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Abstract

We consider the problem of designing a Wireless Local Area Network accord-
ing to a Green paradigm (GWLAN), i.e. minimizing the power consumption
of the network by powering-on just a subset of access points and associating
users with the powered-on access points. To protect the system against fluc-
tuations in the data rate transmission between users and access points, which
naturally affect the problem because of uncertainty in measuring the exact user
position and because of wireless propagation conditions, we address the robust
extension of this problem, i.e. the Robust Green Wireless Local Area Networks
Problem (RGWLAN), and we propose some robust matheuristics to solve it.
Such matheuristics are based on two mathematical models to RGWLAN, i.e. a
model based on a generalization of the classical Γ-Robustness framework, and
a model exploiting the Multiband Robustness paradigm. The models are en-
riched by means of a preprocessing powering-on heuristic, aimed at fixing some
access points as powered-on, and a reallocation algorithm, aimed at reallocating
users to access points once the model solution has been computed, in order to
enhance its degree of robustness. The aim is to achieve a good compromise be-
tween power saving, guaranteed level of robustness and required computational
time.

The results of an extensive computational analysis show that the proposed
matheuristics solve the RGWLAN in a very efficient way both in terms of power
consumption and computational time. Also, they are able to guarantee a high
level of robustness with respect to the uncertainty in the user positions. This
trend is particularly evident when the users to access points ratio is low, i.e.
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when the offered traffic to the wireless local area network is scarce, which is the
most suitable and relevant scenario for the power consumption optimization.

Keywords: Green Wireless Local Area Network, User Position Uncertainty,
Robust Optimization, Multiband Robust Optimization, Matheuristic.

1. Introduction

In recent times, telecommunications networks have become an essential in-
frastructure all around the world, providing services running on devices such
as personal computers and smartphones that now represent a fundamental part
of our everyday life. In particular, Internet connectivity constitutes one of the
most requested services and a very widespread way to provide it is represented by
Wireless Local Area Networks (WLANs). A WLAN is a network that employs
wireless links in order to connect multiple devices located in a limited area (e.g.,
an office, an apartment, a park) between them and to Internet. Specifically, it is
composed of a set of Access Points (APs) that provide wireless connectivity to
a set of User Terminals (UTs), often based on Wi-Fi standards. Compared to
wired networks, WLANs offer advantages in terms of cost savings, due to easier
installation procedures, and in terms of access and flexibility, since the users can
freely move around the area covered with the service without losing the connec-
tion. However, WLANs present also a major disadvantage, namely the variable
performance of wireless connections: as one can commonly experience, the data
rate associated with a connection typically varies over time, also depending on
the position and movement of the users. This translates into uncertainty about
the value of data rate that the user is able to obtain. Another problematic is
represented by the WLANs power consumption: in order to guarantee high data
rates, WLANs typically install a high number of APs which, however, are often
powered-on but idle. This may lead to a waste of energy that is nowadays not
acceptable both to contain costs and be environmentally friendly. For example,
in the context of dense WLANs, the authors in Debele et al. (2015) show that,
by dynamically activating only the number of APs that is strictly needed to
the current traffic, then up to 59.1% of power can be saved with respect to the
absence of any strategy.

To deal with both the power containment and the data rate uncertainty
questions, in this paper we consider the Robust Green Wireless Local Area Net-
works Problem (RGWLAN). This problem, introduced in the studied form in
Garroppo et al. (2016b), consists in minimizing the power consumption of a
WLAN by powering-on just a subset of the installed APs and associating the
UTs to powered-on APs, and simultaneously taking into account the uncer-
tainty of the data rates between UTs and APs. In the context of GWLAN,
in fact, it is of paramount importance to protect the system against natural
fluctuations in the network performance that occur over short periods of time
and lead to tricky reductions in data rates. We stress that designing green net-
works is a major question not only for WLANs, but also for telecommunications
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networks in general, and a lot of work has been done on the subject. We refer
the reader to Bianzino et al. (2012), Li et al. (2011) and Wang et al. (2012) for
exhaustive surveys about opportunities and challenges arising in green network-
ing and wireless communications. On the other hand, less work has been done
in optimizing the WLAN design while taking into account uncertainty issues.
Specifically, two Robust Optimization (RO) models have been recently proposed
to formulate the RGWLAN problem, i.e. to achieve both power saving and ro-
bustness against the data rate uncertainty in the context of WLANs.The first
robust model has been proposed in Garroppo et al. (2016b) by generalizing the
classical Γ-Robustness of Bertsimas and Sim (Bertsimas et al. (2011),Bertsimas
and Sim (2004)). There, the phenomenon of the data rate fluctuation has been
addressed by considering the uncertainty in measuring the exact user position
in the area, also due to the user mobility, and the impact of the wireless prop-
agation conditions on the data rates. The second robust model, on the other
hand, exploiting the Multiband Robust Optimization (MRO) technique (Büsing
and D’Andreagiovanni (2012), Bauschert et al. (2014)), has been preliminary
investigated in D’Andreagiovanni et al. (2018). With respect to Garroppo et al.
(2016b), MRO is used to model the user position uncertainty, while adopting
the Γ-Robustness to model the uncertainty due to the wireless propagation con-
ditions. With respect to the canonical MRO model proposed in Büsing and
D’Andreagiovanni (2012), the presence of two distinct uncertain events that are
mutually dependent has been considered, thus extending the theory of MRO.

1.1. Paper contribution

To the best of our knowledge, our short conference papers Garroppo et al.
(2016b) and D’Andreagiovanni et al. (2018) are the only works in the literature
addressing the RGWLAN. As previously mentioned, they propose mathematical
formulations to the problem, to guarantee an optimal power consumption of the
system while taking into account the uncertainty of the UT-AP data rates. Due
to the computational time complexity of RGWLAN, which is NP-Hard, such
mathematical formulations may require a large amount of time to be solved ex-
actly. Therefore, in this paper we extend and complete the results in Garroppo
et al. (2016b) and D’Andreagiovanni et al. (2018) by consolidating the mod-
elling aspects, and presenting efficient robust mathematical optimization-based
heuristics, or matheuristics, to RGWLAN, with the aim of achieving a good
compromise among power saving, guaranteed level of robustness and required
computational time.

Specifically, the proposed matheuristics are designed by enriching the two
robust models in D’Andreagiovanni et al. (2018) and Garroppo et al. (2016b)
by means of two heuristic algorithms:

1. a preprocessing powering-on heuristic, aimed at discovering APs to turn-
on, and fixing them as powered-on within the model statement; the goal
is to accelerate the model solution, so reducing the computational effort,
without increasing too much the optimal power consumption guaranteed
by the mathematical models alone;
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2. a reallocation algorithm, aimed at reallocating UTs to APs once the model
solution has been computed; the goal is to enhance, at a negligible com-
putational cost, the degree of robustness against the data rate uncertainty
experienced by the users within the area, without deteriorating the system
power consumption too much.

The main contributions of this paper can be summarized as follows.

• We extend the theory of the canonical MRO models proposed in Büsing
and D’Andreagiovanni (2012) by considering the presence of two distinct
uncertain events that are mutually dependent.

• We enhance the research on the RGWLAN by enriching the two robust
models in D’Andreagiovanni et al. (2018) and Garroppo et al. (2016b) with
some heuristic devices, so converting the robust mathematical models into
robust matheuristics.

• We investigate the efficiency and the efficacy of the proposed matheuristics
by means of a wide computational experience. We show that, when the
UTs to AP ratio is low, then the matheuristics based on Multiband Robust
Optimization are very efficient in terms of power saving and computational
time, and guarantee a high level of robustness in most cases. When the
UTs to AP ratio increases, instead, the matheuristics are less efficient:
the ones based on the more classical Γ-Robustness show a good level of
robustness, but they may have more difficulties in solving the problem.

Regarding the paper organization, Section 2 provides an overview on related
works. The GWLAN problem, i.e. when uncertainty issues are not taken into ac-
count, is presented in Section 3 together with a mathematical formulation, while
its robust extension, that is RGWLAN, is described in Section 4 together with
the mathematical models mentioned before. Section 5 presents the powering-on
heuristic and the reallocation algorithm. Section 6 discusses some architectural
aspects for implementing GWLANs and gives ideas on how the proposed algo-
rithms can be integrated in actual Wi-Fi networks. Section 7 reports the results
of extensive computational experiments, testing the matheuristics in different
network scenarios, while Section 8 concludes the paper.

2. Related Work

As outlined before, the problem addressed in this paper, i.e. RGWLAN,
has been never studied in the literature with the exceptions of the preliminary
works Garroppo et al. (2016b) and D’Andreagiovanni et al. (2018). Therefore,
here we shall review some related papers, mainly addressing optimization issues
in WLANs.

Since the UT-AP association in WLAN systems is a critical design decision
in our study, the focus will be on papers dealing with such a relevant decision
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issue. The optimal assignment of UTs to APs is in fact very relevant in the con-
text of WLANs, and it has received a consistent attention in the literature. One
of the first works presenting an optimization model for determining an optimal
association in WLANs is Bejerano et al. (2007), which also takes into account a
max-min fair bandwidth allocation among the users and proposes approximation
algorithms for the online solution of the problem. In Li et al. (2008), approx-
imation algorithms are instead proposed for periodical offline optimization in
order to improve the fairness of bandwidth allocation. In Amer et al. (2018),
the UT-AP association is operated through a centralized optimization approach
based on an assignment problem including a logarithmic objective function to
represent data rate fairness. The problem is solved through a simple multi-start
local search heuristic based on identifying new solutions by allowing only one
single UT to change its serving AP. In Li et al. (2013), the problem of a fair
association in WLANs is modelled as a hard nonlinear integer programming
problem which is addressed through a four-stage heuristic which first relaxes
the integer variables representing the UT-AP association, then solves the corre-
sponding easier continuous problem, relies on a rounding strategy to derive an
integral association, and finally operates a load redistribution to define a feasi-
ble (non-optimal) design solution. In Tang et al. (2016), constraints expressing
the minimum data rate requested by the UTs are included in the optimiza-
tion model, discussing how they make the solution process more difficult and
proposing two heuristic algorithms for the solution of the related optimization
problem. What is common to all the previously cited works is that they con-
sider the problem of modelling and designing a WLAN, or some related wireless
networks, 1) without assuming a green networking perspective, i.e. trying to
limit the power consumption of the network, and 2) without taking into account
the natural uncertainty that affects the data rates, namely the fact that the ex-
act value of the data rates is not known when the problem is solved, due to
uncertain channel conditions and user mobility.

The question of designing WLANs under a green paradigm, i.e. GWLANs,
has been considered in several works. In Garroppo et al. (2016a), the authors
computationally evaluate how different power consumption models impact on
the solutions produced solving the green WLAN network design problem. In
Zhang et al. (2018), a tabu-search algorithm is proposed to solve the problem of
minimizing the power consumption by turning-off subsets of APs and assigning
their users to other active APs without compromising the Quality-of-Service.
In Wu et al. (2018), a two-stage heuristic algorithm is proposed for the power
consumption minimization: firstly, a limited number of AP-UT assignments is
eliminated to reduce the traffic congestion and turn-off as many idle APs as
possible; then, the unassigned UTs are reassigned to some APs by trying to
improve the energy efficiency. In Gendron et al. (2016) an efficient branch-and-
cut algorithm based on the principles of Benders’ Decomposition is proposed to
tackle large scale instances. However, no paper dealing with a green WLAN op-
timal design jointly addresses the uncertainty of the data rates, except our short
conference papers Garroppo et al. (2016b) and D’Andreagiovanni et al. (2018),
where robust exact approaches have been outlined and preliminary investigated.
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For a recent survey on Robust Optimization techniques we refer the interested
reader to Gabrel et al. (2014). See also Koster and Poss (2018) for an overview
on Robust Combinatorial Optimization. We remark that Robust Optimization
techniques have been applied to address uncertainties arising in telecommuni-
cations networks other than WLANs. At this regard we mention Büsing et al.
(2017), in the context of optical networks, Di Puglia Pugliese et al. (2019), for
solving the resource constrained shortest path problem with uncertain data,
and Claßen et al. (2013), for more general wireless network planning. We also
remark that, though matheuristics are nowadays a well-consolidated solution
approach for hard-to-solve optimization problems (see e.g. the surveys Archetti
and Speranza (2014) and Talbi (2016)), to the best of our knowledge they have
not been employed so far in optimizing the GWLANs.

3. GWLAN: problem and mathematical model

A GWLAN system is composed of a set J of deployed APs that can serve a
set I of UTs. The traffic demand wi of each UT i must be satisfied by exactly
one AP. The power Pj consumed by the generic AP j can be essentially ascribed
to two major components (Garroppo et al. (2016a)): 1) a fixed component poj ,
which is bound to the mere fact that the device is powered-on; 2) a variable
component aj , which accounts for the so-called “airtime”, i.e. the fraction of
time the device is either transmitting or receiving frames. The component aj is
weighted by a constant “wireless” factor pw, which accounts for the power drain
of the radio frontend for the transmission and reception operations (see Gar-
roppo et al. (2016b) for more details), and the overall power consumption Pj is
then: Pj = poj + pw aj , ∀j ∈ J .

The other parameters characterizing the GWLAN system are the rij , i.e.
the data rate available between the UT i and the AP j, for i ∈ I and j ∈ J .
They depend on the physical properties of the system, such as the position of
the UT i with respect to the AP j. To keep the notation simpler, we shall
assume that the links are symmetric, i.e. rij = rji, ∀i ∈ I, j ∈ J .

The GWLAN problem consists in deciding which APs to power-on and to
which powered-on AP to assign each UT, so as to satisfy the demand of each
UT and the capacity constraint of each AP. The goal is to minimize the overall
power consumption of the system. Notice that, in this context, the data rates
rij are assumed to be exactly known. In other words, their uncertainty is not
taken into account.

By introducing the following two sets of binary variables:

• xij , set to 1 if UT i is assigned to AP j and to 0 otherwise, ∀ i ∈ I, j ∈ J ,

• yj , set to 1 if AP j is powered-on and to 0 otherwise, ∀ j ∈ J ,

the considered optimization problem can be formulated in terms of the following
Binary Linear Programming (BLP) model, initially proposed in Garroppo et al.
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(2016b):

z = min
∑
j∈J

Pj = min
∑
j∈J

[
poj yj + pw

∑
i∈I

wi

rij
xij

]
, (1)

∑
j∈J

xij = 1 i ∈ I (2)

∑
i∈I

wi

rij
xij ≤ yj j ∈ J (3)

xij ∈ {0, 1} i ∈ I, j ∈ J (4)

yj ∈ {0, 1} j ∈ J , (5)

where the airtime aj is expressed in terms of the variables xij : aj =
∑

i∈I
wi
rij
xij .

For sake of clarity, we observe that for i ∈ I and j ∈ J , if rij = 0 then xij = 0.
This condition physically means that we cannot associate a user i with an AP
j if the link (i, j) has a null data rate.
In this model, constraints (2) express that each UT must be assigned to exactly
one AP, whereas constraints (3) express the capacity of the APs and also ensure
that no UT is assigned to powered-off APs. The model is characterized by
|J |+ |I||J | binary variables and by |I|+ |J | constraints, plus the ones defining
the variable domain. For a general overview on assignment based problems and
models, we refer to Burkard et al. (2009).

4. RGWLAN: problem and mathematical models

In GWLAN, the assumption is made that the data rates rij are exactly
known when the problem is solved. However, in practice this is not true, since
rij depend on the exact position of the users in the area, whose estimate is
naturally subject to inaccuracies, also due to their movements during the esti-
mation phase. Furthermore, rij depend also on the propagation conditions of
the wireless channel, which are hard to exactly know a priori. The data rates
rij are thus naturally subject to uncertainty.

In order to take into account the uncertainty in the user position, we assume
that the users can be positioned in diverse annuli areas. Specifically, each user
can be situated in an annulus whose ray is not exactly known but belongs to
the range [0, ρmax], and could be in any position within it. Following the MRO
paradigm (Büsing and D’Andreagiovanni (2012), Bauschert et al. (2014)), the
Multiband Robust Optimization model presented in D’Andreagiovanni et al.
(2018) partitions the overall range [0, ρmax] into subranges that correspond to
a set B of so-called bands. Each band models a distinct range of deviation of
the uncertain data and, in the case of RGWLAN, represents a different class of
uncertainty of the user position. The diversity can be due, for example, to a
different speed/mobility of the user or to particular difficulties in the estimation
of the user location. Specifically, in our computational study we considered 4
classes of user position uncertainty corresponding to 4 deviation bands:
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1. b = 0 - certain position, i.e. ρ = 0,

2. b = 1 - low uncertainty: the user position is in the annulus area defined
by ρ = (0, ρ1],

3. b = 2 - medium uncertainty: the user position is in the annulus area
defined by ρ = (ρ1, ρ2],

4. b = 3 - high uncertainty: the user position is in the annulus area defined
by ρ = (ρ2, ρ3],

where 0 = ρ0 < ρ1 < ρ2 < ρ3 = ρmax.
We assume that the position of at most Hb ≥ 0 UTs may belong simultane-

ously to the class of uncertainty b with b ≥ 1. Additionally, we distinguish users
whose position is certain (class b = 0) and whose wireless channel conditions
vary and lead to a variation in the data rate: we assume that at most H0 UTs
may belong to this category. Finally, we assume that at most K UTs are subject
to any kind of uncertainty (due to uncertain position or to wireless propagation
uncertainty, discussed below).

Concerning the wireless propagation uncertainty, the actual values rij are
also influenced by variations in the wireless propagation conditions, due to fad-
ing phenomena that are really hard to precisely assess. For these phenomena,
the Rayleigh model is widely used in the literature (Tse and Viswanath (2005))
and serves as the worst case for a broad class of fading distributions. We consider
the case where the f -quantile of the Rayleigh fading varies within the interval,
or monoband, [fL, f ], where f = 1 − e−π4 is the nominal quantile, leading to
the average value of the fading channel. The parameter f is equal to f in case
of no fluctuations, while it is set to fL in case of channel fluctuation, since fL
represents the worst scenario under the considered uncertainty model.

According to what stated before, for each UT-AP couple (i, j), the data rate
depends upon the position of user i and the propagation condition between i
and j, and thus depends upon the deviation band b and the fluctuation in the
Rayleigh fading. We thus denote by rij(b, fL) the function representing the
data rate for (i, j) when the UT i belongs to the position band b, b ≥ 1, and
the worst Rayleigh fading deviation occurs. Analogously, rij(0, fL) denotes the
data rate for the case of certain user position, i.e. band b = 0, and worst fading
case. We also introduce the notation ri,j = ri,j(0, f) to denote the nominal
value of the data rate for (i, j), i.e. when the user position is certain and no
fading fluctuation occurs.

In order to state the robust counterpart of the constraint (3) corresponding
to an AP j ∈ J , let us associate binary variables qbij with each UT i and band b:

qbij is set to 1 if either the position of the UT i belongs to the band b ≥ 1, or the
position of i is certain (b = 0) but the fading channel is subject to fluctuation;
it is set to 0 otherwise. The case of UTs with uncertain position whose related
data rates are not subject to channel fluctuation is not modelled here, since it
is not significant in this context.

By using these additional variables, the robust version of each constraint
(3) contains an inner BLP problem, which gives the maximum (i.e., the worst
case) value that the left-hand-side may achieve under the considered uncertain
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framework. Precisely, the (nonlinear) robust capacity constraint for each AP
j ∈ J , that includes the maximization of the deviation by means of the variables
qbij , writes as:

∑
i∈I

wi

rij
xij + max

∑
i∈I

∑
b∈B

(
wi

rmin−b
ij

− wi

r̄ij

)
xij q

b
ij ≤ yj , (6)

where rmin−b
ij denotes the worst value assumed by the data rate function rij(b, fL)

for UT i and band b. Note that when
∑

b∈B q
b
ij = 0 (i.e. the position of UT i is

certain and the related fading channel does not fluctuate), in the left-hand-side
we get the fraction wi

ri,j
, using the nominal data rate. Also observe that the val-

ues in the denominators in (6) are not decision variables. Furthermore observe
that, to satisfy relation (6), xij = 0 when ri,j = 0 or/and rmin−b

ij = 0.
For each j ∈ J , the feasible set of the inner maximisation problem is de-

scribed by the following set of constraints, where (8) states that at most K users
may be subject to uncertainty, assuming K <

∑
b∈B Hb:∑

b∈B

qbij ≤ 1 i ∈ I (7)∑
i∈I

∑
b∈B

qbij ≤ K (8)∑
i∈I

qbij ≤ Hb b ∈ B (9)

qbij ∈ {0, 1} i ∈ I, b ∈ B (10)

The following property holds true:

Proposition 1. The polytope associated with the linear relaxation of (7)− (10)
is integral.

Proof: Consider the linear relaxation of (7)− (10), obtained by replacing
the integrality constraints (10) by 0 ≤ qbij ≤ 1, i ∈ I, b ∈ B. Observe that

constraints qbij ≤ 1, i ∈ I, b ∈ B, can be dropped, since they are dominated by
(7). To prove the integrality, state the constraints of the resulting relaxation in
matrix form Aq ≤ b, where the matrix A and the right-hand-side b are:

A =


1 · · · 1

.
.
.

1 · · · 1
1 · · · 1 · · · 1 · · · 1

I · · · I

 b =



.

.

.
1

.

.

.

K

.

.

.
Hb

.

.

.
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In A, I denotes the identity matrix of size equal to the number of bands, i.e.
|B|. The matrix A is totally unimodular since: 1) each of its entries is in {+1,
-1, 0} and 2) for each subset M of the rows, there exists a partition (M1,M2) of
M such that each column j satisfies: |

∑
i∈M1

aij −
∑

i∈M2
aij | ≤ 1 (see Wolsey

(1998), page 50). Since A is totally unimodular and the right-hand-side vector
b is integral, it is well-known that the polytope defined by Aq ≤ b and q ≥ 0 is
integral. �

We can then derive a compact Mixed Integer Linear Program (MILP) model
to RGWLAN by using the dual problem of the linear relaxation of the maxi-
mization deviation problem (7)− (10). Since the linear relaxation of (7)− (10)
is feasible and bounded, also its dual is feasible and bounded and, by strong
duality, the optimal values of the two problems coincide. We can then replace
each inner maximization problem of the original (nonlinear) problem with the
corresponding purely linear dual problem, obtaining the following robust (and
compact) MILP model:

min
∑
j∈J

[
pojyj + pw

(∑
i∈I

wi

r̄ij
xij +

∑
i∈I

πj
i +K δj +

∑
b∈B

µj
b Hb

)]
(11)

∑
i∈I

wi
xij
r̄ij

+
∑
i∈I

πj
i +K δj +

∑
b∈B

µj
b Hb ≤ yj j ∈ J (12)

πj
i + δj + µj

b ≥

(
wi

rmin−b
ij

− wi

r̄ij

)
xij i ∈ I, j ∈ J , b ∈ B(13)

πj
i , δj , µj

b ≥ 0 i ∈ I, j ∈ J , b ∈ B (14)

s.t. (2), (4), (5)

This model includes the robust version (11) and (12) of the objective function
and of the capacity constraints, respectively. The additional constraints (13)
and the variables (14) are those coming from the classical dualization procedure.
Notice that the model has more variables than the ones of the GWLAN model,
i.e. the same |J |+ |I||J | binary variables plus 3|I||J ||B| continuous variables.
Also the number of constraints is greater, being equal to |J | + |I||J ||B| plus
the constraints defining the variable domain.

The robust framework in Garroppo et al. (2016b) is the special case of the
previously described Multiband Robust framework where b = 1, i.e. the users
are positioned in a single annulus. In this case, H is used to denote the maximum
number of UTs who may belong to the corresponding uncertainty band. The
related mathematical model can be obtained from the Multiband Robust one
accordingly (for details we refer to Garroppo et al. (2016b)). Hereafter it will
be denoted as the Basic Robust model.

We conclude the section by summarizing in Table 1 the notation used to
state the mathematical models.

10



Table 1: Notation used in the model formulation

Symbol Meaning
J Set of APs
I Set of UTs
poj Fixed power consumption when AP j is powered-on
pw Constant “wireless” factor for accounting the power consumption

due to transmission and/or reception operations
aj “Airtime” of AP j, i.e. fraction of time the AP j is either trans-

mitting or receiving frames
wi Traffic demand of user i
B Number of bands modelling the uncertainty
b Uncertainty position band, b = 0, 1..., B − 1
K Maximum number of UTs who may be subject to uncertainty
Hb Maximum number of users in the uncertainty band b
ri,j Data rate of link (i, j) when the user position is certain and no

fading fluctuation occurs

rmin−b
ij Worst data rate of link (i, j) when UT i belongs to band b

xij Binary variable set to 1 if UT i is assigned to AP j and to 0
otherwise

yj Binary variable set to 1 if AP j is powered-on and to 0 otherwise
qbij Additional binary variable set to 1 if the channel of (i, j) is subject

to fluctuation when UT i is in band b, and set to 0 otherwise

πj
i , δj , µj

b Dual variables for the linear relaxation of (7)− (10)

5. The powering-on heuristic and the reallocation algorithm

Based on some preliminary computational results, especially in dense WLAN
networks, we have proposed two heuristic tools to improve the performance of
the Basic Robust and of the Multiband Robust models presented in Section 4.

5.1. The powering-on heuristic

We have observed that, depending on how UTs and APs are distributed in
the area, there may exist a particular set of APs, hereafter denoted as JON ,
which can potentially serve a lot of users. Trying to power-off the APs in this
set often has the effect to spend time for computing an optimal solution that
offers a negligible power consumption gain with respect to the solution where the
APs in JON are always powered-on. Therefore, it may be convenient to impose
the powering-on of the APs in JON . These powering-on decisions can be fixed
within the robust models by setting yj = 1 ∀j ∈ JON . In this manner, the solver
looks for an optimal solution without modifying the setting of these variables.
The number of the variables considered during the optimization process is then
reduced and, consequently, the computational time (CT) decreases. On the
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opposite, to impose the opening of the APs in JON may lead to an increased
average power consumption (PC) compared to the optimal one returned by
solving the robust models exactly. Indeed, the performance analysis in Section
7 shows that this heuristic tool allows one to achieve a good trade-off between
PC increase and CT shortening.

The powering-on heuristic is detailed in Algorithm 1. For each AP j, the
algorithm first evaluates the number of users who can be potentially associated
with j, denoted as Cj (see lines 4-6). A user i can be potentially associated
with j if the nominal data rate r̄ij is other than zero. Then, the AP j is
powered-on, i.e. yj is fixed to 1 within the robust models, if Cj is greater than
or equal to a given threshold T (lines 8-10). In our computational experience
we set T = 0.80|I|, i.e. the AP can potentially serve at least the 80% of
the UTs. This value has been suggested by some preliminary tests, aimed at
discovering a good trade-off between the computational time required to solve
the optimization model when T = 0 (according to which all APs are always
powered-on, and so the corresponding decisions are fixed within the model)
and the power saving corresponding to the setting T = |I| (according to which
no AP is opened a priori, by allowing maximum flexibility to the optimization
solver). The powering-on heuristic works in O(|I||J |) time, and therefore it is
theoretically very efficient.

Algorithm 1 Powering-on heuristic

1: Initialize Cj = 0 for all j ∈ J
2: for j = 1 to |J | do
3: for i = 1 to |I| do
4: if r̄ij 6= 0 then
5: Cj := Cj + 1
6: end if
7: end for
8: if Cj ≥ T then
9: yj = 1

10: end if
11: end for

5.2. The reallocation algorithm

Preliminary computational results have put in evidence that, in some sce-
narios, the solutions of the robust models can show a low level of robustness
against the user position uncertainty. Specifically, by considering the associa-
tion UT-AP in such solutions, and simulating the user positions in the different
uncertainty bands, often unfeasibility may occur. Precisely, we have observed
that there are two main reasons that may lead to unfeasibility:

• the simulated position of a UT i with respect to the assigned AP j is such
that the realized data rate between i and j is equal to 0; in this case,
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the computed solution is indeed unfeasible because the UT is not able to
send/receive data from j;

• the simulated position of a UT i is such that the realized data rate between
i and the assigned AP j is indeed lower than the one considered in the
model solution, and this may lead to an increase of the airtime and a
violation of the corresponding capacity constraint, causing unfeasibility.

To overcome this problem, we have proposed a reallocation algorithm, de-
tailed in Algorithm 2, to modify the UT-AP association defined by the robust
model solution. In the algorithm, such UT-AP associations are expressed by
the variables xij , while aj denotes the airtime of AP j, for each j, according
to the definition provided in Section 3. At a high level, the reallocation algo-
rithm is composed of two phases for each AP j ∈ J : deallocation (lines 2-14)
and reallocation (lines 15-30). In the deallocation phase, the procedure aims at
determining a set of UTs to be deallocated from j, and it is based on some sim-
ulation tests on the user positions. After the deallocation, the algorithm starts
the reallocation phase, where a new AP is associated with each deallocated UT.

More in detail, for each AP j ∈ J , the set DU(j) of UTs to be deallocated
from j is composed of two subsets, DU0(j) and DU1(j) (see line 14). DU0(j) is
the set of UTs i having a data rate equal to 0 with respect to their simulated
positions. Hereafter the data rate of user i with respect to j when considering
the simulated position of i will be denoted as r∗ij (line 3). DU1(j), instead, is
a set of UTs that should be deallocated from j in order to satisfy the capacity
constraint of j. This set is defined by considering the UTs consuming higher
airtime resources of j, as better clarified in lines 5-13 of Algorithm 2. After the
definition of DU(j), the algorithm starts the reallocation phase, where a new AP
is associated with each UT, say ic, in DU(j). To this aim, for each considered
UT ic, the algorithm calculates the set AfU(ic) of APs j with r∗icj > 0 (line
18). Then, for each AP js ∈ AfU(ic), the test for evaluating if ic can be
associated with js consists in checking the capacity constraint of js in case the
association (ic, js) is established. If the capacity constraint is satisfied, then
ic is reallocated to js (lines 23-25), otherwise the algorithm considers the next
AP in the set AfU(ic) (lines 26-27). The APs js in AfU(ic) are considered
according to a nonincreasing ordering of the simulated data rate r∗icjs (line 19).
The reallocation algorithm works in O(|I||J |+ |I|log|I|+ |J |log|J |) time due
to the two nested sorting procedures.

In our computational experience, both the powering-on heuristic and the
reallocation algorithm added a contribution to the computational time which is
negligible with respect to the time required to solve the robust models alone.

6. Notes on implementing GWLANs

Here we describe how the robust optimization approaches presented in this
work can be effectively deployed in actual GWLANs, thus being of practical use.
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Algorithm 2 Reallocation Algorithm

1: for each j ∈ J do
2: {# Deallocation phase for AP j}
3: DU0(j) = {i : r∗ij = 0}
4: Deallocate each UT ∈ DU0(j) from j and update aj
5: if aj > 1 then
6: UA(j) = {i : xij = 1}
7: Sort UA(j) according to a non increasing ordering of the airtime con-

tribution of link (i, j) to aj
8: while UA(j) 6= ∅ AND aj > 1 do
9: Get the first element i of UA(j)

10: Add i to DU1(j)
11: Update aj after the deallocation of i from j
12: end while
13: end if
14: DU(j) = DU0(j) ∪DU1(j) {# DU(j) is the set of UTs deallocated

from AP j}
15: {# Reallocation phase for each UTs ic ∈ DU(j)}
16: for each UT ic ∈ DU(j) do
17: ICR = FALSE {#ICR is a logical variable indicating if the

reallocation of ic has succeeded}
18: AfU(ic) = {j : r∗icj > 0}
19: Sort AfU(ic) according to a nonicreasing ordering of the data rate r∗icj

20: while ICR==FALSE AND AfU(ic) 6= ∅ do
21: Get the first element js of AfU(ic)
22: Calculate ajs considering the association of ic with js
23: if ajs ≤ 1 then
24: Associate ic with js
25: Set ICR=TRUE
26: else
27: AfU(ic) = AfU(ic) \ {js}
28: end if
29: end while
30: end for
31: end for
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Given a Wi-Fi network, the association mechanism employed by the 802.11 stan-
dard IEEE (2016) is the strongest signal first (SSF), according to which each
UT is associated with the AP from which the highest RSSI is measured. The
approach is simple and completely distributed, but it does not allow to per-
form some optimization actions (e.g. throughput, reliability or energy efficiency
maximization) which are necessary in dense Wi-Fi networks. Indeed, in dense
Wi-Fi networks there are usually multiple candidate APs for each UT in a given
location. In this scenario, using a simple RSSI metric may thus result in an un-
balanced load of the APs and in an unfair resource allocation to the UTs. To
overcome this inconvenient, recent studies have been focused on the definition
of architectures for centralizing the monitoring and the control of Wi-Fi net-
work operations, following the Software Defined Network (SDN) approach. The
research activities on Software Defined WLAN (SDWLAN) have produced a set
of architectures that can be used for implementing, in actual Wi-Fi networks,
the control mechanisms resulting from the chosen optimization actions. The
reader can refer to Dezfouli et al. (2019) for a deep and updated survey of the
proposed architectures and central control mechanisms for SDWLANs. Refer-
ring to this survey, the proposed schemes can be deployed in actual networks
by using, for example, the EmPower (Riggio et al. (2015)), the Odin (Suresh
et al. (2012)) or the OpenSDWN (Schulz-Zander et al. (2015)) architecture. In
these architectures, the controller makes the association decisions and enforces
the UTs to apply them. Therefore, he can impose the UT-AP association deci-
sions resulting from the proposed optimization approaches, aimed at minimizing
the overall power consumption of the network while satisfying the robustness
constraints.

In order to determine a solution, the proposed optimization approaches re-
quire information on the traffic and the location of the considered UTs, where
the last information is used for estimating the available data rate on all the
wireless links of the network. Depending on the selected SDWLAN architec-
ture, some specific functions can be designed and implemented for acquiring
these two input data from each UT. For example, the information on the UT
location can be obtained by transmitting to the controller the measured RSSI
for each AP or by means of localization mechanisms, such as the ones in (Chen
et al. (2017)). But the measurement of these data may be subject to errors.
This is why robust approaches to GWLANs have been proposed in this work, to
cope with possible errors in the estimation of the user positions and of the radio
channel quality, which are necessary for devising an optimal UT-AP association.

As described, the proposed approaches control the UT-AP association, in a
robust way, with the aim of containing power consumption. Precisely, this is
achieved by powering-off some of the existing APs. From an implementation
perspective, each AP can be powered-on or powered-off directly by the controller
by using the most suitable approach to the adopted SDWLAN architecture.
For example, in the EmPOWER architecture, each AP is equipped with an
Energino (Riggio et al. (2013)) add-on, which is an open toolkit for energy
monitoring. This add-on provides REST-based APIs that enable the network
controller to turn-on and turn-off the APs.
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As a final note, observe that a dense WLAN is commonly designed by con-
sidering the peaks of the traffic offered by the UTs. In this condition, most
(probably all) the existing APs need to be powered-on in order to satisfy the
service requests. However, several low traffic periods may occur (e.g. at night
or considering non working days), during which most of the APs are usually
underutilized, i.e. the average number of UTs per AP is low. This is the most
relevant scenario for optimizing a dense WLAN, indeed. And in fact, the compu-
tational results in Section 7 show the ability of the proposed robust optimization
approaches in achieving a significant power saving exactly in this context, i.e.
when the load is scarce. On the other hand, as the AP utilization increases,
then the gained power saving tends to become negligible, since a limited number
of APs can be turned-off in order to satisfy the increased UT demand.

7. Performance analysis

The proposed optimization approaches to RGWLAN have been evaluated ac-
cording to the following experimental plan. In the first phase of the experimen-
tation we solved the mathematical models to RGWLAN, presented in Section
4, and the model to GWLAN, described in Section 3, using the state-of-the-art
optimization solver CPLEX. The aim was to compute the optimal power con-
sumption of the system, or a suitable approximation of it, under the uncertain
and the certain data rate environment under study, respectively. Specifically,
we solved the models under different settings of key CPLEX parameters, to de-
termine a promising setting to be used in the next phase of the computational
experience. Then, in the second phase we studied the performance of the pro-
posed matheuristics by testing the impact of the powering-on heuristic and of
the reallocation algorithm on the model solution. This test has been conducted
in cascade. Firstly we analyzed the impact of the powering-on heuristic alone on
the power consumption and on the computational time. Regarding the achieved
power consumption, we compared it both with the one computed by the robust
models solved without any heuristic tool, which is theoretically the minimum
achievable power, and also with a straightforward upper bound. Then we con-
sidered the robust models equipped with both the powering-on heuristic and
the reallocation algorithm, and we analyzed both the quality of the returned
solutions, expressed in terms of power consumption and guaranteed level of
robustness, and also the efficiency of the approach, expressed in terms of re-
quired computational time. Since no benchmark algorithms to RGWLAN exist
in the literature, we evaluated the level of robustness of the computed solutions
against the data rate uncertainty by randomly perturbing the UT positions in
the reference area, and verifying the solution feasibility after the perturbation.
The performance analysis has been carried out on a pool of instances which will
described next. All the models have been solved by IBM ILOG CPLEX IBM
12.7.1 installed on a 64 bit Ubuntu OS, running on a 1.7 GHz Intel Core i7
processor and equipped with 4GB of memory.
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7.1. The instances

The network scenarios have obtained by randomly distributing UTs and APs
in a square area having a side of 100 m. This strategy is often used since it allows
one to reduce the number of the scenario parameters which may influence the
computational results, by permitting to analyze the algorithm behavior under a
quite fair and general perspective. Notice, in fact, that since the AP and the UT
locations are randomly distributed in the reference area, then rather arbitrary
network scenarios and coverage areas can be addressed.

The generated scenarios are partitioned into five configurations, which differ
each other in terms of the following two parameters:

• |I||J | , which represents the average number of UTs per AP; we call this

parameter the UTs to AP Ratio (UAR), and we consider two different
values of UAR, i.e. 10 and 50, also denoted as low UAR and high UAR,
respectively;

• |J |m2 , which is the density of the APs over the area; we consider three
different settings: 1) low density configurations, where this parameter is

set to 0.001, 2) medium density configurations, by setting |J |m2 = 0.005,

and high density configurations, where |J |m2 = 0.01.

These settings have been suggested by some experimental analyses of ac-
tual networks in different Wi-Fi deployment scenarios, such as university cam-
pus (Debele et al. (2015), Henderson et al. (2008)), corporate (Balazinska and
Castro (2003)) and urban (Afanasyev et al. (2010)).

Regarding the density of the APs, the highest density is reported in Debele
et al. (2015) paper for some areas of the Politecnico di Torino (PoliTo), where the
authors observed a density of 0.02 [|AP |/m2]. The other works report a higher
number of APs but distributed over larger areas, so that the density is 0.0008
[|AP |/m2] (Henderson et al. (2008)) or lower. According to such measurements,
in our computational study the highest AP density was therefore set to 0.01
[|AP |/m2], i.e to a value of the same order of magnitude of the highest density
in Debele et al. (2015).

To set up the UAR values, we have analyzed the actual scenarios mentioned
before. The measurements carried out before 2010 highlight UAR values of
a few units. However, the more recent study carried out at PoliTo highlights
higher values of UAR. In particular, Figure 1 in (Debele et al. (2015)) reports
the number of observed UTs in a study room with 3 APs during a weekday of
the teaching period. The figure points out the presence of four phases during
the day.

• Idle phase, between 21:00 to 7:00 of the day after. No user is in the room,
actually the Campus is closed.

• Ramp-up transient phase, between 7:00 to 10:00. The number of UTs
in the rooms grows quickly up to its typical value. However, at 9:00 the
number of UTs is about 30 (UAR=10).
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• Steady-state phase, between 10:00 to 18:00. The number of UTs varies
around its typical value; an average value of about 100 (UAR=33.33) with
peaks of 140 (UAR=46.67) is observed.

• Emptying transient phase, between 18:00 to 21:00. The number of UTs
decreases. At 19:00 they are less than 30 (UAR=10).

These results from the literature suggested us to experiment 10 and 50 as
reasonable values for the parameter UAR.

Table 2 reports the relation between configuration identifiers and parameter
settings. It is worth noting that the odd configurations have a low UAR, i.e.
UAR = 10 (in bold), whereas the even ones are high UAR configurations,
i.e. UAR = 50. The last column of the table reports an upper bound to the
maximum power consumption of each configuration. Since the worst situation
for the power consumption verifies when each AP is powered-on and works
at the highest possible load, i.e. its “airtime” is equal to 1, then the upper
bound can be computed according to

∑
j∈J (poj + pw) (see Section 3). In our

experimentation poj and pw have been set equal to 24 W and 11 W , respectively.

Table 2: Configurations: parameter settings

Conf. ID |I| |J | UAR AP density Max. Power (W)
1 100 10 10 0.001 350
2 500 10 50 0.001 350
3 500 50 10 0.005 1750
4 2500 50 50 0.005 1750
5 1000 100 10 0.01 3500

For each configuration, fifty different instances have been generated, having

the same |I|||J | and |J |m2 settings characterizing the configuration. In each instance,

the random distribution of the APs and the UTs locations has been determined
as follows. Firstly, we divided the test field into a regular grid of |J | squares.
Then, the APs have been placed one per square, with their coordinates chosen
randomly within the square. The set of the UTs has been also split into |J |
subsets, and the elements of each subset have been randomly spread over the
corresponding square. This strategy ensures enough uniformity in the placement
of UTs and APs, so as to mimic a corporate scenario and to avoid heavily
unbalanced instances.

Concerning the parameters related to the uncertainty in the user position,
K, which is common to both robust models, has been set to 0.5|I|. Moreover,
in the case of the Multiband Robust model we considered |B| = 4 and Hb =
0.25|I|∀b ∈ B, while for the Basic Robust model we set H = 0.75|I|. This
choice allowed us to compare the performance of the two robust models within a
uniform user position uncertainty setting, sinceH = H1+H2+H3. Furthermore,
by considering the parameters rmin−b

ij in the robust capacity constraints (6),
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representing the worst value assumed by the data rate function rij(b, fL) for
UT i and band b (b ≥ 1) with respect to the AP j, they have been configured
according to the following procedure: for each UT i and for each band b, b ≥ 1,
3 positions of i within the annulus corresponding to b have been generated
by using a uniform distribution; then for each j, rmin−b

ij has been set to the
minimum data rate of link (i, j) determined by these generated 3 alternative
positions of i.

Concerning the fading uncertainty, we experimented the lower end fL = 0.05.
The path loss of the links has been computed by using a simplified version of the
COST-231 multi-wall path loss model for indoor, NO-LOS environments (Eu-
ropean Commission (1999)), and the maximum achievable rate set to 54 Mbps
according to the 802.11g standard. Finally, the traffic demands wi have been
generated by independent random variables, uniformly, in the range [270, 300]
Kbps.

7.2. Analysis of CPLEX settings

The first phase of our computational study was devoted to solve the math-
ematical models to RGWLAN and to GWLAN by means of a commercial op-
timization solver, in order to assess at what extent they are able to return
optimal solutions, or good approximations, in a time that is acceptable from
an engineering perspective (see D’Andreagiovanni et al. (2017)). This has been
carried out by considering different settings of the solver parameters. The aim
was to determine a promising setting of such parameters, to be used in the next
phase of the computational study, devoted to the matheuristic experimentation.
Specifically, the following CPLEX parameters have been considered:

• the relative MIP gap tolerance (parameter CPX PARAM EPGAP, denoted as
EG in the following), which sets a relative tolerance on the gap between
the best integer objective value and the objective value of the best node
remaining (best bound hereafter). It instructs CPLEX to stop as soon as
the ratio |best bound−best integer value|/|best integer value| falls below
the value of this parameter;

• the maximum time, denoted as TL (Time Limit), given to the solver for
the model solution.

TL refers to the elapsed time, in seconds, since the solver starting time.
That is, the solver stops its execution after TL seconds, unless it computes an
optimal solution before. Notice that, since CPLEX checks the elapsed time only
at certain points in its code, the computational time could be a little bit higher
than the set TL value.

After some preliminary tests, three alternative settings have been considered.
Two of them have the default EG value (i.e., 10−4) and differ in TL (TL = 200s
and TL = 1800s, respectively). The third setting associates TL = 1800s with
the larger relative tolerance EG = 0.05. Table 3 shows the summary of the
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results obtained for the 50 instances of configuration 5, i.e. the one with the
highest density, for the three models: the one disregarding the uncertainty as-
pects (referred to as NO, standing for nominal, hereafter), the Basic Robust
model (BR hereafter), and the Multiband Robust model (MR in the following).
Configuration 5, in fact, proved to be the most critical for all models. Anyway
similar results have been obtained with the other configurations. When the EG
value is not reported, the results have been obtained by using its default value,
i.e. 10−4. The table reports the following statistics: the average power con-
sumption (PC), the average computational time (CT), and the average number
of powered-off APs (NOFF ). For each statistic, the average value is with re-
spect to the number of instances for which the solver determined an optimal or
a feasible solution. At this regard, the solver can terminate with three different
outputs:

• optimal solution;

• feasible solution: the solver was not able to compute an optimal solution
within TL (or to certify the optimality), and returns the best solution
found;

• no feasible solution: the solver did not find any feasible solution within
TL.

Rows Opt., Feas., and Nofeas. in Table 3 report the number of instances for
which the computation ended with an optimal solution, a feasible solution, or
no solutions, respectively.

Table 3 highlights two key aspects. The first one concerns the similar per-
formance shown by the nominal and by the Multiband Robust models. The
second one concerns the performance of these two models, for TL = 1800 sec-
onds, using the two different EG settings, i.e. 10−4 and 0.05. The comparison
shows that, relaxing EG to 0.05, that is allowing the solver to determine a so-
lution with a power consumption which is not the minimal one, then there is
just a negligible worsening in terms of power savings loss, with a reduction of
the computational time, however, to the order of 200 seconds. Precisely, there
is an increment of PC of just about the 0.6% with respect to the minimum pos-
sible power consumption. Furthermore, we can observe that the PC obtained
by solving these two models with TL = 200 seconds is only slightly higher than
the one obtained with TL = 1800 seconds. Our conclusion is that, for the nom-
inal and the Multiband Robust models, after 200 seconds CPLEX has already
determined a solution which is close to the optimal one, as the analysis of the
indicator Opt. testifies.

A completely different behaviour is observed for the Basic Robust model.
Indeed, in this case the average PC of the solutions obtained by setting TL =
200 seconds is more than 23% greater than the one obtained for TL = 1800
seconds. Furthermore, considering the relaxed setting EG = 0.05 does not
provide notable differences in the performance.

By considering the two main performance parameters, i.e. CT and PC, we
can therefore summarize the obtained results as follows:
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Table 3: Performance results for configuration 5

PP TL = 200s TL = 1800s TL = 1800s EG = 0.05
N

O
CT (s) 200.18 1800.45 224.71

PC (W) 527.97 518.434 521.70
NOFF 84.78 85 85
Opt. 0 0 50
Feas. 50 50 0

No feas. 0 0 0

B
R

CT (s) 200.88 1800.65 1800.76
PC (W) 881.96 716.441 716.44
NOFF 69.82 76.74 76.74
Opt. 0 0 0
Feas. 50 50 50

No feas. 0 0 0

M
R

CT (s) 200.35 1800.87 282.62
PC (W) 529.46 518.672 521.97
NOFF 84.62 84.98 84.98
Opt. 0 0 49
Feas. 50 50 1

No feas. 0 0 0

• CT : there is a notable difference between the Multiband and the Basic
Robust models. The former improves CT by suitably acting on the setting
of the CPLEX parameter EG. In fact, when EG = 0.05, it is able to
compute an optimal solution in the 98% of the cases, with an average
time which is not too far from the one of the nominal model. The Basic
Robust model, instead, does not show any benefit in terms of CT . It never
finds an optimal solution within the given time limit, always reaching TL.

• PC: for the Basic Robust model, a higher TL allows one to decrease this
indicator, i.e. to reduce the power consumption. Table 3 highlights in fact
a PC increase of about 23% in case of TL = 200 seconds with respect to
TL = 1800 seconds. This result is due to the significant larger number
of powered-off APs obtained when TL = 1800 seconds. In contrast, the
Multiband Robust and the nominal models return PC values which are
similar in all the three considered settings.

Due to the above results, the performance analysis of the proposed matheuris-
tics will be carried out by considering the CPLEX settings TL = 200 seconds
and EG = 10−4. In fact, the presented results show that this setting allows
one to achieve a good trade-off between computational time and power saving.
In particular, the power consumption of the robust model solutions is near to
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the minimum one, especially for the MR model, and therefore it will be used to
evaluate the quality of the matheuristic solutions in terms of energy saving.

7.3. Impact of the powering-on heuristic

We first considered the mathematical models equipped with the powering-on
heuristic alone, to analyze the trade-off between increase of the power consump-
tion and reduction of the computational time.

As described in Section 5.1, the powering-on heuristic is based on the selec-
tion of a set of APs, JON , which are considered as key network design elements,
in the sense that they should be constantly powered-on. Specifically, JON is
composed of the APs which are able to offer a non null data rate to at least
the 80% of the UTs. Hence, when equipped with the powering-on heuristic,
CPLEX searches a solution such that yj = 1,∀j ∈ JON . Obviously, this strat-
egy may cause an increase of the power consumption (PC) with respect to the
optimal one, since the powering-off of the APs in JON is forbidden. The mod-
els equipped with the powering-on heuristic thus represent mathematical based
heuristics, or matheuristics, to RGWLAN, due to the forced powering-on of the
APs in JON .

Table 4 shows the effects of the powering-on heuristic on the output of the
solver. The entries of the table give in fact, for each model, the number of opti-
mal or feasible solutions found, and the number of the cases where no solution
was found. The columns marked with H refer to the models using the powering-
on heuristic before calling the solver, i.e. the matheuristics mentioned before.
It is worth highlighting that, for the columns marked with H, Opt. indicates
optimality for the model equipped with the powering-on heuristic, i.e. for the
scenarios where the APs belonging to the set JON are not considered in the
search of the solution with minimum power because they are always powered-
on. In other words, these solutions are not necessarily optimal for the exact
models, where all the APs can be powered-off.

The table shows that, for the last three configurations (i.e., 3, 4 and 5), the
solver is not able to determine an optimal solution for the mathematical models
NO, BR and MR within the stated TL. For the low density configurations (i.e.,
1 and 2), CPLEX returns either optimal or feasible solutions for the nominal
model. For BR and MR, instead, CPLEX provides an optimal solution or it
is unable to find any feasible solution within TL. In particular, considering
the Basic Robust model, in case of configuration 2 the solver does not find any
feasible solutions for none of the 50 instances. The recourse to the powering-on
heuristic allows one to modify this situation. By observing the results related
to the configurations with a low UAR, i.e. UAR = 10 (configurations 1, 3 and
5), we can observe that an optimal solution of model MR equipped with the
powering-on heuristic is obtained for almost all the instances. In particular, in
the case of the highest density configuration, i.e. configuration 5, the solver
is able to find an optimal solution of the matheuristic, within the imposed
time limit, for the 94% of the instances. On the other hand, the powering-on
heuristic has negligible effects on the performance of the Basic Robust model
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Table 4: Comparison between mathematical models and matheuristics: type of determined
solutions

Conf.Id Model Opt. Opt.H Feas. Feas.H Nofeas. Nofeas.H

1
MR 48 48 0 0 2 2
BR 22 22 0 0 28 28
NO 50 50 0 0 0 0

2
MR 35 35 0 0 15 15
BR 0 0 0 0 50 50
NO 40 39 10 11 0 0

3
MR 0 50 50 0 0 0
BR 0 7 50 43 0 0
NO 0 23 50 27 0 0

4
MR 0 0 50 50 0 0
BR 0 0 50 50 0 0
NO 0 0 50 50 0 0

5
MR 0 47 50 3 0 0
BR 0 0 50 50 0 0
NO 0 3 50 47 0 0

which, requiring a high computational time, returns optimal solutions only in a
few cases.

Table 5 shows the impact of the powering-on heuristic on the power con-
sumption, i.e. PC, and on the computational time, i.e. CT . Again, the
columns marked with H refer to the use of the powering-on heuristic, i.e. to
the matheuristics. Considering configuration 2, the solver was unable to find a
feasible solution for model BR, with and without the powering-on heuristic, for
all the 50 instances. Hence, no performance parameter is available, and this is
indicated by symbol “–” in Table 5.

In the table:

• “TL” in columns CT indicates that the solver reached the time limit for
all the 50 instances, without returning an optimal solution;

• the columns “N.S.” report the number of instances for which an optimal
solution was determined; furthermore, between brackets, it is indicated
the number of instances for which a feasible, but not necessarily optimal,
solution was determined within the time limit;

• the values in columns “PC” and “CT” have been computed by averaging
the PC and the CT values for the instances where the solver gave results,
i.e. either an optimal or a feasible solution has been determined. For
example, if we consider MR equipped with the powering-on heuristic for
configuration 1, in column “N.S. H” we read 48(0). The meaning is that
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the values reported in columns “PC H” and “CT H” have been obtained
by averaging the corresponding indicators for 48 instances (i.e. 48 + 0).
Since 50 instances have been generated for each configuration, we can
deduce that, for two of them, the solver was unable to find any feasible
solution within TL.

Regarding the power consumption, here a comparison is performed between
the PC indicator of the matheuristics and the one of the pure mathematical
models. Recall in fact that, according to the results in Section 7.2, when a
feasible solution is found the selected settings of CPLEX parameters are such
that a good approximation of the minimum power consumption is returned by
the mathematical models in almost all the tested instances. The table highlights
that MR generally provides PC values comparable to the ones of the nominal
model, and that the use of the powering-on heuristic worsens a little its power
saving performance in the configurations with UAR = 10, i.e., 1, 3 and 5.
On the other hand, when UAR = 50, then the heuristic does not significantly
change the power consumption of the returned solutions. Figure 1 helps to
understand this result. In particular, the figure shows the number of powered-
off APs in the solution of MR for each of the 50 instances of configurations 3 and
4, with and without the powering-on heuristic. Recall that these configurations
are characterized by the same number of APs (i.e. 50), but have a different
UAR value (10 for configuration 3 and 50 for configuration 4). We can observe
that, for the instances with high UAR, the powering-on heuristic has negligible
effects on the power savings. By considering the results without heuristic, when
UAR = 50, given the “high” average number of UTs per AP, more than the
70% of the APs have to be powered-on in order to accomplish the UT service
requirements. Therefore, in this case the number of powered-off APs presents
negligible variations in all the instances, as shown by the curves referring to
configuration 4. On the contrary, when UAR = 10, the powering-on of only
the 16% of the available APs allows one to satisfy the service requirements of
all UTs. In this case, the performance worsening induced by the powering-on
heuristic is more evident as shown by the distance between the two curves of
the results related to configuration 3. At this regard, it is worth highlighting
that optimizing the power consumption is a relevant issue especially when the
offered traffic to the WLAN is scarce. In the considered experimentation, this
condition verifies in the configurations with UAR=10. The other considered
UAR value, on the other hand, refers to a medium loaded WLAN: in this case,
reasonably, the optimization can provide less benefits, and this is confirmed by
the low average number of APs which are powered-off, as reported in Table 5.
Notice that, in any case, the power consumption achieved via the proposed
matheuristics is very far from the upper bounds reported in Table 2, referring to
the naive approach where all the APs are powered-on and work at the maximum
load. This is particularly evident for the configurations with a low UAR, i.e. 1,
3 and 5.

Concerning the computational time, the table highlights that for the high
density configurations, i.e. 3, 4 and 5, the robust models alone, i.e. without the
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Figure 1: Number of powered-off APs for all instances of configurations 3 and 4 - MR with
and without powering-on heuristic

powering-on heuristic, use all the TL = 200 seconds for determining a model
solution. The same verifies for the nominal model. The powering-on heuristic,
instead, usually accelerates the model solution, at least for MR and NO and
for configurations 3 and 5. In particular, MR equipped with the powering-on
heuristic is solved to optimality in most instances of configuration 3, as shown
in Figure 2. The figure highlights that only 6 instances required more than 10
seconds. A numerical analysis of the results has shown that 21 instances out of
50 required less than 5 seconds for determining an optimal solution. Concerning
configuration 2, characterized by UAR = 50, MR is solved in an average time
of 11.76 seconds in 35 instances, without using the heuristic. The average CT is
further reduced to 6.422 seconds using the powering-on heuristic. In both cases,
the solver does not find any feasible solution for the remaining 15 instances.
On the other hand, in case of configuration 2 the solver is unable to find a
feasible solution for BR for all 50 instances, with and without the powering-on
heuristics. This result points out that, when the average number of UTs per AP
is high, RGWLAN cannot be easily solved: only when the uncertainty issues
are disregarded a solution is determined for all the 50 instances.

By summarizing the impact of the powering-on heuristic, it allows important
reductions of the computational time especially when combined with model MR,
except for the configurations 2 and 4, which are characterized by UAR = 50.
For these two configurations, in fact, the simultaneous large number of variables
and the high value of UAR make negligible the advantages in terms of CT. On
the other hand, the powering-on heuristic is computationally very efficient when
UAR is low, as shown by the results for configurations 1, 3 and 5, with a low
degradation of the power consumption with respect to the optimal, or near-
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Figure 2: CT for the scenarios of configuration 3 – MR model with powering-on heuristic

optimal one, guaranteed by the robust models alone.

7.4. Robustness analysis: impact of the reallocation algorithm

To evaluate the robustness of the computed solutions we analyzed their fea-
sibility with respect to a random position of the users within the annuli. Specif-
ically, for each instance (of each configuration) we solved the robust models,
with and without the powering-on heuristic. Then, we generated a compan-
ion instance, by simulating the actual position of each UT. Each companion
instance has been obtained by firstly associating each UT with one band, while
respecting the robustness parameters Hi, i = 0, 1, 2, 3, and then randomly gen-
erating the position of each UT within the associated annulus, using a uniform
distribution. For each configuration and each approach, we thus evaluated the
Level of Feasibility (LF ) as the number of instances for which the model solution
remains feasible when applied to the companion instance, i.e. after perturbing
the UT positions. As testified by the last two columns of Table 5, the robust
model solutions exhibit very low LF values for all configurations, also when the
powering-on heuristic is used.

The reallocation algorithm presented in Section 5.2 has been designed to
enhance the level of robustness. Applied to the instances where the solver found
a solution (optimal or feasible), the idea is to give the possibility to the users
to change the associated AP, to increase the number of solutions that maintain
their feasibility after the user position perturbation.

Let us first analyze the impact of the reallocation algorithm when UAR = 10.
Due to the good performance shown in the previous section, only the results
for the models equipped with the powering-on heuristic will be reported. The
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results for configurations 1, 3 and 5 are summarized in Table 6. In the table,
the acronyms have the following meaning:

• LFH: LF parameter calculated using only the powering-on heuristic;

• LFHR: LF parameter calculated using the powering-on heuristic and the
reallocation algorithm: it gives the number of instances for which the
solution remains feasible after applying the reallocation algorithm; the
value within brackets includes the number of instances where only one
UT lacks the service after the reallocation.

• ANRU: Average Number of reallocated UTs;

• ANUNS: Average Number of UTs with no service after the reallocation
algorithm;

• MNUNS: Maximum Number of UTs with no service after the reallocation
algorithm.

The following considerations can be drawn:

• In all cases, the number of UTs loosing their service after the reallocation
is relatively low. As an example, in configuration 5, having 2500 UTs, at
most 42 UTs do not have their service after the reallocation algorithm.

• By considering MR, the feasibility is guaranteed after the reallocation for
almost all the instances.

• In case of MR, the average number of reallocated UTs is comparable to
the one of model NO. However, the association UT-AP of the solutions
obtained solving MR appears to be of better quality: by considering con-
figuration 5, only for 13 instances the service to all UTs is not guaranteed,
and only for 8 instances more than one UT losses his service.

• By considering BR, the reallocation algorithm guarantees the requested
service to all the UTs in configurations 3 and 5.

• BR shows the worst level of robustness for configuration 1, due to the
low density of the APs (only 10 APs) which does not offer enough link
alternatives for guaranteeing the UT service in the simulated scenarios.
This is confirmed by the results in Table 5 (column NS H), which indicate
that the solver found a solution for BR only for 22 instances out of 50.

When UAR = 50, the results of Table 5 show that the solver did not
find a solution for all the instances of configuration 2. Hence, we analyze the
impact of the reallocation algorithm only for configuration 4 (see the last rows of
Table 6). The results point out that the reallocation algorithm, when combined
with model BR, allows one to satisfy the service requirements for all UTs in
all the 50 instances. On the contrary, the reallocation algorithm shows less
efficacy in case of model MR. Indeed, only for 8 instances out of 50 all the
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Table 6: Average values of some statistics before and after the application of the reallocation
algorithm

Conf.Id Model LFH LFHR (only 1) ANRU ANUNS MNUNS

1
MR 11/48 47(48) 1,29 0.021 1
BR 7/22 22(22) 0,864 0 0
NO 0/50 2(10) 2,48 3,22 8

3
MR 0 45(50) 7,8 0,1 1
BR 4 50 2,5 0 0
NO 0 1(2) 8,98 8,72 27

5
MR 0 37(42) 19,78 1,64 24
BR 0 50 5,42 0 0
NO 2 8(16) 17,5 11,38 42

4
MR 0 8(10) 20,14 12,92 34
BR 0 50 3,14 0 0
NO 0 2(2) 17,70 16,68 37

UTs maintain the service, whereas only in two instances a single UT cannot be
reallocated successfully. In case of NO, that is when robustness is not taken
into account, although more than 17 UTs are on average reallocated, only in
two instances the service request of all UTs is satisfied. By summarizing, when
UAR = 50 the matheuristics based on the MR model show a lower level of
robustness compared to the ones based on the the Basic Robust model. This
arises because the two models greatly differ in terms of switched-off APs and,
as a consequence, in terms of power consumption. Referring to configuration
4, as shown in Table 6, BR works almost at full power (there are on average
0.66 APs switched-off), whereas in case of MR there are, on average, 13 APs
which are switched-off (26%). The power consumption of the solutions based
on BR is thus about 26.47% higher than the average power consumption of the
solutions based on MR. Such a larger power consumption, however, appears to
be positive regarding the achieved level of robustness. The significant number
of powered-off APs when UAR = 50 may therefore explain the observed poor
results of the MR based matheuristics in terms of level of robustness.

We conclude the section with a brief discussion of the main achievements
obtained by our computational study:

• when combined with the robust model MR, the powering-on heuristic
provides significant advantages in computational time when the UTs to
AP ratio, i.e. UAR, is low, with a low degradation in terms of power con-
sumption with respect to the optimal, or near optimal, power consumption
guaranteed by the robust model alone; when combined with model BR,
instead, the heuristic tends to power-off less APs than MR, so returning
solutions with higher power consumption in a greater computational time;
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• when the UTs to AP ratio increases, the matheuristics suffer in deter-
mining solutions to RGWLAN; this is particularly true when considering
model BR, which often is not able to determine a feasible solution to the
problem;

• the reallocation algorithm used jointly with model BR is particularly ef-
fective on almost all the tested configurations; considering model MR, in-
stead, it guarantees a high level of robustness when UAR is low, whereas
it provides slight improvements when UAR increases.

As a final remark we emphasize that our computational results have been
obtained for large network scenarios, with up to 2500 UTs and 50 APs, which
correspond to the largest size of experimental results in the literature for uni-
versity campus Debele et al. (2015) or corporate Balazinska and Castro (2003).
However, the matheuristics proposed in this paper are applicable also to still
larger campus networks composed of different buildings, such as Henderson et al.
(2008), and to urban WiFi, e.g. Afanasyev et al. (2010), by partitioning the
RGWLAN problem into smaller subproblems, and applying the matheuristics to
each subproblem. The RGWLAN decomposition could be performed by exploit-
ing the features of the network deployment (e.g., parts of the network having
disjoint coverage areas), or defining some heuristic partitioning strategies, such
as the ones preliminary investigated in D’Andreagiovanni et al. (2017) for the
GWLAN problem.

8. Conclusions

We have proposed some heuristic algorithms to enhance mathematical mod-
els to the Robust GWLAN Problem (RGWLAN), i.e. the Basic Robust model
(BR) and the Multiband Robust model (MR), thus obtaining mathematical
based heuristics, or matheuristics, to RGWLAN. The aim has been to achieve a
good compromise among power saving, guaranteed level of robustness and com-
putational time required to compute a robust solution. Specifically, we have
enriched the two robust models by means of: (i) a preprocessing powering-on
heuristic, aimed at discovering APs which it would be convenient to open, and
fixing them as powered-on within the model, and (ii) a reallocation algorithm,
aimed at reallocating UTs to APs once the model solution has been computed,
in order to enhance the level of robustness at a negligible computational cost.

The extensive computational campaign, on 2500 instances partitioned into
5 configurations, has produced some interesting results. Specifically, when the
UTs to AP ratio, denoted as UAR, is low, then the MR model equipped with
the powering-on heuristic is computationally very efficient, with a low degrada-
tion of the power consumption with respect to the value achieved by MR alone.
Also, the reallocation algorithm combined with MR guarantees a high level of
robustness against the uncertainty in the user positions. When UAR increases,
instead, the robust approaches are less efficient. BR shows a good level of ro-
bustness when combined with the reallocation algorithm, but it may find more
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difficulties than MR in solving the problem, by returning solutions with higher
power consumption in a greater computational time. Anyway, as already out-
lined, optimizing the WLAN power consumption is particularly relevant when
UAR is low. In this case, in fact, the offered traffic to the WLAN is scarce,
and the power optimization is able to provide high benefits, as confirmed by the
presented computational results.

We plan to design alternative robust heuristics to RGWLAN, and to compare
them to the ones proposed in this paper on an even larger testbed, by taking
into account additional sources of uncertainty such as the one related to the
user demands.
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