
Northumbria Research Link

Citation: Alauthman, Mohammad, Aslam, Nauman, Alkasassbeh, Mouhammd, Khan,
Suleman, AL-qerem, Ahmad and Raymond Choo, Kim-Kwang (2020) An efficient
reinforcement learning-based Botnet detection approach. Journal of Network and
Computer Applications, 150. p. 102479. ISSN 1084-8045

Published by: Elsevier

URL: https://doi.org/10.1016/j.jnca.2019.102479
<https://doi.org/10.1016/j.jnca.2019.102479>

This version was downloaded from Northumbria Research Link:
http://nrl.northumbria.ac.uk/id/eprint/41349/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners. Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without prior permission or charge, provided the authors, title and full bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder. The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of the research, please visit the publisher’s website (a subscription
may be required.)

http://nrl.northumbria.ac.uk/policies.html

Journal Pre-proof

An efficient reinforcement learning-based Botnet detection approach

Mohammad Alauthman, Nauman Aslam, Mouhammd Alkasassbeh, Suleman Khan,
Ahmad AL-qerem, Kim-Kwang Raymond Choo

PII: S1084-8045(19)30339-X

DOI: https://doi.org/10.1016/j.jnca.2019.102479

Reference: YJNCA 102479

To appear in: Journal of Network and Computer Applications

Received Date: 2 May 2019

Revised Date: 20 September 2019

Accepted Date: 27 October 2019

Please cite this article as: Alauthman, M., Aslam, N., Alkasassbeh, M., Khan, S., AL-qerem, A.,
Raymond Choo, K.-K., An efficient reinforcement learning-based Botnet detection approach, Journal of
Network and Computer Applications (2019), doi: https://doi.org/10.1016/j.jnca.2019.102479.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier Ltd.

https://doi.org/10.1016/j.jnca.2019.102479
https://doi.org/10.1016/j.jnca.2019.102479

An Efficient Reinforcement Learning-Based Botnet
Detection approach

Mohammad Alauthmana,∗, Nauman Aslamb, Mouhammd Alkasassbehc,
Suleman Khanb, Ahmad AL-qeremc, Kim-Kwang Raymond Chood

aDepartment of Computer Science, Faculty of information technology, Zarqa University,
Zarqa, Jordan

bDepartment of Computer Science and Digital Technologies, Faculty of Engineering and
Environment, Northumbria University, Newcastle upon Tyne, UK, NE1-8ST

cDepartment of Computer Science, Princess Sumaya University for Technology, Amman,
Jordan

dDepartment of Information Systems and Cyber Security, University of Texas at San
Antonio, San Antonio, TX 78249, USA

Abstract

The use of bot malware and botnets as a tool to facilitate other malicious cyber

activities (e.g. distributed denial of service attacks, dissemination of malware

and spam, and click fraud). However, detection of botnets, particularly peer-

to-peer (P2P) botnets, is challenging. Hence, in this paper we propose a sophis-

ticated traffic reduction mechanism, integrated with a reinforcement learning

technique. We then evaluate the proposed approach using real-world network

traffic, and achieve a detection rate of 98.3%. The approach also achieves a

relatively low false positive rate (i.e. 0.012%).

Keywords: Botnet detection, Network security, Traffic reduction, Neural

network, C2C, Reinforcement-learning.

∗Corresponding author
Email addresses: malauthman@zu.edu.jo (Mohammad Alauthman),

nauman.aslam@northumbria.ac.uk (Nauman Aslam), m.alkasassbeh@psut.edu.jo
(Mouhammd Alkasassbeh), suleman.khan@northumbria.ac.uk (Suleman Khan),
a.qerem@psut.edu.jo (Ahmad AL-qerem), raymond.Choo@fulbrightmail.org (Kim-Kwang
Raymond Choo)

Preprint submitted to Journal of LATEX Templates November 1, 2019

1. Introduction

Bot malware and botnets are two widely understood concepts in the cyber

security literature. Specifically, a botnet is a network of geographically dispersed

infected bots (e.g. any computing device including an Internet of Things (IoT)

device, such as a smart TV, that has been compromised by a bot malware),

which is remotely controlled by a botmaster. Such botnets are generally used to

carry out a range of malicious cyber activities, ranging from sending of spams

to launching of distributed denial of service (DDoS) attacks to dissemination

of malicious programs (malware) to disseminating illegal materials (e.g. child

exploitation materials) to click fraud, and so on [1, 2, 3, 4].The communica-

tion channel between the botnet and the botmaster is also referred to as the

command and control (C2C) channel, which can be either centralized or decen-

tralized [5, 6, 7, 8, 9]. Decentralized C2C infrastructures, such as peer-to-peer

(P2P) infrastructure, are generally harder to detect in comparison to centralized

C2C infrastructures. This is also partly evidenced by the increased adoption of

the P2P infrastructure in botnets [10], such as Waledac Bot [11], Conficker Bot

[12], Zeus Bot [13], and Storm Bot [14].

A typical P2P botnet lifecycle comprises four main stages, namely: initial

infection, peer discovery, secondary update and attack [10]. In the first phase,

the bot malware is installed on an end-user computing device (e.g. Internet of

Things device, such as a smart TV, an edge device, and/or an industrial con-

trol system), say by exploiting known vulnerabilities or using social engineering

(e.g. via email attachments, drive-by-downloads) [15, 16, 17]. This is also done

without the victim’s knowledge. During the second phase, the bot will seek to

establish a connection with other bots (i.e. infected hosts) that are in the same

botnet. In the third phase, the bot attempts to download and install the latest

update of the bot malware, if it exists (this is analogous to installing a new

version of a mobile app, or patching the system). This phase typically takes

place via the C2C channel. In the last phase, the bots will carry out the various

malicious cyber activities, on the command of the botmaster.

2

There are a number of ways to detect such bots. For example, an organiza-

tion could analyze their own network traffic and attempt to identify suspicious

hosts involved in malicious activity. Existing botnet detection systems, such

as those described in [18, 19, 20, 21, 6], generally rely on DPI to analyze the

packet contents. This can be computationally expensive and inefficient in recog-

nizing unknown payload signatures. In addition, such detection systems when

deployed in high-speed and/or high-volume networks, are generally not capable

of performing a comprehensive analysis of all network traffic. Hence, mitigating

P2P botnets remains a topic of going interest for both the research community

and the practitioner community.

In this paper, we develop an effective reinforcement learning-based detection

system, designed to detect and identify infected hosts in a P2P botnet, including

new bot (with previously unknown behavior and payload). Specifically, our

proposed system comprises a traffic reduction method, in order to deal with a

high volume of network traffic. We also attempt to detect the bots as early as

possible, for example during the propagation phase (i.e. before the bot launches

any malicious activity; in other words, during the earlier discussed peer discovery

and secondary update stages). To avoid having a high false positive rate, a set

of host traffic features is adaptively set to differentiate between a host infected

with a P2P Bot and a legitimate network host.

We will now explain the layout of this paper. In the next section, we will

briefly review the relevant literature. In Sections 3 and 4, we present our pro-

posed approach, and describe the evaluation setup and findings. The last section

concludes this paper.

2. Related Literature

As discussed in the preceding section, there is an extensive literature on bot

malware and botnet detection and it remains a topic of ongoing interest, partly

evidenced by the number of research papers [22, 23, 24, 25] and literature review

and survey papers on the topic published in recent years [26, 27, 28].

3

Botnet detection techniques can be broadly classified into anomaly-based,

data mining-based, signature-based and DNS-based techniques [29, 30, 26, 27,

28]. For example, Han et al. [8] classified P2P botnet detection into those

based on machine learning, data mining, traffic analysis and network behavior,

and Wei et al. classified botnet detection techniques into unsupervised and

supervised techniques [31].

In the survey of P2P botnet detection, Babak et al. [32] also proposed a

botnet detection system, referred to as PeerRush. The latter employs a one-

class classification approach to classify P2P traffic into abnormal traffic and

normal traffic. Other techniques used in the classification of abnormal traffic

and normal traffic include Gaussian, Parzen, and K-centers data description

[33]. Also in [33], the researchers created an application profile based on the

analysis ofsome P2P applications’ network traffic. In addition, features such

as the interval delays between flow duration and packets were used to classify

P2P applications. However, such an approcah can be easily circumvented, for

example by changing the delay between packets.

Garg et al. [34] studied the potential of using three machine learning al-

gorithms in detecting P2P botnets, namely: J48, Naive Bayes, and Nearest-

Neighbor. They aimed to explore the effectiveness of several classifiers. While

their studied suggested that both J48 and Nearest-Neighbor achieved reason-

ably accuracy, the accuracy of detecting legitimate traffic is low. Jiang and

Shao [35] proposed relying on the dependency of botnet flows with other peer

bots (in the same botnet) to detect bots. Specifically, they used a single-linkage

hierarchical clustering mechanism to differentiate between a normal host and a

P2P bot. However, it does not detect botnets that utilize irregularity that lies

within the traffic flow (e.g. Storm Bot [36]).

Zhang et al. [37] introduced a system to detect hidden P2P botnet, by

monitoring the traffic of suspected C2C. The researchers obtained four features

from every network flow. Such features include bytes and packets numbers that

have been received and sent. The authors used the BIRCH [38] and hierarchical

clustering [39] algorithms for clustering network flow. The system showed high

4

accuracy rates in detecting malicious and legitimate hosts. It also showed TPR

of 100%, and FPR rate of 0.2%. It should be noted that the latter system is

capable of detecting botnets regardless of the way the botnets carry out their

malicious activities. Despite that, the latter system targets P2P botnets only.

This system is criticized for not being capable of detecting other botnet types,

such as: the HTTP and IRC bots. In addition, the latter system is vulnerable

to several methods of evasion. Such methods include: the flow disturbance

packets, DGA and Fast-flux algorithms.

Liao et al. [40] employed a packet size-based methodology for distinguishing

between legitimate P2P traffic and P2P botnet traffic. When they evaluated

the performance of using Bayesian, J48, and Naive Bayes networks in classifying

network traffic, they achieved accuracy rates of 98%, 87%, and 89%, respectively.

They also determined that P2P bots’ packets size is generally less than normal

P2P applications. Similarly, Zhao et al. [41] used REPTree for classification of

online P2P botnet detection. However, a key limitation of this approach is that

it can be circumvented using random connection interval [42].

The approach of Masud et al. [43] is based on the premise that bots’ reaction

patterns differ from the reaction patterns of humans. They then demonstrated

how one can utilized such an approach to detect bots by identifying the rela-

tionship between incoming packets application startups, and outgoing packets

and connections. In a separate work, the authors [44] evaluated the potential

of using Boosted decision tree, Bayes network classifier, Naive Bayes, support

vector machine and C4.5 decision tree in detecting IRC Botnets. It was found

that the detection rates for these machine learning techniques are greater than

95 %, with a false positive rate of less than 3% and false negative rate of less

than 5%. The Boosted decision tree had the highest overall performance. How-

ever, this approach is incapable of detecting botnets that utilized encrypted

communication or contemporary bot botnets, such as P2P botnets. More re-

cently in 2018, Wei et al. [31] introduced an unsupervised method based on

clustering rather than classification methods. Their approach was not confined

to a specific botnet type and is sufficiently flexible.

5

There have also been focuses on avoiding detection by existing botnet detec-

tion solutions, for example by using encryption [14, 45] or using regular protocols

(e.g. P2P and HTTP) [35, 46].

It is clear from these discussed works that botnet, particularly P2P botnet,

detection remains an ongoing challenge.

In the next section, we will present our proposed approach.

3. Our Proposed Approach

In the proposed system, we focus on the passive monitoring of network traf-

fic and the frequent communication between bots and their C2C servers during

propagation. Specifically, such (frequent) communication is often used to dis-

cover other peers and receive commands and related updates [47, 48], and hence

can be leveraged to facilitate detection. Our proposed detection approach com-

prises the following phases: network traffic capture and packet reduction, fea-

ture extraction, malicious activity detection, and bot behavior detection using

reinforcement learning – see Sections 3.1 to 3.4.

3.1. Network traffic capture and packet reduction

In this phase, network traffic will be sniffed based on the sliding time-window

size, and then utilized for traffic reduction. In this paper, we passively capture

the network packets using Jpcap [49], since a passive capturing does not (sig-

nificantly) increase the volume of packets in the network. It also allows us to

detect botnets without interacting with them. Given the volume of network

packets to be analyzed, network traffic is divided into time-windows. Such a

time-window is also required for delivering the results to the network admin on

a timely basis. Bots may also seek to generate a temporal behavior after the

infection phase [50]. Therefore, using time window can facilitate bot detection.

However, we need to determine an appropriate size. For example, if the size

is too small, very few captured packets will be captured and hence we are not

able to learn the traffic characteristics. If the size of time-window is too large,

6

it can be lead to failure in the early detection of botnet behavior. More details

on determining time-window size is discussed in Section 4. As shown in Figure

1, W1,W2...Wn denote the sliding time window size.

W1

Time window-size

W3

Wn

W2

Sliding interval

Time line

Figure 1: Time-window sliding technique

Given the size of network traffic, we need to efficiently reduce its traffic (i.e.

performing a triage). For example, we can use existing approaches such as those

described in [51] to reduce the network traffic.

3.2. Feature extraction

We then need to analyze the reduced traffic to identify attributes that can be

used to effectively characterize the botnet, and these attributes may collectively

form a feature. Clearly, the quality of the features has a significant impact on

the detection accuracy of the machine learning algorithm used. Network traffic

feature extraction can occur at three levels, namely: packet-level, flow-level,

and connection-level [52]. In addition, classification depends on the level of

7

packet inspection (e.g. deep or shallow packet inspection). We propose using

a mixture of connection and packet levels. For instance, identifying the inter-

arrival time features between the packets in each connection requires gathering

of packet-level data to be aggregated into connections. That is done for col-

lecting statistical information about connection states. The features employed

in our approach are extracted through two stages. First, connection features

are extracted. Then, these features serve as host features (representing the host

state during the sliding time-window).

3.2.1. Connection level features

This phase focuses on features that are important for the detection of the

P2P botnet. In our study, 43 features are collected and gathered in accordance

with our pre-determined sliding window size – see received. The features col-

lected comprise control packets exchanged between network hosts and have 5

tuples (IP source address, IP destination address, source port, destination port,

protocol).

8

Table 1: Features importance ranking by entropy algorithm

F
e
a
tu

re
D

e
sc

ri
p
ti

o
n

F
e
a
tu

re
D

e
sc

ri
p
ti

o
n

F
1

#
o
f

c
o
n
tr

o
l

p
a
ck

e
ts

F
2

#
o
f

tr
a
n
sm

it
te

d
c
o
n
tr

o
l

p
a
ck

e
ts

F
3

#
o
f

re
c
e
iv

e
d

c
o
n
tr

o
l

p
a
ck

e
ts

F
4

#
o
f

tr
a
n
sm

it
te

d
b
y
te

s
p

e
r

fl
o
w

F
5

#
re

c
e
iv

e
d

b
y
te

s
p

e
r

fl
o
w

F
6

#
o
f

tr
a
n
sm

it
te

d
S
Y

N
p
a
ck

e
ts

F
7

#
o
f

re
c
e
iv

e
d

S
Y

N
p
a
ck

e
ts

F
8

#
o
f

tr
a
n
sm

it
te

d
A

C
K

p
a
ck

e
ts

in
a

se
q
u
e
n
c
e

F
9

#
o
f

re
c
e
iv

e
d

A
C

K
p
a
ck

e
ts

F
1
0

#
o
f

tr
a
n
sm

it
te

d
d
u
p
li
c
a
te

A
C

K
p
a
ck

e
ts

F
1
1

#
o
f

re
c
e
iv

e
d

d
u
p
li
c
a
te

A
C

K
p
a
ck

e
ts

F
1
2

#
A

v
g
.

le
n
g
th

o
f

tr
a
n
sm

it
te

d
c
o
n
tr

o
l

p
a
ck

e
ts

F
1
3

#
o
f

re
c
e
iv

e
d

d
u
p
li
c
a
te

A
C

K
p
a
ck

e
ts

F
1
4

#
A

v
g
.

le
n
g
th

o
f

tr
a
n
sm

it
te

d
c
o
n
tr

o
l

p
a
ck

e
ts

F
1
5

#
o
f

tr
a
n
sm

it
te

d
fa

il
e
d

c
o
n
n
e
c
ti

o
n
s

F
1
6

#
o
f

re
c
e
iv

e
d

fa
il
e
d

c
o
n
n
e
c
ti

o
n

F
1
7

#
o
f

tr
a
n
sm

it
te

d
S
Y

N
-A

C
K

p
a
ck

e
ts

/
c
o
n
n
e
c
ti

o
n

F
1
8

#
o
f

re
c
e
iv

e
d

S
Y

N
-A

C
K

p
a
ck

e
ts

/
c
o
n
n
e
c
ti

o
n

F
1
9

#
o
f

tr
a
n
sm

it
te

d
S
Y

N
-A

C
K

in
a

se
q
u
e
n
c
e
/
c
o
n
n
e
c
ti

o
n

F
2
0

#
o
f

re
c
e
iv

e
d

S
Y

N
-A

C
K

in
a

se
q
u
e
n
c
e
/
c
o
n
n
e
c
ti

o
n

F
2
1

#
o
f

b
y
te

s
p

e
r

c
o
n
n
e
c
ti

o
n
/
c
o
n
n
e
c
ti

o
n

F
2
2

#
R

a
ti

o
o
f

in
c
o
m

in
g

c
o
n
tr

o
l

p
a
ck

e
ts

/
c
o
n
n
e
c
ti

o
n

F
2
3

a
v
g
.

le
n
g
th

o
f

o
u
tg

o
in

g
C

tr
l

p
k
t

a
v
g
.

le
n
g
th

o
f

C
tr

l
p
k
ts

F
2
4

T
ra

n
sm

it
te

d
S
Y

N
-

re
c
e
iv

e
d

A
C

K
/

A
v
g
.

#
o
f

S
Y

N

F
2
5

(t
ra

n
sm

it
te

d
S
Y

N
-

re
c
e
iv

e
d

S
Y

N
-A

C
K

)/
c
o
n
n
e
c
ti

o
n

F
2
6

#
o
f

tr
a
n
sm

it
te

d
F

IN
-A

C
K

p
a
ck

e
ts

/
c
o
n
n
e
c
ti

o
n

F
2
7

#
o
f

re
c
e
iv

e
d

F
IN

-A
C

K
p
a
ck

e
ts

p
e
r

c
o
n
n
e
c
ti

o
n

F
2
8

#
o
f

tr
a
n
sm

it
te

d
R

S
T

-A
C

K
p
a
ck

e
ts

p
e
r

c
o
n
n
e
c
ti

o
n

F
2
9

#
re

c
e
iv

e
d

R
S
T

-A
C

K
p
a
ck

e
ts

p
e
r

c
o
n
n
e
c
ti

o
n

F
3
0

a
v
g
.

ti
m

e
b

e
tw

e
e
n

a
tt

e
m

p
ts

to
c
re

a
te

c
o
n
n
e
c
ti

o
n
s

F
3
1

#
o
f

re
c
e
iv

e
d

R
S
T

p
a
ck

e
ts

p
e
r

c
o
n
n
e
c
ti

o
n

F
3
2

o
f

tr
a
n
sm

it
te

d
R

S
T

-A
C

K
p
k
ts

in
a

se
q
u
e
n
c
e
/
c
o
n
n
e
c
ti

o
n

F
3
3

#
o
f

re
c
e
iv

e
d

R
S
T

p
a
ck

e
ts

p
e
r

c
o
n
n
e
c
ti

o
n

F
3
4

o
f

tr
a
n
sm

it
te

d
R

S
T

-A
C

K
p
k
ts

in
a

se
q
u
e
n
c
e
/
c
o
n
n
e
c
ti

o
n

F
3
5

In
te

r-
a
rr

iv
a
l

ti
m

e
b
/
w

S
Y

N
a
n
d

A
C

K
b
y

h
o
st

/
c
o
n
n
e
c
ti

o
n

F
3
6

In
te

r-
a
rr

iv
a
l

ti
m

e
b
/
w

S
Y

N
a
n
d

R
S
T

b
y

h
o
st

/
c
o
n
n
e
c
ti

o
n

F
3
7

In
te

r-
a
rr

iv
a
l

ti
m

e
b
/
w

S
Y

N
a
n
d

R
S
T

-A
C

K
y

h
o
st

/
c
o
n
n
e
c
ti

o
n

F
3
8

In
te

r-
a
rr

iv
a
l

ti
m

e
b
/
w

S
Y

N
fr

o
m

h
o
st

R
S
T

fr
o
m

o
th

e
r

si
d
e
/
c
o
n
n
e
c
ti

o
n

F
3
9

In
te

r-
a
rr

iv
a
l

ti
m

e
b
/
w

S
Y

N
fr

o
m

h
o
st

R
S
T

-A
C

K
fr

o
m

o
th

e
r

si
d
e
/
c
o
n
n
e
c
ti

o
n

F
4
0

In
te

r-
a
rr

iv
a
l

ti
m

e
b
/
w

F
IN

-A
C

K
fr

o
m

h
o
st

R
S
T

fr
o
m

o
th

e
r

si
d
e
/
c
o
n
n
e
c
ti

o
n

F
4
1

In
te

r-
a
rr

iv
a
l
ti

m
e

b
/
w

A
C

K
fr

o
m

h
o
st

a
n
d

c
o
n
n
e
c
ti

o
n

a
n
d

R
S
T

fr
o
m

o
th

e
r

si
d
e

F
4
2

In
te

r-
a
rr

iv
a
l

ti
m

e
S
Y

N
fr

o
m

h
o
st

a
n
d

c
o
n
n
e
c
ti

o
n

a
n
d

S
Y

N
-

A
C

K
fr

o
m

o
th

e
r

si
d
e

F
4
3

C
o
n
n
e
c
ti

o
n

d
u
ra

ti
o
n

9

3.2.2. Feature reduction

Feature reduction refers to a method that can minimize the number of at-

tributes in order to eliminate features with minimal impact on the classification

problem [53, 54]. The feature reduction technique is adopted for decreasing

the ‘over-fitting’ problem [55], which is crucial in overcoming the imbalanced

dataset problem [56]. Thus, the quality of the feature reduction technique is an

important factor given its influence over the accuracy rate of the classification

algorithm.

We use the classification and regression tree (CART) [57] as the feature

reduction technique. The decision tree generated by the CART algorithm has

two kinds of nodes, namely: leaf nodes without children and internal nodes with

two children. Internal nodes are associated with a decision function to identify

the node that shall be visited next. To begin building the tree, training samples

along with their class labels are required. During the designing of the tree, the

training set is divided recursively into smaller subsets. Through the distribution

of the classes that are within the training set, a decision matrix is created. Based

on the following matrix, each obtained node would be provided with a labeled

class. Internal node testing is created using measurement for impurity. It is

created for selecting threshold values and features. A known measurement of

impurity for CART is the entropy impurity, and is mathematically represented

below:

Entropy(s) = −
k∑
i=1

P (
i

s
) log2 P (

i

s
) (1)

In the above equation, Entropy(s) denotes the entropy value at s, p(is) is

the relatively distribution of class i at s, and k denotes the number of classes.

The optimal splitting value for (s) is selected from a splitting value group (y);

thus, the highest impurity is the impurity difference between nodes of root and

10

children. The equation is as follows:

4E(y, s) = E(s)− (PLE(SL) + (PRE(SR)) (2)

In the above equation, 4 E(y, t) denotes the the impurity drop, E(SL) and

E(SR) are the nodes of the right and left branches impurities, and PL and PR

are the probability of input to be in the right (SR) or left (SL) child nodes.

Table 2 describes the significance of features chosen by the CART approach,

where features F34, F35, F36, F37, F26, F27, F6, F8, F31, F32, F33, F9, F15,

F19, F20, F25, F1, F2, F3, F7, F6, and F43 can be used for distinguishing

between malicious and legitimate connections, and features F13, F14, F16, F17,

F18, F21, F4, F5, F10, F11, F12, F24, F22, F41, F23, F30, F29, F38, F39, F28,

F40, and F42 cannot be used to distinguish between malicious and legitimate

connections. The feature selection process is carried out based on the input

samples’ contributions, and the feature’s significance is determined based on

each input sample’s role. For instance, it may be a surrogate or a primary

splitter. Surrogate splitters serve as backup rules that simulate the main rules

splitting process. As for the features that can be used to distinguish between

malicious and legitimate connections, they will be utilized for generating host

features during the feature extraction phase.

Table 2: Feature ranking

Feature Significance Feature Significance Feature Significance

F̃1 0.812 ˜F15 0.718 ˜F32 0.551

F̃2 0.810 ˜F19 0.703 ˜F33 0.531

F̃3 0.787 ˜F20 0.660 ˜F34 0.509

F̃6 0.774 ˜F25 0.619 ˜F35 0.449

F̃7 0.763 ˜F26 0.600 ˜F36 0.371

F̃8 0.754 ˜F27 0.573 ˜F37 0.286

F̃9 0.743 ˜F31 0.566 ˜F43 0.194

11

3.2.3. Host feature extraction at network level

Table 3 shows the 16 host features collected using the proposed approach.

The approach is based on the following three observations. First, bot infected

hosts share particular malicious behavior, and the features differ from those of

a normal host [58]. Second, the Bot’s behavior during propagation repeats itself

in a frequent manner since it is attempting to infect multiple hosts [10, 59].

Third, a software program generates the Bot connections [60].

For the feature extraction phase, it may start immediately in the event that

the packets are transferred between the hosts. To extract the features of a node

in a manner that is more accurate, we need to collect sufficient network traffic;

otherwise, feature extraction is not going to be sufficiently robust. Thus, the

hosts’ behavior in the proposed approach is observed by analyzing their traffic

packets during the sliding window time. This allows us to obtain the required

number of packets. During the feature extraction phase, each network host has

a distinctive feature record. After that, the host feature record can then be

used to differentiate between legitimate network traffic and malicious botnet

traffic. This can be achieved using online machine learning techniques, as well

as reinforcement techniques.

12

Table 3: Host features of network traffic

Features Description

F1 Total transmission flows per host in time-window.

F2 Total transmission unique connections per host in time-window.

F3 Total connections try per host in a time-window.

F4 High-severity of dest. port rates in time-window.

F5 The rate of use of unique dest. ports per host in time-window.

F6 The rate of use of unique source ports per host in time-window.

F7 The rate of transmission of unique host connections in time-window.

F8 High-severity of source port rates in time-window.

F9 Failures connections rates per host in a given time interval.

F10 Control packets Entropy rate for connections per host in time-window.

F11 Received Control packets entropy rate for connections per node in time-window.

F12 Transmitted Control packets entropy rates for connections per node in time-window.

F13 The avg. time between host connections.

F14 The avg. time between source inter-arrival control packets.

F15 The avg. length of the connection.

F16 Dispersion index.

Port scanning is the most common activity that precedes a cyber attack, as

well as during various stages of a bot malware lifecycle (e.g. attack and prop-

agation). For instance, during the propagation phase, a bot seeks to discover

and contacting other peer bots within the same network. Thus, analyzing and

monitoring the rate of the connections that are newly established can facilitate

the detection and measurement of any malicious bot behavior. Computer ports

are subdivided into two main classes, namely: low-severity and high-severity

ports. Based on the information issued by the Dshield Organization [61], high-

severity ports include those that are most likely to get scanned. All other ports

are considered as ports of low-severity. Thus, the present study uses the port

scanning method for detecting malicious cyber activities, and features F1 to F8

reflect the scanning behavior.

There are a number of botnet traffic behavior traits, such as bots showing

a connection failure in the network. For example, when a bot connects to the

botnet network, it must find a point of entry that may be a peer host or a C2C

server, in order to deliver information about its current situation and receive

13

new instruction(s). Consequently, if any peer attempts to create a connection

with those hosts, it may lead to a connection failure. The feature of connection

failure (F9) that is based on the TCP connection shall be labeled as failed, in

the event that the three-step handshake is not complete [62].

The number of control packets for legitimate network traffic is observed to

have higher diversity in comparison to bot connection traffic. This is because

users may use applications that have very different behavior for control packets.

Thus, we do not expect to find trends in the frequency of the control packet.

However, during the peer discovery stage, bots will attempt to contact other

botnet peers, and hence that is a repeat onnection behavior. Such a behavior

trait is telling, and we can use an entropy algorithm [63] to measure the random-

ness or amount of entropy that is within the control packet variation per host.

The latter can then be used to model the control packets number connected to

the node as a discrete symbol. High entropy implies a legitimate connection,

and a low entropy may suggest a botnet connection. Therefore, further inves-

tigation is required. The entropy of the frequency of the control packet per

host (F10 to F12) is estimated through a group Cp = [c1, c2,cn], where ci

refers to the number of control packets per connection. This is mathematically

expressed as follows:

E(t) = −
n∑
i

ci log ci (3)

Features F13 to F15 are related to the network host inter-arrival control

packets. The time of inter-arrival packet refers to the time needed for creating

and transferring data to the transport layer by the application [64]. This time

is calculated by gathering the time from two consecutive packets in the same

connection. The focus of the proposed technique is the host features, which are

estimated at the network. The target of the proposed technique is represented in

detecting an infected machine. The focus of the proposed approach is, therefore,

on the time between the packets from the host.

For feature F16, we use the index of dispersion for counts (IDC) to measure

14

the probability distribution dispersion for the packets sent by the host. Gusella

[65] emphasize on the significance of applying the latter index in the identifica-

tion of packet variability. This index is used to quantify whether an observed

group is dispersed or clustered with a standard statistic model. IDC refers to

the variance (σ)-to-mean (µ) ratio, as expressed below:

IDC =
σ2

µ
(4)

3.3. Malicious activity detection

Malicious activity detection includes an offline stage (training), an online

detection stage, and a reinforcement-learning stage. In the first stage, the clas-

sifier is provided with a group of legitimate and bot feature vectors for the

purpose of training. When the training ends, newly extracted features are up-

loaded in order to classify the hosts’ activities within the network as legitimate

or malicious.

A neural network is utilized to serve as a detector to identify malicious activ-

ity(ies), since the network has robust capabilities for non-linear system control

and identification. That is attributed to an inherent capability of approximat-

ing an arbitrary nonlinear problem [66, 67, 68]. The resilient back-propagation-

learning algorithm is used for neural network training, in order to reduce the

negative impacts of the fractional derivatives’ volume. The derivative is used

merely for locating the weighted update’s trend. As for the derivative’s volume,

it does not have any negative role in the weight updating process. The size of

the weight change can be identified using the formula listed below [69]:

4w(t)
ij =

−4ij(t), if ∂E(t)

∂wij
> 0

−4ij(t), if ∂E(t)
∂wij

< 0

0, else

(5)

In the above equation, 4ij(t) refers to the change in weight between the

hidden and input layers that are within the current iteration (t). ∂E(t)
∂wij

refers to

15

the partial derivative of each weight. After having the weights calculated, the

newly updated weight value shall be set. That is performed using the formula

listed below:

4(t)
ij =

η+ · 4ij(t), if ∂E(t−1)

∂wij
· ∂E(t)
∂wij

> 0

η− · 4ij(t), if ∂E(t−1)
∂wij

· ∂E(t)
∂wij

< 0

4(t− 1), else

(6)

4(t)
ij refers to the updated value of the current iteration t, and η+ refers to

the positive step value (usually 1.2). As for η−, it refers to the negative step

value (usually 0.5 [69]). The neural network classifier used in this study includes

16 inputs and 2 output parameters. In order to avoid over-fitting by employing

several hidden layers, we use the technique described in [70] to decide on the

number of hidden layers neurons.

From Figure 2, one can observe during the offline stage, a group of identified

malicious and legitimate attribute vectors is added to the classifier. This is

done for training our detector in order to classify the host behaviors on the

network as either malicious or legitimate. In order to ensure that quality of the

learned neural network agent, a cross–validation technique is used to estimate

the classifiers’ error rate. Through cross-validation, the dataset can be randomly

partitioned into several N samples, where evaluations are run for N iterations.

At each iteration, N − 1 samples can be chosen to train the model. As for the

last fold of samples, it shall be applied for evaluating the classifier’ accuracy.

16

Figure 2: Off-line Phase

In the online detection stage, the agent (trained neural network) will con-

tinuously classify the host within the network. Then, the agent sends a report

to the network administrator about the activities of the hosts. In addition, as

observed in Figure 3, the reinforcement learning agent simultaneously operates

to extract new features that shall participate in improving the performance level

of the detection agent in the future.

Figure 3: On-line Phase

3.4. Bot detection using reinforcement learning

Reinforcement learning (RL) techniques are widely used to handle problems

that involve difficulty in determining the solution explicitly, provided that it is

probable to generate the signals of reward [71, 72]. This applies in our botnet

17

detection problem. Specifically, the RL ‘obstacle’ is expressed in the partially

observable markov decision process (POMDP) context. POMDPs are usually

employed for representing dynamic systems, which include the systems used for

the detection of botnet.

A POMDP is a group of states (S), which characterizes the status of the

neural network agent (NNSt), controller agent (AGSt), and host (HSt) states.

(NNAt) denotes the actions of agent at time t, and the agent of neural networks

selects actions using π policy. NNπ (HSt, A) denotes the possibility of having

the agent selecting action A when the host is in the state (HSt). R(AGSt)

represent the estimation of reward function (TSt) denotes the transition function

of the controller agent system.

The Markovian transition function defines the system’s dynamics. It also

generates the possibility T (AGSt, NNAt, AGSt+1) of transitioning into an agent

state AGSt+1 after action NNAt is taken in state AGSt. The reward function

shall assign the new host’s state (HSt) number, and the overall amount of the

system’s host states shall be processed as a numeric value to agent state (AGSt).

At any time, the POMDP can be representing the system’s state. When

the action is chosen by the neural network agent (NNAt), the controller agent

rewards and the host state value shall be estimated. After that, based on the

collected reward’s size, the controller agent’s transition function (TSt) changes

the neural network agent, and thus resulting in a new state NNSt+1. In our

context, the detection of a P2P bot is expressed as an RL problem. That

includes a selection for the action space, reward, value state, and transition

functions.

In the action space, after having the action space defined, the host on the

network at each time-window is provided with the possibility of being a bot or

legitimate node. Then, the RL agent shall take that possibility into account.

This is also done for estimating the state’s reward.

In the agent reward function, at any time step, the reward signal is equivalent

to the quantity of the new states that are processed by the hostswithin the

network via the time-window. The signal of reward calculates the importance

18

of the new state, by utilizing the value of state function in several time-windows.

In our context, the new state may be a bot or a legitimate node.

In the value state function, all the (H) nodes within the network have several

states based on the use mode. As for the function of the value state, it represents

the prospect reward of each host (HSt), according to the policy NNπ. In every

time-window, the output of the neural network for every host state is split into

two sub-states of probabilities. These sub-states are legitimate E(L) and mali-

cious E(M). Thus, the output of each host state is expressed as (E.M(HSt)) or

(E.L(HSt)), and the formula below identifies the value state function evaluation

for legitimate and bot hosts and controller agent.

• Assessment the value of state function for bot hosts:

EV π(H(M)) =

∑n
i=0E(Mst(i))

n
(7)

EV π(H(M)) denotes the percent of bot activity expected for the host

in n time-windows, and E(Mst(i)) is the possibility of malicious activity

results using the policy of the existing neural network.

• Assessment the value of state function for legitimate hosts:

EV π(H(L)) =

∑n
i=0E(Nst(i))

n
(8)

EV π(H(L)) denotes the expected percent of host’s legitimate activity in n

time-windows, and E(Lst(i)) is the possibility of legitimate activity results

based on the policy of the existing neural network.

• Assessment of controller state value agent function:

V (s) = V (s)+

 V (Mst) = argmax(M(Actions)) EV π(H(M)st) > EV π(H(L)st)

V (Lst) = argmax(L(Actions)) EV π(H(M)st) < EV π(H(L)st)

(9)

19

In the above equation, V (s) denotes the calculated states which obtain the

highest reward using the existing neural network agent policy NNπ.

Finally, for the function of transition, all techniques in the RL domain re-

quire the implementation of a policy that guarantees that a balance is achieved

between exploitation and exploration. The problem lies in identifying the way

to find an effective policy for action-selection. This policy should be based on

sufficient exploitation and exploration data.

In our context, we attempt to find an effective method in order to strike

a balance between exploitation and exploration. Thus, a directed exploration

approach is adopted, which allows us to explore the state and action as much

as possible before shifting to another approach.

The most straightforward directed exploration method is a greedy technique.

In any host state, the state that shows the highest exposure of probability

value shall be selected. In addition, after implementing the explorative strategy,

several steps are followed, in order to identify the hidden goals. In case the target

is a novel state to the system, the system can simply shift from exploration to

exploitation.

The function of the transition is expressed below:

Tst =

∑
newV (s)∑
V (s)

>= θ (10)

In the above equation, TSt denotes the rate of exploring newstateV (s) to

the whole of the state V (s). Therefore, TSt depends on the analyzed network

traffic volume. The adaptable threshold (θ) is set by the network admin. It is

set based on the desired degree of network protection. For example, in sensitive

networks, θ is very short. A low θ value also indicates that there is a high

learning rate. Table 4 summarizes the RL system parameter and symbols.

20

Table 4: RL parameters and symbols

RL symbol Description

S Current state of environment.

A Agent Action.

π Action policy.

θ Threshold transition value.

HSt Host state at time (t).

NNSt State of the neural network agent at time (t).

NNAt Actions of agent at time (t).

NNπ The policy of neural network.

AGSt Controller agent state at time (t).

R(AGSt) Represent the estimation of reward function at current state and time (t).

TSt Represents the transition function of the controller agent system.

V (s) The value of state s, using the current neural network agent policy NNπ .

NNπ(HSt;A) Represents the possibility for the agent to selected action A when the host

is in the state (HSt).

EV π(H(L)) Represents the probability rate of a legitimate behavior using the current

neural network agent policy.

EV π(H(M)) Represents the probability rate of a malicious behavior using the current

neural network agent policy.

Algorithm 1 describes our proposed system. First, it extracts a new behav-

ior from the environment. After that, it decides on the action to take, on the

basis of the present policy of the neural network. As for vector V , it is employed

to gather observation for each new states and actions. Whenever the agent col-

lects a sufficient number of new states, it moves to the state of exploitation.

This is done in order to utilize those states. At last, the main control agent

assesses the new neural network agent’s performance.

21

Algorithm 1: Bot detection using RL technique

Input: Host state (neural network outcomes).

Output: New updated neural network

1 V(s) = 0.; Tst = 0.;All Dataset = RefDataset.;Temp Dataset = 0.

2 Read the environment observation(state(St)).

3 Perfrom action NNπ(A|(St, St+1)).

4 Extract the reward (R).

5 Estimate the probability of a Bot node:

EV π(H(M)) =
∑n
i=0 E(Mst(i))

n .

6 Estimate the probability of a legitimate node:

EV π(H(L)) = 1− EV π(H(M)).

7 Extract the state with highest expected reward:

V (s) = V (s) + V (Mst) = argmax(M(Actions)) EV π(H(M)st) > EV π(H(L)st)

V (Lst) = argmax(L(Actions)) EV π(H(M)st) < EV π(H(L)st)

8 Estimate the amount of expected reward:

Tst =
∑
newV (s)∑
V (s)

9 if (Tst ≥ θ) then

10 Temp Dataset = Temp Dataset + V (s).

11 Reset V (s).

12 (NNπ2): Creation and evaluation:

• Create a new Neural Network NNπ2 using Temp Dataset.

• Evaluate the performance of NNπ2 using cross-validation techniques.

• Evaluate the performance of NNπ2.

if (NNπ2 pass the validation test) then

• NNπ = NNπ2.

• All Dataset = All Dataset + Temp Dataset.

• Reset Temp Dataset.

• goto to Step 2

else
goto Step 1.

13 else

14 goto Step 2.

22

The proposed approach’s key advantage is that the approach sticks to a

specific strategy for a certain period. It will not end up taking 1-step in the di-

rection of exploratory nor 1-step in the other direction. Management of the rate

of learning (exploring) a new behavior (state) depends on the network traffic’s

state. In comparison with low network traffic, if there is a significant volume

of network traffic, the controller agent gains numerous new states. After set-

ting the most useful amount of reward by the system, the system shifts to the

exploitative strategy. This is done by creating a new dataset, by combining

new extracted states with the old dataset. The new dataset is then used for

training. First, a cross-valuation technique is adopted for assessing the perfor-

mance of a new neural network (NN) agent. It is also adopted for assessing

the performance evaluation matrices, namely: Matthews correlation coefficient

(MCC), accuracy(ACC), area under the ROC(AUC), and root means square

error (RMSE). Second, the new NN agent is assessed usingthe old reference

dataset (action and state), in terms of AUC, MCC, ACC and RMSE. Third,

in case the system has the assessment test, the system’s primary controller will

replace the detection agent with a new one (NN agent). However, when the new

NN agent has a low achievement level, the system shall retain the current NN

agent. It shall also reset the action and new state buffer.

In summary, the system contains three NN agents. In the first NN, the

reference dataset is utilized to train the first initial agents. The second neural

network is established through the use of newly extracted features (states) from

the environment. Finally, the best configuration of the neural network that

passes the assessment process is utilized in the detection phase.

4. Experimental evaluation and results

4.1. Datasets and Tools

We use three primary datasets to evaluate the proposed system, which in-

clude non-malicious and malicious traffic – see Table 5. The first dataset is the

information security and object technology (ISOT) dataset [73], which includes

23

Storm Bot, Waledac Bot, and non-malicious traffic. The second dataset includes

four legitimate for P2P applications (i.e. Vuze, uTorrent, Frostwire, and eMule),

and the traffic of three P2P Botnets (i.e. Zeus, Storm and Waledac) [32]. The

third dataset is in the Information Security Centre of Excellence (ISCX) dataset

[74], which contains legitimate network traffic.

Table 5: Datasets

Group Traffic source Purpose Duration packets number

G1 Strom Bot [73] Training 3115 seconds 128241

G2 Waledac Bot [73] Training 605 seconds 118379

G3 Normal traffic [73] Training 126273 sec-

onds

564999

G4 eMule - [32] Training/Testing 24 hours 6736353

G5 uTorrent - [32] Training/Testing 24 hours 6278385

G6 Vuze - [32] Training/Testing 24 hours 11732688

G7 FrostWire - [32] Training/Testing 24 hours 4429535

G8 Normal traffic – [74] Testing 24 hours 3776931

G9 Strom Bot traffic - [32] Testing/(Zero-

Day attacks)

24 hours 4251875

G10 Waledac Bot traffic -

[32]

Testing/(Zero-

Day attacks)

24 hours 12915757

G11 Zeus Bot traffic - [32] Testing/(Zero-

Day attacks)

24 hours 114548

The experiments are carried on an Intel Xeonprocessor with a six-core mon-

ster clocked at 2.1GHz (with a 2.6GHz Turbo) and 64 GB RAM, and the pro-

posed approach is implemented using Matlab 2018b. Table 6 summarizes the

tools used in the experiments.

24

Table 6: Experimental Tools.

Name Description Version

Jpcap [49]. Java library for capturing and sending net-

work packets.

0.7

Tcpreplay [75]. Replays Pcap files onto the network 3.4.4

4.2. Setup

An experimental dataset is created for evaluating the approach’s capability

in the online detection of a new bot infection. In order to simulate a realis-

tic network traffic condition, a testbed is constructed for replaying malicious

botnet traffic, P2P application traffic, and normal daily activity traffic, using

TcpReplay. Then, the JPCAP tool is used to capture the replayed network

traffic.

The setup comprises the following five steps:

(1) Replaying the entire legitimate and malicious trace files, and capturing pack-

ets through the use of different time-window sizes.

(2) Reducing network traffic through the use of the proposed network traffic

reduction method.

(3) Extracting vectors of feature for hosts while capturing of packets.

(4) Obtaining the classification results through the use of the testing sets and

the prepared training, by adopting the proposed technique.

(5) Identifying the size of time-window that provides higher levels of detection

performance and stability during the online and offline stages.

Due to the significant volume of network packets to be analyzed, network

traffic is divided into time-windows. In addition, time-window is required for

delivering the results to the admin of network on a timely basis. The use of time-

window shorter than 10 seconds is avoided due to having few captured packets

that are incapable of showing the characteristics of the traffic behavior. We also

avoid using time window greater than 60 seconds, so that we can detect the bot

25

as early as possible. Bots can generate a temporal behavior after the infection

phase [50]. Thus, such a behavior is leveraged to acquire the requisite bot

behaviors in the time-window. Hence, in this paper, we begin with a ten seconds

time-window, which is incremented gradually. This allows us to determine an

optimal performance level. Additionally, 10% of the time-window size is used

to slide between time-windows to quickly detect any malicious activity, rather

than idling for the entire next window.

In order to assess the proposed system’s performance level, the following

metrics need to be computed:

• True positive (TP): The number of bot samples labeled as malicious.

• True negative (TN): The number of normal samples labeled as legitimate.

• False positive (FP): The number of normal samples labeled as malicious.

• False negative (FN): The number of bot samples labeled as legitimate.

The false positive rate (FPR) denotes the rate of legitimate samples that

are misclassified as botnet samples, and is mathematically expressed as follows:

FPR =

∑
FP

TN + FP
(11)

The detection rate (DR) is mathematically expressed as follows:

DR =
TP

TP + FN
(12)

Accuracy (ACC) is the rate where samples are correctly classified, and is

mathematically expressed as follows:

ACC =
TP + TN

TN + TP + FN + FP
(13)

Precision is the rate where bot samples correctly classified, and is mathe-

matically expressed as follows:

Precision =
TP

TP + FP
(14)

26

The F −measure is used to measure the accuracy level of the test, and both

recall and precision of the test are taken into consideration when calculating the

score, as shown below:

F −measure =
2× Precision×Recall
Precision+Recall

(15)

The root mean square error (RMSE) is the difference between the actual

value estimated by the method of detection and the target value, and is math-

ematically expressed as follows:

RMSE =

√√√√ N∑
i=1

(yi− ti)2

N
(16)

In the above equation, N denotes the number of input samples, and yi

denotes the model’s actual output. RMSE = 0 indicates that the model’s

output matches the targets.

The non-dimensional error index NDEI is applied to evaluate the quality

of prediction, and is mathematically expressed as follows [76]:

NDEI =
RMSE

Std(ti)
(17)

The Matthews correlation coefficient (MCC) is adopted to estimate classifier

efficiency in the event of an imbalanced dataset [77], and is mathematically

expressed as follows:

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(18)

The receiver operating characteristic (ROC) is a graphical representation,

which shows the binary classifier efficiency. The x-axis represents the FPR, and

the y-axis represents the TPR. The area under the ROC (AUC) denotes the

performance of the classifier [78]. In addition, the AUC is generally considered

a much more robust estimator of the classifier’s performance level [79].

27

4.3. Network traffic reduction evaluation

Our proposed network traffic reduction algorithm is designed to minimize

the volume of network traffic that needs to be examined in our system. In

flow-based detection schemes, such as those of [32, 41, 80, 19], every packet is

analyzed. However, we argue that this is not realistic to be implemented in real-

time high-speed network. As shown in Table 7, the network traffic reduction

algorithm can decrease the normal traffic by an average of over 50%.

Table 7: Packets reduction rates

Group # control packets traffic reduction

rate

G1 64551 0.5033

G2 69936 0.5907

G3 226308 0.4005

G4 2780725 0.4127

G5 4237135 0.6748

G6 741677 0.6321

G7 2406066 0.5431

G8 1686962 0.4466

G9 1169900 0.2751

G10 9395310 0.7274

G11 59255 0.5172

The rates of control packets derived from each rule of traffic reduction tech-

nique are presented in Table 8. We also remarked that several detection systems

proposed in the literature have good detection rates [81, 82, 18, 20, 21]. However,

these approaches are not designed for large networks, partly due to their reliance

on DPI techniques [83]. For instance, BotHunter [81] employs a signature-based

detection engine and payload-based anomaly detector. Rishi [82] and BotSnif-

fer [18] require the parsing of IRC communication content. TAMD [21] inspects

the payloads of packets, with the aim of estimating similarities between content.

28

Our proposed network traffic reduction approach, however, focuses only on a

small portion of the TCP packets that are utilized in connection initialization.

Table 8: Network packet reduction rates based on rules

Group R(1) R(2) R(3) R(4) R(5) R(6)

G1 34.70% 7.00% 13.00% 8.70% 16.70% 20.00%

G2 30.00% 11.20% 8.80% 6.70% 21.30% 22.00%

G3 22.50% 25.80% 20.50% 17.80% 8.30% 5.00%

G4 20.0% 26.70% 15.80% 17.50% 13.30% 6.70%

G5 26.70% 22.20% 22.80% 10.70% 7.70% 10.00%

G6 25.00% 21.30% 18.30% 18.20% 5.20% 12.00%

G7 26.70% 19.30% 24.00% 15.00% 8.50% 6.50%

G8 23.80% 20.00% 19.0% 22.70% 6.70% 7.80%

G9 29.80% 8.20% 8.50% 8.80% 22.80% 21.80%

G10 29.00% 15.00% 6.00% 8.00% 17.00% 25.00%

G11 30.20% 7.70% 4.00% 9.80% 20.50% 27.80%

Table 9 presents a comparative summary for the performance of our detec-

tion approach with other competing approaches [32, 41, 80, 19, 84].

Table 9: Comparison of network traffic reduction rates

Method Traffic Reduc-

tion

TPR FPR

PeerRush [32] None 99.10% 0.10%

Zhao et al. [41] None 98.10% 2.10%

Timothy et al. [80] None 92.0% 11.0-15.0%

Gu et al. [19] None 1.0% 0-6%

Wang et al. [84] >70.0% 95.0% 0-3.0%

Proposed approach (40.0-70.0)% 99.10% 0.010%

29

4.4. Host feature evaluations

Table 3 presents the host features of network traffic, and Min-Max normal-

ization [85] is used to calculate the normalized average value of each feature.

Y ′ =
Y i− Y min

Y max− Y min
(19)

In the above equation, Y ′ is the normalized value of Y i, Y min is the vector

of the minimum feature value, and Y max refers to the vector of the maximum

feature value.

Figure 4 presents the average normalization value distribution for each fea-

ture. We observe that the distribution of normal host traffic and bot host traffic.

For example, as illustrated in Figure 4 and explained in Section 3.2.3, features

F12, F15, F5, F10 and F16 are considered to be discriminate features that

facilitate botnet detection.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Features

A
ve

ra
ge

 n
or

m
al

is
ed

 v
al

ue
s

Bot host
Normal host

Figure 4: Normalized feature comparison

Figure 5 presents a variation between bot and legitimate network flows,

based on the total number of control packets’ entropy rates per host. The figure

indicates that the entropy rates for the legitimate host are within the range of

30

0 to 5, while these rates are below 0.5 for a bot host traffic. The difference in

entropy rates between a bot and legitimate hosts is attributed to the presence

of the bot due to the regularity in the count of control packets per flows. As

for the legitimate host flows, it shows that there is diversity and irregularity in

the control packet count per flows. As a result, the legitimate hosts show an

entropy value that is high, whereas the bot shows an entropy value that is low.

0 200 400 600 800 1000
0

1

2

3

4

5

6

samples

E
nt

ro
py

 o
f

to
ta

l c
on

tr
ol

 p
ac

ke
ts

 c
ou

nt

Normal host connection

0 200 400 600 800 1000
0

1

2

3

4

5

6

samples

E
nt

ro
py

 o
f

to
ta

l c
on

tr
ol

 p
ac

ke
ts

 c
ou

nt

Bot host connection

Figure 5: Control-packets Entropy rates

4.5. Evaluation of offline phase

Figures 6 and 7 present the result of assessing the trained agent dur-

ing the offline phase of the proposed approach, where the x-axis is the size of

time-window applied for phases of the feature extraction. Based on the 60 sec-

onds time–window, the proposed approach outperforms the other approaches,

in terms of detection, accuracy and F-measure rates (i.e. 99.0%, 98.30% and

98.90%, respectively). Furthermore, the lowest FPR has a 60 seconds time-

window size. In the meantime, a 10 seconds time frame shows the lowest per-

formance – see Figure 6.

31

Figure 6: Offline phase evaluation(ACC,DR,F-measure and FPR)

Figure 7 presents the AUC, MCC, RMSE and NDEI of the bot detection

system, based on different time-window sizes. We observe thatMCC and AUC

rates are the highest rates, respectively at 95.60% and 99.10% based on the 60

seconds time-window.

Figure 7: Offline phase evaluation (AUC, MCC, RMSE and NDEI)

We also observe that the 60 seconds time-window has good performance

with good result stability, due to the small time-window size. In addition, bots

generate a temporal behavior after the phase of infection [50]. Thus, 60 seconds

are appropriate for capturing the network traffic that can be used to facilitate

accurate classification. As shown in Figures 6 and 7, the proposed approach

can detect P2P bots with a high accuracy rate (associated with a low FPR).

We emphasized that these results are obtained using only the training dataset,

and the focus of the offline stage is to prepare the classification agent for online

work.

32

4.6. Evaluation of Online Bot Host Detection Approach

We will now describe the findings of the proposed approach on the test

dataset (Zero-day attack) – see Figures 8 and 9 present the overall results

gained from the online experimental result analysis. As observed, the proposed

approach uses an online evaluation and has the highest F-measure, accuracy,

and detection rates respectively at 98.80%, 98.30% and 97.90%, based on a

time-window size of 60 seconds. The 10 seconds time-window size yields the

least desirable performance.

Figure 8: Online phase evaluation (ACC,DR,F-measure and FPR)

As observed from Figure 9, the MCC and AUC rates are 97.6% and 99.96%

respectively. Thus, these experimental results show that the performance of

our proposed online detection system is capable of handling imbalanced dataset

in the 60 seconds time-window. Furthermore, RMSE and NDEI are also used

evaluated, and clearly at the 60 seconds time-window size, both RMSE and

NDEI achieve 0.093 and 0.187% respectively.

33

Figure 9: Online phase evaluation (AUC, MCC, RMSE and NDEI)

It is clear from Figures 9 and 9 that the proposed method has a good

performance result at the time-window size of 60 seconds. Also, to evaluate

the performance of our proposed approach, we examine the ROC curve – see

Figure 10. Again, the 60 seconds time-window size has the highest rates for

the classification of legitimate and bot traffic respectively at 0.991 and 0.98.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

o
si

ti
v

e
R

a
te

ROC - Legitimate Traffic

AUC(10s) = 0.9628

AUC(30s) = 0.9771

AUC(60s) = 0.9896

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

o
si

ti
v

e
R

a
te

ROC - Botnet Traffic

AUC(10s) = 0.9625

AUC(30s) = 0.9868

AUC(60s) = 0.9916

Figure 10: ROC comparison

4.7. New botnet detection

To assess the performance of the proposed approach in detecting novel types

of P2P bots, a sample was selected. The sample consists of Storm, Zeus, and

34

Waledac. As shown in Figure 11, the proposed approach is effective in detecting

new P2P bots. In Figure 11(A), for example, the rates of detecting Zeus Bot

is lower than those of Waledac and Storm Bots at the 60 seconds time-window

size (i.e. 93.8%, 98.2% and 96.83%, respectively). This is because we use both

Storm and Waledac for the testing and training dataset.

As observed in Figure 11 (B), our proposed approach has low FPRs for

Zeus, Storm and Waledac of 0.04%, 0.07% and 0.09% respectively, at the 60

seconds time-window size.

10 20 30 40 50 60
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Time Window Size

D
et

ec
ti

o
n

 r
a

te

Storm Bot

Waledac Bot

Zeus Bot

10 20 30 40 50 60

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Time Window Size

F
a

ls
e

p
o

si
ti

v
e

ra
te

 (
F

P
R

)

Storm Bot

Waledac Bot

Zeus Bot

(A) (B)

Figure 11: New botnet detection

A comparative summary of evaluating the proposed approach’s performance

with two other P2P botnet detection approaches [32, 41] is presented in Table

10. We use the dataset used by Zhao et al. [41] during the offline state, and

the dataset used by Babak et al. [32] during the online state. We observe that

the FPR and bot detection rates using our proposed approach are considerably

better than those of the competing approaches.

Table 10: Performance evaluation: A comparative summary

35

Methods FPR DR Network packet re-

duction rates

PeerRush [32] 0.10% 99.50% 0.0%

D Zhao et al. [41] 2.10% 98.10% 0.0%

Proposed online

method

0.012% 98.30% (40-70)%

Proposed offline

method

0.01% 99.10% (40-70)%

5. Conclusion and future work

Botnets remain an ongoing threat in today’s networked society, and as bot

malware evolves so do the mitigation strategies. Our proposed approach uses

both reinforcement learning and our traffic reduction method. One key con-

tribution of the proposed approach is the network traffic reduction technique,

since we are able to reduce the input packets by about 50%. We demonstrate in

the preceding section that our proposed approach has a detection rate of 98.30%

and a low FPR of 0.010% at the 60 seconds time-window size. The bottleneck

of bot detection using neural network is associated with the size and dimen-

sionality of the dataset, as the number of the packets that require scanning is

significant. This is where our proposed network traffic reduction approach plays

a key role. The use of such an approach can reduce the training time required,

and also increase the learning rate of newly extracted features in the online

system. In addition, the proposed bot detection approach is shown to achieve

good accuracy rate and is able to detect new bots.

However, there remains a number of challenges that need to be addressed.

For example, bot masters will continue to explore ways of circumventing detec-

tion by existing approaches, for example using rootkits. In addition, botnets

change dynamically through updates, and hence their operations may change

after several life cycle stages. These characteristics are also known as the drift-

ing concept [86]. Hence, the proposed approach adopts the idea of reinforcement

36

learning for dynamically improving the system throughout time. However, this

is a rat race between future bot malware designers and botnet detection solution

designers. Hence, there is a need to continue this line of research.

References

[1] S. Yu, Y. Tian, S. Guo, D. O. Wu, Can we beat ddos attacks in clouds?,

IEEE Transactions on Parallel and Distributed Systems 25 (9) (2014) 2245–

2254. doi:10.1109/TPDS.2013.181.

[2] S. Yu, W. Zhou, W. Jia, S. Guo, Y. Xiang, F. Tang, Discriminating

ddos attacks from flash crowds using flow correlation coefficient, IEEE

Transactions on Parallel and Distributed Systems 23 (6) (2012) 1073–1080.

doi:10.1109/TPDS.2011.262.

[3] M. Alkasassbeh, M. Almseidin, Machine learning methods for network in-

trusion detection, CoRR abs/1809.02610.

[4] M. Almseidin, M. Alzubi, S. Kovacs, M. Alkasassbeh, Evaluation of ma-

chine learning algorithms for intrusion detection system, in: 2017 IEEE

15th International Symposium on Intelligent Systems and Informatics

(SISY), 2017, pp. 000277–000282. doi:10.1109/SISY.2017.8080566.

[5] S. S. Silva, R. M. Silva, R. C. Pinto, R. M. Salles, Botnets: A survey,

Computer Networks 57 (2) (2013) 378–403.

[6] W. Lu, G. Rammidi, A. A. Ghorbani, Clustering botnet communication

traffic based on n-gram feature selection, Computer Communications

34 (3) (2011) 502–514. doi:http://dx.doi.org/10.1016/j.comcom.

2010.04.007.

URL http://www.sciencedirect.com/science/article/pii/

S0140366410001751

[7] A. Castiglione, R. D. Prisco, A. D. Santis, U. Fiore, F. Palmieri, A

botnet-based command and control approach relying on swarm intelli-

37

http://dx.doi.org/10.1109/TPDS.2013.181
http://dx.doi.org/10.1109/TPDS.2011.262
http://dx.doi.org/10.1109/SISY.2017.8080566
http://www.sciencedirect.com/science/article/pii/S0140366410001751
http://www.sciencedirect.com/science/article/pii/S0140366410001751
http://dx.doi.org/http://dx.doi.org/10.1016/j.comcom.2010.04.007
http://dx.doi.org/http://dx.doi.org/10.1016/j.comcom.2010.04.007
http://www.sciencedirect.com/science/article/pii/S0140366410001751
http://www.sciencedirect.com/science/article/pii/S0140366410001751
http://www.sciencedirect.com/science/article/pii/S1084804513001161
http://www.sciencedirect.com/science/article/pii/S1084804513001161
http://www.sciencedirect.com/science/article/pii/S1084804513001161

gence, Journal of Network and Computer Applications 38 (2014) 22 – 33.

doi:https://doi.org/10.1016/j.jnca.2013.05.002.

URL http://www.sciencedirect.com/science/article/pii/

S1084804513001161

[8] K.-S. Han, E. Im, A Survey on P2P Botnet Detection, Vol. 120 of Lec-

ture Notes in Electrical Engineering, Springer Netherlands, 2012, book

section 56, pp. 589–593. doi:10.1007/978-94-007-2911-7_56.

URL http://dx.doi.org/10.1007/978-94-007-2911-7_56

[9] C. Ludl, S. McAllister, E. Kirda, C. Kruegel, On the Effectiveness of

Techniques to Detect Phishing Sites, Vol. 4579 of Lecture Notes in Com-

puter Science, Springer Berlin Heidelberg, 2007, book section 2, pp. 20–39.

doi:doi:10.1007/978-3-540-73614-1_2.

URL http://dx.doi.org/10.1007/978-3-540-73614-1_2

[10] J. Felix, C. Joseph, A. Ghorbani, Group Behavior Metrics for P2P Bot-

net Detection, Vol. 7618 of Lecture Notes in Computer Science, Springer

Berlin Heidelberg, 2012, book section 9, pp. 93–104. doi:10.1007/

978-3-642-34129-8_9.

URL http://dx.doi.org/10.1007/978-3-642-34129-8_9

[11] C. Davis, J. Fernandez, S. Neville, Optimising sybil attacks against p2p-

based botnets, in: Malicious and Unwanted Software (MALWARE), 2009

4th International Conference on, 2009, pp. 78–87. doi:10.1109/MALWARE.

2009.5403016.

[12] R. Weaver, Passive and Active Measurement: 11th International Con-

ference, PAM 2010, Zurich, Switzerland, April 7-9, 2010. Proceedings,

Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, Ch. A Probabilis-

tic Population Study of the Conficker-C Botnet, pp. 181–190. doi:

10.1007/978-3-642-12334-4_19.

[13] H. Binsalleeh, T. Ormerod, A. Boukhtouta, P. Sinha, A. Youssef, M. Deb-

babi, L. Wang, On the analysis of the zeus botnet crimeware toolkit, in:

38

http://www.sciencedirect.com/science/article/pii/S1084804513001161
http://www.sciencedirect.com/science/article/pii/S1084804513001161
http://dx.doi.org/https://doi.org/10.1016/j.jnca.2013.05.002
http://www.sciencedirect.com/science/article/pii/S1084804513001161
http://www.sciencedirect.com/science/article/pii/S1084804513001161
http://dx.doi.org/10.1007/978-94-007-2911-7_56
http://dx.doi.org/10.1007/978-94-007-2911-7_56
http://dx.doi.org/10.1007/978-94-007-2911-7_56
http://dx.doi.org/10.1007/978-3-540-73614-1_2
http://dx.doi.org/10.1007/978-3-540-73614-1_2
http://dx.doi.org/doi: 10.1007/978-3-540-73614-1_2
http://dx.doi.org/10.1007/978-3-540-73614-1_2
http://dx.doi.org/10.1007/978-3-642-34129-8_9
http://dx.doi.org/10.1007/978-3-642-34129-8_9
http://dx.doi.org/10.1007/978-3-642-34129-8_9
http://dx.doi.org/10.1007/978-3-642-34129-8_9
http://dx.doi.org/10.1007/978-3-642-34129-8_9
http://dx.doi.org/10.1109/MALWARE.2009.5403016
http://dx.doi.org/10.1109/MALWARE.2009.5403016
http://dx.doi.org/10.1007/978-3-642-12334-4_19
http://dx.doi.org/10.1007/978-3-642-12334-4_19

Eighth Annual International Conference on Privacy Security and Trust

(PST), 2010, pp. 31–38. doi:10.1109/PST.2010.5593240.

[14] T. Holz, M. Steiner, F. Dahl, E. Biersack, F. Freiling, Measurements and

mitigation of peer-to-peer-based botnets: A case study on storm worm,

in: Proceedings of the 1st Usenix Workshop on Large-Scale Exploits and

Emergent Threats, LEET’08, USENIX Association, Berkeley, CA, USA,

2008, pp. 9:1–9:9.

URL http://dl.acm.org/citation.cfm?id=1387709.1387718

[15] C. Li, W. Jiang, X. Zou, Botnet: Survey and case study, in: Fourth In-

ternational Conference on Innovative Computing, Information and Con-

trol (ICICIC) Fourth International Conference on, 2009, pp. 1184–1187.

doi:10.1109/ICICIC.2009.127.

[16] A. Almomani, B. B. Gupta, S. Atawneh, A. Meulenberg, E. Almomani, A

survey of phishing email filtering techniques, IEEE Communications Sur-

veys Tutorials 15 (4) (2013) 2070–2090. doi:10.1109/SURV.2013.030713.

00020.

[17] N. Moustafa, J. Hu, J. Slay, A holistic review of network anomaly

detection systems: A comprehensive survey, Journal of Network

and Computer Applications 128 (2019) 33 – 55. doi:https:

//doi.org/10.1016/j.jnca.2018.12.006.

URL http://www.sciencedirect.com/science/article/pii/

S1084804518303886

[18] G. Gu, J. Zhang, W. Lee, Botsniffer: Detecting botnet command and con-

trol channels in network traffic (2008).

[19] G. Gu, R. Perdisci, J. Zhang, W. Lee, et al., Botminer: Clustering analysis

of network traffic for protocol-and structure-independent botnet detection.,

in: USENIX Security Symposium, Vol. 5, 2008, pp. 139–154.

39

http://dx.doi.org/10.1109/PST.2010.5593240
http://dl.acm.org/citation.cfm?id=1387709.1387718
http://dl.acm.org/citation.cfm?id=1387709.1387718
http://dl.acm.org/citation.cfm?id=1387709.1387718
http://dx.doi.org/10.1109/ICICIC.2009.127
http://dx.doi.org/10.1109/SURV.2013.030713.00020
http://dx.doi.org/10.1109/SURV.2013.030713.00020
http://www.sciencedirect.com/science/article/pii/S1084804518303886
http://www.sciencedirect.com/science/article/pii/S1084804518303886
http://dx.doi.org/https://doi.org/10.1016/j.jnca.2018.12.006
http://dx.doi.org/https://doi.org/10.1016/j.jnca.2018.12.006
http://www.sciencedirect.com/science/article/pii/S1084804518303886
http://www.sciencedirect.com/science/article/pii/S1084804518303886

[20] J. Goebel, T. Holz, Rishi: identify bot contaminated hosts by irc nickname

evaluation (2007).

[21] T.-F. Yen, M. Reiter, Traffic aggregation for malware detection

(2008/01/01 2008). doi:10.1007/978-3-540-70542-0_11.

[22] O. Akinrolabu, I. Agrafiotis, A. Erola, The challenge of detecting sophis-

ticated attacks: Insights from soc analysts, in: Proceedings of the 13th

International Conference on Availability, Reliability and Security, ACM,

2018, p. 55.

[23] H. H. Pajouh, A. Dehghantanha, R. Khayami, K.-K. R. Choo, Intelligent

os x malware threat detection with code inspection, Journal of Computer

Virology and Hacking Techniques 14 (3) (2018) 213–223.

[24] H. Tran, C. Dang, H. Nguyen, P. Vo, T. Vu, Multi-confirmations and dns

graph mining for malicious domain detection, in: Intelligent Computing-

Proceedings of the Computing Conference, Springer, 2019, pp. 639–653.

[25] C. Wu, S. Sheng, X. Dong, Research on visualization systems for ddos

attack detection, in: 2018 IEEE International Conference on Systems, Man,

and Cybernetics (SMC), IEEE, 2018, pp. 2986–2991.

[26] M. Ring, S. Wunderlich, D. Scheuring, D. Landes, A. Hotho, A survey of

network-based intrusion detection data sets, Computers & Security.

[27] M. Singh, M. Singh, S. Kaur, Issues and challenges in dns based botnet

detection: A survey, Computers & Security.

[28] Y. Zhauniarovich, I. Khalil, T. Yu, M. Dacier, A survey on malicious

domains detection through dns data analysis, ACM Computing Surveys

(CSUR) 51 (4) (2018) 67.

[29] M. Feily, A. Shahrestani, S. Ramadass, A survey of botnet and botnet

detection, in: Third International Conference on Emerging Security In-

formation, Systems and Technologies., 2009, pp. 268–273. doi:10.1109/

SECURWARE.2009.48.

40

http://dx.doi.org/10.1007/978-3-540-70542-0_11
http://dx.doi.org/10.1109/SECURWARE.2009.48
http://dx.doi.org/10.1109/SECURWARE.2009.48

[30] H. Zeidanloo, M. Shooshtari, P. Amoli, M. Safari, M. Zamani, A taxonomy

of botnet detection techniques, in: 3rd IEEE International Conference on

Computer Science and Information Technology (ICCSIT), Vol. 2, 2010, pp.

158–162. doi:10.1109/ICCSIT.2010.5563555.

[31] W. Wu, J. Alvarez, C. Liu, H.-M. Sun, Bot detection using unsupervised

machine learning, Microsystem Technologies 24 (1) (2018) 209–217. doi:

10.1007/s00542-016-3237-0.

URL https://doi.org/10.1007/s00542-016-3237-0

[32] R. Babak, P. Roberto, L. Andrea, L. Kang, Peerrush: Mining for unwanted

p2p traffic, Journal of Information Security and Applications 19 (3) (2014)

194–208. doi:http://dx.doi.org/10.1016/j.jisa.2014.03.002.

URL http://www.sciencedirect.com/science/article/pii/

S2214212614000143

[33] D. M. J. Tax, One-class classification, TU Delft, Delft University of Tech-

nology, 2001.

[34] S. Garg, A. Singh, A. Sarje, S. Peddoju, Behaviour analysis of machine

learning algorithms for detecting p2p botnets, in: 15th International Con-

ference on Advanced Computing Technologies (ICACT), 2013, pp. 1–4.

doi:10.1109/ICACT.2013.6710523.

[35] H. Jiang, X. Shao, Detecting p2p botnets by discovering flow dependency

in c&c traffic, Peer-to-Peer Networking and Applications (2012) 1–12doi:

10.1007/s12083-012-0150-x.

URL http://dx.doi.org/10.1007/s12083-012-0150-x

[36] H. Li, G. Hu, Y. Yang, Research on P2P Botnet Network Behaviors

and Modeling, Vol. 307 of Communications in Computer and Informa-

tion Science, Springer Berlin Heidelberg, 2012, book section 12, pp. 82–89.

doi:doi:10.1007/978-3-642-34038-3_12.

URL http://dx.doi.org/10.1007/978-3-642-34038-3_12

41

http://dx.doi.org/10.1109/ICCSIT.2010.5563555
https://doi.org/10.1007/s00542-016-3237-0
https://doi.org/10.1007/s00542-016-3237-0
http://dx.doi.org/10.1007/s00542-016-3237-0
http://dx.doi.org/10.1007/s00542-016-3237-0
https://doi.org/10.1007/s00542-016-3237-0
http://www.sciencedirect.com/science/article/pii/S2214212614000143
http://www.sciencedirect.com/science/article/pii/S2214212614000143
http://dx.doi.org/http://dx.doi.org/10.1016/j.jisa.2014.03.002
http://www.sciencedirect.com/science/article/pii/S2214212614000143
http://www.sciencedirect.com/science/article/pii/S2214212614000143
http://dx.doi.org/10.1109/ICACT.2013.6710523
http://dx.doi.org/10.1007/s12083-012-0150-x
http://dx.doi.org/10.1007/s12083-012-0150-x
http://dx.doi.org/10.1007/s12083-012-0150-x
http://dx.doi.org/10.1007/s12083-012-0150-x
http://dx.doi.org/10.1007/s12083-012-0150-x
http://dx.doi.org/10.1007/978-3-642-34038-3_12
http://dx.doi.org/10.1007/978-3-642-34038-3_12
http://dx.doi.org/doi: 10.1007/978-3-642-34038-3_12
http://dx.doi.org/10.1007/978-3-642-34038-3_12

[37] J. Zhang, R. Perdisci, W. Lee, U. Sarfraz, X. Luo, Detecting stealthy p2p

botnets using statistical traffic fingerprints, in: IEEE/IFIP 41st Interna-

tional Conference on Dependable Systems Networks (DSN), 2011, pp. 121–

132. doi:10.1109/DSN.2011.5958212.

[38] T. Zhang, R. Ramakrishnan, M. Livny, Birch: A new data clustering al-

gorithm and its applications, Data Mining and Knowledge Discovery 1 (2)

(1997) 141–182. doi:10.1023/a:1009783824328.

URL http://dx.doi.org/10.1023/A%3A1009783824328

[39] A. K. Jain, M. N. Murty, P. J. Flynn, Data clustering: A review, ACM

Comput. Surv. 31 (3) (1999) 264–323. doi:10.1145/331499.331504.

URL http://doi.acm.org/10.1145/331499.331504

[40] W.-H. Liao, C.-C. Chang, Peer to peer botnet detection using data mining

scheme, in: International Conference on Internet Technology and Applica-

tions, 2010, pp. 1–4. doi:10.1109/ITAPP.2010.5566407.

[41] D. Zhao, I. Traore, B. Sayed, W. Lu, S. Saad, A. Ghorbani,

D. Garant, Botnet detection based on traffic behavior analysis and

flow intervals, Computers & Security 39, Part A (0) (2013) 2–16.

doi:http://dx.doi.org/10.1016/j.cose.2013.04.007.

URL http://www.sciencedirect.com/science/article/pii/

S0167404813000837

[42] D. il Jang, K. yu Cho, M. Kim, H. chul Jung, B.-N. Noh, Evasion technique

and detection of malicious botnet, in: International Conference for Internet

Technology and Secured Transactions (ICITST), 2010, pp. 1–5.

[43] M. Masud, T. Al-Khateeb, L. Khan, B. Thuraisingham, K. Hamlen,

Flow-based identification of botnet traffic by mining multiple log files, in:

First International Conference on Distributed Framework and Applications,

2008, pp. 200–206. doi:10.1109/ICDFMA.2008.4784437.

42

http://dx.doi.org/10.1109/DSN.2011.5958212
http://dx.doi.org/10.1023/A%3A1009783824328
http://dx.doi.org/10.1023/A%3A1009783824328
http://dx.doi.org/10.1023/a:1009783824328
http://dx.doi.org/10.1023/A%3A1009783824328
http://doi.acm.org/10.1145/331499.331504
http://dx.doi.org/10.1145/331499.331504
http://doi.acm.org/10.1145/331499.331504
http://dx.doi.org/10.1109/ITAPP.2010.5566407
http://www.sciencedirect.com/science/article/pii/S0167404813000837
http://www.sciencedirect.com/science/article/pii/S0167404813000837
http://dx.doi.org/http://dx.doi.org/10.1016/j.cose.2013.04.007
http://www.sciencedirect.com/science/article/pii/S0167404813000837
http://www.sciencedirect.com/science/article/pii/S0167404813000837
http://dx.doi.org/10.1109/ICDFMA.2008.4784437

[44] I. H. Witten, E. Frank, Data Mining: Practical machine learning tools and

techniques, Morgan Kaufmann, 2005.

[45] D. Dittrich, S. Dietrich, P2p as botnet command and control: A deeper

insight, in: 3rd International Conference on Malicious and Unwanted Soft-

ware, 2008, pp. 41–48. doi:10.1109/MALWARE.2008.4690856.

[46] J. B. Grizzard, V. Sharma, C. Nunnery, B. B. Kang, D. Dagon, Peer-to-peer

botnets: overview and case study, in: Proceedings of the first conference

on First Workshop on Hot Topics in Understanding Botnets, USENIX As-

sociation, 2007, pp. 1–1.

[47] K.-S. Han, K.-H. Lim, E.-G. Im, The traffic analysis of p2p-based storm

botnet using honeynet, Journal of the Korea Institute of Information Se-

curity and Cryptology 19 (4) (2009) 51–61.

[48] S.-K. Noh, J.-H. Oh, J.-S. Lee, B.-N. Noh, H.-C. Jeong, Detecting p2p bot-

nets using a multi-phased flow model, in: Third International Conference

on Digital Society, 2009, pp. 247–253. doi:10.1109/ICDS.2009.37.

[49] S. Zihao, W. Hui, Network data packet capture and protocol analysis on

jpcap-based, in: International Conference on Information Management,

Innovation Management and Industrial Engineering, Vol. 3, 2009, pp. 329–

332. doi:10.1109/ICIII.2009.388.

[50] A. Hegna, Visualizing spatial and temporal dynamics of a class of irc-based

botnets.

URL http://ntnu.diva-portal.org/smash/record.jsf?pid=diva2:

353050

[51] M. Alauthaman, N. Aslam, L. Zhang, R. Alasem, M. A. Hossain, A p2p

botnet detection scheme based on decision tree and adaptive multilayer

neural networks, Neural Computing and Applications 29 (11) (2018) 991–

1004. doi:10.1007/s00521-016-2564-5.

URL https://doi.org/10.1007/s00521-016-2564-5

43

http://dx.doi.org/10.1109/MALWARE.2008.4690856
http://dx.doi.org/10.1109/ICDS.2009.37
http://dx.doi.org/10.1109/ICIII.2009.388
http://ntnu.diva-portal.org/smash/record.jsf?pid=diva2:353050
http://ntnu.diva-portal.org/smash/record.jsf?pid=diva2:353050
http://ntnu.diva-portal.org/smash/record.jsf?pid=diva2:353050
http://ntnu.diva-portal.org/smash/record.jsf?pid=diva2:353050
https://doi.org/10.1007/s00521-016-2564-5
https://doi.org/10.1007/s00521-016-2564-5
https://doi.org/10.1007/s00521-016-2564-5
http://dx.doi.org/10.1007/s00521-016-2564-5
https://doi.org/10.1007/s00521-016-2564-5

[52] M. Roughan, S. Sen, O. Spatscheck, N. Duffield, Class of service map-

ping for qos: A statistical signature-based approach to ip traffic classifi-

cation, in: Proceedings of the 4th ACM SIGCOMM Conference on In-

ternet Measurement, IMC 04, ACM, New York, USA, 2004, pp. 135–148.

doi:10.1145/1028788.1028805.

[53] H. T. Nguyen, S. Petrović, K. Franke, A comparison of feature-selection

methods for intrusion detection, in: Computer Network Security, Springer,

2010, pp. 242–255. doi:10.1007/978-3-642-14706-7_19.

[54] M. Alkasassbeh, An empirical evaluation for the intrusion detection fea-

tures based on machine learning and feature selection methods, Journal of

Theoretical and Applied Information Technology 95.

[55] C. Livadas, R. Walsh, D. Lapsley, W. Strayer, Usilng machine learning

technliques to identify botnet traffic, in: Proceedings 31st IEEE Conference

on Local Computer Networks, 2006, pp. 967–974. doi:10.1109/LCN.2006.

322210.

[56] P. Van der Putten, M. Van Someren, A bias-variance analysis of a real

world learning problem: The coil challenge 2000, Machine Learning 57 (1-

2) (2004) 177–195. doi:10.1023/B:MACH.0000035476.95130.99.

URL http://dx.doi.org/10.1023/B%3AMACH.0000035476.95130.99

[57] L. Breiman, J. Friedman, C. J. Stone, R. A. Olshen, Classification and

regression trees, CRC press, 1984.

[58] T.-F. Yen, Detecting stealthy malware using behavioral features in network

traffic, Thesis (2011).

[59] D. Rossi, E. Sottile, P. Veglia, Black-box analysis of internet p2p appli-

cations, Peer-to-Peer Networking and Applications 4 (2) (2011) 146–164.

doi:10.1007/s12083-010-0072-4.

URL http://dx.doi.org/10.1007/s12083-010-0072-4

44

http://dx.doi.org/10.1145/1028788.1028805
http://dx.doi.org/10.1007/978-3-642-14706-7_19
http://dx.doi.org/10.1109/LCN.2006.322210
http://dx.doi.org/10.1109/LCN.2006.322210
http://dx.doi.org/10.1023/B%3AMACH.0000035476.95130.99
http://dx.doi.org/10.1023/B%3AMACH.0000035476.95130.99
http://dx.doi.org/10.1023/B:MACH.0000035476.95130.99
http://dx.doi.org/10.1023/B%3AMACH.0000035476.95130.99
http://dx.doi.org/10.1007/s12083-010-0072-4
http://dx.doi.org/10.1007/s12083-010-0072-4
http://dx.doi.org/10.1007/s12083-010-0072-4
http://dx.doi.org/10.1007/s12083-010-0072-4

[60] M. Scanlon, T. Kechadi, Peer-to-Peer Botnet Investigation: A Review,

Vol. 179 of Lecture Notes in Electrical Engineering, Springer Nether-

lands, 2012, book section 33, pp. 231–238, (Jong Hyuk). doi:10.1007/

978-94-007-5064-7_33.

URL http://dx.doi.org/10.1007/978-94-007-5064-7_33

[61] Dshield.org, Most attacked port reports (2013).

URL http://www.dshield.org/portreport.html

[62] T. Limmer, F. Dressler, Flow-based tcp connection analysis, in: IEEE 28th

International Conference on Performance Computing and Communications

(IPCCC), 2009, pp. 376–383. doi:10.1109/PCCC.2009.5403846.

[63] T. M. Cover, J. A. Thomas, Elements of information theory, John Wiley

& Sons, 2012.

[64] M. Jaber, R. Cascella, C. Barakat, Can we trust the inter-packet time for

traffic classification?, in: IEEE International Conference on Communica-

tions (ICC), 2011, pp. 1–5. doi:10.1109/icc.2011.5963024.

[65] R. Gusella, Characterizing the variability of arrival processes with indexes

of dispersion, IEEE Journal on Selected Areas in Communications 9 (2)

(1991) 203–211. doi:10.1109/49.68448.

[66] A. Nigrin, Neural networks for pattern recognition, MIT press, 1993.

[67] C.-F. Tsai, Y.-F. Hsu, C.-Y. Lin, W.-Y. Lin, Intrusion detection by

machine learning: A review, Expert Systems with Applications 36 (10)

(2009) 11994–12000. doi:doi:http://dx.doi.org/10.1016/j.eswa.

2009.05.029.

URL http://www.sciencedirect.com/science/article/pii/

S0957417409004801

[68] M. A. Razi, K. Athappilly, A comparative predictive analysis of neural

networks (nns), nonlinear regression and classification and regression tree

45

http://dx.doi.org/10.1007/978-94-007-5064-7_33
http://dx.doi.org/10.1007/978-94-007-5064-7_33
http://dx.doi.org/10.1007/978-94-007-5064-7_33
http://dx.doi.org/10.1007/978-94-007-5064-7_33
http://www.dshield.org/portreport.html
http://www.dshield.org/portreport.html
http://dx.doi.org/10.1109/PCCC.2009.5403846
http://dx.doi.org/10.1109/icc.2011.5963024
http://dx.doi.org/10.1109/49.68448
http://www.sciencedirect.com/science/article/pii/S0957417409004801
http://www.sciencedirect.com/science/article/pii/S0957417409004801
http://dx.doi.org/doi: http://dx.doi.org/10.1016/j.eswa.2009.05.029
http://dx.doi.org/doi: http://dx.doi.org/10.1016/j.eswa.2009.05.029
http://www.sciencedirect.com/science/article/pii/S0957417409004801
http://www.sciencedirect.com/science/article/pii/S0957417409004801
http://www.sciencedirect.com/science/article/pii/S0957417405000072
http://www.sciencedirect.com/science/article/pii/S0957417405000072
http://www.sciencedirect.com/science/article/pii/S0957417405000072

(cart) models, Expert Systems with Applications 29 (1) (2005) 65–74.

doi:doi:http://dx.doi.org/10.1016/j.eswa.2005.01.006.

URL http://www.sciencedirect.com/science/article/pii/

S0957417405000072

[69] M. Riedmiller, H. Braun, A direct adaptive method for faster backpropa-

gation learning: the rprop algorithm, in: IEEE International Conference

on Neural Networks, 1993, 1993, pp. 586–591 vol.1. doi:10.1109/ICNN.

1993.298623.

[70] Z. Boger, H. Guterman, Knowledge extraction from artificial neural net-

work models, in: IEEE International Conference on Systems, Man, and

Cybernetics, Vol. 4, 1997, pp. 3030–3035 vol.4. doi:10.1109/ICSMC.1997.

633051.

[71] K. Gai, M. Qiu, Reinforcement learning-based content-centric services in

mobile sensing, IEEE Network 32 (2018) 34–39.

[72] Barto, Andrew, Reinforcement learning: An introduction, Cambridge:

MIT Press, 1998.

[73] S. Saad, I. Traore, A. Ghorbani, B. Sayed, D. Zhao, W. Lu, J. Felix,

P. Hakimian, Detecting p2p botnets through network behavior analysis

and machine learning, in: Ninth Annual International Conference on Pri-

vacy, Security and Trust (PST), 2011, pp. 174–180. doi:10.1109/PST.

2011.5971980.

[74] A. Shiravi, H. Shiravi, M. Tavallaee, A. A. Ghorbani, Toward de-

veloping a systematic approach to generate benchmark datasets for

intrusion detection, Computers & Security 31 (3) (2012) 357–374.

doi:http://dx.doi.org/10.1016/j.cose.2011.12.012.

URL http://www.sciencedirect.com/science/article/pii/

S0167404811001672

46

http://www.sciencedirect.com/science/article/pii/S0957417405000072
http://www.sciencedirect.com/science/article/pii/S0957417405000072
http://dx.doi.org/doi: http://dx.doi.org/10.1016/j.eswa.2005.01.006
http://www.sciencedirect.com/science/article/pii/S0957417405000072
http://www.sciencedirect.com/science/article/pii/S0957417405000072
http://dx.doi.org/10.1109/ICNN.1993.298623
http://dx.doi.org/10.1109/ICNN.1993.298623
http://dx.doi.org/10.1109/ICSMC.1997.633051
http://dx.doi.org/10.1109/ICSMC.1997.633051
http://dx.doi.org/10.1109/PST.2011.5971980
http://dx.doi.org/10.1109/PST.2011.5971980
http://www.sciencedirect.com/science/article/pii/S0167404811001672
http://www.sciencedirect.com/science/article/pii/S0167404811001672
http://www.sciencedirect.com/science/article/pii/S0167404811001672
http://dx.doi.org/http://dx.doi.org/10.1016/j.cose.2011.12.012
http://www.sciencedirect.com/science/article/pii/S0167404811001672
http://www.sciencedirect.com/science/article/pii/S0167404811001672

[75] F. K. Aaron Turner, Tcpreplay version 4.0.0 (2013).

URL http://tcpreplay.appneta.com

[76] J. Espinosa, J. Vandewalle, Constructing fuzzy models with linguistic in-

tegrity from numerical data-afreli algorithm, Fuzzy Systems, IEEE Trans-

actions on 8 (5). doi:10.1109/91.873582.

[77] B. W. Matthews, Comparison of the predicted and observed sec-

ondary structure of t4 phage lysozyme, Biochimica et Biophys-

ica Acta (BBA) - Protein Structure 405 (2) (1975) 442–451.

doi:http://dx.doi.org/10.1016/0005-2795(75)90109-9.

URL http://www.sciencedirect.com/science/article/pii/

0005279575901099

[78] J. A. Swets, Signal detection theory and ROC analysis in psychology and

diagnostics: Collected papers, Psychology Press, 2014.

[79] T. Fawcett, An introduction to roc analysis, Pattern Recognition Letters

27 (8) (2006) 861–874. doi:10.1016/j.patrec.2005.10.010.

URL http://www.sciencedirect.com/science/article/pii/

S016786550500303X

[80] S. W. Timothy, L. David, W. Robert, L. Carl, Botnet Detection Based on

Network Behavior, Vol. 36 of Advances in Information Security, Springer

US, 2008, book section 1, pp. 1–24. doi:10.1007/978-0-387-68768-1_1.

URL http://dx.doi.org/10.1007/978-0-387-68768-1_1

[81] G. Gu, P. A. Porras, V. Yegneswaran, M. W. Fong, W. Lee, Both-

unter: Detecting malware infection through ids-driven dialog correlation,

in: USENIX Security, Vol. 7, 2007, pp. 1–16.

[82] G. Gu, R. Perdisci, J. Zhang, W. Lee, Botminer: Clustering analysis of

network traffic for protocol-and structure-independent botnet detection,

in: USENIX Security Symposium, 2008, pp. 139–154.

47

http://tcpreplay.appneta.com
http://tcpreplay.appneta.com
http://dx.doi.org/10.1109/91.873582
http://www.sciencedirect.com/science/article/pii/0005279575901099
http://www.sciencedirect.com/science/article/pii/0005279575901099
http://dx.doi.org/http://dx.doi.org/10.1016/0005-2795(75)90109-9
http://www.sciencedirect.com/science/article/pii/0005279575901099
http://www.sciencedirect.com/science/article/pii/0005279575901099
http://www.sciencedirect.com/science/article/pii/S016786550500303X
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://www.sciencedirect.com/science/article/pii/S016786550500303X
http://www.sciencedirect.com/science/article/pii/S016786550500303X
http://dx.doi.org/10.1007/978-0-387-68768-1_1
http://dx.doi.org/10.1007/978-0-387-68768-1_1
http://dx.doi.org/10.1007/978-0-387-68768-1_1
http://dx.doi.org/10.1007/978-0-387-68768-1_1

[83] G. D. L. T. Parra, P. Rad, K. R. Choo, Implementation of deep packet

inspection in smart grids and industrial internet of things: Challenges and

opportunities, J. Network and Computer Applications 135 (2019) 32–46.

[84] K. Wang, C.-Y. Huang, S.-J. Lin, Y.-D. Lin, A fuzzy pattern-based filtering

algorithm for botnet detection, Computer Networks 55 (15) (2011) 3275 –

3286. doi:http://dx.doi.org/10.1016/j.comnet.2011.05.026.

[85] L. Al Shalabi, Z. Shaaban, Normalization as a preprocessing engine for data

mining and the approach of preference matrix, in: International Conference

on Dependability of Computer Systems, 2006, pp. 207–214. doi:10.1109/

DEPCOS-RELCOMEX.2006.38.

[86] A. Dries, U. Rückert, Adaptive concept drift detection, Statistical Analysis

and Data Mining 2 (5-6) (2009) 311–327. doi:10.1002/sam.10054.

URL http://dx.doi.org/10.1002/sam.10054

48

http://dx.doi.org/http://dx.doi.org/10.1016/j.comnet.2011.05.026
http://dx.doi.org/10.1109/DEPCOS-RELCOMEX.2006.38
http://dx.doi.org/10.1109/DEPCOS-RELCOMEX.2006.38
http://dx.doi.org/10.1002/sam.10054
http://dx.doi.org/10.1002/sam.10054
http://dx.doi.org/10.1002/sam.10054

Mohammed Alauthman received his PhD degree from Northumbria University Newcastle, UK in 2016.
He received a B.Sc. degree in Computer Science from Hashemite University, Jordan, in 2002, and
received M.Sc. degrees in Computer Science from Amman Arab University, Jordan, in 2004. Currently,
he is Assistant Professor and senior lecturer at department of computer science, Zarqa University, Jordan.
His research interests include cyber-security, Cyber Forensics, advanced machine learning and data
science applications.

Nauman Aslam is a Reader in the Department of Computer Science and Digital Technologies. He joined
Northumbria University in August 2011. Dr. Nauman received his PhD in Engineering Mathematics from
Dalhousie University, Halifax, Nova Scotia, Canada in 2008. Prior to joining Northumbria University he
worked as an Assistant Professor at Dalhousie University, Canada from 2008 - 2011. Currently, he also
holds an adjunct assistant professor position at Dalhousie University

Mouhammd Alkasassbeh graduated from the school of computing, Portsmouth University, UK in 2008.
He is currently a full professor in the Computer Science Dept. Princess Sumaya University for
Technology. His research interests include Network Traffic Analysis, Network Fault Detection,
Classification Network Fault and abnormality and Machine learning in the area of computer networking
and network security.

SULEMAN KHAN received the Ph.D. degree (Hons.) from the Faculty of Computer Science and
Information Technology, University of Malaya, Malaysia, in 2017. He is a Faculty Member with the
School of Information Technology, Monash University Malaysia Campus. He has published more than 45
high-impact research articles in reputed international journals, including the IEEE COMMUNICATIONS
SURVEYS AND TUTORIALS, ACM Computing Surveys, the IEEE TRANSACTIONS ON
INTELLIGENT TRANSPORTATION SYSTEMS. He has published in the 2018 Local Computer
Networks Conference. His research areas include, but are not limited to, network forensics, software-
defined networks, the Internet of Things, cloud computing, and vehicular communications

Ahmad Al-Qerem graduated in applied mathematics and MSc in Computer Science at the Jordan
University of Science and Technology in 1997 and 2002, respectively. After that, he was appointed as
full-time lecturer at the Zarqa University. Currently he is a visiting professor at Princess Sumaya
University for Technology (PSUT). He obtained a PhD from Loughborough University, UK. His
research interests are in performance and analytical modeling, mobile computing environments, protocol
engineering, communication networks, transition to IPv6, and transaction processing. He has published
several papers in various areas of computer science. Currently, he has a full academic post as associate
professor and the head of the Department of Internet Technology at Zarqa University - Jordan.

Kim-Kwang Raymond Choo (SM15) received the Ph.D. in Information Security from Queensland
University of Technology. He currently holds the Cloud Technology Endowed Professorship at the
University of Texas at San Antonio. In 2016, he was named the Cybersecurity Educator of the Year -
APAC (Cybersecurity Excellence Awards are produced in cooperation with the Information Security
Community on LinkedIn), and in 2015 he and his team won the Digital Forensics Research Challenge
organized by Germany’s University of Erlangen-Nuremberg. He is the recipient of the 2018 UTSA
College of Business Col. Jean Piccione and Lt. Col. Philip Piccione Endowed Research Award for
Tenured Faculty, ESORICS 2015 Best Paper Award, 2014 Highly Commended Award by the Australia
New Zealand Policing Advisory Agency, Fulbright Scholarship in 2009, 2008 Australia Day

Achievement Medallion, and British Computer Society’s Wilkes Award in 2008. He is also a Fellow of
the Australian Computer Society, an IEEE Senior Member, and Co-Chair of IEEE Multimedia
Communications Technical Committee (MMTC)’s Digital Rights Management for Multimedia Interest
Group.

