

This is a postprint version of the following published document:

Vidal, I., et al. SCoT: A secure content-oriented transport, in: Journal
of Network and Computer Applications, Vol. 105, March 2018, pp. 63-
78

DOI: https://doi.org/10.1016/j.jnca.2018.01.001

© 2018 Elsevier Ltd. All rights reserved

This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.

https://doi.org/10.1016/j.jnca.2018.01.001
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

SCoT: A Secure Content-oriented Transport

Ivan Vidal1,, Jaime Garcia-Reinoso1, Ignacio Soto1, Francisco Valera1,
Diego Lopez1

aDepartamento de Ingenieŕıa Telemática, Universidad Carlos III de Madrid, Avda.
Universidad, 30, 28911 Leganés (Madrid), Spain

bTelefónica I+D, C/ Zurbarán 12, 28010 Madrid, Spain

Abstract

The evolution of the Internet has resulted in the deployment of new application-
level solutions to enhance the scalability and efficiency of content dissemi-
nation (e.g., content delivery networks and peer-to-peer systems). However,
despite of this improvement on performance, the utilization of this type of
solutions introduces new security concerns, as a content provider must nec-
essarily delegate the role of distributing the content to third parties, and
current security solutions, such as TLS and IPsec, do not allow authenticat-
ing the original content provider or the content itself in these scenarios. In
this paper, we present SCoT, a transport-layer protocol that allows a con-
tent provider to bind protection to content, enabling content authentication
at receivers regardless of any third party infrastructures that have been used
to disseminate the content. Content authentication procedures are executed
transparently to end-user applications. We implemented a fully operational
prototype of the protocol in Java, including an API to support the develop-
ment of SCoT applications. We utilized it to configure an experimentation
scenario that served to validate a theoretical analysis of the SCoT through-
put and to illustrate the performance that can be achieved in a practical
deployment. The paper concludes describing a set of use cases of the proto-
col.

Keywords: Transport security, content authentication, content distribution

∗Corresponding author

Preprint submitted to Journal of Network and Computer Applications April 17, 2018

1. Introduction

In recent years, the massive use of the Internet, with its large num-
ber of geographically distributed users, has resulted in the proliferation of
new application-level mechanisms to support the scalable and efficient access
to content. Well known successful examples of these mechanisms are Con-
tent Delivery Networks (CDN), peer-to-peer (P2P) systems and mirror sites.
However, being the communication model in the Internet based on host-
to-host communications, the utilization of this type of solutions inevitably
entails the dissociation of the role of delivering the content from the pub-
lisher of that content, as contents will be distributed from server equipment
that does not belong to the provider (e.g., a CDN server). This creates
a challenge for the authentication models currently used in the Internet to
guarantee the provenance of the content, as these allow authenticating the
server participating in a communication, typically using TLS, but not the
provider of the content or the content itself, which would be most desirable
in case of networked applications that delegate the role of content delivery. A
workaround to deal with this issue is sharing authentication credentials, such
as the private key of the content provider, with a third party (in particular,
with the server delivering the content). However, this is highly undesirable
from the point of view of security, as it breaks the fundamental principle in
authentication that the possession of a private key, which enables the com-
putation of digital signatures, is only limited to the key owner. Some other
solutions are being proposed, which are reviewed in Section ??.

In this paper, we present SCoT, a transport layer protocol to protect the
distribution of content in the Internet, enabling the authentication of a re-
ceived content independently of any intermediate equipment that have been
used to distribute it. The design of the mechanisms for content protection in
SCoT has been inspired on the concept of content-based security (?), where
security is bound to the content being transmitted as opposed to network
security solutions of common use in the Internet (e.g., TLS or IPsec), which
protect the distribution of information by securing the end-to-end communi-
cations used to deliver the content.

When a content provider uses the SCoT protocol to deliver a solicited
information (e.g., a file, a video stream, etc.) to an interested consumer,
the SCoT layer at the provider equipment generates a sequence of crypto-
graphic information elements, known as SCoT credentials. These credentials
are streamed towards the consumer, as they are generated, along with the

2

content itself. At the consumer side, credentials are used by the SCoT layer
to authenticate the information as it is received (receiving all the information
is not required to authenticate it). The generation of SCoT credentials and
content authentication procedures are executed transparently to communi-
cating applications, both at the sender and the receiver sides. Additionally,
receivers can securely re-distribute a given content, by instructing their SCoT
layer to re-use the credentials generated by the provider.

Being a transport-layer solution, SCoT can work with other Internet pro-
tocols and services operating at different layers of the TCP/IP protocol stack.
On the one hand, these include the diverse protocols that are available at
the application-layer. As an example, a server could use the HTTP pro-
tocol to distribute content to interested receivers, and utilize SCoT at the
transport-layer to authenticate the distribution of this content. On the other
hand, SCoT can work in cooperation with other transport and network-layer
security-related solutions, such TLS and IPsec, to address the authentica-
tion challenges related with content dissemination in a variety of relevant
use cases. Examples of these use cases, where the utilization of SCoT may
be of particular interest, include the distribution of content through CDNs,
installation of software components and upgrades, the communication of in-
formation under the new IoT paradigm, and the secure dissemination of data
in the novel and proliferating softwarization environments offered by cloud
and network function virtualization infrastructures.

We have developed a fully operational prototype implementation of SCoT.
In the paper, we use this prototype to obtain experimental results showing
the performance of the protocol, which may be in general comparable to
that of TCP, although with the limitations imposed by the execution of the
cryptographic operations that are needed to support content authentication
procedures (e.g., creating and verifying SCoT credentials).

The rest of the paper is organized as follows. Section ?? reviews related
work. Section ?? describes the basic operation of SCoT and Section ??
provides a detailed description of the different procedures in the protocol.
Section ?? analyzes the performance of the protocol, both analytically and
experimentally with the prototype implementation. We describe a set of
relevant use cases of SCoT in Section ??. Finally, Section ?? summarizes the
main conclusions and future directions of our work.

3

2. Current solutions for content protection

Security is not built in the core of the Internet, and several extensions
have been proposed to protect content. In this sense, there are different al-
ternatives to provide end-to-end security like the IPsec set of specifications,
which provide authentication and encryption services at the IP layer (?), or
the recent TCPcrypt (?) specifically focused on the TCP layer and imple-
mented as additional TCP options for both encryption and authentication.
But it is probably the Transport Layer Security (TLS) protocol (?) the one
that has been most widely adopted in the Internet. Born as the Secure Sock-
ets Layer (?), it was closely related in its origins to the World Wide Web in
order to be able to deliver secure Web content. Now TLS is an application
agnostic protocol that aims at establishing a secure communication channel
(providing confidentiality, integrity and authentication) to exchange data.
TLS is capable of authenticating the server that is providing the correspond-
ing content, and optionally the client, and afterwards encrypting all the data
that both entities may transmit by performing a secret key exchange that
will be used by the confidentiality service.

However, considering the evolution that content distribution schemes have
taken nowadays, far from the centralized WWW model, nodes may end up
authenticating the hosts that serve the content, but not the content providers
that own the content or the content itself.

Some solutions have appeared in order to address scenarios where content
authentication is required, but content is provided by an intermediate entity,
e.g., through a secondary server or a relay. SCD (Secure Content Delegation)
(?) for instance, combined with blind caches (?), presents a proposal to
be able to serve content using HTTP from secondary servers (caches) but
with the added value of integrity and confidentiality provisioning and source
authentication based on TLS. SCD basically allows direct TLS connections to
the main server, but the response redirects the client to the secondary server
where the real content can be found. The content provider can balance the
amount of contents that are directly served or are delegated to the caches
(blind caches in case the content is encrypted). The content provider also
includes hashes of the different contents in its answers so that later on they
can be matched with the content downloaded from the caches, and integrity
can be guaranteed. However, blind caches have been shown to present privacy
issues and, in any case, SCD requires having the main server available to
retrieve the content, as well as the reception of the whole content to verify

4

its integrity and authentication.
There are other specific proposals for CDNs like the Custom Certificate

and Shared Certificate mechanisms. In the Custom Certificate mechanism,
content providers share their private key with CDN providers (which is un-
desirable from the point of view of security); and in the Shared Certificate
approach, CDN provider’s Certificate Authority issues an X.509 certificate
to the CDN provider, including in the Subject Alternative Name (SAN) the
content provider domain name. Authors in (?) describe the main drawbacks
of both Customer and Shared Certificates mechanisms. The authors also
present a solution based on DNS resolution but, as all solutions based on
TLS, it tackles the problem of privacy and data integrity between two end
points, but not the authentication of the content itself.

There are other alternatives to support content authentication in CDNs.
In (?), the authors modify the typical TLS key exchange mechanism per-
formed between the client and the secondary server, allowing the secondary
server to be identified using the content provider certificate. The client will
obviously use this certificate to protect the communication with the sec-
ondary server but this one has no private key to continue the exchange. The
secondary server will instead forward the message to the content provider
that will return the proper information so as to complete the handshake.
A recent proposal along this idea is the Delegated Credentials for TLS (?),
where a TLS server operator can issue its own credentials within the scope
of a certificate issued by an external CA. This allows the server to terminate
TLS connections on behalf of the certificate owner.

LURK (Limited Use of Remote Keys) is another recent initiative fostered
within the IETF, addressing authentication issues of current content distri-
bution models in the Internet. In the context of LURK, several approaches
are being explored. One approach to prevent abuse of delegated credentials,
a potential problem that exists in other solutions such as Custom Certificate,
is to control their validity, e.g., by providing limited life credentials. Other
interesting approaches have been proposed in LURK like the Session Key
Interface for TLS (?), or the PFS-preserving protocol (?) where the role
of the TLS server is split into the Edge Server (that in fact terminates the
TLS tunnel) and the Key Server (or Key Owner), being this second one the
responsible for all private key operations as requested by the Edge Server.
In (?), the author follows a similar approach introducing LURK notation
like the LURK server for the key holder, LURK client for the edge server
(”client” of the LURK service) and LURK Administrator (new entity that

5

controls the relation between the client and the server).
Other research initiatives address the fundamental challenges of content

dissemination in the Internet using more disruptive approaches. Information
Centric Networking (ICN) (?) is a salient initiative in this category. As
opposed to the host-centric approach used in existing packet networks, ICN
redefines the Internet architecture to operate in terms of named data, sup-
porting the efficient and secure access to content with the extensive use of
in-network caching and innovative security concepts. In this respect, rather
than addressing content protection by establishing secure point-to-point com-
munications between publishers and consumers, as in the current Internet,
ICN uses a different approach where protection is inherently bound to con-
tent. As an example, CCN (?) (a prominent solution under the umbrella of
ICN) authenticates the association between every piece of content and its cor-
responding name using digital signatures, which are transported along with
the content through the network. This concept, denominated as content-
based security in CCN, is fundamental to our solution, as we will see in the
following section.

Figure ?? relates the different proposals, including SCoT, and summarizes
their main characteristics:

• Content authentication capabilities. The ability of each solution to
provide content authentication. This is the main objective of SCoT,
but some protocols can only achieve this by key or identity delegation,
or are not providing content authentication at all.

• Caching of authenticated content. This column defines if authenticated
content can be served from intermediate entities independently of the
availability of the content provider server.

• Independence from applications. This information specifies if the so-
lution can be used by different applications, i.e., if it is application
agnostic. This is only possible for solutions located below the applica-
tion layer.

• Functions needed in different equipment. This column indicates in
which type of equipment (routers and/or endpoints) each solution needs
specific functionality.

6

Network
Layer

Transport
Layer

Application
Layer

New
protocol
stacks

Functions
required at

Application
agnostic

Caching of
auth. content

Content
authentication

IPsec

SCoT
TCPcrypt

TLS

ICN

Network
routers

Endpoints
Endpoints
Endpoints

No No Yes

Yes Yes Yes
Endpoints

and network
routers

SDC
LURK

Custom Cert.
Shared Cert.

SubCerts

Solution

Endpoints
Endpoints
Endpoints
Endpoints
Endpoints

No
No
No
No
No

Yes
Yes
Yes
Yes
Yes

Key delegation
Id. delegation

Key delegation
Id. delegation
Id. delegation

Yes
Yes
Yes

Yes
No
No

Yes
No
No

Application

Protocol
Layer

Figure 1: Summary of current solutions and SCoT

3. Operation of the SCoT protocol

This section describes the basic operation of SCoT. For clarity, SCoT
procedures are presented in the context of an illustrative example, consider-
ing an entity that uses the proposed solution to retrieve a specific content
(i.e., a file) from a server owned by the content provider. This entity then
relays the content to an interested consumer. The distribution of content to
the relay and to the consumer is protected using SCoT, being the content
authenticated as it is received at both receiver endpoints.

In our solution, content is named by its corresponding provider, and it is
divided into blocks as it is provided by the sender application. The associa-
tion between each block of data and the content name is authenticated using
digital signatures, which are generated by the SCoT layer of the provider
equipment transparently to the application. The SCoT protocol distributes
the data blocks along with the information that is needed to authenticate
them. Authentication is carried out by the SCoT layer as the blocks of data
are received, transparently to the end-user applications, which can determine
the validity of the received content according to the level of trust established
on the provider that has generated the signatures.

7

3.1. Establishment of a SCoT connection

Figure ??.a shows the exchange of protocol data units (PDUs) that are
required to deliver the requested file from a server application, running at the
provider equipment, to a client application that is executed at the content
relay. SCoT is a connection-oriented protocol, hence the delivery of the file
requires the previous establishment of a connection between the server and
the client applications. Similarly to TCP, the SCoT protocol supports the
bidirectional transmission of a stream of data in both directions of a SCoT
connection.

As a first step in our example, the client application triggers the SCoT
layer to establish a connection with the server application, indicating the do-
main name of the provider equipment (or its corresponding IP address) and
the SCoT transport port where the server is listening to incoming connec-
tions (SCoT ports can be allocated independently of other transport protocol
ports, such as TCP or UDP). The SCoT layer completes the connection setup
with a two-way handshake, based on the exchange of a CONNECT PDU sent
from the client side (step 1 in Fig. ??.a), and a CONNECTED PDU, which is
used by the server side to confirm the flawless establishment of the connection
(step 2). Our protocol operates over TCP, which guarantees the reliable or-
dered exchange of SCoT PDUs between the communicating endpoints. The
procedures related with the management of SCoT connections are detailed
in Section ??.

3.2. Activation of security contexts and content delivery

Once the connection has been established, content can be exchanged be-
tween the client and the server application. SCoT operates at the transport
layer, hence it can be used to distribute information from any application-
level protocol. In our example, the server application is an HTTP server
capable of distributing a number of files, which are stored at the provider
equipment, using the HTTP protocol. To request the delivery of one of these
files, the client application issues an HTTP GET request, specifying the URL
of the file, and uses the SCoT connection to send the request to the server.
In the content-oriented model followed by our solution, the HTTP request
is considered to be a piece of content that must be delivered from the relay
to the HTTP server. Taking this into account, before transmitting the re-
quest, the client application informs the SCoT layer to activate a security
context for this HTTP content. Security contexts represent a fundamental

8

CONNECT

RelayProvider

dst-port, src-port
CONNECTED

CONTENT
data=''HTTP GET file-name"

CONTENT

CREDENTIAL

.

.

Digital signature of chunk 1

data="block 1 of /provider-id/content-id"

CONTENT
data="block n of /provider-id/content-id"

DISCONNECT

CONTENT
data=''HTTP OK headers"

CONTEXT
content-name="/provider-id/content-id",

provider-certificate

CONTEXT

Connection
setup

CONTEXT

content-name="/relay-id/http"

content-name="/provider-id/http"HTTP
response

Connection
release

CREDENTIAL
Digital signature of chunk n

HTTP
request

Delivery
of content

CONNECT

ConsumerRelay

dst-port, src-port
CONNECTED

CONTENT
data=''HTTP GET file-name"

CREDENTIAL

.

.

.

Digital signature of chunk 1

DISCONNECT

CONTENT
data=''HTTP OK headers"

CONTEXT
content-name="/provider-id/content-id",

provider-certificate

CONTEXT

CONTEXT

content-name="/consumer-id/http"

content-name="/relay-id/http"

CREDENTIAL
Digital signature of chunk n

One or several CONTENT packets follow,
matching block n

One or several CONTENT packets follow,
matching block 1

(a) Provider to relay delivery (b) Relay to consumer delivery

DISCONNECTDISCONNECT

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(20)

(18)

(19)

(21)

(22)

(25)

(23)

(24)

(26)

Figure 2: Exchange of SCoT PDUs

concept in SCoT. A security context includes the status information that is
needed to unambiguously identify the content that is to be delivered, as well
as to execute the mechanisms that guarantee its appropriate authentication.
Detailed information on security contexts is provided in Sect. ??.

We want to observe that, in the considered example, files are the funda-
mental information items that the content provider desires to protect, hence

9

their authentication is mandatory at receiver equipment (e.g., at the relay).
Conversely, the authentication of the HTTP messages, which are issued to
request and encapsulate those files, is not really needed to guarantee the suc-
cessful operation of the file distribution service. For this reason, the security
context activated by the client application will only include the specifica-
tion of the name that will be assigned to HTTP content (’/relay-id/http’ in
Fig. ??.a), with no additional information that enables authentication proce-
dures. The activation of the security context at the client side is signaled to
the SCoT layer of the server side by means of the CONTEXT PDU shown
in step 3 of Fig. ??.a, causing the activation of the context at the provider
equipment. The client application can now send the HTTP request as a
stream of bytes over the SCoT connection. The SCoT layer encapsulates
and sends the received stream as a CONTENT PDU (step 4), and deliv-
ers the stream as it is received to the server application. According to the
security context associated with HTTP content, the stream of bytes is sent
unprotected through the network. The security context may be re-utilized to
send subsequent HTTP messages, from the client to the server application,
as long as the SCoT connection remains open. For this purpose, informa-
tion about active security contexts is maintained at the SCoT layer of the
client and server endpoints during the lifetime of the connection, and CON-
TENT PDUs transport a content identifier, i.e., a fixed size identifier that
is derived from the content name determined by the security context, which
allows associating the PDU with its corresponding security context.

Upon receiving the HTTP request, the server application sends the re-
quested file to the relay encapsulated in an HTTP OK response. To do this,
the server application first activates a security context for HTTP content.
Analogously to the HTTP request, as the protection of the HTTP headers
is not needed, the security context will only contain an application-specific
name assigned to HTTP content (’/provider-id/http’ in step 5 of Fig. ??.a).
The server application can now start the transmission of the HTTP response
as a stream of bytes over the SCoT connection, which is delivered to the client
application being transmitted as CONTENT PDUs by the SCoT transport
layer.

Prior to the transmission of the requested file in the body of the HTTP
response (i.e., after sending the headers of the HTTP response in step 6 of
Fig. ??.a), the server application activates a second security context. This
context will include the provider-specific content name assigned to the file,
along with a certificate of the content provider, containing the public key of

10

the provider that the server application wishes to use for content authenti-
cation purposes. After the successful activation of the context at both ends
of the SCoT connection (step 7 in Fig. ??.a), the server application starts
the transmission of the file as a stream of data. According to a set of con-
figuration parameters specified by the security context, the SCoT layer of
the provider will fragment the stream of data into blocks. Each block will
be used to generate a SCoT credential for that block, including an identifier
of the block of data, a fixed-length representation of the block and a digi-
tal signature, which authenticates the association between the block of data
and its corresponding identifier. Credentials are generated transparently to
the server application, computing the digital signatures with the private key
corresponding to the certificate within the security context (detailed infor-
mation about data delivery and credentials is provided in Sect. ??). After
being generated, each credential is appended to the security context at the
provider equipment, being then sent as a CREDENTIAL PDU to the other
end of the SCoT connection (steps 8 and 10 in Fig. ??.a).

The SCoT layer of the relay verifies the validity of the credentials as
they are received, being this process transparent to the client application. A
successful signature verification means a positive declaration from the owner
of the certificate that the association between a block of data and its cor-
responding identifier, as they are received in a credential, is valid. Upon
flawless verification, the credential is appended to the active security context
for subsequent utilization. After receiving a CONTENT PDU in steps (9)
and (11) in Fig. ??.a, the SCoT layer of the relay verifies if the block of
data enclosed in the PDU corresponds to the block of data validated by the
credential. If so, the block is considered as valid, according to the creden-
tials provided by the provider. The client application can always retrieve
a reference to an active security context during an ongoing SCoT connec-
tion, enabling it to access the provider-specific name of the received content
as well as the identity of the provider that has generated the credentials
(this information is included in the certificate of the security context). With
this information, the application can determine the validity of the received
content, according to the level of trust established on the provider that has
generated the credentials. A failing credential verification, or a block of data
that cannot be matched with a valid credential, is notified to the client ap-
plication, which is in charge of taking any appropriate actions to handle the
error condition (typically terminating the SCoT connection). The interface
offered by the SCoT layer to end-user applications is described in Sect. ??.

11

3.3. Termination of a SCoT connection

After completing the file transfer, the client application at the relay uses
the reference to the security context to store a copy of this context at the
application layer (e.g., as a local file in a hard drive). As we will see shortly,
this is a fundamental step to guarantee the subsequent secure dissemination
of the received content from the relay to any interested consumers.

Finally, the client application at the relay triggers the SCoT layer to ter-
minate the SCoT connection, causing the transmission of a DISCONNECT
PDU towards the provider equipment (step 12 in Fig. ??.a). Analogously to
TCP, the process to terminate a SCoT connection is performed separately
by the server and the client applications. Accordingly, when the SCoT layer
of the relay receives a DISCONNECT PDU from the provider (step 13), it
releases the resources utilized at the transport layer (particularly, the infor-
mation about any security contexts activated during the connection) and the
SCoT connection is closed.

3.4. Relay of content

Continuing with our example of operation, let us assume that an inter-
ested consumer now requests the delivery of the file stored in the content
relay. Figure ??.b shows the exchange of SCoT PDUs that are required to
transfer the file from a server application, running at the relay equipment,
to a client application that is executed at the consumer equipment. As it is
observed in the figure, the procedure starts analogously to the previous case,
involving a connection setup between the client and the server application,
the establishment of security contexts for HTTP content and the exchange
of an HTTP request, indicating the URL of the solicited file, and the corre-
sponding HTTP response encapsulating the file (steps 14 to 19 in Fig. ??.b).
Upon verifying the availability of a security context for the content that is
to be delivered (a copy of this security context has been stored in a local
file), the relay application retrieves the context from the file and triggers the
SCoT layer to activate it. Consequently, as shown in step (20) of Fig. ??.b,
a CONTEXT PDU is transmitted to the other end of the SCoT connection,
including the name of the content that is to be transferred along with the
certificate that will be used for content authentication procedures (i.e., the
certificate of the content provider). With this information, the security con-
text is also activated by the SCoT layer of the consumer equipment. The
server application at the relay can now send the requested file as a stream

12

of bytes over the SCoT connection, being transmitted by the SCoT layer as
CONTENT PDUs (steps 22 and 24 in Fig. ??.b).

Credentials stored in the security context, which were originally gener-
ated by the SCoT layer of the provider equipment, are sent as CREDENTIAL
PDUs (steps 21 and 23) as they are needed for content authentication pur-
poses at the consumer equipment (details are provided in Sect. ??). This
enables to deliver credentials to the receiver endpoint making a conserva-
tive use of bandwidth resources. Content authentication proceeds as in the
previous case, where the file was transferred from the provider to the relay
equipment, and the consumer application can determine the validity of the
received content based on the level of trust established on the provider that
has generated the credentials. After the successful file transfer, the consumer
application requests the termination of the SCoT connection (steps 25 and
26).

4. Detailed SCoT procedures

This section complements the information on the operation of SCoT, as
provided in the previous section, with detailed information on data structures
and on the main procedures that comprise the definition of the protocol.

4.1. The SCoT-sockets API

The Application Programming Interface between the SCoT layer and the
applications is called SCoT-sockets. The SCoT-sockets interface, similarly to
TCP sockets, allows establishing a connection, sending and receiving the data
corresponding to a specific content, and closing a connection. SCoT-sockets
also provide access to functionality not present in TCP, such as setting a secu-
rity context and content authentication. Table ?? details the complete set of
operations made available by the SCoT-socket API to end user applications.

4.2. SCoT PDU types and format

The format of a SCoT Packet Data Unit (PDU) is shown in Fig. ??. The
header has a fixed length of 16 bytes. The two initial fields in the header
are the source and destination ports (16 bits each), which identify the end-
points exchanging the PDU. The next field is the Type of PDU (8 bits),
which indicates which PDU is being exchanged. The types of PDUs defined
until now in SCoT are shown in Table ??. Then there is a reserved field for
future extensions of the protocol. The last field of the header is the Length

13

Operation Description

Activate security context Activates a security context at the SCoT layer
of a sender application, signals the activation
to the other end of the SCoT connection.

Retrieve security context Obtains a reference to the active security con-
text. A receiver application can use this refer-
ence to access the fields of the context that are
relevant for content authentication purposes,
such as the name of the content that is be-
ing received and the certificate of the content
provider (if available).

Read bytes Reads data from the stream of bytes corre-
sponding to the content specified by the secu-
rity context. The operation does only retrieve
authenticated data to the calling application.
Notifies any error condition to the receiver ap-
plication (e.g., a credential or a content block
failing the authentication process).

Read immediately Reads any available data from the stream of
bytes corresponding to the content specified
by the security context. The operation may
return not-yet-authenticated data to the call-
ing application. Notifies any error condition
to the receiver application.

Write bytes Transmits a number of bytes, corresponding
to the content determined by the security con-
text, as a stream of data to the other end of
the SCoT connection.

Transmit immediately Solicits the immediate transmission of any
data waiting to be processed in the send buffer
of the SCoT layer of the sender application.

Establish connection Establishes a SCoT connection.
Terminate connection Terminates a established SCoT connection.

Table 1: Operations available to applications in the SCoT-sockets API

14

SCoT PDU Use

CONNECT Connection establishment (see section ??)
CONNECTED Connection establishment (see section ??)
CONTEXT Reports the activation of a security context to the peer

of the SCoT communication (see section ??)
CONTENT Includes a chunk of application data (see section ?? and

section ??)
CREDENTIAL Includes a digital signature authenticating a chunk of

data (see section ?? and section ??)
DISCONNECT Connection release (see section ??)

Table 2: SCoT PDUs

field (64 bits) that is the length in bytes of the SCoT PDU (including the
header). It is needed because SCoT must be able to identify the boundaries
of the exchanged PDUs (a service that TCP does not provide). Note that
the length of SCoT PDUs can be very large, as TCP will segment them if
needed to adapt to potential restrictions due to the MTU.

Source SCoT Port Destination SCoT Port

Type of PDU

Length

Reserved

Payload

0 8 16 31

Figure 3: SCoT PDU format

4.3. Connection management

SCoT is a connection oriented transport protocol. Therefore, applications
that want to communicate using SCoT must first open a SCoT connection

15

and, in the same way, they need to close the connection after using it. In this
section, we are going to describe the management of connections in SCoT.

In an open SCoT connection, the end-point SCoT-sockets are identified by
the source and destination IP addresses, and the source and destination SCoT
ports (similarly to TCP). As mentioned before, SCoT ports are independent
of ports in other protocols and allow the identification of the SCoT-sockets
involved in a SCoT communication. The SCoT PDUs include the source
and destination SCoT ports of the respective connection (see Fig. ??), so the
SCoT layer in the reception side can use this information to associate the
payload of the PDU to the right SCoT connection.

To provide a complete description of connection management in SCoT, we
must also look at how SCoT layers in different end systems exchange SCoT
PDUs. SCoT operates over TCP and requires a well-known or assigned TCP
port. A SCoT layer has a permanent TCP socket waiting for connection
requests in this well-known TCP port. Any SCoT layer, to reach a remote
SCoT layer, uses this port as destination TCP port.

The states of a SCoT connection, in a client and in a server, are shown
in Fig. ??. A server application creates a SCoT-socket to wait for incoming
connection requests. This SCoT-socket will be associated to a local SCoT
port. While the SCoT-socket is waiting for incoming connection requests, it
is only identified by the local SCoT port and we say that the SCoT connection
is in ”Listen” state (it is similar to the ”Listen” state in TCP).

CLOSED

CONNECTION
REQUEST SENT

ESTABLISHED

Send CONNECT

Receive CONNECTED

1. Send DISCONNECT
or

2. Receive DISCONNECT

CLOSED

LISTEN

ESTABLISHED

Server application
creates a listen SCoT socket

Receive CONNECT,
Send CONNECTED

Client application initiates
a SCoT connection

WAIT
CLOSE

1. Receive DISCONNECT
or

2. Send DISCONNECT

1. Send DISCONNECT
or

2. Receive DISCONNECT

WAIT
CLOSE

1. Receive DISCONNECT
or

2. Send DISCONNECT

CLIENT SERVER

Figure 4: Connection states in SCoT

A client application, to communicate with some remote server using

16

SCoT, creates a SCoT-socket indicating the destination IP address and des-
tination SCoT-port. The source SCoT-port can be any one, as the server
will learn it, to be able to reply, from the request. The SCoT layer in the
client machine will create a TCP socket to communicate with the SCoT layer
in the server machine. Once there is a TCP connection between the SCoT
layers in the client and server machines, the SCoT layer in the client sends a
CONNECT PDU to the server. Note that, as we are using TCP, the sending
of SCoT PDUs is reliable and ordered, so no special measures to deal with
losses or out-of-order data are needed. In the server machine, the SCoT layer
identifies the destination SCoT port in the CONNECT PDU. If there is no
application waiting for connections in that port, a DISCONNECT PDU is
sent to the source. If a server application is waiting for connections in that
port, a new SCoT-socket is created for the connection and the connection
moves to ”Established” state in the server. The SCoT layer also sends a
CONNECTED PDU to the client. When the CONNECTED PDU is re-
ceived in the SCoT layer in the client, the respective connection moves from
”Listen” state to ”Established” state, and the client application can start
using the socket to send and receive authenticated data.

Regarding the closing of connections, client and server applications close
their side of a SCoT connection independently. Closing the connection in one
side means that that side has finished sending data, but it still can receive
data (similar to TCP). The SCoT layer sends a DISCONNECT PDU to
inform the other side of the situation. When a SCoT layer has sent and
received the DISCONNECT PDU for a connection, the SCoT connection is
closed and the respective resources can be released.

4.4. Security contexts

In SCoT, the protection to be applied to a given piece of content is de-
fined by a security context, a concept that is fundamental to our protocol,
as security associations and sessions to IPsec and TLS, respectively. A se-
curity context is formally defined as the status data that are required at the
SCoT layer to: (1) identify the content that is to be transmitted; and (2)
to support appropriate authentication procedures for that content both at
sender and receiver endpoints. A sender application must always activate a
security context at the SCoT layer of the sender endpoint before transmit-
ting content towards a receiver. This is notified to the SCoT layer of the
receiver application, enabling the activation of the security context at both
sides of the SCoT connection and guaranteeing a coherent configuration of

17

the authentication procedures. This way, a security context allows protect-
ing a unidirectional stream of data delivered from the sender to the receiver
application (a receiver application will need to activate appropriate security
contexts to protect content transmitted in the reverse direction). Several
security contexts may be activated during the lifetime of a SCoT connection,
to support the delivery of multiple content objects even belonging to different
content providers.

In our solution, similarly to CCN, content is named by its corresponding
provider, who may use any desired namespaces and conventions to support
content-to-name allocations. As an example, a content provider ’provider.com’
could allocate the name ’/provider.com/videos/title0514/H264-2500k’ to a
video content from its catalogue, ’title0514’, compressed with the H.264 video
codec to a bit rate of 2.5 Mb/s. These content names are nevertheless opaque
to the SCoT protocol, being their structure and semantics only meaningful
in the context of provider and consumer applications.

The format of a security context is described in Fig. ??. It includes the
name assigned to the content to be protected and may include a certificate
of the content provider, which serves to identify the pair of public and pri-
vate keys that will be used to generate and verify the digital signatures that
support content authentication. The provider certificate is an optional field,
and may be absent in case that content authentication is not required by a
sender application. The security context also contains a set of additional vari-
ables that enable to parametrize the operation of the protocol (providing the
flexibility to accommodate diverse application requirements), as well as keep
track of the dynamic status values required by transmission and reception
processes. Finally, a security context may include a number of credentials,
which are generated and appended to a context as content is delivered to
interested consumers.

4.5. Delivery of content

As previously commented, SCoT is a connection-oriented protocol that
provides a reliable end-to-end communication service. After the establish-
ment of a SCoT connection between two communicating applications, each
of them can use the SCoT-sockets API to independently activate a secu-
rity context and request the transmission of a byte stream, i.e., the content
identified by the context, to the other end of the SCoT connection.

As data is sent by an application through a SCoT-socket, the SCoT layer
places the data into a send buffer. The protocol breaks data in the send

18

 Security Context

Content name

Provider certificate

Additional variables
(max-block-size, transmission-

status...)

Credentials

Initial sequence number

Content identifier

Signature

Last sequence number

Signature information
(provider ID, signature algorithm...)

Block digest

Figure 5: Structure of a security context and a SCoT credential

buffer into content blocks, which are sequentially processed, being the size
of each block determined by a transport-level Maximum Block Size (MBS).
Figure ?? represents the procedures taking place at the SCoT layer of a
sender application to process a content block. As it can be observed in the
figure, each content block is used to generate a credential, which is delivered
to TCP for transmission as a CREDENTIAL PDU (step 1 in Fig. ??) The
credential will serve to protect the delivery of the content block, which is
transmitted as a CONTENT PDU using TCP (step 2 in Fig. ??). In SCoT,
a credential is always sent prior to its corresponding block of data. This
provides a higher degree of protection, as it guarantees the receiver that the
information needed for subsequent data verification is always available.

The precise structure of a SCoT credential is detailed in Fig. ??. A
credential identifies the content block that is to be protected, using a fixed-
length representation of the name corresponding to the content being trans-
mitted (this name is determined by the security context), along with an
identification of the first and the last byte of the content block within the
byte stream transmitted by application (for this purpose, SCoT maintains
a sequence number that increases by one for each byte received through the
SCoT-socket). The fixed-length representation of the content name (referred
to as content identifier in the figure) is made with a hash function, aiming
at limiting the size of a credential and hence its corresponding transmission
overhead. A credential contains a hash value of the content block (i.e., the
block digest in the figure) and additional supporting information, including

19

Block digest

Send buffer

Hash
function

Signature
generation Signature

Credential

Block
{x, y}

Content
identifier, {x, y} Block digest

Block
{x, y}

Hash
function

Block digest
Verification of
block validity

Signature
verification

Sender endpoint
Receiver endpoint

Block
{0, x}

Byte x

Byte y

byte 0
Content Id, {x, y} ,

sign. info

CREDENTIAL PDUCONTENT PDU

Signature

Credential

Block digest

Content Id, {x, y} ,
sign. info

(1)(2)

(3)

(4)

(4)

M
BS

M
BS

Receive
buffer

Figure 6: Authentication procedures at sender and receiver endpoints

an identification of the content provider and other security-related data that
will be used for authentication purposes. Finally, the credential contains
a digital signature of the previous fields, computed with the private key of
the content provider1 (i.e., the private key corresponding to the certificate
indicated in the security context). This way, a credential provides a signed
declaration from a content provider that a byte range of a given content, as
determined by the content identifier and the initial/last sequence numbers
provided in the credential, correspond to the content block identified by the

1An alternative would be to negotiate a session key and use symmetric cryptography to
authenticate the exchange. This approach would have advantages from the point of view
of computational resources, but it is not valid for SCoT, because a relay with a symmetric
key would be able to use it to generate or modify the content and the respective credentials,
without the approval of the content provider.

20

block digest. The digital signature allows authenticating the credential itself,
avoiding potential attacks consisting of injecting bogus credentials in a SCoT
communication.

As the size of the last content block may be lower than the MBS, SCoT
does not process it immediately. Instead, it keeps it in the buffer until new
data is provided by the application through the SCoT-socket and additional
MBS-byte blocks can be created and processed. To satisfy any application-
specific requirements, the SCoT-sockets API also allows an application to
solicit the immediate transmission of the data stored in the send buffer,
which may result in the transmission of content blocks smaller than MBS
bytes (see Sect. ??).

We want to highlight that the value of the MBS may be dependent on
the application scenario. As an example, a file transfer application may use
relatively large values of the MBS to keep the bandwidth overhead low (due
to credentials and PDU headers), while avoiding an excessive consumption
of network resources due to the complete download of a bogus file. On
the contrary, a video streaming application may require lower values of the
MBS, to play authenticated blocks of video without incurring in excessive
application-layer playout delays. For this reason, our solution allows appli-
cations to specify an appropriate value for the MBS as a parameter of the
security context that is to be activated. Consequently, the MBS used by
SCoT is not related to the maximum segment size (MSS) of TCP nor the
IP MTU, i.e., a content block in SCoT can be spread into several TCP seg-
ments, in case that MBS is larger than the MSS, or a TCP segment may
include data from several content blocks, as in the case of a MBS lower that
the MSS.

Figure ?? also shows the processing of CREDENTIAL and CONTENT
PDUs at the receiver endpoint. Upon receiving a credential, the SCoT layer
of the receiver application authenticates it, verifying its corresponding digital
signature. The verification of the signature is done using the public key of the
content provider, which is contained in the provider certificate stored in the
security context that has been activated prior to data delivery. A successful
signature verification means that the credential has been generated by the
content provider, so the credential is stored in the active security context.
The content block encapsulated in the CONTENT PDU coming right after a
credential is placed, as it is received, into a receive buffer (the content PDU
is received as a byte stream according to the transmission service of TCP).
When the reception of the PDU is completed, the SCoT layer validates the

21

content block in the receive buffer, matching a hash value of the block against
the block digest contained in the credential. If both hash values match, the
authentication of the content block is successful and it can be consumed by
the receiver application.

As indicated in Sect. ??, the receiver application can use the SCoT-sockets
API to read a stream of authenticated data from the receive buffer. Alter-
natively, the application can read data from the receive buffer that has not
yet been authenticated, to satisfy any existing application-level requirements.
In this case, the receiver application can check the information available in
the security context to verify which received data have been authenticated
at the SCoT layer and can therefore be consumed at the application level.
In any case, the reception of a credential or a content block that fails the
SCoT authentication procedures causes the notification of this error situation
to the receiver application, which can then terminate the SCoT connection
and execute any application-layer procedures that might be appropriate (e.g.
notify the end user about the error condition).

4.6. Re-use of existing credentials

In our solution, the SCoT layer of the receiver application verifies the
credentials provided by the sender, appending them to the active security
context in case of a successful validation. This process is executed trans-
parently to the receiver application, which can retrieve a reference to the
active security context at any point in time during the lifetime of the SCoT
connection. This reference can then be used to store a copy of the security
context at the application layer, either in application-specific memory space
or in persistent storage (e.g., as a local file in a hard drive). This will enable
to securely relay the received content to other interested consumers.

When an application receives a request over a SCoT connection to trans-
mit a specific content, which has previously been received by this or another
application running at the same equipment, the relay application retrieves a
copy of the security context from the local storage2 and activates the con-
text at the SCoT layer, using the SCoT-sockets API. The relay application
can then send the solicited content as a stream of bytes through the SCoT-
socket. The data stream is delivered by the SCoT layer to the other end of

2Note that to support the relay of content received by another application at the same
host, the security context must necessarily be kept in a shared storage

22

the connection encapsulated in CONTENT PDUs. It is important to high-
light that the relay application may use any transmission pattern to deliver
the requested content to the SCoT layer. Hence CONTENT PDUs do not
necessarily match the PDUs that were originally transmitted to deliver the
content to the relay equipment. Credentials stored in the security context,
which were originally generated by the SCoT layer of the provider equip-
ment, are sent as CREDENTIAL PDUs. Each credential is sent prior to
the first byte of the data block that was used to issue the credential. This
way, credentials are always available at the receiver for appropriate content
authentication, despite receiving relayed content from an intermediate equip-
ment not belonging to the content provider.

The proposed approach avoids implementing a local storage of security
contexts at the transport layer, as well as complex replacement strategies
that guarantee the availability of a security context to retransmit a specific
content provided by a relay application. Instead, a relay application will-
ing to securely deliver a given content simply needs to maintain a copy of
the security context that contains the transport-layer information required
by SCoT to support its secure distribution (e.g., content identification and
credentials). Analogously, the original sender application, causing the gen-
eration of the credentials, may also store a copy of the security context,
which may be later retrieved and activated to support the secure delivery of
the same content, avoiding the re-generation of credentials and amortizing
computing costs for subsequent requests of the same file.

4.7. Security properties of the protocol

As already discussed, SCoT has been designed to address the authentica-
tion challenges inherent to the application-level mechanisms commonly used
in the Internet to support the efficient and scalable distribution of content,
which typically dissociate of the role of delivering the content from the pub-
lisher of that content (i.e., the content provider). Concretely, SCoT offers a
transport-layer solution that enables the authentication of a received content
independently of any intermediate entities that have been used to relay that
content.

With this purpose, a sender application using SCoT allocates provider-
specific names to content, and the SCoT layer of the sender provides the
cryptographic mechanisms to bind these names to their corresponding con-
tent, relying on SCoT credentials that include a digital signature made with

23

the private key of the content provider, which is never exposed nor dele-
gated to third parties. The SCoT layer of the receiver authenticates the
credentials and the corresponding content as they are received. The re-
ceiver application can then examine the provider-specific name of a received
content, identify it as the expected information, and determine its validity
according to the level of trust established on the entity that has generated
the credentials. As an example, an application receiving a content named
as /provider.com/videos/title0514/H264-2500k, could identify this content as
valid as long as it satisfies SCoT cryptographic verification processes and the
credentials have been generated by ’provider.com’.

Applications using SCoT may be diverse, including not only those that
require the dissemination of static information (e.g., web pages or prerecorded
video), but also applications that distribute dynamically generated content
(e.g., live video). For this reason, SCoT only implements functionalities
that are expected to be common to all the applications of the protocol.
As an example, the design of the protocol intentionally does not support
the verification of the content as a whole (e.g. the verification of an entire
file in a file download application), as this feature is not required in the
case of applications that generate and distribute dynamic information nor in
those where content has to be consumed while it is still being received (e.g.
applications that stream stored video).

Content is exchanged as a byte stream between sender and receiver ap-
plications, being this stream divided by the SCoT layer into blocks of data
that are processed separately. A SCoT credential is always sent in advance to
its corresponding content, and includes an identification of the first and the
last byte of the block of data within the byte stream. This way, the proto-
col can detect anomalous situations, such as the reception of content blocks
with incorrect size (e.g., truncated or extended blocks) or out-of-sequence
blocks (i.e., starting with an incorrect first byte identifier). The protocol can
also detect the insertion of outdated versions of a content block within the
byte stream, providing that communicating applications use specific conven-
tions to distinguish different versions of the same content (e.g., maintaining
a version identifier in content names). In either case, anomalous or error
conditions are notified to the receiver application, which can take any appro-
priate actions to handle the reported issue (e.g., discarding erroneous blocks
of content and continuing with the reception of subsequent pieces of the same
content, or terminating the SCoT connection).

Finally, we want to highlight that SCoT does not authenticate entities

24

that disseminate content (e.g., content providers or intermediate entities act-
ing as content relays). This function is already covered by existing security
protocols and solutions, such as TLS or IPsec, and SCoT has not been de-
signed as a replacement for these solutions. On the contrary, it can work in
coordination with them. As an example, if a given content is requested by an
interested consumer using the HTTP protocol, as in the example considered
in Section ??, and the authentication of the source of the HTTP messages
is required by the receiver application, a feasible alternative to protect the
dissemination of the content could be using SCoT over TLS, this way sup-
porting both the authentication of the received content (provided by SCoT)
and the authentication of the entity that sends the content encapsulated as
HTTP messages (provided by TLS). Additionally, the utilization of TLS in
this example would allow encrypting the transmitted content, guaranteeing
the confidentiality of the content exchange between sender and receiver ap-
plications (an alternative option could be to implement the encryption at the
application layer).

4.8. Considerations about a standalone SCoT transport

In this paper we have considered a SCoT protocol that exchanges PDUs
using the communication service provided by TCP. This simplifies many of
the SCoT procedures, as we can relay on the service provided by TCP. How-
ever, a standalone implementation of SCoT, working directly over IP, is also
possible. A standalone implementation would have potential advantages in
terms of efficiency and flexibility. For example, in a standalone implemen-
tation we could extend SCoT to offer two different services, one reliable
(TCP-like) and one best effort (UDP-like). A specification of a standalone
SCoT protocol is out of the scope of this paper but the aspects that would
need to be addressed are:

1. Reliability: an error control mechanism to detect and retransmit lost
PDUs.

2. Segmentation: Without affecting the concept of MBS (the length of
the block of data that is authenticated), SCoT must avoid, segmenting
PDUs at the SCoT layer if needed, the fragmentation by IP of IP
datagrams that transport SCoT PDUs.

3. Flow control: a mechanism to protect resources in the SCoT receiving
entity.

25

Term Description

SCr
pdu Average size of a CREDENTIAL PDU

SCo
header Average size of the header of a CONTENT PDU

tc Average time required to compute a SCoT credential

tv Average time required to authenticate a SCoT credential

tb Average time required to authenticate a block of received data
using its corresponding credential

MBS Maximum block size of SCoT

Thcong
TCP Maximum average throughput that can be achieved by the SCoT

layer over a TCP connection, as determined by the available net-
work bandwidth

Table 3: Summary of terminology

4. Congestion control: a mechanisms to avoid creating congestion in the
network. In this case, it is important to keep compatibility with the
TCP congestion control mechanism.

5. Validation of the proposal

5.1. Description of SCoT throughput

This section presents a macroscopic description of the throughput that
can be achieved by the SCoT protocol, with the objective of identifying the
parameters that are of particular relevance in the performance provided by
the protocol to SCoT applications. In our analysis, we assume a baseline
scenario where a sender application transmits an arbitrarily large file to a
receiver application using the SCoT protocol. This file is delivered as a stream
of bytes using the underlying TCP connection that is established between the
SCoT layer of the sender and the receiver endpoints. As a reference, table
?? describes the terminology utilized in this section.

As it was commented in Sect. ??, the SCoT layer of the sender application
places the incoming data (the byte stream corresponding to the file) into a
send buffer. The protocol divides these data into blocks of MBS bytes (i.e.,
the maximum block size of SCoT), and processes the content blocks sequen-
tially. Each of these blocks is used to generate a credential, using a digital

26

signature algorithm. The credential and the content block are transmitted
as SCoT PDUs using the underlying TCP connection. More concretely, if we
denote tc as the average time that is needed to compute a credential, then
the SCoT layer of the sender can deliver a CREDENTIAL and a CONTENT
PDU to TCP for transmission with an average period of tc seconds.

Let SCr
pdu be the size of a CREDENTIAL PDU in bytes. We denote SCo

header

as the size in bytes of the header of a CONTENT PDU. Let Thcong
TCP be the

maximum average throughput that can be achieved by the steady-state TCP
connection, as determined by TCP congestion control mechanisms according
to the network bandwidth that is available between the equipment hosting
the sender and receiver applications. With this, the transmission rate offered
to TCP by the SCoT layer of the sender can approximately be expressed as:

Thtx
TCP = min{

SCr
pdu + SCo

header + MBS

tc
, Thcong

TCP} (1)

That is, the transmission rate is given by the value of the MBS and the
time required to process it to generate its corresponding SCoT credential.
In case that this rate exceeds the maximum throughput that can be made
available by the underlying TCP connection, the TCP send buffer gets full
and the SCoT layer necessarily decreases the sending rate to Thcong

TCP .
In our analysis, we assume that the receiver application continuously

reads data as they are available from the receive buffer of the SCoT connec-
tion. In turn, the SCoT layer of the receiver places data in that buffer as they
are made available by TCP, except in those time periods where it executes
the authentication procedures of received credentials and content blocks. In
case that these authentication procedures do not allow to remove data from
the TCP receive buffer at the rate given by equation ??, then the TCP re-
ceive buffer will eventually become full. Consequently, the transmission rate
of the sender will be limited by the rate at which the SCoT layer of the re-
ceiver retrieves data from TCP, according to TCP flow control mechanisms.
This rate can be calculated under the observation that, as the TCP receive
buffer is full, a CREDENTIAL PDU and its corresponding CONTENT PDU
are always available for processing by the SCoT layer of the receiver. There-
fore, SCoT will continuously be reading PDUs from TCP and executing the
corresponding authentication procedures.

We denote tv as the average time that is needed to authenticate a SCoT
credential, and tb as the average time required to authenticate its correspond-
ing block of data (i.e., the time delay to compute a hash value of the received

27

block and match this value against the block digest contained in its corre-
sponding credential). The maximum average rate at which SCoT can retrieve
data from TCP can then be expressed as:

Thrx
TCP =

SCr
pdu + SCo

header + MBS

tv + tb
(2)

Considering equations ?? and ??, the maximum average TCP throughput
that can be achieved by the SCoT layer of the sender can be expressed as:

ThTCP = min{Thtx
TCP , Th

rx
TCP} (3)

From equation ??, and considering that the receiver application can only
retrieve a content block of MBS bytes for each CONTENT PDU received at
the SCoT layer, the average throughput that can be achieved by the SCoT
connection, when credentials have to be generated, can roughly be expressed
as:

ThSCoT =
MBS

SCr
pdu + SCo

header + MBS
· ThTCP

= min{MBS

tc
,

MBS

SCr
pdu + SCo

header + MBS
· Thcong

TCP ,
MBS

tv + tb
}

(4)

Let us now consider a scenario where an intermediate entity, which has
received the file using the SCoT protocol, relays it to an interested consumer.
For simplicity, we assume that the sender application at the relay provides
the stream of bytes corresponding to the file to the SCoT layer, using the
same value of MBS that was configured by the original sender application.
With these considerations, the SCoT layer at the relay will break the incom-
ing byte stream into blocks of MBS bytes. For each of these blocks, it will use
the underlying TCP connection to transmit a CREDENTIAL PDU, encapsu-
lating the credential that was originally generated by the sender application
in the provider equipment, along with a CONTENT PDU, containing the
actual content block validated by the credential.

As the generation of credentials is not needed in this case, and under the
assumption that the received application retrieves data from the SCoT layer
as they are available, the average TCP throughput that can be achieved by
SCoT is given by the minimum value between Thcong

TCP and Thrx
TCP . Anal-

ogously to the previous case, given that the SCoT layer places a content

28

block of MBS bytes in the receive buffer of the SCoT connection for each
received CONTENT PDU, the average throughput that can be achieved by
the receiver application, when credentials are re-used, can be approximated
as:

Th′
SCoT =

MBS

SCr
pdu + SCo

header + MBS
·min{Thcong

TCP , Th
rx
TCP}

= min{ MBS

SCr
pdu + SCo

header + MBS
· Thcong

TCP ,
MBS

tb + tv
}

(5)

5.2. Prototype implementation

To validate the proposed solution, we developed a software prototype of
the SCoT protocol. This prototype was implemented in Java 1.8 and includes
two main components, the SCoT-sockets API and the SCoT daemon. The
design of the SCoT prototype is schematized in Fig. ??.

The SCoT-sockets API has been developed as a Java package, and pro-
vides the implementation of the different operations described in Table ??.
The API allows programming end-user Java applications that support the
protected distribution of information through the SCoT protocol, using socket
abstractions similar to those used in TCP. Additionally, it supports the op-
erations related with the creation and authentication of SCoT credentials.
Digital signatures are generated and verified using the RSA algorithm (cryp-
tographic operations are supported in our prototype with the utilization of
the Java Cryptography Architecture3). Every instance of the SCoT sock-
ets API communicates with the local SCoT daemon using an internal TCP
connection, for the purposes of initiating, accepting and terminating SCoT
connections, as well as exchanging CONTEXT, CREDENTIAL and CON-
TENT PDUs. The internal dispatcher is the component of the SCoT daemon
in charge of (1) handling the establishment and termination of internal TCP
connections between different instances of the SCoT-sockets API and the
SCoT daemon; and (2) maintaining the external TCP connections that are
needed to support the exchange of SCoT PDUs with remote endpoints. The
external server is the component of the SCoT daemon that handles incoming

3Java Cryptography Architecture (JCA) Reference Guide:
https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html

29

Applications

Iternal Listenig
Points

External Listenig
Points

External portsInternal ports

ILP

App 1

SCoT API
Internal

dispatcher

Security
context

ELP

ELPELPILP

ELPELPApp

ELPELPELP

Internal TCP
connection

External
server

External TCP
connection

Accepting TCP connections

Tr
an

sp
or

t l
ay

er
A

pp
lic

at
io

n
la

ye
r

SCoT

TCP

To
 re

m
ot

e
en

dp
oi

nt

Fr
om

 re
m

ot
e

en
dp

oi
nt

SCoT
daemon

Figure 7: Overview of the prototype SCoT implementation

TCP connections from remote peers. Both the internal dispatcher and the
external server are executed by the SCoT daemon as Java Threads.

The establishment of a SCoT connection results in the instantiation of a
pair of internal listening point and external listening point at each peer of the
connection. The internal listening point handles the reception of SCoT PDUs
and other relevant information from the SCoT sockets API involved in the
connection, and uses the external TCP connection to forward protocol PDUs
towards the communication peer. The external listening point is in charge
of receiving SCoT PDUs from the remote peer of the SCoT connection, and
forwarding them to the appropriate SCoT-sockets API as specified by the
destination ScoT port of each PDU header.

5.3. Practical evaluation

To validate out macroscopic analysis of the SCoT throughput, as well
as to illustrate the performance that can be achieved by the protocol in a

30

practical deployment, we have carried out a set of experiments using our
prototype implementation.

We implemented a file sharing service based on the HTTP protocol. The
service includes a client application, which can request the delivery of a file
stored in a remote equipment, issuing an HTTP GET request that specifies
the URL of the file. A simple HTTP server at the remote equipment processes
the HTTP request and encapsulates the requested file in an HTTP response
that is sent back to the soliciting client. The client application and the
HTTP server have been implemented using the SCoT-sockets API, which
allows the distribution of the HTTP content and the requested file using
the SCoT protocol, according to the diagram of Fig. ??. Both software
components were deployed in two off-the-shelf computers (CPU Intel Core2
Quad Processor 2.66 GHz and 4 GB memory) interconnected by a 100 Mb/s
Ethernet switch.

In our experiments, we used the client application to retrieve a file of
300 MB from the HTTP server, using the following values for the SCoT
Maximum Block Size (MBS): 500 B, 1 KB, 5 KB, 10 KB, 50 KB, 100 KB,
500 KB and 1 MB. In a first stage, the HTTP server was configured to
activate a new security context for every solicited file, causing the generation
and the transmission of SCoT credentials to the client application for each
file downloaded. For each value of MBS, we carried out 30 executions of
the client application to download the file from the HTTP server. With
these executions, we measured the following variables for each value of the
MBS: (1) the average throughput provided by the SCoT protocol to the
client application; and (2) the average time required to compute a SCoT
credential, i.e., tc; (3) the average delay to authenticate a SCoT credential,
tv; and (4) the average delay to authenticate a block of received data using
its corresponding credential, tb.

In a second stage, we configured the HTTP server to store a copy of
every new security context as a local file in the hard drive. This way, after
processing the first request for a given file, the generated security context
can be retrieved and activated to serve subsequent requests of the same
file, hence avoiding the cost corresponding to the re-generation of SCoT
credentials, as these are already included in the stored security context. With
this configuration, for each considered value of the MBS, we carried out 30
executions of the client application to download the 300 MB file from the
HTTP server. Each set of 30 executions was preceded by an initial request
to download the file, causing the creation and storage of the security context

31

Variable Value

SCr
pdu 221 B

SCo
header 13 B

Thcong
TCP 93.7 Mb/s

Table 4: Values for the theoretical calculation of the SCoT throughput

to be later re-utilized in the following executions with the same MBS. With
the 30 executions of the client application, we measured, for each value of the
MBS, the average throughput provided by SCoT to the client application,
along with the values of tv and tb.

Figure ?? represents the average throughput provided by SCoT to the
client application for each value of MBS, considering the case where the SCoT
layer at the server is required to generate new SCoT credentials for each file
request (first stage of the experiments), as well as the case where security
contexts are stored and credentials are re-used for successive downloads of
the same file (second stage of the experiments). In order to validate the
macroscopic analysis of the SCoT performance, the graph also illustrates the
maximum average throughput that can be achieved with the utilization of
our protocol, given by equations ?? and ??. For the theoretical calculation
of the values given by these equations, we used the average values of tc, tv
and tb measured in our experiments for each value of MBS. The values of
the other variables needed for the calculation, which are independent of the
MBS, are presented in Table ??4.

Focusing on the case where SCoT credentials are generated for each new
file download request arriving at the HTTP server (first stage of the exper-
iments), the figure shows that for values of MBS up to 10 KB, the SCoT
throughput is mainly limited by the time required to compute a SCoT cre-
dential, i.e., tc, increasing with the value of MBS. For values of MBS greater
or equal to 50 KB, the transmission rate offered by the HTTP server to the
SCoT layer increases to the point where the SCoT throughput gets limited

4The values of SCr
pdu and SCo

header were obtained from our prototype implementation.

The value of Thcong
TCP was estimated running the iPerf tool (https://iperf.fr) between the

server and the client endpoints.

32

100B 1KB 10KB 100KB 1MB
0

20

40

60

80

100

MBS

T
h
S
C
oT

(M
b
/s
)

Thcong
TCP

Generation (theoretical)

Generation of credentials

Re-use (theoretical)

Re-use of credentials

Figure 8: Experimental and theoretical SCoT throughput

by the maximum average TCP throughput given by Thcong
TCP . The resulting

SCoT throughput is a proportion of the TCP throughput, due to the over-
head of the SCoT CONTENT headers and the CREDENTIAL PDUs (as
given by the second argument of the min function of equation ??.)

In case that SCoT credentials are re-used (second stage of the experi-
ments), we can observe in the figure that, for values of MBS up to 1 KB,
the SCoT throughput is limited by the maximum average rate at which the
SCoT layer of the client application can retrieve data from TCP (this rate
given by equation ??). Higher values of the MBS allow increasing the SCoT
throughput to the point of being limited by a proportion of the maximum av-
erage TCP throughput given by Thcong

TCP , as determined by the first argument
of the min function of equation ??.

While decreasing the value of MBS augments the granularity of content
authentication and enables the prompt detection of bogus content, our exper-
iments indicate that this comes at a cost of increased overhead, as it increases
the number of CREDENTIAL PDUs and CONTENT headers that need to

33

be transmitted. Moreover, for low values of MBS, the SCoT throughput may
be limited by the time delays needed to execute cryptographic operations re-
lated to the generation and verification of SCoT credentials. However, we
want to emphasize that, even using moderately low values of MBS, SCoT
may provide appropriate performance metrics for the transmission and relay
of content. As an example, considering our experiments with an MBS value
of 50 KB, the protocol operates with a very limited overhead (the relation
between MBS and SCr

pdu +SCo
header +MBS is approximately 99.5%), achieving

an average throughput comparable to TCP.
For both stages of experimentation, practical results corroborate the the-

oretical values of throughput that can be achieved by SCoT, validating the
correctness of the macroscopic analysis previously presented. With this ob-
servation, we used the results of our analysis to gain a better understanding
on the performance of a steady-state SCoT connection under different val-
ues of available network bandwidth. For this purpose, we considered the
following values of Thcong

TCP (i.e., the average throughput that can be achieved
by TCP between the sender and the receiver endpoints): 1 Mb/s, 10 Mb/s,
100 Mb/s and 1 Gb/s. For each of these values, we calculated the aver-
age throughput that can be provided by SCoT to a receiver application as
the value of the MBS increases5. Figure ?? represents the obtained results,
considering the case where SCoT generates a SCoT credential for each data
block of MBS bytes. On the other hand, Fig. ?? covers the case where the
sender re-uses existing credentials to protect the transmission of each content
block. For the sake of clarity, the graphs shown in both figures are normal-
ized, representing the relation between the throughput that can be provided
by SCoT and the average TCP throughput (Thcong

TCP).
Focusing on the case where credentials are generated (Figure ??), for

moderately low values of the average TCP throughput (1 Mb/s), the SCoT
throughput is a proportion of Thcong

TCP , as given by the second term of equa-
tion ??. The reason for this is that the generation of SCoT credentials allows
providing a transmission rate to TCP higher than the average throughput
that can be made available by the underlying TCP connection. Therefore,
the transmission rate is limited to Thcong

TCP at the TCP layer, and the SCoT

5For each considered value of the MBS, the values of tc, tv and tb needed for the
calculations were obtained from our previous experimental results (the values of these
variables only depend on the MBS and on the performance characteristics of the end-user
hardware platforms).

34

100B 1KB 10KB 100KB 1MB
0

0.2

0.4

0.6

0.8

1

MBS

R
at
io

b
et
w
ee
n
T
h
S
C
oT

an
d
T
h
co
n
g

T
C
P

Generation of credentials

Thcong
TCP = 1 Mbps

Thcong
TCP = 10 Mbps

Thcong
TCP = 100 Mbps

Thcong
TCP = 1 Gbps

Figure 9: Effect of the available bandwidth on the SCoT throughput (credentials are
generated)

throughput is given by the proportion of application-layer data that is trans-
ported over the TCP connection (e.g., approximately 68% of Thcong

TCP , in case
that Thcong

TCP = 1 Mb/s and MBS = 500B). When the average TCP through-
put increases to 10 Mb/s, the SCoT throughput for low values of MBS (500B
and 1000B) is limited by the time delay required to compute a SCoT creden-
tial (tc), being determined by the first term of equation ??; for higher values
of MBS (above 5 KB), the transmission rate allowed by the generation of cre-
dentials exceeds the maximum TCP throughput, hence the SCoT throughput
is given by the corresponding proportion of Thcong

TCP . As the maximum av-
erage TCP throughput increases, the value of MBS that allows maximizing
the SCoT throughput, and obtaining similar performance to TCP, also in-
creases. However, we want to highlight that even in case of high available
bandwidth, the MBS that allows maximizing the SCoT throughput typically
remains below reasonable limits (e.g., 1 MB for Thcong

TCP = 1 Gb/s). This
allows providing similar performance to TCP with a reasonable consumption

35

100B 1KB 10KB 100KB 1MB
0

0.2

0.4

0.6

0.8

1

MBS

R
at
io

b
et
w
ee
n
T
h
S
C
oT

an
d
T
h
co
n
g

T
C
P

Re-use of credentials

Thcong
TCP = 1 Mbps

Thcong
TCP = 10 Mbps

Thcong
TCP = 100 Mbps

Thcong
TCP = 1 Gbps

Figure 10: Effect of the available bandwidth on the SCoT throughput (credentials are
re-used)

of memory resources and without adding significant processing delay both at
the sender and the receiver endpoints.

In case where credentials are re-used, CREDENTIAL and CONTENT
PDUs are sent to the receiver endpoint at the maximum throughput that
can be made available by the TCP layer. Therefore, the SCoT throughput
will be in principle given by a proportion of the average TCP throughput,
as determined by the first term of equation ?? (this is observed for values of
Thcong

TCP of 1 Mb/s and 10 M/s). However, as the maximum TCP through-
put increases with the available bandwidth, the frequency of cryptographic
operations, needed to verify SCoT credentials and content blocks, also in-
creases. This may limit the rate at which the SCoT layer reads data from
the TCP receive buffer, consequently reducing the transmission rate of TCP
and the throughput offered by SCoT to the receiver application, which will
then be given by the second term of equation ?? (this can be seen for values
of Thcong

TCP of 100 Mb/s and 1 Gb/s). Analogously to the case where SCoT

36

credentials are generated, we want to emphasize that even for very large val-
ues of Thcong

TCP , the MBS that allows maximizing the SCoT throughput can
be utilized with an affordable cost in terms of memory resources (e.g., 1 MB
for Thcong

TCP = 1 Gb/s) and processing delay.
With respect to the size of a security context, which is a parameter of

interest in our solution (contexts need to be stored at the application layer
to support the re-use of SCoT credentials), its value is determined by the
number of SCoT credentials stored in the context. This number can be
calculated as the ratio between the size of the downloaded file and the value
of the MBS (a SCoT credential is generated for every MBS bytes block of
the file). As a credential presents a fixed size (221 B) in our prototype
implementation, the size of a security context practically decreases inversely
proportional to the MBS, being almost negligible with respect to the file size
for values of MBS above 50 KB. This is shown in Fig. ??.

100B 1KB 10KB 100KB 1MB
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

MBS

R
at
io

b
et
w
ee
n
S
ec
u
ri
ty

C
on
te
xt

an
d
F
il
e
S
iz
e

Figure 11: Size of a security context with respect to the size of the transferred file

37

6. Use case scenarios

This section presents several use case scenarios where SCoT can be ap-
plied, showing the advantages of using our proposal compared with the soft-
ware tools used nowadays in such services.

6.1. Content Delivery Networks

Figure ?? shows the general architecture of a Content Delivery Network
(CDN). Content providers, who own the content to be distributed (e.g. live
or prerecorded video, multimedia content linked in social networks, etc.),
select a CDN provider to distribute their content to end-users (clients). The
main objective of content providers using a CDN is to increase the quality of
experience perceived by their clients, pushing their content to replica servers
near those end-users. CDNs are also useful to handle attacks, like denial of
service (DoS).

Content providers move their content from their origin servers to the CDN
Replica servers (backend communication). The CDN may distribute the
delegated content to other replica servers, which are located near the clients,
following a push approach. It is also possible to use a pull approach, where
the content is transferred from origin to replica servers as a consequence of a
client request. The proper behavior depends on the algorithms used by the
Content Manager to distribute content among replica servers.

When a client requests a particular content delegated by the content
provider to a CDN provider (frontend communication), the Redirector of the
CDN replies back to the client with information about the proper replica
server storing the solicited content. The Redirector selects the best replica
server based on content availability, replica servers load, proximity between
replica servers and clients, etc.

In a traditional web service not using CDN providers, clients directly ac-
cess origin servers. The transmission of the content only involves these two
entities, so it is feasible to use protocols like the Hypertext Transfer Protocol
Secure (HTTPS) to protect the transfer. HTTPS works on top of the Trans-
port Layer Security (TLS) protocol, which is an end-to-end protocol used to
establish encrypted tunnels between clients and origin servers. In the TLS
handshake, clients and servers negotiate different parameters to establish
such tunnels and, although it is not mandatory, the client should verify the
identity of the server. Usually, the server sends its identification in the form

38

of a digital certificate, containing the server name, the Certificate Author-
ity (CA) who has signed the certificate and the server’s public encryption
key. With this digital certificate, clients may validate the authenticity of the
server, and may use the public encryption key of the server to negotiate the
symmetric key, which will be used in the data transfer stage.

However, when a CDN is placed in the middle between clients and content
providers, HTTPS does not provide all required security levels. As shown
in Fig. ??, in CDN deployments clients establish connections with replica
servers provided by the CDN provider, and not with origin servers. In this
scenario, several issues arise. Depending on how redirection is implemented
by the CDN provider and content provider, the client may detect a name mis-
match between the content provider’s certificate and the replica server. For
example, if the content provider replaces all existing URLs (URL rewriting)
to the URLs used by the CDN provider, clients will use the CDN provider’s
certificate to establish TLS connections with the appropriate replica server.
It is worth noting that the end user will notice a change in the accessed
domain, which could create doubts about the authenticity of the content.
On the other hand, URL rewriting requires content modifications, increasing
the time required to publish content and reducing the flexibility to change
CDN provider easily. This is the reason why the most used techniques for
redirection are based on DNS resolution, where DNS servers redirect content
provider names to CDN provider servers. Clients are not aware of this redi-
rection, so this mechanism ends in a name mismatch at the client side when
establishing the TLS connection.

In a CDN scenario, SCoT provides the mechanisms to authenticate the
exchanged content to all parties involved in the deployed service. When con-
tent providers move content to the CDN provider (backend communication)
using a SCoT connection, the origin server computes the corresponding cre-
dentials associated to the transferred content. In the content delivery stage
(see ??), the SCoT layer at the origin server transmits blocks of content and
credentials associated to those blocks. The CDN replica server (see Fig. ??)
uses the received credentials to authenticate each block of content. When the
whole content is received, and all blocks are authenticated, the CDN server
stores both the content and its associated credentials. These credentials can
be later re-utilized to authenticate the dissemination of content from the
replica server to interested clients, and may be later removed when purging
content from the CDN. This behavior is extremely important, because the
CDN provider just needs to verify the authenticity of the content using the

39

CDN provider

Distribution
network

Access
network

ClientsClientsClientsClients Replica
servers

Origin
server

Content
ManagerRedirector

Control information

Content management

CDN monitoring

Content provider

Figure 12: CDN architecture

(public) certificate provided by the content provider. With SCoT, it is the
content provider (the origin server) the entity that generates all the creden-
tials associated to the distributed content, so the private key is not disclosed
to other entities.

We want to highlight that SCoT naturally supports the utilization of
a pull approach by the CDN provider, where a replica server downloads
content from the origin server as a consequence of a client request. In this
case, although a solicited content and its credentials may not be available at
the replica server upon receiving a request for that content over the SCoT
connection maintained with the client, the server can use the SCoT protocol
to retrieve the solicited content from the origin server. As content starts to be
received through the SCoT connection established with the origin server, the
replica server can obtain a reference to the security context activated by the
origin server, and then use this reference to activate the same security context
in the SCoT connection maintained with the client. This way, credentials
received from the origin server will immediately be available to protect the
relay of the content from the replica server to the client.

40

6.2. Software/Firmware/Plugins installation and upgrades

When users require a new service in their smart phones, tablets, com-
puters or servers, they have a large amount of platforms to search for and
install new software, firmware or plugins (for their web browsers, for ex-
ample). The process of installing and updating software is critical, so the
validity and integrity of the downloaded content have to be assured. Several
security models are used to distribute software, like in ??, where intermedi-
ate servers may cache the distributed content. In such scenarios, SCoT is
a valid and viable solution to avoid vulnerabilities in software installation
and upgrades without human intervention, which is the main drawback of
the current mechanisms. As an additional advantage of SCoT in this type
of applications, we want to mention that the protocol provides the mecha-
nisms to authenticate the downloaded content while it is received, avoiding
the consumption of resources (e.g., bandwidth, terminal battery, etc.) due to
the transmission of subsequent parts of a corrupted or bogus content upon
the unsuccessful authentication of one of its constituent blocks.

6.3. Internet of Things

In Internet of Things (IoT) communications, the vast majority of data
generated by motes or small devices is produced to be consumed and pro-
cessed by other devices or applications. Proposed IoT architectures use in-
termediate elements to process the information flow between IoT devices and
applications (?), such as gateways, edge computing elements, data storages
and data abstraction facilities. Additionally, users of the IoT platforms may
collaborate and exchange data. Taking this into account, SCoT could be con-
sidered as a enabling protocol in IoT, to support the protected dissemination
of information across the different elements of an IoT deployment.

6.4. Virtual Machines

In services like Cloud and NFV (Network Function Virtualization) phys-
ical infrastructures are shared among several users or tenants, mainly using
the concept of virtual containers, where resources are isolated to prevent
conflicts among those users. To efficiently control the available physical re-
sources, an orchestrator decides where to deploy a given virtual container,
as requested by an upper layer (i.e., the user of this service). Usually, the
customer uploads a virtual container image to the service provider reposi-
tory. After the proper server providing the necessary resources for the virtual

41

container is identified, the orchestrator copies the corresponding virtual con-
tainer image from its repository to the selected host. In such large transfers,
the block-by-block validation of the virtual container image and its support-
ing information is key before proceeding to start it at the server, to avoid
potential security risks. The SCoT protocol can be used as an enabler to
support the protected exchange of information in these virtual container en-
vironments.

In other services like Vagrant6, LXD7 or Docker8, where there exists a
virtual container repository where users upload and download their own vir-
tual containers, the SCoT protocol can guarantee the authenticity of the
exchanged images.

7. Conclusion

In this paper, we present a solution that allows content providers to
protect the dissemination of information through third-party application-
level infrastructures, such as content delivery networks or mirror sites. As
a transport-layer protocol, SCoT may be utilized to deliver any application
data to interested consumers, independently of the application-layer proto-
cols used to request and serve the information (e.g., HTTP), being crypto-
graphic operations executed transparently to application-layer entities. Our
protocol offers a connection-oriented service and operates over TCP, which
allows guaranteeing reliability and ordered delivery of information. A theo-
retical analysis, and the experiments done with an experimental prototype
of the solution, show that SCoT may achieve performance results compara-
ble to TCP, with an expected decrease on performance as the granularity
of content authentication increases, due to the overhead introduced by the
transmission of protocol-specific information and the larger number of cryp-
tographic operations. Our future work will focus on developing SCoT as a
standalone protocol, capable of operating directly over the IP layer, as well
as on extensions to provide UDP-like transmission services to end-user ap-
plications. We will closely follow the work on ICN, and particularly on its
innovative security solutions, to explore and evaluate synergies with the evo-
lution of SCoT. In addition, we will study the application of the protocol to

6https://www.vagrantup.com/
7https://linuxcontainers.org/lxd
8https://www.docker.com/

42

specific use cases, particularly to aid secure content dissemination in IoT and
Network Function Virtualization environments.

Acknowledgment

This article has been partially supported by the European H2020 5Gin-
FIRE project (grant agreement 732497), and by the DRONEXT project
(TEC2014-54335-C4-2-R) funded by the Spanish Ministry of Economy and
Competitiveness. The work of Ignacio Soto has partially been supported
by the Spanish Texeo project (TEC2016-80339-R) funded by the Spanish
Ministry of Economy and Competitiveness.

References

Barnes, R., Iyengar, S., Sullivan, N., Rescorla, E., October 2017. Delegated
credentials for tls. Tech. rep., IETF.
URL https://tools.ietf.org/html/draft-ietf-tls-subcerts-00

Bellissimo, A., Burgess, J., Fu, K., 2006. Secure software updates: Disap-
pointments and new challenges. In: Workshop on Hot Topics in Security.
USENIX, pp. 37–43.

Bittau, A., Boneh, D., Giffin, D., Hamburg, M., Handley, M., Mazieres,
D., Slack, Q., Smith, E., October 2016. Cryptographic protection of tcp
streams (tcpcrypt), expires may 4, 2017. Tech. rep., IETF.
URL https://datatracker.ietf.org/doc/

draft-ietf-tcpinc-tcpcrypt

Cairns, K., Mattsson, J., Skog, R., Migault, D., October 2015. Session key
interface (ski) for tls and dtls. Tech. rep., IETF.
URL https://tools.ietf.org/html/draft-cairns-tls-session-key-interface-01

Cisco Systems, 2014. The internet of things reference model. Tech. rep., Cisco
Systems.

Dierks, T., Rescorla, E., Aug. 2008. The Transport Layer Security (TLS)
Protocol Version 1.2. RFC 5246 (Proposed Standard), updated by RFCs
5746, 5878, 6176, 7465, 7507, 7568, 7627, 7685, 7905, 7919.
URL http://www.ietf.org/rfc/rfc5246.txt

43

https://tools.ietf.org/html/draft-ietf-tls-subcerts-00
https://datatracker.ietf.org/doc/draft-ietf-tcpinc-tcpcrypt
https://datatracker.ietf.org/doc/draft-ietf-tcpinc-tcpcrypt
https://tools.ietf.org/html/draft-cairns-tls-session-key-interface-01
http://www.ietf.org/rfc/rfc5246.txt

Erb, S., Salz, R., May 2016. A pfs-preserving protocol for lurk. Tech. rep.,
IETF.
URL https://tools.ietf.org/html/draft-erb-lurk-rsalg-01

Freier, A., Karlton, P., Kocher, P., Aug. 2011. The Secure Sockets Layer
(SSL) Protocol Version 3.0. RFC 6101 (Historic).
URL http://www.ietf.org/rfc/rfc6101.txt

Gkantsidis, C., Karagiannis, T., VojnoviC, M., 2006. Planet scale software
updates. In: Conference on Applications, Technologies, Architectures, and
Protocols forComputer Communications. ACM, pp. 423–434.

Hallam-Baker, P., April 2016. Limited use of remote keys, protocol and ref-
erence. Tech. rep., IETF.
URL https://tools.ietf.org/html/draft-hallambaker-lurk-02

Jacobson, V., Smetters, D. K., Thornton, J. D., Plass, M. F., Briggs, N. H.,
Braynard, R. L., 2009. Networking named content. In: Proceedings of the
5th International Conference on Emerging Networking Experiments and
Technologies. CoNEXT ’09. ACM, New York, NY, USA, pp. 1–12.
URL http://doi.acm.org/10.1145/1658939.1658941

Kent, S., Seo, K., Dec. 2005. Security Architecture for the Internet Protocol.
RFC 4301 (Proposed Standard), updated by RFCs 6040, 7619.
URL http://www.ietf.org/rfc/rfc4301.txt

Liang, J., Jiang, J., Duan, H., Li, K., Wan, T., Wu, J., 2014. When https
meets cdn: A case of authentication in delegated service. In: Security and
privacy (sp), 2014 IEEE symposium on. IEEE, pp. 67–82.

Stebila, D., Sullivan, N., Aug 2015. An analysis of tls handshake proxying.
In: 2015 IEEE Trustcom/BigDataSE/ISPA. Vol. 1. pp. 279–286.

Thomson, M., Eriksson, G., Holmberg, C., October 2016a. An architecture
for secure content delegation using http. Tech. rep., IETF.
URL https://tools.ietf.org/html/draft-thomson-http-scd-02

Thomson, M., Eriksson, G., Holmberg, C., October 2016b. Caching secure
http content using blind caches. Tech. rep., IETF.
URL https://www.ietf.org/id/draft-thomson-http-bc-01.txt

44

https://tools.ietf.org/html/draft-erb-lurk-rsalg-01
http://www.ietf.org/rfc/rfc6101.txt
https://tools.ietf.org/html/draft-hallambaker-lurk-02
http://doi.acm.org/10.1145/1658939.1658941
http://www.ietf.org/rfc/rfc4301.txt
https://tools.ietf.org/html/draft-thomson-http-scd-02
https://www.ietf.org/id/draft-thomson-http-bc-01.txt

Xylomenos, G., Ververidis, C. N., Siris, V. A., Fotiou, N., Tsilopoulos, C.,
Vasilakos, X., Katsaros, K. V., Polyzos, G. C., Second 2014. A survey of
information-centric networking research. IEEE Communications Surveys
Tutorials 16 (2), 1024–1049.

45

	portadilla_postprint_Elsevier
	JNCA_2018_Vidal.pdf

