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Abstract

The advent of big data analytics and cloud computing technologies has resulted in wide-spread research on the data placement

problem. Since data-intensive services require access to multiple datasets within each transaction, traditional schemes of uniformly

partitioning the data into distributed nodes, as employed by many popular data stores like HDFS or Cassandra, may cause network

congestion thereby affecting system throughput. In this article, we propose a scalable and unified framework for data-intensive

service data placement into geographically distributed clouds. The proposed framework introduces a new paradigm for partitioning

a set of data-items into geo-distributed clouds using Spectral Clustering on Hypergraphs, and is therefore called SpeCH.

Scaling spectral methods to large workloads is challenging, since computing the spectra of the hypergraph laplacian is a com-

putationally intensive task. SpeCH provides two solutions to tackle this problem: (1) an algorithm, called SpectralApprox, that

leverages randomized techniques for obtaining low-rank approximations of the hypergraph matrix with bounded guarantees, thereby

significantly improving the efficiency of spectral clustering while also providing high quality solutions in practice; (2) an algorithm,

called SpectralDist, that exploits the highly parallel nature of the spectral clustering algorithm and uses Apache Spark to speed-up

the process while retaining the same quality guarantees as the exact algorithm. Additionally, being distributed in nature, Spec-

tralDist enables SpeCH to perform data placement on workloads that require resources beyond the capacity of a single machine.

Experiments on a real-world trace-based online social network dataset show that the SpeCH is effective, efficient, and scalable.

Empirically, SpectralApprox is comparable in efficacy on the evaluated metrics, while being up to 10 times faster in execution time

when compared to state-of-the-art techniques. On the other hand, though SpectralApprox is 7-8 times faster when compared to

SpectralDist, in terms of efficacy on the evaluated metrics the latter is up to 50% better.
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1. Introduction

With the emergence of Cloud computing, Big Data, and In-
ternet of Things (IoT), the rate at which data is being generated

is increasing at an exponential rate (insideBIGDATA Edito-

rial Team, 2017). For instance, the amount of data managed by

Internet giants like Google and Facebook is of the order of thou-
sands of petabytes (Schultz, 2017). Although the advancements

in modern hardware, big data, and cloud computing technolo-

gies have enabled development of several distributed systems

that have significantly enriched the field of scalable data man-

agement, effective strategies for data partitioning and place-

ment are cardinal to the performance of such systems. Popu-

lar distributed data processing systems such as Hadoop (White,

2012) and, more recently, Apache Spark (Zaharia et al., 2016)

distribute data uniformly across servers and perform parallel
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computations on the constructed small subsets of data on each

server independently (Golab et al., 2014; Atrey et al., 2018).

While uniform data partitioning schemes using hashing work

well for MapReduce style workloads that can be easily paral-

lelized, they are not suitable for data-intensive workloads that

require access to multiple datasets within each transaction (Yu

and Pan, 2015; Golab et al., 2014; Zhao et al., 2016b; Shabeera

et al., 2017; Zhao et al., 2016a). In these scenarios uniform

partitioning may result in a huge volume of data migrations

thereby leading to network congestion and eventually reduced

system throughput, especially in the case of geographically dis-

tributed data-centers where inter-datacenter communication la-

tencies and costs are relatively high. Thus, there is a need

for specialized data placement strategies for data-intensive ser-
vices.

1.1. Use Case: Location Based OSN Service
Data-intensive services are becoming increasingly common

in a plethora of real-world scenarios, namely – online social
networks (OSNs), content distribution networks (CDNs) etc.

The use case under investigation is a location-based OSN ser-

vice as portrayed in Fig 1. A sample Facebook social network
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Figure 1: Use Case: A location-based online social network service.

is represented using a graph where each vertex corresponds

to a user and undirected edges between two vertices represent

friendship. In this network, users {v1,v5} are friends of the user

v4. Similarly {v6,v1} are friends of v7. The list of all the friends

of every user is also portrayed in a table in Fig. 1. There exists

a notion of a data-item corresponding to each user of the social

network, which represents the most recent snapshot (ex: profile

picture, post etc.) of her profile. Additionally, each user can

register a check-in, which is denoted by her user-id assigned to

a data-center nearest (in geographical distance) to her check-in

location. In Fig. 1, the user v1 has registered two check-ins, at

data-centers located in Virginia and Tokyo respectively, while

user v2 has checked-in at Frankfurt. Moreover, each user check-

in requires retrieval of the data from their friends, constituting

a data-request pattern triggered by this check-in. For example,

while registering a check-in in Sydney the user v5 may want to

tag/mention some of her friends. This would require the data-

items corresponding to her friends {v1,v4} to be available at the

Sydney data-center, thereby triggering a data request for trans-

ferring data-items corresponding to {v1,v4} to Sydney.

Motivated by the use-case discussed above, the problem

of scalable data placement for data-intensive services in data-

centers that are distributed geographically across the world

is the topic of research tackled in this article. This problem

presents multiple challenges that are listed below:

1. Data-intensive geo-distributed cloud services operate at a

massive scale. For instance, OSNs (ex: Facebook, Twit-

ter) and CDNs (ex: YouTube, Netflix) contain billions of

users and videos respectively. Thus, designing effective data

placement strategies capable of scaling gracefully to large

workloads remains an important challenge.

2. Additionally, the ubiquity of cloud computing and increased

reliance of people across the globe on online services like

OSNs and CDNs, requires data to be stored in data-centers

that are geographically distributed. For instance, in the case

of CDN services like YouTube the hosted content is stored in

data-centers located around the world. It is highly likely that

the set of content retrieved by a user query may be stored in

different data-centers across the globe. Similar is the case

for OSNs as well.

3. Since the users of OSN services like Facebook may register

check-ins at various locations across the world, not only the

data-items but also the source locations of data requests are

geographically distributed.

While data placement has been studied extensively (Golab

et al., 2014; Yuan et al., 2010; Ebrahimi et al., 2015; Jiao et al.,

2014) (detailed literature review present in Sec. 2), literature on

geo-distributed data-intensive services is relatively scarce (Yu

and Pan, 2017). Any successful solution to this problem should

provide two capabilities, namely – capturing and improving (1)

data-item – data-item associations (i.e., the number of times

two data-items were requested together); and (2) data-item –

data-center associations (i.e., the number of times a data-item

was requested at a given data-center). State-of-the-art methods

proposed in (Nishtala et al., 2013) and (Agarwal et al., 2010)

are capable of improving data-item – data-item, and data-item

– data-center associations respectively, however, these methods

cannot jointly handle both aspects. To jointly incorporate both

aspects, (Yu and Pan, 2015, 2017) recently proposed a multi-

objective data placement algorithm using hypergraphs. Hyper-

graphs offer a powerful representation by presenting a natural

way of capturing multi-way relationships. Similar to graph par-

titioning however, hypergraph partitioning is NP-Hard. To this

end, the authors use heuristic partitioning algorithms available

in a publicly available tool – PaToH (Catalyurek, 2011), to ef-

ficiently partition large hypergraphs. Further, in our previous

work (Atrey et al., 2018), we proposed a data placement strat-

egy using spectral clustering on hypergraphs, which was made

efficient by performing eigen decomposition using low rank ap-

proximations of the hypergraph matrix.

Despite several interesting proposals to address the data

placement problem for data-intensive services, they cannot be

considered scalable in true sense. Specifically, the state-of-the-

art methods proposed by Yu et al. (Yu and Pan, 2017) and Atrey

et al. (Atrey et al., 2018), employ heuristics and approximate

methods respectively to tackle the scalability challenge while

maintaining good empirical efficacy and efficiency. However,

the use of distributed algorithms and recent big data frame-

works has not been explored in this field. The importance of

distribution stems from the fact that workloads of today sel-

dom fit into the memory of a single machine. To bridge this

gap, in this article, we propose a unified framework, SpeCH, to

scalably solve the problem of data placement for data-intensive

services in geo-distributed clouds. Under the SpeCH frame-

work, we propose two algorithms, namely – SpectralApprox
and SpectralDist. The former uses fast approximate eigen de-

composition methods with bounded quality guarantees thereby

being up to 10 times more efficient when compared to the

state-of-the-art, while the latter leverages in-memory distribu-

tion offered by Apache Spark to address the scalability chal-

lenge while portraying high empirical efficacy by being up to

50% better on the evaluated metrics. In sum, SpeCH facilitates

achieving a better efficacy-efficiency trade-off. Key contribu-

tions of this work are as follows:

• We study the data placement problem in a challenging

and close to real-world setting of data-intensive services
in geo-distributed data-centers (Sec. 3), where traditional
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methods of hash based partitioning that are prominent in

systems like Hadoop and Spark do not perform well.

• We propose a novel framework, SpeCH, which offers two

scalable algorithms (SpectralApprox and SpectralDist)

to solve the data placement problem for geo-distributed

data-intensive services through Spectral Clustering on
Hypergraphs (Secs. 4 and 5). While SpectralApprox

provides good quality approximations and superior ef-

ficiency running on a single machine, SpectralDist por-

trays superior quality and the capability to scale to very

large workloads that cannot fit in a single machine.

• Through experiments on a real-world trace-based social

network dataset (Secs. 6 and 7), we show that the pro-

posed spectral clustering algorithms are scalable and ef-

fective.

2. Related Work

The data placement problem has been studied extensively

in the literature spanning a wide-variety of research areas, both

from the perspective of execution environments: ranging from

distributed systems (Chervenak et al., 2007; Golab et al., 2014)

to cloud computing environments (Li et al., 2018; Ferdaus et al.,

2017; Yu et al., 2012; Guo and Wang, 2013); application ar-

eas: scientific workflows (Yuan et al., 2010; Ebrahimi et al.,

2015; Liu and Datta, 2011), online social network services (Jiao

et al., 2014; Han et al., 2017), location aware data placement for

geo-distributed cloud services (Yu and Pan, 2017; Zhang et al.,

2016; Yu and Pan, 2015, 2016; Agarwal et al., 2010), and many

more. Here, we provide an overview of the existing research

that overlaps with the work presented in this article.

Research on data placement in geo-distributed clouds has

increasingly gained popularity over the years. Owing to multi-

ple challenges as discussed in Sec. 1, specialized solutions have

been devised to solve this problem. The biggest challenge for

data placement algorithms in such scenarios is that data mi-

grations from one location to another are significantly more ex-

pensive when compared to other real-world scenarios like grids,

clusters, or private clouds, which are typically more geograph-

ically confined when compared to the spread of public cloud

data-centers.

Agarwal et al. proposed a system Volley (Agarwal et al.,

2010), to perform automatic data placement in geographically

distributed data-centers. The proposed system possesses the ca-

pability to capture data-item – data-center associations, how-

ever, it lacked the capability for handling data-item – data-item

associations. Rochman et al. (Rochman et al., 2013) design ro-

bust data placement algorithms to ensure that a large fraction of

region specific requests are served at a lower cost, while man-

aging the highly dynamic nature of user requests. In (Huguenin

et al., 2012), a user generated content (UGC) dataset (with more

than 650000 YouTube videos) is used to show the correlation

between the content locality and geographic locality, thereby

highlighting the importance of data-item – data-center associ-

ations. Zhang et al. (Zhang et al., 2016) propose an integer

programming based data placement algorithm capable of mini-

mizing the data communication cost while honoring the storage

capacity of geo-distributed data-centers as well.

Researchers have also focused on different aspects of geo-

distributed data placement, such as placement in multi-clouds

and the design of specialized replication strategies. Jiao et

al. (Jiao et al., 2014) formulate a multi-objective social net-

work aware optimization problem that performs data placement

by building a model framework, which takes multiple objec-

tives like minimizing the carbon footprint, inter-cloud traffic

etc. into consideration. Further, Han et al. (Han et al., 2017)

introduce an adaptive data placement algorithm for social net-

work services in a multicloud environment, which adapts to the

changing data traffic for performing intelligent data migration

decisions. Kayaaslan et al. proposed a document replication

framework (Kayaaslan et al., 2013) to deal with the scalability

issues, where, documents are replicated on data-centers based

on region specific user interests. Shankarnarayanan et al. pro-

pose replication strategies (Shankaranarayanan et al., 2014) for

a class of cloud storage systems denoted as quorum-based sys-

tems (viz. Cassandra, Dynamo) capable of solving the data

placement problem cognizant of various location-aware metrics

like location of geo-distributed data-centers, inter-datacenter

communication costs etc.

Of late, literature has seen an increased use of (hyper)graph-

based techniques for data placement. Saha et al. prove that

the data placement problem can be reduced to the well known

graph partitioning problem and propose an integer linear pro-

gramming solution (Golab et al., 2014). The authors also pro-

pose two heuristics to reduce the data communication cost for

data-intensive scientific workflows and join-intensive queries in

distributed systems. In (Quamar et al., 2013), the authors study

the problem of Online Transaction Processing (OLTP) work-

loads in cloud computing environments, and propose a scalable

workload aware data partitioning and data placement approach

called SWORD to reduce the partitioning overhead. SWORD

utilizes a two phase approach: in the first phase a workload is

modeled as a hypergraph which is further compressed by using

hash partitioning. Later the compressed hypergraph is parti-

tioned to retrieve the placement output. Hypergraph based par-

titioning solutions (Catalyurek et al., 2007) have also been used

in grid and distributed computing environments previously.

Having said that, the current state-of-the-art for data

placement in geo-distributed clouds is also comprised of

(hyper)graph-based techniques. Yu et al. (Yu and Pan, 2015,

2016, 2017) propose data placement strategies using hyper-

graph modeling and publicly available partitioning heuris-

tics (Catalyurek, 2011) for data-intensive services. While

hypergraph-based modeling facilitates capturing of both data-

item – data-item and data-item – data-center associations,

the hypergraph partitioning heuristics available in (Catalyurek,

2011) facilitate these techniques to scale to large datasets. Re-

cently, Atrey et al. (Atrey et al., 2018) presented a spectral clus-

tering algorithm (which has been comprehensively extended as

a unified framework SpeCH in this article) that employed the

use of low-rank approximations of the hypergraph laplacian

to obtain superior efficiency and scalability while retaining the
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Table 1: Summary of notations used.
Item Definition

V The set of users in the social network V = {v1,v2, . . . ,vn}.

E The set of edges in the social network ∀e = (vx,vy) ∈ E.

Adj(v) The set of friends of the user v | v ∈V .

D The set of data-items D = {d(v1),d(v2), . . . ,d(vn)}.

L The set of data-centers and their locations L = {L1,L2, . . . ,Ll}.

R The set of request patterns R = {R1,R2, . . . ,Rr}.

C The set of user check-ins C = {Ck = (Ri,L j) | ∃Ri ∈ R ,L j ∈ L}.

Π The hypergraph incidence matrix.

WΠ The hyperedge weight matrix.

Φ The desired data-center storage distribution.

P (D) A partition on the set of data-items D .

Γ(L j) Cost (per unit) of outgoing traffic from data-center L j.

κ(L j,L j′ ) Inter data-center latency (directed) between L j and L j′ .

S (L j) Storage cost (per unit) of data-center L j.

N (Ri) Average number of data-centers accessed by request Ri.

same efficacy as portrayed by (Yu and Pan, 2017).

Despite wide-spread research for data placement in geo-

distributed clouds, to the best of our knowledge, none of the ex-

isting state-of-the-art methods are capable of gracefully scaling

to large datasets while retaining high quality/efficacy. Specifi-

cally, as discussed in Sec. 1 the existing works either incorpo-

rate the use of heuristics (Yu and Pan, 2017) or approximations

(Atrey et al., 2018) to achieve high efficiency and scalability

while compromising on placement efficacy. To this end, the re-

search presented in this article proposes a unified framework

– SpeCH, capable of scalably performing data placement of

data-intensive services into geographically distributed clouds,

through a novel paradigm of data partitioning using Spectral

Clustering on Hypergraphs. Specifically, SpeCH exposes two

algorithms: SpectralApprox, which uses fast approximate eigen

decomposition methods with bounded quality guarantees to

achieve speed-up of up to 10 times over the state-of-the-art;

and SpectralDist, which leverages in-memory distribution to

address the scalability challenge while portraying high empir-

ical efficacy by being up to 50% better on the evaluated met-

rics. In other words, SpeCH, along with its two algorithms

SpectralApprox and SpectralDist, provides a holistic and uni-

fied solution to the data placement problem for data-intensive

services.

3. Problem Statement

In this section, we first introduce some basic concepts of

data placement, which is followed by a formal description of

the data placement problem for data-intensive services in geo-

distributed data-centers. Table 1 summarizes the notations used

in the rest of the article.

Definition 1 (Data-items (D).). A data-item is defined as an
atomic unit of data storage and transfer in the context of data
placement. D denotes the set of data-items, where |D| = n.

Definition 2 (Data-centers (L).). A data-center constitutes a
set of resources to store the data-items and perform different
computational tasks on the stored data-items. Each data-center
is hosted at a location L j and is denoted using the set L , where
|L | = l.

Given a scientific workflow management system, the work-

flow components may be considered as data-items while the

computing and data-storage resources could be considered as

data-centers. Similarly, for relational database management

systems, database tables can be considered as data-items and

the database server as a data-center.

Usually for large scale systems, the data-items are dis-

tributed across data-centers and might require migrations from

one data-center to another for enabling various tasks to exe-

cute properly. More specifically, two database tables that are

required to be joined for completing a specific task might be

stored on two different data-centers, and thus, either table needs

to be migrated to ensure proper task execution. The data-items

that are potential candidates for migrations constitute a data-

request, which is formally defined as follows.

Definition 3 (Data-request Patterns (R ).). A data-request pat-
tern R ∈ R is comprised of a set of data-items D ⊆ D that are
required to be present together in a single data-center L j for a
given task to be executed. The data-items (di ∈ D) that are not
stored in L j are communicated from the data-centers in which
they are stored to L j. The set of data-request patterns denoted
as R represent the system workload.

Given a set of data-items D , a set of data-centers L , and

a set of data-request patterns R , the objective of the classical

data placement problem is to intelligently place the data-items

across data-centers so as to minimize the overall communica-

tion cost resulting from migration1 of data-items corresponding

to different data-requests.

Since our focus is on data placement of data-intensive ser-

vices, which is being studied in this article in the context of

location based OSN services, we next describe concepts spe-

cific to OSN services and their relation to the problem studied

in this article.

A location based online social network (Fig. 1) possesses

two aspects: (1) a social network connecting users with their

friends, and (2) a capability for the users to register check-ins at

potentially different locations across the globe.

Definition 4 (Social Network. (G(V,E))). A social network
with n individuals and m social ties can be denoted as a graph
G(V,E), where V is the set of nodes representing the users of the
social network, |V | = n, and E is the set of edges (representing
friend relationships) between any two nodes, E ⊆V ×V , |E| =
m.

The set D contains n data-items corresponding to each user

v ∈V of the social network, where the data-item for a user v is

denoted as d(v).

Moving ahead, a check-in depicts a social network user vis-

iting any location in the world. Each user check-in is com-

posed of two parts: (1) a data-request pattern, and (2) a loca-

tion. As discussed in Sec. 1, the data-request corresponding to a

1Migration of data-items may involve additional overheads such as data-

item retrieval delays, packet loss etc. For the sake of brevity, the focus of

this article is on minimizing the communication cost alone, however, both the

SpeCH framework and its associated data-placement algorithms are generic,

and not restricted in their scope based on this assumption.
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Figure 2: Mapping of different requests to geo-distributed data-centers.

user check-in requires retrieval of the data-items of her friends.

Thus, for a check-in by a user v the data-request pattern is rep-

resented as R(v) = {d(u) | u ∈ Adj(v)}. Moreover, the location

of a user check-in is decided as the data-center location closest

(in distance) to the actual physical location of the user check-

in. Given this information, a check-in is formally defined as

follows:

Definition 5 (Check-ins. (C )). A check-in is a tuple Ck =

(R(v),L j) ∈ C consisting a data-request pattern R(v) ∈ R trig-
gered by v and a location L j ∈ L of a data-center capable of
serving user requests.

In other words, the check-in Ck by a user v at a location L j
signifies a request for the data-items contained in R(v) triggered

from the data-center located at L j. Note that a user can register

multiple check-ins at the same location, and to better capture

data-item – data-item and data-item – data-center associations,

each such check-in is treated as different from the other. For

example, two data-items d(v2) and d(v3) that are requested to-

gether seven times possess a stronger data-item – data-item as-

sociation when compared to data-items d(v1) and d(v2) that

co-exist in data-request patterns just twice. Similarly, the data-

items in the data-request pattern of a user v5 who visited Sydney

five times possess a stronger data-item – data-center associa-

tion with Sydney when compared to that of Frankfurt, which

the user visited only once. To capture this, for each check-in

by the user v5 at Sydney there would be 5 different check-ins

denoted as C1, . . . ,C5, each composed of the data-request pat-

tern R(v5) and the location L4 =Sydney. Moreover, this also

substantiates the reason behind not indexing each user check-in

uniquely using data-request patterns R and locations L j.

Building upon the example portrayed in Fig. 1 (Sec. 1),

Fig. 2 showcases the data-request patterns corresponding to

the check-ins registered by users v1,v2, and v3. Let us de-

note the data-request patterns as R(v1),R(v2), and R(v3) respec-

tively, where R(v1) = {d(v2),d(v3),d(v4),d(v5),d(v6),d(v7)},

R(v2) = {d(v1),d(v3)}, and R(v3) = {d(v1),d(v2)}. Let us

also label the data-center locations as L1 = Virginia,L2 =

Cali f ornia,L3 = Frank f urt,L4 = Sydney, and L5 = Tokyo. Re-

call that the user v1 registered two check-ins: one in Virginia

and the other in Tokyo. Similarly, v2 registered a check-in

in Frankfurt, while v3 checked-in in Tokyo. Thus, in total

there are four check-ins: two (C1 and C2) for the user v1,

and one each (C3 and C4 respectively) for users v2 and v3,

where C1 = (R(v1),L1), C2 = (R(v1),L5), C3 = (R(v2),L3), and

C4 = (R(v3),L5).

Having defined the basic concepts and their notations, we

formally define the problem as:

Problem 1. Given a set of n data-items D corresponding to the
set of social network users V , ρ user check-ins Ck = (R(v),L j) ∈
C | v ∈ V,L j ∈ L representing the system workload, each com-
prising a data-request pattern R(v) being originated from a
data-center located at L j, a set of l data-centers with loca-
tions in L , with the per unit cost of outgoing traffic from each
data-center Γ(L j) | L j ∈ L , the per unit storage cost of each
data-center S (L j) | L j ∈ L , the inter data-center latency (di-
rected) for each pair of data-centers κ(L j,L j′ ) | L j,L j′ ∈ L ,
and the average number of data-centers accessed by the data-
items requested in each request pattern R(v) being N (R(v)),
perform data placement to minimize the optimization objective
O, which is defined as the weighted average of Γ(·),κ(·, ·),S (·),
and N (·).

4. SpeCH Framework

In this section, we present the SpeCH framework and pro-

vide a description of its core components. In this article,

our previous work on data placement using spectral cluster-

ing (Atrey et al., 2018), which leveraged low-rank approxima-

tions (SpectralApprox) of the hypergraph laplacian to scale to

large matrices, has been comprehensively extended as a scal-

able framework called SpeCH. In addition to the SpectralAp-

prox algorithm, we incorporate the use of in-memory distri-

bution offered by Spark to propose SpectralDist, which en-

ables SpeCH to scalably perform data placement on large work-

loads, thereby also facilitating improvement in the efficiency-

efficacy trade-off. We also provide insights about the way in

which SpeCH facilitates development of effective data place-

ment strategies. Fig. 3 portrays an architectural overview of the

SpeCH framework. The building blocks of this framework are

detailed next.

• Hypergraph Construction (Construct Hypergraph): uses

the check-in history to construct a binary hypergraph inci-

dence matrix, which captures the existence of different types

of associations between data-items and data-centers. Two

data-items that are requested together in a user check-in re-

sult in data-item – data-item association, while a data-item

being requested at a data-center location based on a user

check-in results in data-item – data-center association.

• Hyperedge Weighting (Calculate Hyperedge Weights):
uses the check-in history and data-center characteristics to

assign weights to the different hyperedges constructed in the

previous step. The weights facilitate capturing of the extent

of the associations between data-items and data-centers as

well as appropriately managing the contribution of each hy-

peredge in accordance with the considered optimization ob-

jective.

5



Figure 3: Overview of the SpeCH Framework.

• Hypergraph Laplacian (Construct Hypergraph Lapla-
cian): is required for performing different analytical oper-

ations on the hypergraphs. Among multiple other applica-

tions(Wikipedia, 2018), it helps construct low dimensional

embeddings, which find use in a variety of machine learning

applications such as spectral clustering. The mathematical

details of this step are provided in Sec. 5.

• Eigen Decomposition: is performed to identify the spectra:

the eigen-values and eigen-vectors of the hypergraph lapla-

cian constructed in the previous step. The eigen-vectors cor-

responding to the β smallest eigen-values encode important

properties of the hypergraph similarity/affinity matrix, which

are useful in spectral clustering. Eigen decomposition can

be performed using one of the following tools/frameworks:

Octave, Numpy (Python), or MLLib (Apache Spark).

• K-means clustering: allows for partitioning the data-items

into k data-centers. The eigen-vectors corresponding to the

β smallest eigen-values are clustered into k groups, thereby

resulting in data placement of the data-items into geograph-

ically distributed data-centers. Performing k-means cluster-

ing on the eigen-vectors (spectra) of the hypergraph laplacian

identified in the previous step is attributed as spectral clus-

tering. K-means clustering can be performed using one of

the following tools/frameworks: sk-learn (Python), or ML-

Lib (Apache Spark).

4.1. Hypergraph Modeling

As discussed in Sec. 1, hypergraphs provide the ideal repre-

sentation to solve the data placement problem in geo-distributed

data-centers owing to their capability of capturing multi-way

relationships, thereby facilitating modeling of data-item – data-

item and data-item – data-center associations (Atrey et al.,

2018; Yu and Pan, 2017).

A hypergraph H (VH ,EH ) is a more sophisticated graph con-

struct and a generalization over a graph G(V,E), where (hy-

per)edges are capable of capturing relationships between sev-

eral vertices as opposed to just a pair of vertices in graphs. This

ability of hyperedges to capture higher order relationships be-

tween data points facilitates the hypergraph model to manage

both data-item – data-item and data-item – data-center associa-

tions.

In the context of our problem statement, every user check-

in Ck ∈ C consists of a data-center location L j ∈ L and a data-

request pattern R(v) ∈ R . Note that for a check-in by a user v,

R(v) is a set of data-items corresponding to all the friends of v,

i.e. Adj(v), as portrayed by the social network G(V,E). Since a

data-request pattern involves data-items corresponding to mul-

tiple vertices of G(V,E), hyperedges provide a better way to

model data-item – data-item associations by linking/connecting

multiple data-items via the same hyperedge. Additionally, hy-

peredges also facilitate modeling of data-item – data-center as-

sociations by connecting a data-item with a data-center location

when a data-item d(vi) is requested from a data-center location

L j.

The hypergraph vertex set VH comprises of all the data-

items D and the data-center locations L . Thus, the number

of vertices in the hypergraph are |VH | = n′ = n+ l. Formally,

VH =D ∪L (1)

Let RL = {Rd(vi), j | ∃Ck = (R(v),L j) ∈ C ,d(vi) ∈ R(v),L j ∈
L} denote the set of edges connecting data-items with data-

center locations corresponding to all the data-request patterns

R(v) ∈ R triggered by user check-ins Ck ∈ C at data-center lo-

cations L j ∈ L . The hypergraph edge set EH consists of hy-

peredges corresponding to all the data-request patterns R and

all the data-item – data-center location edges RL . Since the the

number of data-items and distinct locations are n and l respec-

tively, the number of data-item – data-center location edges are

at most n.l. Thus, the number of hyperedges in the hypergraph

are |EH | = m′ =| R | +n.l. Formally,

EH = R ∪RL (2)

Fig. 4a portrays the hypergraph representation of the data-

items and request patterns as presented in Fig. 2. The data-items

{d(v1), . . . ,d(v7)} and the data-center locations {L1,L3,L5}
constitute the hypergraph vertex set. The hyperedges cor-

responding to the data-request patterns {R1,R2,R3} are la-

beled as he1,he2,he3 respectively and are denoted using a

dashed ellipse, while the hyperedges connecting each data-

item – data-center location pair are labeled as he4, . . . ,he17.

Since v2,v3,v4,v5,v6,v7 are friends of v1, the data-items

d(v2), . . . ,d(v7) belonging to the request pattern R1 are con-

nected by the hyperedge he1. Similarly, since v7 is a friend

of v1, who registered two check-ins: one at Virginia (L1) and

the other at Tokyo (L5), the hyperedge he4 = (d(v7),L1) and

he10 = (d(v7),L5) represents the relationship between the data-

item d(v7) and the data-center locations where it was requested,

namely – Virginia (L1) and Tokyo (L5). Fig. 4b portrays the in-

cidence matrix Π corresponding to the hypergraph H presented

in Fig. 4a. As can be seen, the rows of this matrix are the vertex

set of the hypergraph, while the columns are the hyperedges.

Moreover, if a vertex participates in a hyperedge then the row

corresponding to it contains a 1 in the column corresponding to

that hyperedge, and 0 otherwise. Since the hyperedge he1 (cor-

responding to the data-request pattern R1) connects the data-

6



(a) Hypergraph Representation (b) Hypergraph Incidence Matrix

Figure 4: Modeling the data-request patterns triggered by user check-ins as a Hypergraph.

items d(v2), . . . ,d(v7) the entries in Π corresponding to them

are filled with 1 while all other entries are 0.

4.1.1. Calculating Hyperedge Weights
Having constructed the hypergraph H (VH ,EH ) and dis-

cussed its representation using a hypergraph incidence matrix

Π, we next discuss ways to assign weights to hyperedges. There

are two major types of hyperedges constructed in the repre-

sentation discussed above: (1) data-request pattern hyperedges,

and (2) Data-item – data-center hyperedges, and both of them

capture different properties required by a data placement algo-

rithm in geo-distributed data-centers. The weight of a data-

request pattern hyperedge WR is set using the request rate of

that pattern, which is defined as the number of times a data-

request pattern is triggered by a user check-in. The weight

WR facilitates prioritization of data-items that are usually re-

quested together, to be placed together by the data placement

algorithm, thereby helping optimize (minimize) N (R(v)): the

average number of data-centers accessed by a data-request pat-

tern R(v). On the other hand, the weights (W κ
RL

,W S
RL

,W ΓRL
) cor-

responding to data-item – data-center hyperedges (RL ) facili-

tate minimization of inter data-center latency κ(L j,L j′ ), stor-

age cost S (L j), and cost of outgoing traffic Γ(L j) respectively,

by giving priority to placing data-items at data-center locations

from where they have been requested more frequently.

The resultant hyperedge weight matrix WΠ of Π is a diag-

onal matrix of size m′ ×m′, which is defined as the weighted

sum of WR , W κ
RL

, W S
RL

, and W ΓRL
. Mathematically,

WΠ =W · (WR ,W κ
RL

,W S
RL

,W ΓRL
). (3)

where,W is the weight vector for deciding the priorities of the

previously discussed hyperedge weighting strategies. The ef-

fect of different values of W on the data placement output is

analyzed in detail in Sec. 7.

4.2. Spectral Clustering
Spectral methods have been shown to be promising in a

plethora of machine learning research areas: image segmen-

tation (Shi and Malik, 2000; Meila and Shi, 2001), data clus-

tering (Ng et al., 2001), web search (Gibson et al., 1998), and

information retrieval (Deerwester et al., 1990). The power of

these algorithms is that they possess both sound mathematical

properties and strong empirical prowess. They are named spec-

tral algorithms as they use the information manifested within

the spectra (both eigen-values and eigen-vectors) of a similar-

ity/affinity matrix. More fundamentally, for a graph G repre-

sented using a similarity matrix containing node-node similar-

ities, these methods use the spectra of the graph laplacian to

understand the intrinsic data properties like structure, connec-

tivity etc. Interestingly, the laplacian for hypergraph was de-

rived in (Zhou et al., 2006), where it is shown to be analogous

to the simple graph laplacian. This result facilitates application

of spectral methods on hypergraphs.

Having discussed about the importance of spectral methods,

we next describe the steps to perform spectral clustering on hy-

pergraphs. The first step in spectral clustering on hypergraphs is

to construct the hypergraph laplacian matrix LH . The next step

is to perform eigen-decomposition of the hypergraph laplacian

matrix LH , in order to identify its spectra: the eigen-values and

eigen-vectors. The last step involves performing k-means clus-

tering on the eigen-vectors U of the hypergraph laplacian ma-

trix LH . The three step process: (1) Hypergraph Laplacian con-

struction, (2) Eigen decomposition of the hypergraph laplacian,

and (3) k-means clustering on the eigen-vectors, with added

extensions and modifications constitutes the proposed scalable

spectral clustering algorithm.

5. Data Placement Algorithms

To effectively solve the data placement problem, we pro-

pose a technique as outlined in Algorithm 1. Given the set of

data items D , and the set of user check-ins C comprising the

set of data-request patterns R and their locations L , we first

construct a hypergraph (line 1). With the hypergraph incidence

matrix Π constructed, next, we partition the set of data-items

D into l parts corresponding to the L data-centers according to

the desired storage distribution Φ, using the proposed scalable

spectral clustering algorithms (line 2).

Note that hypergraph construction was discussed in detail

in Sec. 4.1. In this section, we provide a detailed and formal
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Algorithm 1 Data Placement Algorithm

Input: D , C , R , L , G(V,E), Φ

Output: Partitioning of the set of data-items P (D) into l data-centers

1: (Π,WΠ ) ← ConstructHypergraph(D,C ,G(V,E))

2: P (D) ← SpectralClustering(Π,WΠ , l,Φ)

3: return P (D)

description of spectral clustering, which is followed by a de-

scription of both the proposed algorithms – SpectralApprox and

SpectralDist.
As stated in Sec. 4, the first step in spectral clustering is to

construct the hypergraph laplacian matrix LH , which is mathe-

matically defined as follows.

The output of the hypergraph construction step is a n′ ×m′
dimensional hypergraph incidence matrix Π and a m′ ×m′ di-

mensional diagonal hyperedge weight matrix WΠ . As dis-

cussed previously in Sec. 4.1, the hypergraph incidence ma-

trix Π possesses m′ hyperedges, where each hyperedge is a n′-
dimensional binary vector, which is formally defined as:

Π = [he1,he2, . . . ,hem′ ]. (4)

∀i ∈ m′,hei = [he1,i,he2,i, . . . ,hen′,i]. (5)

An entry he j,i = 1 indicates that the jth vertex in the hypergraph

vertex set is participating in the ith hyperedge, while he j,i = 0

indicates otherwise.

Further, the hyperedge weight matrix is defined as:

WΠ = diag([W1,W2, . . . ,Wm′ ]) (6)

where, diag(·) denotes a diagonal matrix and W1, . . . ,Wm′ are

calculated as described in Eq. 3.

Constructing the hypergraph laplacian LH requires two ad-

ditional operations on the hypergraph incidence matrix Π. We

compute two diagonal matrices – the vertex degree matrix

(DvΠ) and the hyperedge degree matrix (DheΠ) of dimension-

ality n′ ×n′ and m′ ×m′ respectively. The vertex degree matrix

captures the number of hyperedges each vertex of the hyper-

graph is a part of, while the hyperedge degree matrix measures

the number of vertices contained in each hyperedge. Mathe-

matically,

DvΠ = diag(∑Π). (7)

DheΠ = diag(∑ΠT ). (8)

where, ∑X represents the row-wise sum of the input matrix X
and XT represents the transpose of the matrix X .

Note that similar to the graph laplacian (Ng et al., 2001;

Wikipedia, 2018), the hypergraph laplacian was defined in

(Zhou et al., 2006). With this, the hypergraph laplacian LH is

mathematically defined as:

LH = I − (D−1/2
vΠ ·Π ·WΠ ·D−1

heΠ ·ΠT ·D−1/2
vΠ ) (9)

where, I is a n′ ×n′ identity matrix, Dv is a n′ ×n′ diagonal ver-

tex degree matrix, Dhe is a m′ ×m′ diagonal hyperedge degree

matrix, and WΠ is a m′ ×m′ diagonal hyperedge weight matrix.

Thus, LH becomes a n′ ×n′ matrix.

The next step is to perform eigen-decomposition of the hy-

pergraph laplacian matrix LH , in order to identify its spectra:

the eigen-values and eigen-vectors. The eigen-decomposition

of LH is written as:

LH =UΛV (10)

where,

U = [u1, . . . ,un′ ]. (11)

Λ = diag(λ1, . . . ,λn′ ). (12)

U is a n′ ×n′ matrix and Λ is a diagonal n′ ×n′ matrix formed

by the eigen-vectors and eigen-values of LH respectively. Since

LH is a square symmetric matrix, V =UT . The eigen-vectors

U and eigen-values Λ collectively define the spectra for the hy-

pergraph laplacian LH .

As discussed in Sec. 1, despite their strong theoretical and

mathematical properties, spectral methods are usually not scal-

able. This is mainly due to the complex operation of perform-

ing a full eigen decomposition of a large matrix, which is cubic

O(n′3) in the dimensionality of LH in the worst case. To this

end, we employ the use of two different paradigms of algo-

rithms: (1) approximation (SpectralApprox) and (2) distributed

(SpectralDist), for scaling-up this operation to large matrices.

Note that it is shown in the literature that it is not required to

use all the eigen-vectors (Zhou et al., 2006) and thus, in practice

one may work with just a small fraction of n′. To this end, in

this article we work with a partial decomposition of LH , thereby

restricting the eigen decomposition to just calculate the β small-

est eigen vectors of LH .

5.1. SpectralApprox
Alg. 2 presents the pseudo-code for SpectralApprox, the

proposed approximate spectral clustering algorithm. As de-

scribed previously, the first step is to compute the hypergraph

laplacian LH of the hypergraph incidence matrix Π (lines 1–

2). To improve the efficiency of the eigen decomposition step

for large matrices, we divide the computation into two phases:

(1) identifying a small orthonormal matrix Z such that LH ≈
ZZT LH (line 3), and (2) use Z to compute the eigen decompo-

sition of LH (lines 4–6).

We employ the use of random sampling methods to identify

Z (Halko et al., 2011). Specifically, for finding the β smallest

eigen-values of the n′ × n′ hypergraph laplacian matrix LH we

randomly sample a n′ ×2β gaussian matrix Ω. Using a power-

iteration exponent p and Ω, we construct a matrix X , which is

defined as:

X = (LHLH
T )

p
LHΩ (13)

Using X we identify Z as an orthonormal matrix satisfying

X ≈ ZZT X . Once we have identified a sufficiently small Z,

performing eigen decomposition becomes a simple and efficient

task. Given Z, we construct Y = ZT LH , and obtain the eigen

decomposition of Y as:

Y = ŨΛV (14)
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Algorithm 2 SpectralApprox Algorithm

Input: Π, WΠ , l, Φ

Output: Partitioning of the hypergraph vertex set P (VH ) into l clus-

ters

1: Dv(Π) ← diag(∑Π); Dhe(Π) ← diag(∑ΠT )

2: Compute hypergraph laplacian LH as described in Eq. 9

3: Identify a small orthonormal matrix Z satisfying LH ≈ ZZT LH
4: Obtain Y ← ZT LH
5: Perform eigen decomposition of Y : Y → ŨΛV
6: U ← ZŨ
7: Partition U into l clusters using k-means: P (VH ) ←

KMeans(U, l,Φ)

8: return P (VH )

Finally, the β smallest eigen values λ1, . . . ,λβ and the corre-

sponding eigen vectors U of LH are computed as U = ZŨ .

While the traditional eigen decomposition algorithm would re-

quire O(n′2β) time to compute the β smallest eigen values and

vectors, the time complexity of the randomized approach is

O(β2n′), which is significantly faster when compared to the for-

mer. As will be explained later in Sec. 7, the randomized ap-

proach facilitates SpectralApprox to achieve superior efficiency

and scalability, without any noticeable loss in the efficacy.

After identifying U , we perform k-means clustering to par-

tition it into l clusters, as we know the number of data-center

locations a priori, which is l = |L |. This operation partitions

the vertex set VH of the hypergraph, and consequently the data-

items D , into l different sets, thereby forming P (VH ) (P (D)),

which is used as the placement decision recommended by the

proposed data placement algorithm.

5.2. SpectralDist
Alg. 3 presents the pseudo-code for the distributed spec-

tral clustering algorithm – SpectralDist. While SpectralApprox

scales-up eigen decomposition elegantly to large matrices, it

requires that the hypergraph incidence matrix Π and the hyper-

graph laplacian LH fit into memory, thereby rendering Spec-

tralApprox impractical for big data applications. SpectralDist

is capable of handling such cases by distributing the data and

performing each matrix operation on a small sub-partition of

the data rather than working with the complete data at one go.

Moreover, in our current scenario, as opposed to SpectralAp-

prox which uses approximate methods, SpectralDist performs

spectral clustering by using exact eigen decomposition thereby

not sacrificing on efficacy at all.

Specifically, SpectralDist leverages the in-memory distribu-

tion offered by Apache Spark to elegantly scale the matrix op-

erations for large matrices. The hypergraph incidence matrix

Π is distributed across α machines in the compute cluster and

the distributed linear algebra operations provided by Apache

Spark are used to efficiently construct the hypergraph laplacian

LH (lines 1–3). Later, we distribute the matrix and vector multi-

plication operations in the traditional (sequential) eigen decom-

position algorithm to improve its efficiency (line 4). Finally, a

distributed version of the k-means clustering algorithm is used

to efficiently cluster the eigen vectors identified in the previous

step (line 5), thereby producing the data placement output.

Algorithm 3 SpectralDist Algorithm

Input: Π, WΠ , l, Φ, α
Output: Partitioning of the hypergraph vertex set P (VH ) into l clus-

ters

1: Distribute Π into α machines

2: Compute sum of each sub-part of Π on the α machines to obtain

Dv(Π) ← diag(∑Π); Dhe(Π) ← diag(∑ΠT )

3: Compute hypergraph laplacian LH per Eq. 9 using distributed ma-

trix and vector multiplications

4: Distribute the matrix and vector multiplications for computing

eigen decomposition: DistEig(LH ,α) →UΛV
5: Partition U into l clusters using distributed k-means: P (VH ) ←

DistKMeans(U, l,Φ,α)

6: return P (VH )

Note that the k-means clustering algorithm used in both

SpectralApprox and SpectralDist possesses the following mod-

ifications. First, to ensure load balancing we modify the objec-

tive function of k-means to honor the desired storage distribu-

tionΦ, which provides information about the expected capacity

of each data-center location. Second, we employ the use of k-

means++ initialization as proposed in (Arthur and Vassilvitskii,

2007) and parallelization to scale-up the clustering algorithm to

very large datasets.

5.3. Handling Replication

Since replication may be important in real-world settings

for ensuring fault-tolerance and load-balancing, in this section

we discuss an extension over SpeCH to allow for the scenar-

ios with replication. To this end, we use either of the proposed

data placement algorithms2 (SpectralApprox or SpectralDist)

to obtain a placement without replication, however, we change

the capacity of each data-center from sL j ∼ Φ to sL j/r, where

r is the desired replication factor. Reducing the capacity of

each data-center by a factor of r ensures that each data-item

is equally-likely to be replicated r times. Having obtained an

initial placement, we execute the proposed data placement al-

gorithm for an additional r−1 rounds (a total of r rounds) with

a small change in the ordering of data-centers. Specifically,

let L = L1,L2, . . . ,Ll represent an initial ordering of the data-

centers, for each round we obtain a different permutation of L
and then perform placement using the proposed data placement

algorithms. Executing the data placement algorithms with dif-

ferent permutations of L facilitates data-items to be assigned to

different data-centers in each round, thus, ensuring proper repli-

cation. Specifically, this procedure allows the same data-item

to be stored (in the expected sense) on r data-centers, thereby

meeting the desired replication factor. Note that some items

might be placed multiple times on the same data-center (of

course, in that case we only keep a single copy), and hence,

each data-item would be replicated at most r times. With this,

the SpeCH framework and its associated algorithms are ex-

tended to handle scenarios where replication is allowed as well.

2Note that the proposed extension works with both SpectralApprox and

SpectralDist.
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Table 2: (a) Traffic and Storage Costs, and (b) Inter data-center Latency based on Geo-distributed Amazon Clouds.

Region Storage Outgoing
($/GB-month) Traffic ($/GB)

Virginia 0.023 0.02

California 0.026 0.02

Oregon 0.023 0.02

Ireland 0.023 0.02

Frankfurt 0.025 0.02

Singapore 0.025 0.02

Tokyo 0.025 0.09

Sydney 0.025 0.14

Sao Paulo 0.041 0.16

(a) Costs (in $)

Region Virginia California Oregon Ireland Frankfurt Singapore Tokyo Sydney Sao-Paulo
Virginia 0.0 72.738 86.981 80.546 88.657 216.719 145.255 229.972 119.531

California 71.632 0.0 19.464 153.202 166.609 174.010 102.504 157.463 192.670

Oregon 88.683 19.204 0.0 136.979 159.523 161.367 89.095 162.175 182.716

Ireland 80.524 153.220 136.976 0.0 19.560 239.023 212.388 309.562 191.292

Frankfurt 88.624 166.590 159.542 19.533 0.0 325.934 236.537 323.483 194.905

Singapore 216.680 173.946 161.423 238.130 325.918 0.0 73.807 175.328 328.080

Tokyo 145.261 102.523 89.157 212.388 236.558 73.785 0.0 103.907 256.763

Sydney 229.748 157.843 161.932 309.562 323.152 175.355 103.900 0.0 322.494

Sao Paulo 119.542 192.700 181.665 191.559 194.900 327.924 256.665 322.523 0.0

(b) Latency (in ms)

6. Evaluation Setup

6.1. Geo-distributed data-centers

To simulate a real-world geo-distributed cloud environment,

we employ the use of l = 9 geo-distributed data-centers based on

the regions provided by AWS global infrastructure (Amazon,

2017). Note that the AWS infrastructure evolves continuously

and for the sake of standardization and reproducible compar-

ison with previous work (Yu and Pan, 2015), we only chose

the 9 oldest and prominent regions, namely: Virginia, Cali-

fornia, Oregon, Ireland, Frankfurt, Singapore, Tokyo, Sydney,

and Sao Paulo, for our experimental setup. Our experimental

setup closely mirrors the actual AWS setup, as the costs in-

volved for storage and outgoing traffic as indicated in Table 2a

are as advertised by Amazon. Moreover, the inter-datacenter

latencies(Wang, 2016) are also measured by the packet transfer

latency between the chosen regions using the Linux ping com-

mand. Table 2b presents the average inter-datacenter latency

values (in ms) between the 9 chosen data-center regions. It is

evident from the values portrayed in Table 2 that the proper-

ties exhibited by data-centers vary significantly with the region,

and hence, any data placement strategy should incorporate this

knowledge while performing placement decisions.

6.2. Data

The dataset used in our experiments is a trace of a large

scale location-based online social network – Gowalla3, avail-

able publicly from the SNAP (Leskovec and Krevl, 2014)

repository. The Gowalla dataset has been used extensively

(Yu and Pan, 2015, 2017) for data placement research in geo-

distributed cloud services. The social network contains 196591

vertices and 950327 edges. The vertices are the users in the

social network, while the edges represent friend relationship

between two users. The trace provides 6442890 user check-

ins logged over the period of February, 2009 to October, 2010.

As described in Sec. 3, each user check-in consists of a data-

request pattern and a location. In continuation to our discus-

sions in Sections 1 and 3, a request (indicated by a check-in) by

a user v would involve retrieving the data of all his/her friends.

Thus, the data-request pattern corresponding to a check-in by a

user v is the set of data-items corresponding to all the friends of

v, i.e. R(v). The location field of a user check-in are the GPS

3http://snap.stanford.edu/data/loc-gowalla.html

coordinates of the place from where the check-in was triggered.

These GPS coordinates were mapped to the closest (in terms of

distance) data-center region to identify the source location of a

data-request pattern, and can thus, be one of the 9 data-center

regions as described in Sec. 6.1. With this pre-processing, we

obtain a use-case scenario consisting of 196591 data-items and

102314 data-request patterns.

Moving ahead, we present dataset statistics. Fig. 5 portrays

the probability distribution of user check-ins across the 9 data-

center regions discussed above. It is evident that Virginia and

Frankfurt register the highest (≈ 40%) and the second highest

(≈ 30%) number of user check-ins. On the other hand, Tokyo,

Sydney, and SaoPaulo get the fewest (≈ 10% combined) num-

ber of user check-ins. This clearly shows a huge disparity in the

check-in distribution. Based on this, we extract the storage size

distribution Φ of the data-center regions, which is dependent

upon both the number of check-ins registered in a region and the

size of data-request pattern triggered by each check-in. Mathe-

matically, the storage size for each data-center region ∀L j ∈ L
is calculated as S j = ∑ |R(v)| | ∃Ck = (R(v),L j),L j ∈ L . Let

S = ∑l
j=1 S j be the total storage size, then the data-center stor-

age size follows a multinomial distribution and is calculated as:

Φ ∼ [ S1
S ,

S2
S , . . . ,

Sl
S ]. As is clear from Fig. 6, the desired stor-

age distribution portrays a similar trend as that of the check-in

distribution. Note that this storage distribution Φ also serves

as an input to the data placement algorithm, thereby facilitating

load-balancing among the 9 data-center regions. More funda-

mentally, the load-balancing factor is calculated as the expected

storage size at each data-center region using the storage distri-

bution Φ.

6.3. Algorithms Benchmarked

We compare the data placement algorithms proposed under

the SpeCH framework for effectiveness, efficiency, and scala-

bility against a number of baselines – Random and Nearest, and

the state-of-the-art hypergraph partitioning technique (Yu and

Pan, 2015, 2017). All the benchmarked algorithms were im-

plemented in C++. To perform hypergraph partitioning for the

technique proposed by (Yu and Pan, 2015) and reproduce their

results we use the PaToH (Catalyurek, 2011) toolkit. Next, we

give brief descriptions of the compared techniques:

• Random: partitions the set of data-items D randomly into

|L | = l data-centers. To distribute the data-items according

to the data-center storage size distribution Φ, we ensure that
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Figure 5: Probability distribution of user check-ins across geo-distributed
data-centers for the Gowalla dataset.

random partitioning samples data-items based on Φ thereby

ensuring load-balancing.

• Nearest: assigns each data-item to the data-center from

where it has been requested the highest number of times.

Similar to random, to ensure load-balancing this technique

follows the data-center storage distributionΦ. Thus, once the

data-center with the highest number of requests for a partic-

ular data-item has reached its capacity, we randomly choose

a data-center location capable of serving new requests.

• Hypergraph Partitioning: is the data placement algorithm

proposed by (Yu and Pan, 2015, 2017). After the hypergraph

modeling step discussed in Sec. 4, it uses the hypergraph

partitioning algorithms available in the PaToH toolkit. The

partitioning algorithms maintain the data-center storage size

distribution Φ, thereby ensuring load-balancing.

6.4. Parameters
As discussed in Sec. 4, different hyperedge weights

(WR ,W κ
RL

,W S
RL

,W ΓRL
) facilitate optimization of different objec-

tives. As stated in Eq. 3, a weight vectorW facilitates prioriti-

zation of these objectives based on the assigned weights. In our

study, we incorporate the use of specific weight vector W set-

tings: W1 : {100,1,1,1},W2 : {1,100,1,1},W3 : {1,1,100,1},

and W4 : {1,1,1,100}, which represent different preferences

or importance of the considered evaluation metrics, such as,

higher priority of collocating the associated data-items thereby

minimizing the data-center span N (·), lower inter-datacenter

traffic Γ(·), lower inter-datacenter latency κ(·), and lower stor-

age cost S (·) respectively. Note that in all the weight-vector

settings, the value 100 is just used to indicate higher relative im-

portance of the corresponding metric. The results portrayed are

not dependent on the specific value of 100, rather the weight-

vectors can work with any value as long as it is >> 1. Fur-

ther, both SpectralApprox and SpectralDist employ the use of

β = 100 smallest eigen-vectors of LH for spectral clustering.

6.5. Evaluation Metrics
We consider two categories of evaluation metrics. The first

type is concerned with the execution performance of the studied

algorithms, while the other is concerned with their efficacy.
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Figure 6: Probability distribution of expected data-center storage size
across geo-distributed data-centers for the Gowalla dataset.

• Efficiency: We evaluate the efficiency of the methods using

their execution time, i.e., the time required to produce the

data placement output.

• Efficacy: of the studied methods is measured across the fol-

lowing metrics.

– Span (N (·)): of a data-request pattern R(v) is defined as

the average number of data-centers required to be accessed

to fetch the data-items requested in R(v). Further, the span

for the entire workload is calculated as the average of the

data-center spans of each request pattern R(v) ∈ R .

– Traffic (Γ(·)): The total traffic cost of a data-request pat-

tern R(v) is defined as the sum of outgoing traffic prices

of the data-centers involved in outgoing requests for the

data-items in R(v). Further, the traffic cost of the entire

workload is calculated as the sum of traffic costs of each

request pattern R(v) ∈ R .

– Latency (κ(·)): The inter-datacenter latency of a data-

request pattern R(v) is calculated as the sum of access la-

tencies required to fetch all the data-items requested in

R(v) from the data-center where they are placed to the

data-center from where the request was triggered. Further,

the latency of the workload is calculated as the sum of the

latencies of each request pattern R(v) ∈ R .

– Storage (S (·)): The sum of the total cost on storing all of

the data-items corresponding to every data-request pattern

R(v) ∈ R in data-centers L prescribed by the data place-

ment algorithm.

– Balance: is calculated as the pearson’s correlation coef-

ficient between the expected storage size distribution Φ,

and the actual storage size distribution obtained after per-

forming data placement. If the value is close to 1, it means

that the two distributions are highly similar, while they are

dissimilar if the value is close to −1.

– Objective. (Obj.): is defined as the weighted sum of the

considered performance metrics, where the weights are de-

scribed using the weight vectorW.
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Note that the results portrayed in Sec. 7 corresponding to

each evaluation metric (barring Balance) have been normal-

ized in the scale of [0,1] by dividing each value by the high-

est observed value in that particular metric. More specifically,

let nmax =max∀R(v)∈R (N (R(v))) be the highest observed span

value, then the span for each data-request pattern R(v) is nor-

malized as: N (R(v))/nmax | ∃R(v) ∈ R . A similar operation

is performed for other evaluation metrics as well. Normaliza-

tion ensures that all the values lie in a common range ([0,1]),
thereby facilitating joint analysis of all the considered evalu-

ation metrics for all the algorithms. Moreover, normalization

also ensures equal and fair contribution of each evaluation met-

ric towards Obj, which as explained previously is calculated as

the weighted sum of all the considered metrics.

7. Evaluation Results

Experiments for the sequential algorithms were done using

code written in C++ on an Intel(R) Xeon(R) E5-2698 28-core

machine with 2.3 GHz CPU and 256 GB RAM running Linux

Ubuntu 16.04, while the distributed algorithms were executed

using PySpark on an Apache Spark cluster consisting of 20

worker nodes, each comprising of 48 cores (2.3 GHz) and 256

GB RAM running Redhat Enterprise Linux 6.9. Owing to their

non-deterministic nature, results for the random and hypergraph

partitioning methods are averaged over 10 runs. Since the prob-

lem formulation in this study is concerned with the minimiza-

tion of the evaluation metrics, the smaller the portrayed values

the better the performance is. The replication factor was set to

3. Additionally, note that the results for the balance evaluation

metric are close to 1 for all the techniques considered in this

study. This is because every technique possesses the capability

to honor the desired storage size distribution Φ.

The first set of experiments are concerned with identifying

a Spark configuration that results in fast execution of the Spec-
tralDist algorithm. The two parameters in the Spark configu-

ration that have the highest impact on the execution time of a

job are: (1) the number of executors, and (2) the number of

cores per executor. To understand their impact on the overall

execution time of SpectralDist, we perform an experiment as

presented in Fig. 7. It is evident that increase in the number

of executors facilitates decrease in the execution time at first,

however beyond a certain number, the performance starts to de-

teriorate and the execution times increase. This behavior is due

to distribution overhead and is expected for any distributed sys-

tem, where after one point further distribution provides no more

benefit. Moreover, this can be clearly observed for all the three

settings presented in Fig. 7, i.e., with the number of cores per

executor being 12, 16, and 20 respectively.

It is also clear from Fig. 7 that in a majority of the cases, the

execution times obtained using a Spark configuration with ex-

ecutors possessing fewer cores per each executor instance, i.e.

tiny executors, is better when compared to that of a configura-

tion with more cores per each executor instance or fat execu-
tors. For instance with 12 executors, the execution time (15.05

minutes) for 16 cores per executor is lesser than the execution

time (16.4 minutes) for 20 cores per executor. Similarly, with
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Figure 7: Analyzing the variation in the execution time of spectral cluster-
ing with different Spark configurations.

20 executors, the execution times (in minutes) for 12, 16, and

20 cores per executor are 12.22 < 15 < 16.67 respectively.

To better understand this observed behavior, we perform an

experiment by keeping the total number of cores in the con-

figuration fixed to 240, and exploring different possible com-

binations of the number of executors and number of cores per

executor. The results are presented in Fig. 8. Note that since

each machine in our cluster is comprised of 48 physical cores,

it is impossible to obtain a configuration of 240 total cores with

4 executors. Thus, the total number of cores in the first entry

(45,4) in Fig. 8 is 180 (as close as possible to 240), correspond-

ing to a configuration with 4 executors, each with 45 cores. It is

evident from Fig. 8 that an increase in the number of executors

with a simultaneous decrease in the number of cores per execu-

tor (thereby keeping the total number of cores as 240), results

in an improvement in the execution time of the SpectralDist al-

gorithm till a certain point (6,40), i.e. with a configuration of

40 executors, each possessing 6 cores. Beyond this point, the

execution time starts to increase and the performance deterio-

rates.

This result illustrates that neither less number of fat nor

large number of tiny executors result in optimal runtime per-

formance, rather the optimal configuration exists somewhere in

between the two extremes. For the SpectralDist algorithm the

best execution time of 10 minutes is achieved using a Spark

configuration of 40 executors possessing 6 cores each. Note

that all the results corresponding to SpectralDist in the rest of

the paper are based on this configuration.

Having identified the optimal configuration of SpectralDist
for the scenario under evaluation, we next analyze the efficacy

of different spectral clustering methods. The eigen decomposi-

tion of the hypergraph laplacian (Sec. 5) is the most important

step in spectral clustering as the quality of the obtained clus-

ters is dependent on the quality of the spectra of the hypergraph

laplacian. To this end, we compare the efficacy of the eigen

decomposition step using three different methods, namely – (1)

A sequential exact eigen decomposition method implemented

in Octave, (2) An approximate eigen decomposition method

implemented using the FBPCA library in Python, and (3) A

distributed exact eigen decomposition method implemented in
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Figure 8: Analyzing the effect of fat vs tiny executors on the execution time
of spectral clustering.

PySpark. As discussed in Sec. 5, eigen decomposition of a ma-

trix A, decomposes it into three matrices U , Σ, and V , which can

further be used to reconstruct the original matrix A′. The ma-

trix reconstruction quality measured as 1−MSE (A,A′), where

MSE stands for mean squared error, is used to measure the ef-

ficacy of the eigen decomposition step.

Fig. 9 presents the matrix reconstruction quality with vary-

ing eigen vectors for the three methods described above, nor-

malized by the quality of the most efficacious method. There-

fore, 1 represents the highest efficacy while 0 the lowest. Since

methods (1) and (3), implemented in Octave and PySpark re-

spectively, are exact in nature they possess the highest quality,

which is also evident (values closer to 1) from Fig. 9. On the

other hand, the approximate method can be 2-6 times worse

when compared to the exact methods. In terms of their exe-

cution times, for obtaining a decomposition with top 100 eigen

vectors, the exact eigen decomposition in Octave requires ≈ 1.5
hours, in Spark ≈ 8 minutes, while the approximate decompo-

sition in FBPCA requires ≈ 30 seconds for the Gowalla dataset

used in this article. Since the execution time of Octave is im-

practically large, it is excluded from any further analysis in this

article. The distributed exact eigen decomposition method in

Spark is used in SpectralDist, while the approximate method in

FBPCA is used in SpectralApprox.

Moving ahead we analyze the efficacy of both SpectralAp-
prox and SpectralDist on the considered evaluation metrics.

Fig. 10a presents the results corresponding to the weight-vector

setting W1, where minimizing the data-center span holds the

highest priority in the optimization objective. It is evident

that the proposed spectral clustering algorithms (SpectralAp-

prox and SpectralDist), and the state-of-the-art hypergraph par-

titioning algorithm (Hyper) achieve a low value on the over-

all optimization objective (Obj), while being significantly bet-

ter than the random and nearest methods. This is because of

their capability to preferentially minimize the data-center span,

which possesses the highest priority in the optimization under

W1. Note that Nearest outperforms Hyper, SpectralApprox,

and SpectralDist on the traffic and latency metrics, as they have

lower weights in the optimization objective under W1. How-

ever, SpectralApprox, SpectralDist, and Hyper are still signif-
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Figure 9: Analyzing the difference in quality between exact and approxi-
mate eigen decomposition methods.

icantly better than the Random method. The underlying eigen

decomposition step in SpectralDist is exact while that in Spec-

tralApprox is approximate, thus, the downstream efficacy of the

former is much better (lower value on the considered metrics)

than the latter.

A similar behavior is observed in Figs. 10b, 10c, and 10d

corresponding to the other three weight vector settingsW2,W3,

andW4 respectively. SpectralApprox, SpectralDist, and Hyper

outperform the other methods significantly on the overall op-

timization (Obj), while also being significantly better on the

corresponding evaluation metric that the weight-vector setting

is tuned to optimize. More fundamentally, in addition to be-

ing better on Obj., SpectralApprox, SpectralDist, and Hyper

outperform the other methods in minimizing inter-datacenter

traffic cost Γ(·), inter-datacenter latency κ(·), and storage cost

S (·), when a higher preference is given to these metrics under

the weight-vector settingsW2,W3, andW4 respectively.

The main limitation of Nearest is that it tries to assign each

data-item to a data-center with the highest number of accesses

to that data-item, thereby aiming to minimize (on an aver-

age) the geographical distance between the data-item and the

source location of the data request oblivious to the fact that

the actual traffic or storage costs might not be proportional to

the distance. The main advantage of SpectralApprox, Spec-

tralDist, and Hyper over Nearest is that owing to their higher-

order modeling capabilities they are capable of better address-

ing multi-objective optimizations, and possess the capability to

adapt their performance based on different weight-vector set-

tings. This is evident from the results portrayed in Figs. 10a–

10d. To further emphasize on the capability to adapt the opti-

mization based on different weight-vector settings, we discuss

the results portrayed in Fig. 10d. It is clear that according to

W4, the optimization objective gives more preference towards

minimizing the storage cost. Note that storage cost and other

parameters like inter-datacenter traffic and latency might be in-

versely related to each other, i.e., a lower storage cost might

lead to higher latencies or traffic cost. This behavior is also ev-

ident from Fig. 10d, where SpectralApprox, SpectralDist, and

Hyper achieve lower storage costs, thereby also achieving better

performance on Obj, however, suffer slightly on other metrics.
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Figure 10: Analyzing the variation in the evaluation metrics under different weight-vector settings. SpectralDist results in reducing the (a) data-center
span N (·) by ≈ 27% when compared to Hyper with W1 = {100,1,1,1}; (b) inter data-center traffic Γ(·) by ≈ 22% when compared to Hyper with W2 =

{1,100,1,1}; (c) inter data-center latency κ(·) by ≈ 36% when compared to Hyper withW3 = {1,1,100,1}; (d) storage cost S (·) by ≈ 20% when compared
to Hyper withW4 = {1,1,1,100}.

Thus, methods like Nearest would find difficulty in handling

such cases, while both the spectral clustering algorithms (Spec-

tralApprox and SpectralDist), and Hyper possess the capability

to adapt the optimization based on the weight-vector.

Figs. 10a–10d show that the performance of both Spec-

tralApprox and Hyper are quite similar on the evaluated met-

rics. While SpectralApprox is only marginally better in effi-

cacy when compared to Hyper, SpectralDist is 30-50% better

when compared to both SpectralApprox and Hyper. The ma-

jor advantage of both SpectralApprox and SpectralDist over

Hyper comes from their capability to scale gracefully and ef-

ficiently to large datasets. It is intuitive that scalability is a

paramount property for any data placement algorithm, since

the scale of real-world social networks or for that matter any

real-world data-intensive services is humongous. Fig. 11 shows

the performance of the proposed algorithms on the Gowalla

and Brightkite4 datasets. It is clear from Fig. 11a that Spec-

tralApprox is up to 10 times (≈ 3–4 times on average) faster
when compared to Hyper, while also being slightly better in

all evaluated metrics for the majority of the considered weight-

vector settings. On the other hand, although SpectralDist is

≈ 2–3 and ≈ 6–8 times slower (on average) than Hyper and

SpectralApprox respectively, it is ≈ 30–50% better in efficacy.

Since Brightkite is much smaller in size when compared to

Gowalla, the results presented on Gowalla should allow the

readers a good insight into the performance of the proposed

techniques. Nevertheless, to show that the proposed techniques

can be applied similarly to other datasets, we present results

on the Brightkite dataset in Fig. 11b. It is clear that Fig. 11b

portrays trends similar to those observed in Fig. 11a. Thus,

the SpeCH framework facilitates to significantly improve the

efficiency-efficacy trade-off for the data placement problem us-

ing the two spectral clustering algorithms, SpectralApprox and

SpectralDist.

To summarize, through extensive experiments we verify

that both the spectral clustering algorithms, SpectralApprox and

SpectralDist, proposed under the SpeCH framework are effi-
cient, scalable, and effective. Although SpectralApprox and

SpectralDist are not always the best on every evaluated metric,

4https://snap.stanford.edu/data/loc-Brightkite.html
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Figure 11: Comparing the execution times of the proposed spectral clus-
tering algorithms with hypergraph partitioning algorithm proposed in (Yu
and Pan, 2015) on the (a) Gowalla, and (b) Brightkite datasets.

they serve to be the most effective technique in terms of im-

proving the overall weighted sum of evaluation metrics (Obj),

which is the main target of our multi-objective optimization.

Additionally, they possess the capability to adapt to the change

in weight vector settingsW, which facilitates handling of a va-

riety of real-world scenarios as described by different weight

vectors.

8. Conclusions and Future Work

In this article, we have addressed the problem of data place-

ment of data-intensive services into geo-distributed clouds. We

identified the need for specialized methods to perform data

placement for data-intensive services, as contrary to MapRe-

duce style workloads, these workloads require access to multi-

ple datasets within a single transaction, thereby rendering tra-

ditional methods of hash based partitioning inadequate. Conse-

quently, we devised a scalable framework, SpeCH, to perform

data placement using spectral clustering for hypergraph parti-

tioning. Under the SpeCH framework, we proposed two algo-

rithms, namely – SpectralApprox and SpectralDist, which fa-

cilitated spectral clustering to scale to large workloads. While

SpectralApprox improved the efficiency of spectral clustering

by obtaining low-rank approximations to the hypergraph matrix

with bounded error guarantees, SpectralDist employed the use

of recent hardware and big data technologies to scale up spec-

tral clustering by distributing the computation to several ma-

chines without compromising on quality. Moreover, this also
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enables SpectralDist to scale to workloads that cannot fit in a

single machine. Our empirical studies on a real-world trace-

based social network dataset portrayed the effectiveness, effi-

ciency, and scalability of the proposed algorithms. The Spec-
tralApprox algorithm portrayed superior efficiency and was up

to 10 times faster when compared to the state-of-the-art, while

being as good in efficacy on the evaluated metrics. On the other

hand, the SpectralDist algorithm portrayed superior efficacy on

the evaluated metrics being up to 50% better, however, was

5-6 times slower when compared to the SpectralApprox algo-

rithm. In summary, the SpectralApprox and SpectralDist algo-

rithms proposed under the SpeCH framework provided a better

efficiency-efficacy trade-off. When efficacy is of higher priority,

SpectralDist offered a better solution while keeping execution

times practical. On the other hand, SpectralApprox is the algo-

rithm of choice when keeping execution times low was impor-

tant, while keeping efficacy on the evaluated metrics as good as

the state-of-the-art.

Currently, SpeCH and its algorithms learn a data placement

strategy from a historical snapshot of the social network trace.

In future work, we aim to make SpeCH and its algorithms adap-

tive for managing updates in the data and dynamically changing

the data placement strategy accordingly. Additionally, the no-

tion of replicas will be included directly in the data placement

problem formulation.
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