMi (tm
′

s )− LMi (tmr )) is inserted at the

data-link layer, just before

transmission start. Mc will insert

LMc (tm
′

r ) upon reception, at the

data-link layer.

12 end

Algorithm 2: Synchronization protocol for a slave

module, Mi.

4.3.1. Time-stamping and Global Time Estimation

The synchronization process uses a single type
of message SYNC. Every SYNC message m is
timestamped twice at the data-link layer: the
sender, Mj , inserts G̃(tms ) just before transmis-
sion start and the receiver, Mk, inserts LMk(tmr )
upon complete reception. When Mi receives a
SYNC (G̃(tms ), LMi(tmr )) message m from its par-
ent, Mi computes G̃(tmr ) = G̃(tms ) + Tm

transfer,
an estimation of the global time at the reception
of the synchronization message, using the PRED
method (line 4). <G̃(tmr ), LMi(tmr )> forms a syn-
chronization point that contains both Mi’s local
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clock value and the estimation of the global time
at nearly the same real time. Mi can estimate its
relative synchronization error to the global time by
GMi(tmr )− G̃(tmr ).

4.3.2. Global Clock Adjustment

Mi computes aMi(WMi(t)) and bMi(WMi(t))
such that

G̃(t) ∼ aMi(WMi(t))× LMi(t) + bMi(WMi(t))

using least-squares linear regression based on
WMi(t), a window of the last w synchroniza-
tion points (line 9). aMi(WMi(t)) denotes Mi’s
estimated skew relative to the global time, and
bMi(WMi(t)) its estimated offset at time t. This
mechanism compensates for clock skew and enables
modules to be synchronized less frequently without
degrading the synchronization precision. In order
to preserve time monotonicity, our protocol pre-
vents GMi(t) from running backward:

∀(t, t′), t ≥ t
′

,

G
Mi(t) = max((GMi(t′), a

Mi(WMi(t))× L
Mi(t)

+ b
Mi(WMi(t)))

If a new computed model leads to an estimated
global time behind the maximum time already
reached by GMi(t), then GMi(t) is blocked until the
new model reaches this maximum time. Otherwise,
GMi(t) jumps into the future.

4.3.3. Global Time Dissemination

Shortly after reception of a synchronization mes-
sage m, Mi sends a SYNC message m′ to each of its
children Mc in the tree (line 11). Hence, synchro-
nization waves are quickly disseminated through
the whole network leading to a better synchroniza-
tion precision (Lenzen et al., 2009). At the data-
link layer, Mi inserts

G̃(tm
′

s ) = G̃(tmr ) +

a
Mi

(

W
Mi

(

t
m′

s

))

×

(

L
Mi

(

t
m′

s

)

− L
Mi (tmr )

)

into m′, just before it starts to transmit the frame
over the communication medium. This compen-
sates for the time of residence at module Mi, as-
suming Mi clock skew to be constant and equal to
aMi(WMi(tm

′

s )) during this time. Mc inserts its
local time LMc(tm

′

r ) into the incoming message at
the data-link layer, immediately after Mc pulls the
synchronization message from the interface buffer.

At Mc’s application layer, m′ contains G̃(tm
′

s ) and
LMc(tm

′

r ). Mc then repeats the same synchroniza-
tion process than Mi.

4.3.4. Synchronization Periods

Our protocol contains two synchronization
phases: a calibration phase and a runtime phase.
During the calibration phase, modules are more fre-
quently synchronized with a period Pca in order
to collect enough synchronization points to com-
pute skew models while preserving a satisfying level
of precision. The calibration phase lasts w × Pca.
Then, during the runtime phase, modules are syn-
chronized less frequently, with a period Pru, and
use the computed models to compensate for clock
skew. The values of w, Pca, and Pru have to be cho-
sen according to the target platform hardware and
the desired precision, with resource usage in mind.
In our experimental evaluation, we empirically se-
lected w = 5, Pca = 2 seconds and Pru = 5 seconds
(unless otherwise mentioned). These values pro-
vide, in our target platform, a satisfactory precision
at a reasonable cost in terms of communications and
computations.

5. The Target System: the Blinky Blocks

We implemented MRTP and evaluated it on the
Blinky Blocks system (see Figure 2) using both
hardware prototypes and a simulator for modular
robots called VisibleSim (Dhoutaut et al., 2013).
This section presents the Blinky Blocks platform
and the models we use to simulate this system.

5.1. General characteristics

Blinky Blocks are centimeter-size blocks that can
be attached to each other using magnets. Each
block is equipped with an ATMEL ATxmega256A3-
AU 8/16-bits 32-MHz micro-controller having
256KB ROM and 16KB RAM (ATMEL, 2013). All
the blocks of a system execute the same program.
Blocks communicate with their neighbors through
serial interfaces on their faces. A single block is
connected to a power-supply. Power is distributed
across the system using dedicated pins. Modules
can change their color thanks to embedded RGB
LEDs. Furthermore, a distributed logging system
enables all modules to send information to a com-
puter connected to the system using a serial con-
nection.
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Figure 2: Two Blinky Blocks systems synchronized using
MRTP. On the left, the system forms a cross. On the right,
blocks are deployed in a doubled L-configuration. In both
configurations, the time master, in red, is connected to the
power supply. Slave modules are in green. Experiment data
are sent by the systems to the PC through a serial cable.

5.2. Local clock properties

5.2.1. Hardware system

Each module maintains its local time using a
Real-Time Counter (RTC) driven by an internal
RC oscillator running at a frequency of 1.024 kHz
with an accuracy of 1% (10,000 ppm), at 3V and
25◦C (ATMEL, 2016). The RTC counts the time
elapsed since the module started with a resolution
of about 0.98 millisecond5. Thus, the synchroniza-
tion precision results announced in the evaluation
section are actually expressed in 0.98 a millisecond,
even though we express them in milliseconds for
sake of simplicity. It is important to understand
that these oscillators exhibit very poor accuracy
and low resolution that directly affects the perfor-
mance of our protocol. For instance, a frequency
deviation of 1% causes a clock error of approxi-
mately 10 milliseconds per second. Most previous
work on time synchronization, e.g., (Elson et al.,
2002; Ganeriwal et al., 2003; Maróti et al., 2004;
Schenato and Fiorentin, 2011), were evaluated on
devices equipped with crystal oscillators that have
a typical accuracy between 0.0001% and 0.01% (1
to 100 ppm) and a resolution on the order of tens
of microseconds. Under constant temperature and
constant supply voltage, RC oscillators are fairly
stable over a short period of time. As shown in
Figure 3, Blinky Blocks local clocks tend to drift
apart in a roughly linear fashion on the short-term.

5Resolution= 1
1.024

≈ 0.98ms

5.2.2. Simulation model

In (Allan, 1987), the authors propose a general
model for oscillators:

LMi(t) =
1

2
DMit2 + yMi

0 t+ xMi

0 + ηMi(t) (5)

where t is the real time (i.e., simulation time), L(t)
is the local time, x0 is the time offset, y0 is the fre-
quency offset, D is the frequency drift and η(t) is
a random noise. As explained in (Allan, 1987), y0
and D may vary over time (e.g., because of aging,
temperature variations, etc.). For the sake of sim-
plicity, we consider them to be constant and express
their small variations in the noise signal η(t).
We assume that Blinky Blocks clocks follow (5)’s

model. We conducted experiments on hardware us-
ing Blinky Blocks in order to compute model pa-
rameters. We used a system of five blocks deployed
in a cross configuration (see Figure 2) to collect time
reference points < t, LMi(t) >, with i the block
unique identifier, every 10 seconds during 7 hours
(see Figure 3). The real time t was provided by a
computer. We assumed the computer clock to be
perfect. We use the PRED method to compensate
for communication delays.
Figure 4 shows the distribution of the parameter

values obtained using polynomial regression with
R. The parameters D and y0 seem normally dis-
tributed. As a consequence, we randomly gener-
ate clock parameters following normal distributions
with the corresponding mean and standard devia-
tion (see Table 2). Noise signals are the residual
standard errors. We extracted the 5 noise signals
and replay them in our simulations.
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Figure 3: Local lock offset to the real-time (LMi (t)−t). The
plot on the left shows the long term deviation of the local
clocks, while the plot on the right shows these deviations on
a shorter term.
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Parameters Simulation Model

D (µs−1) N (7.132315·10−14, 5.349995·10−14)
y0 (none) N (0.9911011, 0.002114563)

x0 (µs)
additive inverse of the simulation

time at module startup

η (µs)
Noise replayed from extracted data

signals

Table 2: Blinky Blocks hardware-clock model parameters
used in VisibleSim. N (µ, σ) refers to the normal probabilis-
tic law with µ mean and σ standard-deviation.

5.3. Communication properties

5.3.1. Hardware system

Blinky Blocks use full-duplex neighbor-to-
neighbor communications over serial links
controlled by Universal Asynchronous Re-
ceivers/Transmitters (UARTs) configured with
a bit rate of 38.4 kbauds. Modules exchange
messages that contains up to 17 bytes of data.
A message is sent over the link into a frame com-

posed of 21 bytes minimum: 17 bytes of payload
data and 4 bytes of control (i.e., frame delimiter,
checksum, etc.). Some special bytes need to be es-
caped using an extra byte in order to dissociate
command bytes from data ones. Thus, the number
of bytes actually sent on the link varies a little bit
according to the data being sent.
A frame is transfered byte per byte to/from the

UART. The transfer is interrupt controlled, i.e., the
UART generates an interrupt when it has finished
transmitting or receiving a byte. The transmission
time starts when the first byte of data is moved
to the UART buffer and ends when the last byte
leaves this buffer. The reception time starts when
the first byte of data is received by the UART and
ends when the last byte is received.

5.3.2. Transfer time estimation

The PRED method used to compensate for com-
munication delays in MRTP assumes the transfer

time, defined in Section 3.3, to be predictable. The
transfer time includes the transmission time, the
propagation time and the reception time. The
Blinky Blocks are identical and physically con-
nected, thus the propagation time between two
neighbor modules can be considered as determinis-
tic. The transmission time and the reception time
of a message depends on the actual frame size and
the communication rate.

Ttransfer can be estimated using two-way
timestamped-message exchanges (see Figure 5 and
Equation (6)). Equation (6) assumes communica-
tion delays for frames of same size to be symmet-
rical. In addition, the exchange of messages is as-
sumed to be fast enough so that the skew between
the two module’s clocks is insignificant during the
exchange.

Ttransfer ≈

(LM2 (tm
′

r )− LM2 (tms ))− (LM1 (tm
′

s )− LM1 (tmr ))

2
(6)

We experimentally measured T̃transfer for
300,000 two-way message exchanges between neigh-
bor modules in sparse and compact Blinky Blocks
systems (see Figure 5). We observed that T̃transfer

is always between 5 and 7 milliseconds. On aver-
age, T̃transfer of 21-byte long frames varies slightly
around 6 milliseconds depending on the number of
simultaneous communications. Moreover, at the
resolution of 1 millisecond, the transfer time of
identical-length frame is fairly constant. A transfer
time of 6 milliseconds for a 21-byte long frame cor-
responds to a transfer rate of 28 kbit/s. Based on
these results, we consider that the transfer rate of a
message can be estimated by R̃transfer = 28kbit/s.
As a consequence, we use Equation (7) to estimate
the transfer delay of a message and to compensate
for communication delays in the PRED method.

T̃transfer =
frame size

R̃transfer

(7)

5.3.3. Simulation model

In order to accurately simulate the time, our sim-
ulation model takes into account the timeout trig-
gering time, the processing times, the queueing de-
lays, and the transfer rate of the messages (see Fig-
ure 6). We did not observe any node crash nor
any transmission failure or message loss during the
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experiments of the previous section, when the net-
work is not overwhelmed. Thus, our simulation
model does not incorporate any special mechanism
to mimic such phenomena. Table 3 summarizes the
different random variables of our model.

Timeout 
handler 

execution time
Module M

1
: Synchronization 

message m
transfer delay

Timeout 
triggering 

time

Module M
2
:

Message m 
queueing 

time

Message m 
processing 

time

Message m 
queueing 

time

Real time

Date of the 
synchronization phase 

(scheduled using a timeout)

Figure 6: Communication model workflow through an ex-
ample. Module M1 has scheduled a synchronization phase.
Upon timeout expiration, module M1 executes the synchro-
nization procedure and sends a synchronization message to
module M2 which will process it after a possible delay due
to queueing.

Timeout triggering time. The timeout triggering
time is the amount of time a module needs to trigger
an action scheduled using a software timeout (e.g.,
the synchronization timeout that initiates a syn-
chronization phase). In the Blinky Blocks firmware,
software timeouts are checked with a frequency of
2000 Hz. Thus, if we neglect the interrupt delay, an
action scheduled at time t can be executed at any
time t′ such that t ≤ t′ ≤ t+ 500µs.

Processing time. We use the micro-controller
clock running at 32 MHz (nano-second scale
resolution) to measure the processing time of
the synchronization-timeout handler and the
synchronization-message handler. We define two
generic models to simulate the message han-
dler processing time: one for handlers with low-
computation cost (e.g., clock adjustment with-
out linear regression) and one for handlers with
medium-computation cost (e.g., clock adjustment
with linear regression computation on a window of
5 measures).

Note that the queueing and transfer delays in-
clude some processing time. In our evaluation,
modules were running a rather simple application,
in which every module periodically changes its color
based on the current global time and does nothing
the rest of the time using an active sleep (while loop
with a time limit). Thus, they were actually com-
puting all of the time. The transfer time includes
the interrupt time to fetch bytes from the inter-
face buffer. Our target platform (and many others)

uses interrupt driven communications. Hence, only
a very few elementary micro-controller instructions
are executed before a byte is fetched. We reason-
ably assume that interrupts are never disabled and
that there are not a large number of interrupts to
be simultaneously handled. The queueing delays in-
clude interrupt time to enter the routine that han-
dles incoming messages and the time to handle po-
tential messages that were already present in the
queue at the message arrival.

Queueing delays and network load. VisibleSim uses
a queueing system to handle both incoming and
outgoing messages. We propose two queue load
models. The first model is dedicated to lightly
loaded networks where modules only exchange
neighborhood management messages, with a period
of 500 milliseconds. The second model is intended
to simulate moderate network traffic due to extra-
applications running on the nodes. In this model, in
addition to simulate the neighborhood management
messages, the queue occupancy at a message arrival
follows a Poisson distribution of mean 1. This sim-
ulates a moderate network traffic in which message
queues contain most of the time 0 to 2 messages
and in few cases more messages. The light-load
model is used in the experiments of sections 6.1.
The moderate-load model is used in our evaluation
on large-scale systems (see Section 6.2).

Transfer rate. Below the millisecond unit, the
transfer rate is scenario dependent. It depends, for
instance, on the number of simultaneous commu-
nications. For each experiment performed on the
hardware platform, we empirically derive the av-
erage system transfer rate using statistics on the
round-trip time. We use similar experiments to the
ones presented in Section 6.1.3. We define three
transfer rate models, namely for sparse, intermedi-
ate and compact systems. In a given simulation,
all the modules use the same transfer rate model.
The model for sparse systems is used in the exper-
iments of Section 6.1.3, on the line system. The
model for intermediate systems is used in the ex-
periment of Section 6.1.4, on the L-shaped system
(see Figure 2). The model for compact systems is
used in our evaluation on large-scale systems (see
Section 6.2).
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6. Evaluation

This section presents our experimental evalua-
tion of MRTP, performed both on hardware Blinky
Blocks and in the VisibleSim simulator. Through
our experiments, we show the effectiveness, the ef-
ficiency and the scalability of our protocol. More
precisely, we first evaluate the precision of MRTP
on hardware and show through some examples that
VisibleSim accurately simulates Blinky Blocks sys-
tems. Then, we use VisibleSim to evaluate the per-
formance of MRTP in large-scale systems and to
compare it to existing synchronization protocols in
terms of precision, time of convergence and com-
munication efficiency.

6.1. Evaluation on hardware and simulation fidelity

In this section, we evaluate the precision of the
synchronization achieved by MRTP on the Blinky
Blocks hardware. In addition, we show that Visi-
bleSim accurately simulates Blinky Blocks systems.

6.1.1. Methodology

We first use color changes to show that MRTP
can potentially manage systems composed of up to
27, 775 Blinky Blocks.
Then, we show how the hop distance impacts the

precision of the estimated global time, G̃(t), dissem-
inated through the network during synchronization
phases. We compare different methods to compen-
sate for communication delays and show that the
PRED method (see Section 3.4) is in average the
most accurate in our target platform. Furthermore,
we show that within a few hops, G̃(t) can be used
as a reference time to estimate the relative synchro-
nization error of the Blinky Blocks to the global
time.
We then use this estimation to study the local

clock behaviors and to show the impact of various
parameters on the precision of our protocol.
All experiments presented in this section were

one-hour long. Unless otherwise mentioned, mod-
ules were synchronized every 2 seconds in the cal-
ibration phase, then every 5 seconds in the run-
time phase and modules used five synchronization
points for the linear regressions. These values were
empirically chosen with the aim of obtaining, a sat-
isfactory synchronization precision in practice, at
reasonable computation and communication costs.
Moreover, unless otherwise indicated, the PRED
method is used to compensate for communication
delays.

6.1.2. Evaluation of the precision of MRTP using
color changes

Measuring the synchronization precision using
message exchanges is as challenging as performing
time synchronization since both consist in measur-
ing clock offsets. It is difficult, mainly because time
keeps going during communications.

In this subsection, we apply MRTP on a system
of 28 Blinky Blocks that have to simultaneously
change their color. Potential delays between mod-
ule color changes reflect the synchronization error
of the modules. Modules are connected in a line
topology. The time master is manually placed on
an extremity of the system and it synchronizes the
other modules every 500 milliseconds. With a such
runtime synchronization period, every link of the
synchronization tree is theoretically used by MRTP
only about 1.2% of the time6. Slave modules have
to simultaneously change their color every 3 sec-
onds. This experiment was recorded using a 40
millisecond resolution camera.

We observed that every time the system starts
to change its color, all slave modules have changed
their color on the next image, 40 milliseconds latter
(see Figure 7). Hence, MRTP is potentially able to
synchronize a system with a radius of up to 27 hops
to less than 40 milliseconds, if the time master is
at the center of that system. To give an order of
magnitude, a Blinky Blocks system with a radius of
27 hops can be composed of up to 27, 775 modules
and have a diameter of 54 hops, as demonstrated
in (Naz et al., 2016c).

In the next subsections, we present a more precise
and automatized evaluation of MRTP.

6.1.3. Impacts of the hop distance on the precision
of the disseminated global time G̃(t) for dif-
ferent compensation delay methods

We expect that the estimation of the global time
disseminated during synchronization phases, G̃(t),
gets less precise as the depth of the synchronization
tree increases because small but cumulative errors
in the estimations of the global time are made at ev-
ery hop. In this section, we first propose a generic
method to evaluate compensation delay methods
over multiple hops. Then, we present results ob-
tained using the FD, RTT and PRED methods

6 Ttransfer

Pru
≈ 6

500
≈ 1.2% (without retransmission due

to potential message loss or corruption)
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Figure 7: Two successive images of a video recording 28
Blinky Blocks connected in a line topology and synchronized
using MRTP. The time master is in red and intentionally
placed on an extremity of the line. Slave modules have to
simultaneously change their color every 3 seconds. On the
left, a color change starts in the system. On the right, 40 mil-
liseconds after, the color of every slave module has changed.

to compensate for communication delays (see Sec-
tions 2.3 and 3.4). We show that the PRED method
is in average more accurate. Finally, we show that
within a few hops, G̃(t) can be used as a reference
time to estimate the synchronization error of the
Blinky Blocks.

Methodology. We evaluate the precision of G̃(t) us-
ing virtual modules emulated on Blinky Blocks
hardware systems. Figure 8 gives the intu-
ition behind our experiments in a line system.
This method, inspired by the approach presented
in (Römer et al., 2005), allows us to compare the es-
timated global time received by the module M2n−1

to the actual global time held by the time master
TM = M1, because these two modules are emulated
on the same physical block and can both read the
actual global time G(t).

In the example depicted in Figure 8, every physi-
cal block hosts 2 virtual modules except one block.
Each slave virtual module maintains its own esti-
mation of the global time. The synchronization
tree rooted at the time master TM links the vir-
tual modules together in a virtual line, such that
neighbor modules in the tree are hosted on a sep-
arate physical block. The leaf module M2n−1 is at
a distance of 2(n − 1) hops from TM in the syn-
chronization tree. M2n−1 computes the global time
dissemination error as G(t)− G̃(t).

In our experiments, we generalize the example of
the virtual line to measure the global-time dissem-
ination error versus the hop distance in arbitrary
systems. Modules host a number of virtual mod-
ules equal to the diameter of the system, and each
physical module initiates a return trip to the root
of the tree. The root of the tree receives timing

messages that have physically traveled from 2 hops
to 2(d− 1) hops (or 2d− 1, if the diameter is odd).

TM = M
1

M
2n-1

M
2

M
2n-2

M
n-1

M
n+1

M
n

…

Physical block Virtual module

Edge of the synchronization tree

Figure 8: Scheme of a virtual line of emulated modules on
hardware Blinky Blocks connected in a line.
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Figure 9: Dissemination error (± standard-deviation) ac-
cording to the hop distance using different methods to com-
pensate for communication delays. On the left, the distribu-
tion of the error. On the right, the average error (± standard
deviation).

Results. Figure 9 and Table 4 show the impact of
the hop distance on the global time dissemination
error. As announced in Section 2.5, the absolute
mean error increases linearly with the number of
hops and the standard-error tends to increase with
the square-root of the number of hops. As a con-
sequence, placing the time master at the center of
the system appears as a judicious choice.
It appears that PRED is in average more pre-

cise than FD and RTT methods, both in sparse
and more compact systems. This is mainly due to
the fact that, in Blinky Blocks systems, the average
transfer delay of a frame is almost a round number
at the millisecond scale. We observe that regard-
less of the distance, the error distribution of PRED
seems Gaussian and nearly centered around zero.

Note that PRED has a more important standard-
deviation than the two other methods. FD has
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the smallest standard-deviation as only the transfer
time of a single byte is involved in the estimation
of the global time whereas PRED and RTT use the
transfer time of complete messages.
For a distance of 4 hops, 95% of the error mea-

sures are between [-2;2] milliseconds and the av-
erage error is close to zero. Because of the poor
accuracy of the Blinky Blocks hardware clocks,
we expect synchronization error using our proto-
col to be greater than 1 to 2 milliseconds. Thus,
within a few hops, G̃(t) can be used as a refer-
ence time to estimate the synchronization error of
the Blinky Blocks. Upon reception of a synchro-
nization message, a module Mi estimates its rel-
ative synchronization error to the global time by
ǫ̃Mi(t) = GMi(t) − G̃(t). We do not use virtual
modules any more in the rest of the evaluation.

Com- Average global time dissemination
pensa- error ± standard-deviation (ms)
tion Line Compact
delay configuration configuration

method 2 hops 4 hops 2 hops 4 hops

PRED
−0.03±
0.70

−0.11±
1.11

−0.27±
0.67

−0.36±
1.02

RTT
−0.42±
0.62

−0.88±
1.01

−0.50±
0.63

−0.80±
0.97

FD
−0.71±
0.50

−1.53±
0.76

−0.87±
0.54

−1.63±
0.80

Table 4: Average dissemination error (± standard-deviation)
to the global time for 2 and 4 hops using the different meth-
ods to compensate for communication delays in both the line
and the compact systems.

6.1.4. Impact of the synchronization periods on the
synchronization precision

Figure 10 shows the impact of the synchroniza-
tion periods on the relative synchronization error
in the doubled L-shaped system depicted on Fig-
ure 2. Distributions seem Gaussian. They are all
bell-shaped and centered around 0. For a runtime
synchronization period of 5 seconds, the average rel-
ative synchronization error is equal to 0.22 millisec-
onds.
We observe in Figure 10 that the distribution

shape becomes shorter and larger as the runtime
synchronization period increases. The error disper-
sion reflects the synchronization error. The stan-
dard deviation increases with the runtime synchro-
nization period. As a consequence, the longer the
resynchronization interval is, the worse the syn-
chronization precision will be. However, it must
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Figure 10: Relative synchronization error of the whole sys-
tem according to the synchronization periods. The system
is synchronized using MRTP. On the left, the distribution
of the error. On the right, the average error (± standard
deviation).

be noted that in all cases, the system stays syn-
chronized to a few milliseconds. The average syn-
chronization error amplitude remains below 4 mil-
liseconds for runtime synchronization periods rang-
ing from 2 seconds to 30 seconds. With a runtime
period of 5 seconds, every link of the synchroniza-
tion tree is theoretically used by MRTP only about
0.12% of the time during the runtime phase.

6.1.5. Impact of the number of synchronization
points used for the linear regressions on the
synchronization precision

Figure 11 shows the impact of the number of
synchronization points used for the linear regres-
sions on the synchronization error in the doubled
L-shaped system depicted on Figure 2. With a
running synchronization period of 5 seconds, we
observe the maximum synchronization precision is
obtained using 5 synchronization points for the lin-
ear regressions. Indeed, when using 5 synchro-
nization points, the relative synchronization error
has a mean close to 0 and the smallest standard-
deviation. We suppose that, when using less points,
the clock models are worse captured. When using
more than five synchronization points, the synchro-
nization precision decreases as the window size in-
creases. We believe, without proving it, that this is
because the clock frequencies vary too quickly for a
large number of observations.

6.1.6. Simulation fidelity

As shown in Figures 9 and 10, results obtained
using simulations closely matched the results from
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Figure 11: Relative synchronization error of the whole sys-
tem according to the number of synchronization points used
for the linear regressions. The system is synchronized using
MRTP. On the left, the distribution of the error. On the
right, the average error (± standard deviation).

the hardware-based experiments. Indeed, the re-
sults of the simulations almost have identical dis-
tribution and statistical measure values (i.e., mean
and standard-deviation) than the results of the ex-
periments on hardware systems. The global time
dissemination error according to the hop distance
is well simulated even after many hops. Thus, we
can safely assume that VisibleSim can be used to
study the performance of synchronization protocols
in large-scale Blinky Blocks systems.

Note that we do not simulate the experiment in
Section 6.1.5 because we did not compute process-
ing times for linear regression on a large number of
synchronization points (i.e., more than five) in our
simulation model.

6.2. Large-scale evaluation and comparisons to ex-
isting protocols through simulations

In this section, we use the VisibleSim simulator
to evaluate the performance of our protocol and
compare it with existing synchronization protocols.
We first present our methodology and experimen-
tal scenario. Then, we describe the variants of the
synchronization protocols we use for comparisons.
Finally, we show and discuss our simulation results.

6.2.1. Methodology and scenario

We study the precision, the convergence time and
the communication efficiency of the synchronization
protocols on three systems of different size and di-
ameter (see Table 5). These systems are organized
in a ball topology, i.e., the largest network topol-
ogy that can be formed for a given diameter (Naz

et al., 2016c). We use this compact network topol-
ogy because there is an increasing number of mod-
ules, thus an increasing number of clock models, at
a given network distance from any given module.
Moreover, we consider the ball system composed of
27,775 modules to show that MRTP can effectively
synchronize this system to a few milliseconds as an-
nounced in Section 6.1.2.
To compare protocols fairly, we evaluate them on

identical systems, i.e., for all experiments, a module
always has the same position, the same communica-
tion model and the same clock parameters. In addi-
tion, for centralized protocols, the time master al-
ways has the same communication model and clock
parameters. Furthermore, the minimum-identifier
module is deliberately placed on the extremity of
the systems in order to show the impact of the max-
imum hop distance to the time master on the overall
synchronization precision of the system.
All the experiments last two hours. During the

first hour, the system is left unsynchronized. Then,
modules starts running one of the considered syn-
chronization protocol. For all the protocols, we use
a synchronization period of 5 seconds. In protocols
that use a linear model to compensate clock skew,
modules performs the model parameter estimations
using the last 5 synchronization points, unless oth-
erwise mentioned. To evaluate the synchronization
precision, we measure the maximum pairwise syn-
chronization error, every 3 seconds.

System
Size

(modules)
Radius
(hops)

Diameter
(hops)

Ball(5) 231 5 10

Ball(15) 4,991 15 30
Ball(27) 27,775 27 54

Table 5: Network characteristics of the systems used for the
evaluation.

6.2.2. Compared synchronization protocols and
modifications

We compare MRTP to leading protocols de-
signed for ad-hoc networks, namely MLE TPSN
(i.e., TPSN (Ganeriwal et al., 2003) combined with
MLE (Leng and Wu, 2010)), FTSP (Maróti et al.,
2004), PulseSync (Lenzen et al., 2009), WMTS (He
et al., 2014a) (a variant of MTS (He et al., 2014a))
and ATS (Schenato and Fiorentin, 2011). These
protocols were proposed for wireless sensor net-
works and need modifications to be used on our
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target platform. This section lists these modifica-
tions. Note that the operated modifications do not
alter the general high-level framework of the com-
pared protocols.

Communication medium. One of the adaptation
is to consider a local and wired communication
medium instead of a wireless and shared one.
The main differences this adaptation causes from
a data-link point of view are twofold. First, it
entails the absence of message loss due to inter-
ferences/collisions on the communication medium.
Second, in order to broadcast a message to all
neighbors, a node has to send an individual copy
of that message to all of them.

Communication delay compensation. As explained
in the related work section, the methods used by
these protocols to compensate for communication
delays are not all directly applicable to our target
platform. We recall that three methods are ap-
plicable to our target system, namely RTT, FD
and PRED (see Section 2.3). MLE TPSN uses
round-trip messages and computes the maximum
likelihood estimation of the current global time on
the last 5 synchronization points. We use FTSP
with PRED because the method proposed in FTSP,
which is highly accurate, is not applicable to our
target system and because PRED is in average the
most precise method for our system. PulseSync em-
ploys the same method than FTSP, thus we use
PulseSync with PRED. In ATS, the authors sug-
gest to use the most precise method and utilize FD
for the experimental evaluation. Since PRED is in
average more precise than FD in our system, we use
ATS with PRED. We also use PRED to compensate
for communication delays in WMTS.

The ATS and the WMTS protocols. ATS and
WMTS are respectively average and maximum-
value consensus-based decentralized protocols.
WMTS and ATS compensates for clock skew using
averaging techniques. In WMTS and in the origi-
nal version of ATS, modules use the two last clock
readings of a neighbor to estimate its relative clock
skew. In our modified version of ATS, we use the
oldest and the newest clock readings to estimate
the relative clock skew. This modification leads to
better performance in our system. The ATS pro-
tocol takes input parameters, e.g., the probability
to update the clock offset and the clock skew of the
modules at each synchronization round. We use

the parameters used in the evaluation section of the
original article (Schenato and Fiorentin, 2011).

The MRTP and the TPSN protocols. MRTP and
TPSN are centralized protocols in which modules
get periodically synchronized with the time master.
In MRTP and TPSN, the time master is elected us-
ing an external algorithm and child modules are re-
cursively synchronized by their parents along the
edges of a spanning-tree. For the leader elec-
tion problem, we consider the minimum-identifier
leader election algorithm (Raynal, 2013) (MIN ID
for short) and the E2ACE centrality-based election
algorithm (Naz et al., 2016a). We use the algorithm
presented in (Cheung, 1983) to build the synchro-
nization tree. We slightly modified these three algo-
rithms to reduce the number of messages sent and
the maximum message queue length. In these algo-
rithms, modules flood the best known solution to
reach a consensus. In our modified version of these
algorithms, a module does not send to a neighbor
a better solution until it gets an acknowledgment
message from its neighbor that confirms the previ-
ous sent solution was properly handled. Moreover,
our version of E2ACE uses the HyperLogLog proba-
bilistic counter (Flajolet et al., 2007), which is more
efficient than the counter used in the original ver-
sion of E2ACE. In addition, we slightly adapt the
formula to elect an approximate-center node rather
than an approximate-centroid one.

In (Ganeriwal et al., 2003), the author states
that any method can be used to select the time
master in TPSN and suggests that the minimum-
identifier election algorithm presented in (Malpani
et al., 2000) can be used. Thus, we use TPSN
with MIN-ID. In addition, in the original version
of TPSN, child modules overhear the messages ex-
changed during the synchronization process of their
parent. As our platform uses contact communica-
tions, messages sent to a node can not be overheard
by other nodes. Thus, in our version of TPSN, we
added an extra message sent by the parent to trig-
ger the synchronization of child modules. Moreover,
modules use a linear model and MLE (Leng and
Wu, 2010) to estimate the clock parameters. Dur-
ing a synchronization phase, modules only use the
last-timing information to disseminate the global
time through the system. Without this last modi-
fication, MLE TPSN diverges slowly in our simula-
tions.
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The FTSP and the PulseSync protcols. FTSP and
PulseSync are centralized protocols in which mod-
ules get periodically synchronized with the time
master. FTSP and PulseSync are infrastructure-
less. During the synchronization phases, the
minimum-identifier module gets implicitly elected
as the time master. If a module has not received
new synchronization messages for some synchro-
nization periods (5 in our implementation), it de-
clares itself as the time master and starts synchro-
nizing the other modules. A module updates its
belief about the current time master in the system
whenever it receives a synchronization message ad-
vertising for a time master with a lower identifier.
In FTSP, a new time master ignores synchroniza-

tion messages advertising for lower-identifier nodes
during 3 synchronization periods. The FTSP pro-
tocol also takes as a parameter the number of syn-
chronization messages a node needs to have received
before it considers itself as synchronized and starts
to synchronize neighboring nodes. In our simula-
tions, we use the value of 3. For a better perfor-
mance, we proceed to the subsequent modifications
of FTSP, also suggested in (Lenzen et al., 2009). In
the original version of FTSP, synchronized modules
ignore the received global time values that are too
far from their own estimation of the current global
time. As shown in the next subsection, FTSP does
not provide precise synchronization in our target
system and we had to suppress this filtering proce-
dure in order to obtain better results. Additionally,
in our version of FTSP, modules clear their linear
regression table whenever they get synchronized by
a new time master.
PulseSync accurately synchronizes nodes using

rapid network-wide flooding. Sophisticated meth-
ods have been proposed to achieve fast flooding in
WSN where messages may interfere and collide with
each others (e.g., (Ferrari et al., 2011)). Our tar-
get system does not assume any specific mechanism
to quickly disseminate a message through the net-
work. Blinky Blocks networks are beside not prone
to message collisions. In our implementation of
PulseSync, synchronization messages are handled
like any other message. In particular, messages are
not prioritized in message queues.

Naming convention. We use the following for-
mat to name the different compared approaches:
[ORIGINAL PROTOCOL NAME]-[LEADER ELEC-

TION ALGORITHM]-[COMMUNICATION DELAY

COMPENSATION METHOD]. For instance, MRTP-

EA2CE-PRED refers to MRTP synchronization
protocol based on the E2ACE leader election al-
gorithm and our predictive method to compensate
for communication delays.

6.2.3. Time of convergence and achievable preci-
sion

Figure 12 shows the average maximum pairwise
synchronization error of the modules over time
for the compared synchronization protocols. Dur-
ing the first hour, the modules were not synchro-
nized and progressively drifted apart. The system
reached a synchronization error of more than 40
seconds.

Time of convergence. MRTP, MLE TPSN and
PulseSync centralized protocols converge in a few
seconds in the three systems. We recall that
MRTP and MLE TPSN first elect a leader, build
a spanning-tree, and then start synchronizing the
modules. In PulseSync, modules wait for 5 synchro-
nization periods (i.e., 25 seconds) without hearing
a synchronization message before declaring them-
selves as time masters and trying to synchronize the
other nodes. This mechanism causes PulseSync to
converge a little bit slower but makes this protocol
inherently tolerant to faults.

As expected, ATS, which is an average consensus-
based decentralized protocol, converges much more
slowly and the time of convergence significantly in-
creases with the system size. In Ball(15), ATS con-
verges only after about 30 minutes of periodic syn-
chronization. WMTS, which is a maximum-value
consensus-based protocol, converges more quickly
than ATS. But WMTS is still slightly slower than
MRTP, MLE TPSN and PulseSync centralized pro-
tocols.

FTSP does not converge in large ensembles
of Blinky Blocks. Theoretically, FTSP should
have converged in less than 15 minutes in
Ball(27) (Maróti et al., 2004). As explained in
the related work subsection, FTSP synchronization
waves are slowly flooded through the network us-
ing asynchronous broadcasts, whereas, in MRTP,
MLE TPSN and PulseSync, the current global time
gets quickly disseminated throughout the entire
network. This last scheme significantly reduces the
impact of clock inaccuracies (due to noise, skew
variations, time-increasing errors in the local esti-
mation of the global time) on the synchronization
precision and the time of convergence.
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Synchronization precision. Figure 13 shows statis-
tics on the maximum pairwise synchronization error
after convergence. Unsurprisingly, the synchroniza-
tion precision of all the protocols decreases with the
network size. MRTP, MLE TPSN and PulseSync
which are centralized protocols have a synchroniza-
tion precision of a few dozens of milliseconds in all
the considered systems.

MRTP-E2ACE-PRED is the most precise proto-
col. As shown in Figure 13, using a central node
as the time master improves the average maximum
pairwise synchronization error of MRTP by about
0.6 to 3.5 milliseconds in the different ball sys-
tems (MRTP-E2ACE-PRED vs MRTP-MIN ID-
PRED). Moreover, the precision improvement in-
creases with the diameter of the ball.

Unsurprisingly, MRTP-MIN ID-PRED and
PulseSync-PRED have in average a similar syn-
chronization precision. It was awaited as the
two protocols only differ by the mechanism they
used to elect the minimum-identifier node and by
their infrastructure (i.e., MRTP uses a breath-first
spanning-tree while PulseSync is infrastructure-less
and floods the network). However, it must be
noted that, in Ball(27), MRTP-MIN ID-PRED has
in average a slightly lower synchronization error.
We did not investigate this point but we suspect
this could be due to the fact that, in MRTP, a node
always gets synchronized by a message that has
traveled on the same and shortest path while, in
our implementation of PulseSync, synchronization
messages can come from different and possibly not
shortest paths depending on the network traffic.

As announced in Section 6.1.2, MRTP can effec-
tively synchronize the Ball(27) system, composed
of 27,775 modules, to less than 40 milliseconds. In-
deed, it synchronizes this system to 17 milliseconds
in average and to 24 milliseconds at worst.

6.2.4. Communication efficiency

Number of messages. Figure 14 shows the average
number of messages sent per module and its decom-
position according to message types. We consider
three types of messages: the messages due to the
leader election process, the ones due to the tree in-
frastructure creation and the synchronization mes-
sages.

As awaited, ATS and WMTS decentralized syn-
chronization protocols use in average more mes-
sages per module than MRTP, MLE TPSN and
PulseSync centralized protocols. In addition,

PulseSync, which uses network-wide floodings, gen-
erates in average more messages per module than
MRTP and MLE TPSN, which use a tree-like struc-
ture. Thus, the message cost induced by both the
leader election process and the infrastructure con-
struction is compensated in less than one hour.

Let k denotes the number of messages used by
the compensation delay method (k = 1 for PRED
and k = 3 for RTT). In decentralized methods,
2km messages are sent per synchronization round,
while k(n − 1) messages are sent in MRTP and
MLE TPSN, and 2m − (n − 1) messages are sent
in PulseSync-PRED (after the time master elec-
tion has converged). We recall that n − 1 ≤ m
in connected networks. Because MLE TPSN uses
a round-trip time based method, it generates three
times more synchronization messages per synchro-
nization phase than MRTP with PRED. In com-
pact systems, the number of links is more important
than the number of nodes. Thus, in these systems,
PulseSync generates more messages per synchro-
nization round than MRTP with PRED. However,
PulseSync is inherently more tolerant to network
failures because synchronization waves are flooded
through all links and not only along the links of
a spanning tree. Thus, if a link fails but the sys-
tem remains connected, PulseSync may still be able
to synchronize all the modules. Nevertheless, in
a spanning-tree, if a link fails, all the nodes of a
sub-tree will not get synchronized. MRTP han-
dles this case by re-electing a time master and re-
constructing the synchronization tree.

Message queue usage. We measured the maximum
message queue size reached by the modules tak-
ing into account both the incoming and the out-
going messages. We observed that for any module,
the ratio of the maximum reached queue size to
the number of neighbors of that module, remains
below or equal to three, regardless of the size of
the networks for all the protocols except for Pulse-
Sync. For PulseSync, the ratio reached the value of
4.5. Thus, nor the leader election process, which in-
volves network-wide flooding(s), nor the actual syn-
chronization phases overwhelm the network. The
traffic generated by the synchronization protocols
remain well controlled and modules do not require
a lot of memory space to store incoming and out-
going messages.
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7. Discussion

In this paper, we described the Modular Robot
Time Protocol (MRTP), a network-wide time syn-
chronization protocol for modular robots. MRTP is
intended to synchronize large-scale and fairly sta-
ble systems where changes in the network topology,
due for instance to module mobility, or potential
module or link failures, are infrequent. Our pro-
tocol achieves its performance by combining sev-
eral mechanisms: distributed central-time-master
election, fast and recursive propagation of synchro-
nization waves along the edges of a breadth-first
spanning-tree, low-level timestamping and per-hop
compensation for communication delays using the
most-appropriate method, and clock skew compen-
sation using linear regression.
In MRTP, a dynamically elected central mod-

ule periodically synchronizes the system. Placing
the time master close to the center of the network
increases the overall synchronization precision be-
cause cumulative errors are made every hop. This
strategy is particularly judicious in our context be-
cause large-scale modular robots with neighbor-
to-neighbor communications tend to exhibit large
hop distances. In order to synchronize the sys-
tem, the time master periodically launches syn-
chronization waves, which are recursively propa-
gated along the edge of a breadth-first spanning-
tree. Slave modules propagate these waves to their
children in the tree shortly after reception. As ex-
plained in (Lenzen et al., 2009), optimal synchro-
nization requires a fast propagation scheme. Also
note that using a tree is more communication effi-
cient in compact systems than flooding approaches.
Indeed, since there is no broadcast support in the
neighbor-to-neighbor communication model, a node
has to send an individual copy of a message to all
its neighbors in order to broadcast that message.
Furthermore, using a breadth-first tree guarantees
that synchronization messages always travel on the
same and shortest paths. This also leads to bet-
ter synchronization precision. MRTP performs per-
hop synchronization, i.e., a module gets synchro-
nized by an one-hop neighbor. At each hop, the
propagated estimation of the current global time
is updated to take into account communication de-
lays and time of residence in intermediate modules.
Any approach to compensate for these delays can
be used in MRTP. Most of the existing approaches
use low-level timestamping to suppress the main
sources of uncertainty in delay estimations. The

best-suited technique to actually use in MRTP de-
pends on the target platform (i.e., the clock preci-
sion, its resolution and the communication mecha-
nism) and should be carefully selected, since it has
a direct impact on the performance of our protocol,
both in terms of precision and communication ef-
ficiency. We provided a method to experimentally
evaluate the precision of a given approach over mul-
tiple hops.
We evaluated our protocol on the Blinky Blocks

platform, both on hardware and through simula-
tions. We showed that MRTP can manage systems
composed of up to 27, 775 Blinky Blocks. We ob-
served that the synchronization precision depends
on the hop distance to the time master, the syn-
chronization periods and the number of synchro-
nization points used for the linear regressions. Fur-
thermore, we showed that MRTP is able to suc-
cessfully maintain a Blinky Blocks system synchro-
nized to a few milliseconds, using few network re-
sources at runtime, although the Blinky Blocks use
low-bitrate communications (38.4 kbit/s) and are
equipped with a very low accuracy (10, 000 parts
per million (ppm)) and poor resolution (1 mil-
lisecond) clocks. Moreover, we compared MRTP
to existing synchronization protocols ported to fit
our system model. Simulations results show that
MRTP exhibits in average a lower maximum pair-
wise synchronization error than compared protocols
while sending more than half less messages in com-
pact systems.
Our protocol is portable to any modular robot

system where modules interact together using only
neighbor-to-neighbor communications even if their
internal clocks are low precision and have high skew
relative to one another. Depending on the time
master election procedure, it may also be required
that every module has a unique identifier. It must
be noted that our protocol can also be used in sys-
tems with more precise clocks. It will indeed have
two main effects. First, a lower resolution will lead
to more precise local clock readings, i.e., more pre-
cise message timestamps. Hence, communication
delays may be more precisely captured and com-
pensated for, using potentially a different method
than the predictive one we use with the Blinky
Blocks. Second, a more precise clock implies re-
duced clock skew, drift (variation of skew) and
noise. This can only increase our protocol precision.
It must be noted that, even with higher-precision
clocks, it is still appropriate to use a linear model
to compensate for short-term clock skew. Indeed,
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this approach is also commonly used in systems
equipped with more precise clocks (e.g., RBS (El-
son et al., 2002), FTSP (Maróti et al., 2004), Pulse-
Sync (Lenzen et al., 2015), etc.). Consequently, our
protocol should also be able to efficiently synchro-
nize systems equipped with higher-precision clocks.
We let the evaluation of our protocol in such sys-
tems for future works.

8. Future Work

In future work, we plan to test MRTP in large-
scale hardware systems running real applications,
which have time synchronization requirements and
which may potentially generate a significant net-
work and computing load.

In addition, it would be interesting to design
more precise methods to compensate for network
delays in Blinky Blocks systems. We envision, for
instance, to enhance FD with a method that will
compensate for the dissemination error after sev-
eral hops, i.e., when this error has become greater
than the resolution of the clock and can effectively
be compensated for. Also, different network delay
compensation methods can be combined to provide
a better estimation of the current global time. In
order to not increase the communication load, a
same message can carry multiple timestamps in-
serted by different methods.

Furthermore, MRTP should be tested in other
systems that fit our system model. In particular, it
will be interesting to evaluate our protocol on hard-
ware systems equipped with more precise clocks.

Moreover, we plan to study time synchroniza-
tion in highly dynamic modular robotic systems
where module mobility and failures may occur fre-
quently. In particular, we will address the prob-
lem of time synchronization throughout the pro-
cess of self-reconfiguration, during which modules
move to re-arrange the global shape of the modular
robot (e.g., (Piranda and Bourgeois, 2016),(Lakhlef
et al., 2014)). MRTP needs to be adapted to effi-
ciently handle such network dynamics, because the
frequent re-elections of a central module and the
maintenance of the synchronization tree will be too
expensive. For now, we suggest to use the high-
level framework of the PulseSync protocol (Lenzen
et al., 2015) in those systems. This framework is
indeed inherently tolerant to module mobility and
failures.
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Name Domain Architecture
Infrastruc-

ture
Synchronization Technique

Clock Skew
Compensation

NTP (Mills,
1991)

Computer
Networks

Master/Slave
Master(s):

pre-configured
Tree

(Multi-hop) round-trip
messages with frame-level
timestamps and statistics

Phase-locked
and/or

frequency-
locked
loops

PTP (IEEE,
2008)

Computer
Networks

Master/slave
Master: clock
quality based

election

Tree

Round-trip messages with
low-level (data-link to physical
layer) timestamps and per-hop

delay compensation

TPSN (Ganer-
iwal et al.,

2003)

Sensor
Networks

Master/slave Tree

Recursive per-hop
synchronization. Round-trip
messages with frame-level

timestamps

/

TPSN (Ganer-
iwal et al.,
2003) +

MLE (Leng
and Wu,
2010)

Sensor
Networks

Master/slave Tree

Recursive per-hop
synchronization. Round-trip
messages with frame-level
timestamps and statistics

Linear model
with maximum

likelihood
estimators

TDP (Su
and Akyildiz,

2005)

Sensor
Networks

Masters/Slave
multiple changing
masters: clock
quality based

election

/

Recursive per-hop
synchronization. Bidirectional

round-trip messages with
statistics

/

RBS (Elson
et al., 2002)

Sensor
Networks

Master/Slave

Broadcast-
domain
based

clustering

Reference broadcast

Linear model
with

least-square
linear

regression

FTSP (Maróti
et al., 2004)

Sensor
Networks

Master/slave
Master: id-based
implicit election

/

Periodic asynchronous
broadcasts. Unidirectional
broadcast with byte-level
timestamps and statistics

Linear model
with

least-square
linear

regression

RATS (Kusy,
2007)

Sensor
Networks

Master/Slave
Master:

pre-configured
/

Recursive per-hop
synchronization. Unidirectional

broadcast with byte-level
timestamps and statistics

Linear model
with

least-square
regression

Pulse-
Sync (Lenzen
et al., 2009,

2015)

Sensor
Networks

Master/slave
Master: id-based
implicit election

/

Recursive per-hop
synchronization. Unidirectional

broadcast with byte-level
timestamps and statistics

Linear model
with

least-square
linear

regression
AD (Li and
Rus, 2006)

Sensor
Networks

Fully distributed / Average-based consensus /

GTSP (Som-
mer and

Wattenhofer,
2009)

Sensor
Networks

Fully distributed /

Average-based consensus.
Unidirectional broadcast with
byte-level timestamps and

statistics

Linear model
with an
averaging
technique

ATS (Schen-
ato and

Fiorentin,
2011)

Sensor
Networks

Fully distributed /
Average-based consensus.

Unidirectional broadcast with
byte-level timestamps

Linear model
with an
averaging
technique

MTS and its
variants (He

et al.,
2014a,b)

Sensor
Networks

Fully distributed /

Extremum-value based
consensus. Unidirectional
broadcast with byte-level

timestamps

Linear model
with possibly
an averaging
technique

BP and
MF (Et-

zlinger et al.,
2014)

Sensor
Networks

Master/Slave or
fully distributed

/

Belief propagation and mean
field. Single-hop bidirectional
messages with frame-level

timestamps

Linear model
with maximum
a posteriori
estimators

Our Contri-
bution:
MRTP

Modular
Robotic

Master/Slave
Master:

centrality-based
election

Tree

Recursive per-hop
synchronization. Selection of
the best-suited communication
delay compensation method for

the target system

Linear model
with

least-square
linear

regression

Table 1: Related work summary.
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Figure 5: On the left: scheme of a two-way message exchange between two blocks. On the right: transfer delay/rate distribution
of 21-byte long frames.

Parameters Value

Timeouts
Triggering time (s) U(0, 500 · 10−6)
Processing time (s) U(250 · 10−6, 300 · 10−6)

Messages

Queue occupancy
at arrival

Light load neighborhood management
Moderate load neighborhood management + P(1)

Transfer rate
(kbit/s)

Sparse systems (e.g., line system) N (28.134, 0.660)
Intermediate systems (e.g., L-shaped

systems)
N (28.085, 0.938)

Compact systems (e.g., ball systems) N (27.696, 1.143)
Processing time

(s)
Low complexity U(250 · 10−6, 300 · 10−6)

Medium complexity U(475 · 10−6, 525 · 10−6)

Table 3: Communication model. N (µ, σ) refers to the normal probabilistic law with µ mean and σ standard-deviation. U(l, u)
refers to the uniform probabilistic law with minimum value l and maximum value u. P(λ) refers to the Poisson probabilistic
law with λ mean.
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Figure 12: Maximum pairwise synchronization error over time. This figure shows both the time of convergence and the
achievable precision for each protocol on the different Ball systems.
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Figure 13: Average maximum pairwise synchronization error on the last 30 minutes of experiment (± standard-deviation).
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