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Abstract

c 2011

The kd-tree is a fundamental tool in computer science. Amongradpelications, the application é&fl-tree search (by the tree
) ‘method) to the fast evaluation of particle interactions aeighbor search is highly important, since the computatioomplexity
of these problems is reduced frad{N?) for a brute force method t@®(N logN) for the tree method, whend is the number of
particles. In this paper, we present a parallel implemantatf the tree method running on a graphics processing GHt)). We
present a detailed description of how we have implementedrde method on a Cypress GPU. An optimization that we found
important is localized particle ordering téfectively utilize cache memory. We present a number of testlt®and performance
~—— measurements. Our results show that the execution of ta¢rereersal in a force calculation on a GPU is practical dfidient.
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Clll. Introduction since its adaptive nature is essential for dealing with gym
®) structure in the universe (e.g., Bouchet & Hernquist, 1988)
«.. - A technique fqr grawtatlon_al m_any-bpdy simulations is a Despite thed(N log N) complexity,

fundamental tool in astrophysical simulations becausegithe-
(T itational force drives structure formation in the univer3ée
—length scales that arise in structure formation range fress |

than 1 cm for the aggregation of dust to more thaff bon for v d (1990), and Barne’s (1990) have reported various tech
the formation of cosmological structures. At all scale®ver g, es to vectorize the force calculation with the tree méth
O ity is a key physical process for the understanding of SIECt - \yren et 41.[(1992), DubingKi (1996), dnd Yahagi étal. €)99
™M formguon. The reason behind this is the long-range nattire %have reported a parallel tree method for massively parallel
LE) gravity. _ ) _ _ processors (MPPs). In a recent publication (Springellet al.
<" Suppose we simulate structure formation wihparticles. 5005 4 simulation of large-scale structure formationtia t
The flow of the many-body simulation is as follows. First, we nierse with more than ten billion particles, using a paral
calculate the mutual gravna_tlonal forces b.etween Rhparti- || tree code running on an MPP, has been reported. Another
«— cles, then integrate the orbits for theé particles, and repeat ompytational technique to speed up the tree method tilize
— this process as necessary. Although it is simple in priecipl 1o GRAPE special-purpose computer (Sugimoto et al..|1990;
5 the force calculation is a challenging task from the point ofy;51ing & Taiji, [1998). Using a combination of vectorization

- = view of computer science. A simple, exact method for thedorc techniques for the tree method, the tree method can be exkcut
>< calculation require®(N?) computational complexity, which is efficiently on a GRAPE systerh (Makirlo, 1991).

E prohibitively compute-intensive for largh. An exact force _ _ _ . )
calculation is necessary in some types of simulations, ssch  Cosmological simulations are a “grand challenge” prob-
few-body problems, the numerical integration of planetsitor €M The Gordon Bell prizes have been awarded many
ing around a star (e.g., the Solar System), and the evolofion 1MeS for _cosmological _simulations|_(Warren & Salfnon,
dense star clusters. For simulations that do not requiretexa+292; [Fukushige & Makina, 1996; Warren ef al., 1997, 1998,
forces, however, several approximation techniques haee be Kawaietal., [ 1999 Hamadaetal.._2009). In those sim-
proposed|(Hockney & Eastwdoll, 19€1; Barnes & Hut, logeulations, both pa_raIIeI tree codes (Warren &_Salmon, 1992;
Greengard & Rokhlin| 1987). The particle—mgsirticle— Warren et all., 199 7,1908) gnd atree code runningona GRAPE
particle—mesh method (Hockney & Eastwobd, 1981) and th&yStem |(Fukushige & Makino, 1996, Kawai et al., 1999) and
tree method| (Barnes & Hut, 1986) reduce the computationdt 9raPhics processing unit (GPU) (Hamada et al.. 2009) were
complexity of the force calculation t®(NlogN). The Uused to perform cosmological simulations.
fast multipole method (FMM) reduces it further 1O(N) In the present paper, we describe our implementation of the
(Greengard & Rokhlin] _1987). Of these methods, the tred¢ree method on a GPU. The rise of the GPU forces us to re-
method has been used extensively in astrophysical simofti  think our way of doing parallel computing, since the perfor-

computational optimiza-
tion of the tree method by techniques such as vectoriza-
tion and parallelization is necessary to accommodate ddsan
for simulations with larger and larged. |Hernquist [(1990),
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mance of recent GPUs has reached the impressive levellof The external memory attached to the Cypress consists of 1
Tflops. Acceleration techniques for many-body simulationsGB of GDDR5 memory with a 256 bit bus. It has a data clock
with a GPU have already been reported (€.0., Nylandiet alrate of 4.8 GHz and féers a bandwidth of 153.6 G&8 This
2007; | Portegies Zwart etial., 2007; Hamada & litaka, 2007gxternal memory is accessed through four banks, as shown in
Belleman et al., 2008); however, these techniques havesimpl Figure[1. In each bank, there is a second-level read cache (L2
mented an exact, brute force method WitfN?) complexity. It ~ cache). The total size of the second-level cache is 512 KB, i.
is apparent, however, that for applications that do notirequ 4 x 128 KB. Twenty compute units and memory controllers are
exact forces, it is possible to do much moficgent compu- interconnected through a crossbar. Each compute unit has a
tation by the tree method. We have directly implemented théirst-level read cache (L1 cache) and a local data share (LDS)
tree method on a GPU so that we can enjoy the speed of aas depicted in Figuid 1. The sizes of the L1 cache and LDS are
O(N logN) algorithm. For smalN < 30,000, the brute force 8 KB and 32 KB, respectively. The L1 cache can fetch data at
method on a GPU is faster than the tree method owing to extra4.4 GBs when the cache is hit; namely, the aggregate band-
work concerning the tree data structure. However, our tesul width of the L1 cache on the Cypress GPU is 54.4/€820
show that the tree method significantly outperforms theebrut= 1.088 TBs. This high memory bandwidth is a notable fea-
force method on a GPU fdd > 10,000, which is the stan- ture of this GPU. As we shall describe in the following setio
dard size in current astrophysical simulations is. Our dsde taking advantage of the hardware-managed cache is cititical
simple and easy to extend to other numerical algorithms thatbtaining high performance on the Cypress GPU.
require a neighbor list or a short-range force, such as algo-
rithms for the smoothed particle hydrodynamics (SPH) meétho 2.2. Programming the Cypress GPU
(Gingold & Monaghan, 1977; Lucy, 1977). In the present work, we programmed the Cypress GPU using
an assembly-like language called IL (Intermediate Langlag
IL is like a virtual instruction set for GPUs from AMD. With
IL, we have full control of every VLIW instruction. The pro-
In this section, we briefly summarize the architecture of the) amming model supported by IL is a smgle-lnstructlo_n-and
: multiple-data (SIMD) model at the level of the SC. In thispro
Cypress GPU that we used in the present work (most of the : ) X
information is taken frorh AMD Ink|(2010)). gramming model, a sequence of |n§tructlons generf'ited.fmm a
IL program is executed on all SCs simultaneously witledent
input data.
A block of code written in IL is called a compute kernel. The
The Cypress GPU, from AMD, is the company’s latest GPUdevice driver for a GPU compiles IL instructions into the-cor
and has many enhancements for general-purpose computing résponding machine code when we load a kernel written in IL.
has 1600 arithmetic units in total. Each arithmetic unitdpa-  In a compute kernel, we explicitly declare what type of vari-
ble of executing single-precision floating-point fused tiply—  able the input data is. In the main body of the IL code, we
add (FMA) operation. Five arithmetic units make up a five-write arithmetic operations on the input data. Logicallycle
way very-long-instruction-word (VLIW) unit called a strma SC is implicitly assigned data that isfidirent from that for ev-
core (SC). Therefore, one Cypress processor has 320 SCs. Oay other SC. In the case of a simple compute kernel, the SC
SC can execute a several combinations of operations such aperates on the assigned data. Operations such as thisses ar
(2) five 32-bit integer operations, (2) five single-preasiéMA  in pure stream computing, seem to work with the high&st e
operations, (3) four single-precision FMA operations witte  ciency. In a complex compute kernel, which we explore in the
transcendental operation, (4) two double-precision adet-op present work, each SC not only operates on the assigned data
ations, or (5) one double-precision FMA operations. Eaclbut also explicitly loads random data that might be assigned
SC has a register file of 1024 words, where one word is 12&nother SC. To accomplish a random access to external mem-
bits long (four single-precision words or two double-pstmn  ory, we explicitly calculate the address of the data in the-co
words). A group of 16 SCs make up a unit called a computeute kernel.
unit. At the top level of the GPU, there are 20 compute units, a The ATI Stream software development kit (SDK) for the Cy-
controller unit called an ultra-threaded dispatch prooesnd  press GPU also supports OpenCL, which is a standard API with
other units such as units for graphics processing, memary co an extended C language (hereafter referred to as C for OpenCL
trollers, and DMA engines. for writing a compute kernel. In this work, we also present
All SCs in the compute unit work in a single-instruction- a compute kernel written in C for OpenCL (dee Appendix A
multiple-thread (SIMT) mode, i.e., 16 SCs execute the samér the code). We believe that it is instructive to present ou
instructions for four clock cycles to accommodate the leyen algorithm in C for OpenCL and that this makes the algorithm
of the arithmetic units. That is, we have 64 threads proceedeasy to understand. Both programming methods (using IL and
ing as a wavefront on the Cypress GPU. At the time of writ-using C for OpenCL) have pros and cons. With IL, we have
ing, the fastest Cypress processor runs at 850 MHz #iedso  the advantage of full control of the VLIW instructions, but a
a peak performance of 16602 x 850x 10° = 2.72 Tflogsin ~ compute kernel written in IL is somewhat cumbersome. On
single-precision operations. With double-precision aiens, the other hand, it is is easier to start writing a compute ker-
we have 320 2 x 850x 10° = 544 Gflos. nel in C for OpenCL, but optimization for any particular GPU

2. GPU architecture

2.1. Cypress architecture
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Figure 1: Block diagram of the Cypress GPU, with emphasidemiemory system.

architecture is not straightforward. An advantage of ppogr wherea; andp; are the force vector and potential for a particle
ming with OpenCL is that we can use OpenCL to program d, andx;, m, € are the position of the particle, its mass, and a
general-purpose many-core CPU. In the following sectiom, w parameter that prevents division by zero, respectively.céve
compare implementations of the tree method on a GPU basemblve these equations by two nested loops on a generalgrirpo
on compute kernels written in IL and in C for OpenCL. We alsoCPU. In the inner loop, we simultaneously evaluate the func-
compare the performance of a compute kernel written in C fotions p and f, and require 22 arithmetic operations, which in-
OpenCL on a GPU and on a CPU. clude one square root and one division, to compute the itttera
tion between particlesand j. Since previous authors, starting
from|Warren et al.[(1997), have used a conventional operatio
count for the evaluation of; and p;, we have adopted a con-

. ventional count of 38 throughout this paper.
So far, we have developed around a dozen kernels in IL that . .
Elsen et al. [(2006) reported an implementation of a brute

we use for astrophysical many-body simulations. In this secf rce method for aravitational and other for N an old
tion, we report the performance of our implementation of gorce method for gravitational and other forces on an o

brute force method for computing gravitational forces. sThi GPU from AMD/ATI. One of the main insights obtained

code served as a basis for us to implement a more sophisticat as that a loop-unrolling technique greatly enhanced thfe pe
algorithm later. ormance of the code. We have followed Elsen et al.'s ap-

. . . proach and tried severalftirent methods of loop unrolling.
To be precise, we have implemented a set of convent|on<1.i ~ , L
equations expressed as ujiwara & Nakasata (2009) have reported our optimizatien e
forts for old GPUs. Here, we present a summary of our results.
In Figure2, we plot the computing speed of our optimized IL

3. Bareperformance of brute force method on a GPU

N

N
p = Z p(xi, Xj, m;) = Z %= x-|n;J+ NI kernel for computing Ed.{1) as a function bf. We tested
j=1,j#i joTywi VAT AT TE ) three GPU boards, namely RV770 GPUs running at 625 and
N N m; (% — X;) 750 MHz and a Cypress GPU running at 850 MHz. The three
8 = Z f(xi, xj, m;) = Z systems had peak computing speeds in single precision4f 1.0

Ly |2 2)3/2°
j=1j#i j=1j#i (xi = X1 + €) 1.2, and 2.72 Tflofs, respectively. So far, we have obtained a

(1) maximum performance of 2.6 Tflop's on the Cypress GPU



procedure treewalk(i, cell)

RV770 650MHz

3000 |- s B2OMIZ e ] if cell has only one particle
force += f(i, cell)
PERORY
2500 ! else

if cell is far enough from i
force += f_multipole(i, cell)
else
for i =0, 7
if cell->subcell[i] exists
VIR treewalk(i, cell->subcelll[i])
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Figure 3: Pseudocode for the force calculation by travgrie tree
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§ that are geometrically close together with the multipolpax
Figure 2: Performance of the brute force method on various <GP sion of those particles. If we do not replace the cell, we then
traverse sub-cells of the distant cell. If we do replace #iE ¢

o we calculate a particle—cell interaction. When we encauate
for N > 150, 000. ForN = 195 584, our optimized brute force particle, we immediately calculate a particle—particleiac-

method took roughly 0.5 s on the Cypress GPU. As far as Wgo - Given a particle with index which we want to com-
know, the pgrformance that we obtained is the fastest exar wi pute the force acting on, this procedure is expressed as pseu
one GPU chip. _ _ _ docode in Figur€l3. Note thatubcell[] is a pointers to its
Even with the massive computing power available on suchyy sup-cells. In this pseudocodejs a function that com-
GPUs, however, we cannot escape from a computational conytes the particle—particle interaction, afidrultipole is a
plexity of O(N?). Therefore, if we need to do an astrophysicalfynction that computes the particle—cell interaction hework
many-body simulation for larghi, we need a smart algorithm gescriped in this paper, since we considered only the mdaopo
to do the job, since the recent standardRom astrophysical  mement of a cell, both functions were expressed exactly as in
simulations is at least 10000 for complex simulations with Eqg. ). In principle, we can use any high-order moment in the
baryon physics and, 000,000 for simple many-body simula- particle—cell interaction.
tions. We follow this procedure starting from the root cell, with
the following condition that tests whether a cell is far egiou
away. Let the distance between the particle and the cedl. be
The cell is well separated from the particle il < 6, where
| is the size of the cell and is a parameter that controls the
trade-af. Since the smallel/d is, the more distant the cell is
The tree method (Barnes & Hut, 1986) is a special case dffom the particle, this condition (called the opening cdiaah)
the generakd-tree algorithm. This method has been optimizedtests geometrically whether the cell is far from the paetidihis
to efficiently calculate the mutual forces between particles, andecursive force-calculation procedure is almost the sasne a
reduces the computational complexity of the force caloutat the original algorithm of Barnes & Hut (1986).
from O(N?) for the brute force method 1@(N logN). A trick An important feature of the tree method is that with tree
used is that instead of computing the exact force by a brutgraversal, the force calculations forfigirent particles are com-
force method, it approximates the force from distant persic  pletely independent of each other. Therefore, after we have
using a multipole expansion. It is apparent that there indetr  completed the tree construction, the force calculationrsaa-
off between the approximation error and the way in which wesively parallel problem. There are two possible ways to im-
replace a group of distant particles by a multipole expansio plement the tree method on a GPU to take advantage of this
A tree structure that contains all particles is used to juttiige  feature.
trade-df efficiently.
The force calculation in the tree method is executed in two*-2. Tree method with GRAPE
steps: (1) a tree construction and (2) the force calculation One way is a method proposed by Makino (1991). This
the tree construction, we divide a cube that encloses ali®f t method was proposed as a tree method for the special-purpose
particles into eight equal sub-cells. The first cell is thetraf a ~ computer GRAPE. A GRAPE system consists of a host com-
tree that we construct; it is called the root cell. Then, eadhr  puter and a GRAPE board or boards. The host computer con-
cell is recursively subdivided in the same say until each celtrols the GRAPE board. For a program running on the host, the
contains zero or one particle. As the result of this procedur GRAPE board acts like a subroutine that calculates the gravi
we obtain an oct-tree. tional forces for given particles.
In the force calculation, we traverse the tree to judge wdreth ~ So, we need the following two steps to use a GRAPE system
we should replace a distant cell that contains a group oigkest ~ for a force calculation using the tree method: (1) consionatf
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4.1. Tree method



an interaction list on the host computer, and (2) the actuakf Pr?cedure general_treewalk(.i, cell)
calculation on the GRAPE board. The interaction list is & lis 1f cell has only one particle

of particles and distant cells that are supposed to intevitcta proc_particle(i, cell)

given particle. After the construction of interaction digor all else

particles is completed, we compute the force on each partici ~ if distance_test(i, cell) is true

by sending the interaction lists to the GRAPE board. These tw proc_cell(i, cell)

steps are necessary because the GRAPE board does not have the €1se

ability to traverse the tree. Many authors have used thifiatet fori=0,7

extensively. Three winners and a finalist of the Gordon Bell if cell->subcell[i] exists

prize have used a variant of this method with fiedient version general_treewalk(i, cell->subcell[i])
of the GRAPE system and a GPU (Fukushige & Makino, 1996;

Kawai et al.,| 1999; Hamada et/al., 2009; Kawai & Fukushige, Figure 4: Pseudocode for a general tree-walk procedure.

2006). A drawback of this approach is that the performance is

limited by the speed of the host computer that is responsible ) ) .

for the tree traversal. This possible bottleneck, whichig-s Procedure treewalk iterative(i)
ilar to Amdahl’s law, might be critical without a highly tude €811 = the root cell
implementation of:reewalk () running on the host. Further- ~ "2ile cell is not null .
more, in all of the results presented by Fukushige & Mdkino ~ 1t c¢ell has only one particle
(1996),[ Kawai et 21.[(1999), Kawai & Fukushige (2006), and force += £(i, cell)

Hamada et all (2009), extra force evaluations by a factowof t cell = cell->next

were required to obtain the best performance. Note that be-  ©1S© _ _
cause of the extra force evaluations, the maximum erroren th if cell is far enough from i
force that these authors have reported was better thanrtbre er force += f_multipole(i, cell)

obtained with the conventional tree method for a gigen lcell = cell->next
else

4.3. General tree walk cell = cell->more
Another way to implement the tree method, which we have
followed in the present work, is to implement the whole pro-
cedure shown in Figurel 3 on a GPU. The advantage of this
approach is that only the tree construction, which requigés
atively little time, is executed on the host, so that we zgili byMakino (1990) that transforms a recursiontireewallk ()
the massive computing power of the GPU as much as possiato an iteration. A key feature is that for a given cell, we do
ble. More importantly, we can use our method in applicationg10t need whole pointers{bcell[]) to traverse the tree. We
that require short-range interaction forces (Warren & Salm need only two pointers, to the cells that we will visit nexterh
1995). This is because it is possible to implement a neighthe opening condition is true and when it is false, respettiv
bor search algorithm as a general tree-walk procedure of th€hese two pointers (hereafter calleext [] andmore[1) are
kind shown in FigurdJ4. Two proceduresroc_particle  €asily obtained by a breadth-first traversal of the treeureig
andproc_cell, are used to process the particle—particle ancshowsnext [] andmore [] schematically. Note that a cell that
particle—cell interactions, respectively. In additiorfuaction ~ has sub-cells has bothr@xt [] and amore[] pointer, while
distance_test is used to control the treatment of a distanta leaf cell (a particle in the present case) with no sub-tels
cell. The calculation of the gravitational force is an apglion ~ only anext [1 pointer. An iterative form otreewalk () with
of the general tree-walk procedure that has been very ssicceghese two pointers is shown in Figure 6.

Figure 6: Pseudocode for an iterative tree-walk procedure.

ful. We implemented the iterative procedungeewalk () rather
directly in IL. The input data for this compute kernel is farr
4.4. Our GPU implementation rays. The first contains the positions and masses of thes|eerti

In our implementation of the tree method on a Cypress GPU‘i“_]d cells. We pack a position and amass i_nto a vector variable
we first construct an tree on the host computer that contrels t With four elements. Therefore, this array is an array of four
GPU. At this stage, there is noftiirence between our original €lémentvectors. The mass of a cell equals the total masg of th
tree code and the newly developed code for the GPU. particles in the ceII,.and the position of the cgll is at thetee .

We need to take special care in implementing the tree-wall@f mass of the partlcles._ The second gnd third arrays contain
procedure on the GPU. Currently, GPU architecture does ndf!® Next” and “more” pointers, respectively. Both of these
support recursive procedures except when it is possiblelfip f S|mple_ arrays. The f_ourth array contains _the sizes of t_He.ceI
expand a recursion. Such a full expansion is possible only if "€ Size of the cell is necessary for testing the opening con-
the level of the recursion is fixed, but in the tree methods it i dition. See the description in Appendix Appendix A for the
impossible to know how deep the recursion will be without per d€finitions of these arrays.
forming the tree traversal. So, we adopted a method proposed In the present work, we adopted the following modified
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Figure 5: A tree with “more” and “next” pointers, shown by bland red arrows, respectively.

nin ndition, expr
opening condition, expressed as Table 1: Our test system

I

g ts<d 2) CPU Intel Xeon E5520« 2
wheres is the distance between the center of the cell and the =~ Memory DDR3 800 1GBx 6
center of mass of the cell. The modified condition of Hg. (2) GPU Radeon 5870 memory 1GB
ta_lkes ftfhe p?rtlicle di?rt]ributtion in the cefll into”a(t:lcﬁ:gg_bthghs oS Ubuntu 9.10 (64 bit)
since if particles gather at a corner of a cell, ive size .
of the cell becomes larger. In Figdrke 7, we present a schemati Driver | Catalyst 10.8 (fglrx 8.76.7 [Aug 3 2010])
view of a distant cell and a particle which we are trying tacoal SDK ATI Stream SDK 2.2

late the force acting on. In practice, we precomputed tharggu
of the dfective SizeSegective AS

| 2 With the compute kernel shown, the flow of our tree method
Seftective = 9 +S/ ®)  onthe Cypress GPU is as follows.
and senBSegecive iNstead ofl for each cell. WithSegecive We 1. Construct a treenfst).
do not need to Compute the square rooﬂohnd we S|mp|y 2. .Compute the total mass, the center of mass, andfibe-e
compareSeecive andd? during the tree traversal. tive size of each cellost).

In Figure[8, we present an abstract version of our compute 3. Compute the “next” and “more” pointersdst).
kernel written in IL. In IL programming, each SC executes the 4. Send the input data to the GPhbét).
compute kernel with the assigned data in parallel. Inthéeco 5. Iterative tree walk associated with the force calcutatar
own represents the specific cell assigned to each=56Coad, each particle GPU).

and-> are not real IL instructions or operations but conven- 6. Receive the force for each particle from the GPOS).

tional symbols used here for the purpose of explanation. We o ) .

have omitted the calculation of the load addresses for the a¥Vé have indicated whether the corresponding part is exécute
rays since it is too lengthy to show in detail. In additiore th ©N the hostor the GPU in bold text at the end of each step.
particle—particle and particle—cell interaction codegehbeen

omitted because they simply compute the functibmidpin 5 Testsand optimization

Eq. (@). INAppendix_A, we present a working compute kernel

written in C for OpenCL. We present a performance compari- Here, we describe the results of some basic tests to show
son between the IL and OpenCL implementations in the nexthat our code worked correctly, and to obtain some perfooman
section. characteristics. We used the configuration shown in Tabde 1 f



o center of mass of the particles

we compute the force

center of the cell

Figure 7: Schematic view of a distant cell and a particle \{shby a solid purple point). The black solid points are p&tichat belong to the cell. The large red
point is the center of mass of the particles in the cell.

all results presented in this paper. In the basic tests, wé as
set of particles randomly distributed in a sphere.

First, Tabld2 shows how the computing time dependblon
Each value of computing time was obtained by averaging the re
sults of 20 runs. In this test, we gt 0.6. Tiota) aNAT construction
are the total time required for the force calculation anditie

spent on the construction of the tree, respectively. Rauyghl Table 2: Dependence of computing speed\bmo sorting
the tree construction took 20—28% ©f,. For all values of

N used, we checked that there wageetively no error in the N Tiotal (S) | Tconstruction(S)
force computed by the GP[J All operations on the GPU were 50K | 395x 102 | 1.1x10°2

done with single-precision, and we observed that the erasr w
comparable to the machine epsilon,10°6. We believe that 100K | 9.65x 10 25x10°
the error originates from a filerence in the implementations 200K | 234x 10 | 61x1072
of the inverse of the square root on the host and on the GPU. 400K | 5.83x 1071 15x% 10°L
We con3|d_er that this is not_ at all _S|gn|f|cant for our purpoke 800K | 1.36x 10° 38x 101
astrophysical many-body simulations.

Regarding computing speed, randomly distributed paticle
are the most severe test because two successive partithes in
input data have a very high chance of being difedént posi-

IHere, the “error” is not the error due to the approximatiomghie force
calculations.



..declaration of I/0 arrays and constants...
..initialize variables for accumulation...

xi = load own->x
yi = load own->y
zi = load own->z

cell = root
whileloop
break if cell is null

xj = load cell->x
yj = load cell->y
zj load cell->z
mj = load cell->m
s_eff = load cell->s_eff

dx = xj - xi
dy = yj - yi
dz = zj - zi
r2 = dx*dx + dy*xdy + dz*dz

if cell is a particle
...compute particle-particle interaction...
cell = load next
else
if r2 > s_eff
...compute particle-cell interaction...
cell = load cell->next
else
cell = load cell->more
endif
endloop

Figure 8: Abstract IL code for our compute kernel that exesuhe iterative
tree walk.

Table 3: Dependence of computing speedMinparticles sorted in Morton
order

N Tiotal (S) | Tconstruction(S)
50K | 3.00x 1072 9.1x10°3
100K | 6.08x 1072 1.8x 1072
200K | 1.27x 101 | 39x102
400K | 2.65x 107t 8.0x 1072
800K | 5.66x 10t 1.6x107

tions. By the nature of the tree method, if two particles are
close to each other, those particles are expected to be in the
same cell and to interact with a similar list of particles alist

tant cells. This means that if two successive particles & th
input data are geometrically close, the tree walk for the sec
ond particle almost certainly takes less time owing to a @igh
cache-hit rate. To accomplish such a situation, we canert t
particles to ensure that successive particles are as dgsesa
sible together. Fortunately, such sorting is easily abélavith

the tree method by traversing the tree in depth-first order. |
the course of the traversal, we add each particle encouha¢re

a leaf node to a list. After the tree traversal, we can use the
list obtained to shfile the particles so that the order of parti-
cles is nearly the desired order. This ordering of partitdes
called the Morton ordering. With this preprocessing, theesp

of our method was altered as shown in Td0le 3. Note that the
time in Table8 does not contain the time required for the pre-
processing. This is adequate, since in astrophysical rhady-
simulations, the tree structure is repeatedly construatedch
time step so that we can automatically obtain this sorting fo
free. We observed thdt, obtained with the Morton ordering
was faster by a factor of 1.5-2.2, depending\grthan without

the preprocessing. Moreovégonstruciion@lSO decreased in all
cases owing to better cache usage on the host. With the Morton
ordering, the tree construction took roughly 14-27% gf..

The programming API for the Cypress GPU has a facility to
report the cache-hit rate for the GPU. In Tdble 4, we show how
the cache-hit rate depends bdhand the ordering of the parti-
cles. The results indicate that the performance of our ntetho
is significantly dfected by the ordering of the particles. In the
tests described in the following, we always used prepraogss
Note that we could have obtained even better results if we had
sorted the particles in the Peano—Hilbert order, which leesb
reported to be the optimal order for locality of data accass,
is used by some tree codes (e.g., Warren & Salinon, 1993).

In Figure[®, we presenfy as a function ofN for three
cases: the tree method with Morton ordering, the tree method
without sorting, and the brute force method. ExceptNbk
30,000, the tree method with Morton ordering € 0.6) out-
performs the brute force method on the GPU.

In Figure[10, we compare the performance for the follow-
ing three cases: (a) a kernel written in IL running on a Cypres
GPU, (b) a kernel written in C for OpenCL running on a Cy-



Table 4: Dependence of cache-hit rateNfor different orderings of the parti- OpencL GPU —m
OpenCL CPU rreereee o

cles 1E NiogN
N No sorting (%) | Morton ordering (%)
50K 75 93
100K 63 91 o
200K 55 87 )
400K 48 85
800K 43 80

! !
10000 100000 1le+06
N

IL (no sort)

IL (Morton)

IL (brute force) sreeeese
N log

Figure 10: Comparison between the tree method using a kemite¢n in IL,
the tree method using a kernel written in OpenCL on a GPU, hediree
method using a kernel written in OpenCL on a CPU. Thieg N scaling line
is also plotted for reference.

sec

0.1
Table 5: Dependence T%q5 and the cache-hit rate @for N = 800K

_ 0 Total (S) Cache-hit rate (%)
< 02| 1.65x 10" 23
R ‘ 0.3| 5.24x10° 36
N 0.4| 224x10° 48
| | ' 05| 114x10° 59
method o & GPUT o 22 & fancion oN s plated for three cases. T 06| 6.82x 10 68
andN log N scaling lines are also plotted for reference. 0.7 | 492x 1071 75
0.8 ] 3.98x 101 80
press GPU, and (c) a kernel written in C for OpenCL running 0.9 | 343x 101 80
on a multicore CPU. Since our test system had eight physical 10| 310%x 101 82

(16 logical) cores, the OpenCL kernel ran on the CPU with 16
threads. The last two cases show almost identical perfarenan
even though the theoretical performance in single pretifio
the Cypress GPU is2 O times faster. In fact, the tree method is show the dependence B and the cache-hit rate @n In this
not compute-intensive but is limited by memory bandwidtid a  test, we usetl = 800K particles. In all of the tests that we have
hence the fective performance of the compute kernel written presented so far, a clear trend is that the computing timasee
in IL is roughly ~ 1% of the theoretical performance in single- to be determined solely by the cache-hit rate. Before we had
precision. On the other hand, the performance gap between tijone these tests, we expected that branch operations weuld b
two kernels written in IL and C for OpenCL is a factore2.5.  a bottleneck for the compute kernel. In reality, all that et
We believe that one of the main reasons is that our computg the cache-hit rate.
kernel written in C for OpenCL is executed without using L1  Finally, we measured the average error in the accelerations
cache. We will investigate further optimizations of the @gé& using the following equation:
kernel in future work.
. . N-1 | 4tree _ Adirect

Next, we examine howWi., depends oA, which controls the 1 S arety
error bound for the tree method. A largemeans that more of Berror = L4 [gdiect
the distant particles are replaced by a multipole expandion =
other words, for a smallék we need to perform a larger number where a® and a"**! are the acceleration forces obtained by
of force calculations, and hence the computation will take g&he tree method on the GPU and by the brute force method on
longer time. At the same time, the error due to the multipolethe host computer, respectively. We use a similar definftion
expansion decreases. Practically, a force calculatiohéyree the error in the potentialerror. For this test, we used a realis-
method withd < 0.1 is reduced to almost the same level astic particle distribution that represented a disk galaxg Wged
a brute-force computation. In such a regimé&getively, we  GalactlCS|(Kuijken & Dubinski, 1995) to generate the paetic
do not have any preference for the tree method. In Table 5, wdistribution. The particle distribution had three compatse
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namely a bulge, a disk, and a halo, with a mass ratio of approxwherep is a parameter that controls the error bound. Figure
imately 1:2:12. Tablels|6 ad 7 presegkor and peror, respec- 10 of[Gumerov & Duraiswarni (2008) indicates that the aver-
tively, for several d¥erent values ofN andé. Bothagor and  age relative error obtained with = 4 was~2x10* for the
Perror depend ord as expected. Except ftd = 500K, we have potential. The error is comparable to the relative erroaiisd

a smalleragrror for largerN. We found no systematic error in with the tree method with ~ 0.5-0.6. Note that Gumerov and

a; computed by the tree code on the GPU. However, it wouldDuraiswami used a random patrticle distribution in a cube. Fo
be desirable to use double-precision variables for accationl comparison, we did a test with a similar particle distribati

of & to reduceag, for largeN > 10°. There is only a negli- Our kernel written in IL took 0.65 s foN = 1,048 576 with
gible difference between the results computed by the comput® = 0.6. The cache-hit rate of the test was 81%. The perfor-
kernels written in IL and in C for OpenCL. mance of our tree code and that obtained by Gumerov and Du-
raiswami with the FMM is comparable. Note that the Cypress
GPU used in the present work wadfdrent from and newer
than the GPU that Gumerov and Duraiswami used. Generally,
6.1. Octree textures on a GPU the FMM is well suited to applications that require longgan
Lefebvre et al.[(2005) have implemented an tree data S,[rucl:pteractlon forces for uniformly distributed particlessmurces,

. : whereas the tree method is more robust to the highly clustere
ture for a texture-mapping and tree traversal algorithm on a

GPU. Owing to the limitations of GPUs and on the SDK for particles that typically arise in astrophysical many-bstigu-

the GPUs at that time, their method seemed to be restricted Jations. We belleye that_our method is more suitable thaidha .
applications in computer graphics. A critical point is thia Gumerov & Duraiswami (2008) for our purpose of astrophysi-

possible depth of the tree was limited, so that we cannot di(-:al applications.

rectly employ this implementation for our purposes.

6. Comparison with other work

7. Conclusions

6.2. Another tree implementation on a GPU

Gaburov et dl[(2010) have reported another implementation N this paper, we have described our implementation of the
of the tree method on a GPU. Our implementation and theif€& method on a Cypress GPU. By transforming a recursive
approach share the same strategy, but there fierefices in tree traversal into an iterative procedure, we have shoan th
detail, aside from the GPU architecture adopted. Both of ué1® execution of a tree traversal together with a force dalcu
have implemented a tree walk on a GPU. The implementatioHON ©n @ GPU can be practical anffieient. In addition, our
of [Gaburov et al.[(2010) constructs interaction lists by nsea iIMmplementation shows performance comparable to that of a re
of a tree walk on a GPU and then computes the force on th&ently reported FMM code on a GPU.

GPU using these interaction lists. This implementatiomieg W& can expect to get further performance gains by fully uti-
three invocations of kernels. In contrast, we do a tree watk a 1iZing the four-vector SIMD operations of the SCs of the GPU.
compute the force on-the-fly with one kernel invocation. Moreover, since 10-20% Ghita is Spent on the tree construc-

Both approaches have pros and cons. Wit the GaburoV et dion. parallelization of this part on a multicore CPU will ba
(2010) approach, a fairly high computdfieiency 100 effective way to boost the total performance. Provided that we

Gflops) has been obtained, whereas our code shows low 2N easily extend our code to implement a force calculation f
ficiency (~ 30 Gflops). On the other hanf, Gaburov et al. short-range interactions by a method such as the SPH method,
(2010)'s code requires more floating-point operations thees ~ We believe that a future extended version of our code will en-
our optimal tree code. We believe that our implementatiorgPle us to do a realistic astrophysical simulation that lve®

is simpler than that of Gaburov et al. (2010), which require?aryon physics wittN > 1,000 000 very rapidly. Itis fairly
multi-pass computations. And we also believe that our im-£asy to incorporate higher-order multipole expansion $ento
plementation is easier to extend to a general tree walk. 1QUr method, and it would be a natural extension to the present
fact, we have extended our compute kernel written in IL toWork. Another good application of the tree method on a GPU
the SPH method (Gingold & Monaghan, 1977; Lidcy, 1977) angvould be to simulations that adopt a symmetrized Plummer po-

obtained fairly good performance. tential (Saitoh & Makino, 2010). We believe that our method
is the best for implementing that proposal, and hence that we

6.3. Fast multipole method on a GPU shall certainly obtain better accuracy and good perforrmamc
simulating galaxy evolution and formation withfidirent mass

Gumerov & Duraiswami (2008) have reported an implemen_resolutions
tation of a fast multipole method (FMM) on a GPU. The FMM '

is a sophisticated algorithm to evaluate long-range icteya

forces with a computational complexity 6(N). In the FMM,  Acknowledgments

in addition to the replacement of distant particles with tiaul

pole expansions, local expansions are utilized to evaltegte The author would like to thank M. Sato and K. Fujiwara for
force acting on a group of particles. Gumerov & Duraiswamitheir eforts to utilize Rv770 GPUs for astrophysical many-
(2008) reported that foN = 1,048 576, the algorithm took body particle simulations. Part of this work is based onrthei
0.68 s withp = 4 (Table 8 of Gumerov & Duraiswami (2008)), undergraduate theses of 2008 at the University of Aizu. The
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Table 6: Dependence of the average acceleration agrgron N andé. N is a multiple of 1024.

6 | N=10K | N=50K | N=100K | N =200K | N =500K
0.2 | 2.93e-04| 1.69e-04| 1.48e-04 | 2.24e-04 | 5.73e-03
0.3 | 6.37e-04| 4.42e-04| 3.98e-04 | 4.52e-04 | 5.90e-03
0.4 | 1.23e-03| 8.86e-04| 8.16e-04 | 8.27e-04 | 6.20e-03
0.5| 2.04e-03| 1.50e-03| 1.41e-03 | 1.36e-03 | 6.64e-03
0.6 | 3.15e-03| 2.31e-03| 2.20e-03 | 2.06e-03 | 7.20e-03
0.7 | 4.39e-03| 3.35e-03| 3.18e-03 | 2.94e-03 | 7.91e-03
0.8 | 5.94e-03| 4.51e-03| 4.33e-03 | 3.98e-03 | 8.77e-03
0.9 | 7.85e-03| 5.95e-03| 5.69e-03 | 5.22e-03 | 9.86e-03
1.0 | 9.95e-03| 7.69e-03| 7.34e-03 | 6.81e-03 | 1.13e-02

Table 7: Dependence of the average potential giggs on N andé.

6 | N=10K | N=50K | N=100K | N =200K | N =500K
0.2 | 4.46e-05| 4.39e-05| 5.37e-05| 5.52e-05| 4.64e-05
0.3 | 9.87e-05| 1.07e-04| 1.41e-04 | 1.42e-04 | 1.02e-04
0.4 | 1.84e-04| 1.90e-04| 2.70e-04 | 2.66e-04 | 1.80e-04
0.5| 2.98e-04| 2.96e-04| 4.30e-04 | 4.23e-04| 2.88e-04
0.6 | 4.42e-04| 4.34e-04| 6.23e-04 | 6.10e-04 | 4.28e-04
0.7 | 6.05e-04| 5.82e-04| 8.26e-04 | 8.12e-04 | 5.79e-04
0.8 | 7.71e-04| 7.29e-04| 1.04e-03 | 1.02e-03 | 7.29e-04
0.9 | 9.57e-04| 8.99e-04| 1.27e-03 | 1.24e-03 | 8.99e-04
1.0| 1.15e-03| 1.09e-03| 1.51e-03 | 1.47e-03| 1.10e-03
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Appendix A. Working OpenCL code

Kawai, A., Fukushige, T., & Makino, J. (1999). $/MMflops astrophysicaN-
body simulation with treecode on GRAPE-5. $mpercomputing '99: Pro-
ceedings of the 1999 AGMEE Conference on Supercomputing (CDROM)
(p. 67). New York: ACM.

Kuijken, K., & Dubinski, J. (1995). Nearly self-consistatisgbulgghalo mod-
els for galaxies.Monthly Notices of the Royal Astronomical Society?7,

In this appendix, we present our compute kernel written in C  1341-1353.
for OpenCL. We have tested this kernel with ATl Stream SDK-éfebvre. S., Homus, S., & Neyret, F. (2005). Octree Tedwn the GPU.

2.2. The functiortree_gm is an entry point to the kernet is
the number of particlespos[i] is afloat4 variable for the
positions and masses, i.ej, andm. acc_gl[i] is afloat4
variable for the accelerations and the potential, Beand p;.

next[] andmore[] are arrays that contains the two pointers

described in Sectidn4.4. For all arrays, we assume thatze d
for the particles is at indiceisfrom 0 ton — 1. The data for
the cells resides at>= n. Finally, size[] contains softening
parameters of the particles for< n and the size of the cells

fori >= n. We believe that it will be straightforward to prepare

these arrays from any tree implementation.
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float4 g(float4 dx, float r2, float mj)
{

float r1i = native_rsqrt(r2);

float r2i = rilixrili;

float rlim = mj*rili;

float r3im = rlim*r2i;

float4 f;

f.x = dx.x*r3im;
f.y = dx.y*r3im;
f.z = dx.z*r3im;
f.w = rlim;
return f;

__kernel void

tree_gm(__global float4 *pos,
__global float *size,
__global int *next,
__global int *more,
__global float4 *acc_g,
int root, int n)

unsigned int gid = get_global_id(0);
float4 p = pos[gid];

float4 acc = (float4) (0.0f, 0.0f, 0.0f, 0.0f);

int cur = root;
while(cur != -1) {
float4 q = posl[cur];
float mj = q.w;
float s = sizel[cur];
float4 dx = q - p;
float r2 = dx.x*dx.x + dx.y*dx.y + dx.z*xdx.z;

if (cur < n) {
if (r2 '= 0.0f) {
r2 += s;
acc += g(dx, r2, mj);
}
cur = next[cur];
} else {
if (s < r2) {
acc += g(dx, r2, mj);
cur = next[cur];
} else {
cur = morel[cur];
}
}
}

acc_glgid] = acc;

}

Figure A.11: Working OpenCL code that that executes thatitex treewalk. The compute kernel that we have written ifslinostly similar to this code.
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