
ar
X

iv
:1

11
2.

45
39

v1
  [

as
tr

o-
ph

.IM
]  

20
 D

ec
 2

01
1

Implementation of a Parallel Tree Method on a GPU

Naohito Nakasatoa

a Department of Computer Science and Engineering
University of Aizu

Aizu-Wakamatsu, Fukushima 965-8580, Japan
Email: nakasato@u-aizu.ac.jp

Abstract

The kd-tree is a fundamental tool in computer science. Among other applications, the application ofkd-tree search (by the tree
method) to the fast evaluation of particle interactions andneighbor search is highly important, since the computational complexity
of these problems is reduced fromO(N2) for a brute force method toO(N logN) for the tree method, whereN is the number of
particles. In this paper, we present a parallel implementation of the tree method running on a graphics processing unit (GPU). We
present a detailed description of how we have implemented the tree method on a Cypress GPU. An optimization that we found
important is localized particle ordering to effectively utilize cache memory. We present a number of test results and performance
measurements. Our results show that the execution of the tree traversal in a force calculation on a GPU is practical and efficient.
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1. Introduction

A technique for gravitational many-body simulations is a
fundamental tool in astrophysical simulations because thegrav-
itational force drives structure formation in the universe. The
length scales that arise in structure formation range from less
than 1 cm for the aggregation of dust to more than 1024 cm for
the formation of cosmological structures. At all scales, grav-
ity is a key physical process for the understanding of structure
formation. The reason behind this is the long-range nature of
gravity.

Suppose we simulate structure formation withN particles.
The flow of the many-body simulation is as follows. First, we
calculate the mutual gravitational forces between theN parti-
cles, then integrate the orbits for theN particles, and repeat
this process as necessary. Although it is simple in principle,
the force calculation is a challenging task from the point of
view of computer science. A simple, exact method for the force
calculation requiresO(N2) computational complexity, which is
prohibitively compute-intensive for largeN. An exact force
calculation is necessary in some types of simulations, suchas
few-body problems, the numerical integration of planets orbit-
ing around a star (e.g., the Solar System), and the evolutionof
dense star clusters. For simulations that do not require exact
forces, however, several approximation techniques have been
proposed (Hockney & Eastwood, 1981; Barnes & Hut, 1986;
Greengard & Rokhlin, 1987). The particle–mesh/particle–
particle–mesh method (Hockney & Eastwood, 1981) and the
tree method (Barnes & Hut, 1986) reduce the computational
complexity of the force calculation toO(N logN). The
fast multipole method (FMM) reduces it further toO(N)
(Greengard & Rokhlin, 1987). Of these methods, the tree
method has been used extensively in astrophysical simulations,

since its adaptive nature is essential for dealing with clumpy
structure in the universe (e.g., Bouchet & Hernquist, 1988).

Despite theO(N logN) complexity, computational optimiza-
tion of the tree method by techniques such as vectoriza-
tion and parallelization is necessary to accommodate demands
for simulations with larger and largerN. Hernquist (1990),
Makino (1990), and Barnes (1990) have reported various tech-
niques to vectorize the force calculation with the tree method.
Warren et al. (1992), Dubinski (1996), and Yahagi et al. (1999)
have reported a parallel tree method for massively parallel
processors (MPPs). In a recent publication (Springel et al.,
2005), a simulation of large-scale structure formation in the
universe with more than ten billion particles, using a paral-
lel tree code running on an MPP, has been reported. Another
computational technique to speed up the tree method utilizes
the GRAPE special-purpose computer (Sugimoto et al., 1990;
Makino & Taiji, 1998). Using a combination of vectorization
techniques for the tree method, the tree method can be executed
efficiently on a GRAPE system (Makino, 1991).

Cosmological simulations are a “grand challenge” prob-
lem. The Gordon Bell prizes have been awarded many
times for cosmological simulations (Warren & Salmon,
1992; Fukushige & Makino, 1996; Warren et al., 1997, 1998;
Kawai et al., 1999; Hamada et al., 2009). In those sim-
ulations, both parallel tree codes (Warren & Salmon, 1992;
Warren et al., 1997, 1998) and a tree code running on a GRAPE
system (Fukushige & Makino, 1996; Kawai et al., 1999) and
a graphics processing unit (GPU) (Hamada et al., 2009) were
used to perform cosmological simulations.

In the present paper, we describe our implementation of the
tree method on a GPU. The rise of the GPU forces us to re-
think our way of doing parallel computing, since the perfor-
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mance of recent GPUs has reached the impressive level of> 1
Tflops. Acceleration techniques for many-body simulations
with a GPU have already been reported (e.g., Nyland et al.,
2007; Portegies Zwart et al., 2007; Hamada & Iitaka, 2007;
Belleman et al., 2008); however, these techniques have imple-
mented an exact, brute force method withO(N2) complexity. It
is apparent, however, that for applications that do not require
exact forces, it is possible to do much more efficient compu-
tation by the tree method. We have directly implemented the
tree method on a GPU so that we can enjoy the speed of an
O(N logN) algorithm. For smallN < 30, 000, the brute force
method on a GPU is faster than the tree method owing to extra
work concerning the tree data structure. However, our results
show that the tree method significantly outperforms the brute
force method on a GPU forN ≫ 10, 000, which is the stan-
dard size in current astrophysical simulations is. Our codeis
simple and easy to extend to other numerical algorithms that
require a neighbor list or a short-range force, such as algo-
rithms for the smoothed particle hydrodynamics (SPH) method
(Gingold & Monaghan, 1977; Lucy, 1977).

2. GPU architecture

In this section, we briefly summarize the architecture of the
Cypress GPU that we used in the present work (most of the
information is taken from AMD Inc. (2010)).

2.1. Cypress architecture

The Cypress GPU, from AMD, is the company’s latest GPU
and has many enhancements for general-purpose computing. It
has 1600 arithmetic units in total. Each arithmetic unit is capa-
ble of executing single-precision floating-point fused multiply–
add (FMA) operation. Five arithmetic units make up a five-
way very-long-instruction-word (VLIW) unit called a stream
core (SC). Therefore, one Cypress processor has 320 SCs. One
SC can execute a several combinations of operations such as
(1) five 32-bit integer operations, (2) five single-precision FMA
operations, (3) four single-precision FMA operations withone
transcendental operation, (4) two double-precision add oper-
ations, or (5) one double-precision FMA operations. Each
SC has a register file of 1024 words, where one word is 128
bits long (four single-precision words or two double-precision
words). A group of 16 SCs make up a unit called a compute
unit. At the top level of the GPU, there are 20 compute units, a
controller unit called an ultra-threaded dispatch processor, and
other units such as units for graphics processing, memory con-
trollers, and DMA engines.

All SCs in the compute unit work in a single-instruction-
multiple-thread (SIMT) mode, i.e., 16 SCs execute the same
instructions for four clock cycles to accommodate the latency
of the arithmetic units. That is, we have 64 threads proceed-
ing as a wavefront on the Cypress GPU. At the time of writ-
ing, the fastest Cypress processor runs at 850 MHz and offers
a peak performance of 1600× 2× 850× 106 = 2.72 Tflop/s in
single-precision operations. With double-precision operations,
we have 320× 2× 850× 106 = 544 Gflop/s.

The external memory attached to the Cypress consists of 1
GB of GDDR5 memory with a 256 bit bus. It has a data clock
rate of 4.8 GHz and offers a bandwidth of 153.6 GB/s. This
external memory is accessed through four banks, as shown in
Figure 1. In each bank, there is a second-level read cache (L2
cache). The total size of the second-level cache is 512 KB, i.e.,
4× 128 KB. Twenty compute units and memory controllers are
interconnected through a crossbar. Each compute unit has a
first-level read cache (L1 cache) and a local data share (LDS),
as depicted in Figure 1. The sizes of the L1 cache and LDS are
8 KB and 32 KB, respectively. The L1 cache can fetch data at
54.4 GB/s when the cache is hit; namely, the aggregate band-
width of the L1 cache on the Cypress GPU is 54.4 GB/s× 20
= 1.088 TB/s. This high memory bandwidth is a notable fea-
ture of this GPU. As we shall describe in the following section,
taking advantage of the hardware-managed cache is criticalto
obtaining high performance on the Cypress GPU.

2.2. Programming the Cypress GPU
In the present work, we programmed the Cypress GPU using

an assembly-like language called IL (Intermediate Language).
IL is like a virtual instruction set for GPUs from AMD. With
IL, we have full control of every VLIW instruction. The pro-
gramming model supported by IL is a single-instruction-and-
multiple-data (SIMD) model at the level of the SC. In this pro-
gramming model, a sequence of instructions generated from an
IL program is executed on all SCs simultaneously with different
input data.

A block of code written in IL is called a compute kernel. The
device driver for a GPU compiles IL instructions into the cor-
responding machine code when we load a kernel written in IL.
In a compute kernel, we explicitly declare what type of vari-
able the input data is. In the main body of the IL code, we
write arithmetic operations on the input data. Logically, each
SC is implicitly assigned data that is different from that for ev-
ery other SC. In the case of a simple compute kernel, the SC
operates on the assigned data. Operations such as this, as arise
in pure stream computing, seem to work with the highest effi-
ciency. In a complex compute kernel, which we explore in the
present work, each SC not only operates on the assigned data
but also explicitly loads random data that might be assignedto
another SC. To accomplish a random access to external mem-
ory, we explicitly calculate the address of the data in the com-
pute kernel.

The ATI Stream software development kit (SDK) for the Cy-
press GPU also supports OpenCL, which is a standard API with
an extended C language (hereafter referred to as C for OpenCL)
for writing a compute kernel. In this work, we also present
a compute kernel written in C for OpenCL (see Appendix A
for the code). We believe that it is instructive to present our
algorithm in C for OpenCL and that this makes the algorithm
easy to understand. Both programming methods (using IL and
using C for OpenCL) have pros and cons. With IL, we have
the advantage of full control of the VLIW instructions, but a
compute kernel written in IL is somewhat cumbersome. On
the other hand, it is is easier to start writing a compute ker-
nel in C for OpenCL, but optimization for any particular GPU
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Figure 1: Block diagram of the Cypress GPU, with emphasis on the memory system.

architecture is not straightforward. An advantage of program-
ming with OpenCL is that we can use OpenCL to program a
general-purpose many-core CPU. In the following section, we
compare implementations of the tree method on a GPU based
on compute kernels written in IL and in C for OpenCL. We also
compare the performance of a compute kernel written in C for
OpenCL on a GPU and on a CPU.

3. Bare performance of brute force method on a GPU

So far, we have developed around a dozen kernels in IL that
we use for astrophysical many-body simulations. In this sec-
tion, we report the performance of our implementation of a
brute force method for computing gravitational forces. This
code served as a basis for us to implement a more sophisticated
algorithm later.

To be precise, we have implemented a set of conventional
equations expressed as

pi =

N
∑

j=1, j,i

p(xi , x j ,mj) =
N

∑

j=1, j,i

mj

(|xi − x j |
2 + ǫ2)1/2

,

ai =

N
∑

j=1, j,i

f (xi , x j ,mj) =
N

∑

j=1, j,i

mj(xi − x j)

(|xi − x j |
2 + ǫ2)3/2

,

(1)

whereai andpi are the force vector and potential for a particle
i, andxi , mi , ǫ are the position of the particle, its mass, and a
parameter that prevents division by zero, respectively. Wecan
solve these equations by two nested loops on a general-purpose
CPU. In the inner loop, we simultaneously evaluate the func-
tions p and f , and require 22 arithmetic operations, which in-
clude one square root and one division, to compute the interac-
tion between particlesi and j. Since previous authors, starting
from Warren et al. (1997), have used a conventional operation
count for the evaluation off i and pi , we have adopted a con-
ventional count of 38 throughout this paper.

Elsen et al. (2006) reported an implementation of a brute
force method for gravitational and other forces on an old
GPU from AMD/ATi. One of the main insights obtained
was that a loop-unrolling technique greatly enhanced the per-
formance of the code. We have followed Elsen et al.’s ap-
proach and tried several different methods of loop unrolling.
Fujiwara & Nakasato (2009) have reported our optimization ef-
forts for old GPUs. Here, we present a summary of our results.
In Figure 2, we plot the computing speed of our optimized IL
kernel for computing Eq.(1) as a function ofN. We tested
three GPU boards, namely RV770 GPUs running at 625 and
750 MHz and a Cypress GPU running at 850 MHz. The three
systems had peak computing speeds in single precision of 1.04,
1.2, and 2.72 Tflop/s, respectively. So far, we have obtained a
maximum performance of∼ 2.6 Tflop/s on the Cypress GPU
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Figure 2: Performance of the brute force method on various GPUs

for N > 150, 000. ForN = 195, 584, our optimized brute force
method took roughly 0.5 s on the Cypress GPU. As far as we
know, the performance that we obtained is the fastest ever with
one GPU chip.

Even with the massive computing power available on such
GPUs, however, we cannot escape from a computational com-
plexity of O(N2). Therefore, if we need to do an astrophysical
many-body simulation for largeN, we need a smart algorithm
to do the job, since the recent standard forN in astrophysical
simulations is at least 100, 000 for complex simulations with
baryon physics and 1, 000, 000 for simple many-body simula-
tions.

4. Tree method on a GPU

4.1. Tree method

The tree method (Barnes & Hut, 1986) is a special case of
the generalkd-tree algorithm. This method has been optimized
to efficiently calculate the mutual forces between particles, and
reduces the computational complexity of the force calculation
from O(N2) for the brute force method toO(N logN). A trick
used is that instead of computing the exact force by a brute
force method, it approximates the force from distant particles
using a multipole expansion. It is apparent that there is a trade-
off between the approximation error and the way in which we
replace a group of distant particles by a multipole expansion.
A tree structure that contains all particles is used to judgethis
trade-off efficiently.

The force calculation in the tree method is executed in two
steps: (1) a tree construction and (2) the force calculation. In
the tree construction, we divide a cube that encloses all of the
particles into eight equal sub-cells. The first cell is the root of a
tree that we construct; it is called the root cell. Then, eachsub-
cell is recursively subdivided in the same say until each cell
contains zero or one particle. As the result of this procedure,
we obtain an oct-tree.

In the force calculation, we traverse the tree to judge whether
we should replace a distant cell that contains a group of particles

procedure treewalk(i, cell)

if cell has only one particle

force += f(i, cell)

else

if cell is far enough from i

force += f_multipole(i, cell)

else

for i = 0, 7

if cell->subcell[i] exists

treewalk(i, cell->subcell[i])

Figure 3: Pseudocode for the force calculation by traversing the tree

that are geometrically close together with the multipole expan-
sion of those particles. If we do not replace the cell, we then
traverse sub-cells of the distant cell. If we do replace the cell,
we calculate a particle–cell interaction. When we encounter a
particle, we immediately calculate a particle–particle interac-
tion. Given a particle with indexi which we want to com-
pute the force acting on, this procedure is expressed as pseu-
docode in Figure 3. Note thatsubcell[] is a pointers to its
own sub-cells. In this pseudocode,f is a function that com-
putes the particle–particle interaction, andf_multipole is a
function that computes the particle–cell interaction. In the work
described in this paper, since we considered only the monopole
moment of a cell, both functions were expressed exactly as in
Eq. (1). In principle, we can use any high-order moment in the
particle–cell interaction.

We follow this procedure starting from the root cell, with
the following condition that tests whether a cell is far enough
away. Let the distance between the particle and the cell bed.
The cell is well separated from the particle ifl/d < θ, where
l is the size of the cell andθ is a parameter that controls the
trade-off. Since the smallerl/d is, the more distant the cell is
from the particle, this condition (called the opening condition)
tests geometrically whether the cell is far from the particle. This
recursive force-calculation procedure is almost the same as in
the original algorithm of Barnes & Hut (1986).

An important feature of the tree method is that with tree
traversal, the force calculations for different particles are com-
pletely independent of each other. Therefore, after we have
completed the tree construction, the force calculation is amas-
sively parallel problem. There are two possible ways to im-
plement the tree method on a GPU to take advantage of this
feature.

4.2. Tree method with GRAPE

One way is a method proposed by Makino (1991). This
method was proposed as a tree method for the special-purpose
computer GRAPE. A GRAPE system consists of a host com-
puter and a GRAPE board or boards. The host computer con-
trols the GRAPE board. For a program running on the host, the
GRAPE board acts like a subroutine that calculates the gravita-
tional forces for given particles.

So, we need the following two steps to use a GRAPE system
for a force calculation using the tree method: (1) construction of
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an interaction list on the host computer, and (2) the actual force
calculation on the GRAPE board. The interaction list is a list
of particles and distant cells that are supposed to interactwith a
given particle. After the construction of interaction lists for all
particles is completed, we compute the force on each particle
by sending the interaction lists to the GRAPE board. These two
steps are necessary because the GRAPE board does not have the
ability to traverse the tree. Many authors have used this method
extensively. Three winners and a finalist of the Gordon Bell
prize have used a variant of this method with a different version
of the GRAPE system and a GPU (Fukushige & Makino, 1996;
Kawai et al., 1999; Hamada et al., 2009; Kawai & Fukushige,
2006). A drawback of this approach is that the performance is
limited by the speed of the host computer that is responsible
for the tree traversal. This possible bottleneck, which is sim-
ilar to Amdahl’s law, might be critical without a highly tuned
implementation oftreewalk() running on the host. Further-
more, in all of the results presented by Fukushige & Makino
(1996), Kawai et al. (1999), Kawai & Fukushige (2006), and
Hamada et al. (2009), extra force evaluations by a factor of two
were required to obtain the best performance. Note that be-
cause of the extra force evaluations, the maximum error in the
force that these authors have reported was better than the error
obtained with the conventional tree method for a givenθ.

4.3. General tree walk

Another way to implement the tree method, which we have
followed in the present work, is to implement the whole pro-
cedure shown in Figure 3 on a GPU. The advantage of this
approach is that only the tree construction, which requiresrel-
atively little time, is executed on the host, so that we utilize
the massive computing power of the GPU as much as possi-
ble. More importantly, we can use our method in applications
that require short-range interaction forces (Warren & Salmon,
1995). This is because it is possible to implement a neigh-
bor search algorithm as a general tree-walk procedure of the
kind shown in Figure 4. Two procedures,proc_particle
andproc_cell, are used to process the particle–particle and
particle–cell interactions, respectively. In addition, afunction
distance_test is used to control the treatment of a distant
cell. The calculation of the gravitational force is an application
of the general tree-walk procedure that has been very success-
ful.

4.4. Our GPU implementation

In our implementation of the tree method on a Cypress GPU,
we first construct an tree on the host computer that controls the
GPU. At this stage, there is no difference between our original
tree code and the newly developed code for the GPU.

We need to take special care in implementing the tree-walk
procedure on the GPU. Currently, GPU architecture does not
support recursive procedures except when it is possible to fully
expand a recursion. Such a full expansion is possible only if
the level of the recursion is fixed, but in the tree method, it is
impossible to know how deep the recursion will be without per-
forming the tree traversal. So, we adopted a method proposed

procedure general_treewalk(i, cell)

if cell has only one particle

proc_particle(i, cell)

else

if distance_test(i, cell) is true

proc_cell(i, cell)

else

for i = 0, 7

if cell->subcell[i] exists

general_treewalk(i, cell->subcell[i])

Figure 4: Pseudocode for a general tree-walk procedure.

procedure treewalk_iterative(i)

cell = the root cell

while cell is not null

if cell has only one particle

force += f(i, cell)

cell = cell->next

else

if cell is far enough from i

force += f_multipole(i, cell)

cell = cell->next

else

cell = cell->more

Figure 6: Pseudocode for an iterative tree-walk procedure.

by Makino (1990) that transforms a recursion intreewalk()
into an iteration. A key feature is that for a given cell, we do
not need whole pointers (subcell[]) to traverse the tree. We
need only two pointers, to the cells that we will visit next when
the opening condition is true and when it is false, respectively.
These two pointers (hereafter callednext[] andmore[]) are
easily obtained by a breadth-first traversal of the tree. Figure 5
showsnext[] andmore[] schematically. Note that a cell that
has sub-cells has both anext[] and amore[] pointer, while
a leaf cell (a particle in the present case) with no sub-cellshas
only anext[] pointer. An iterative form oftreewalk() with
these two pointers is shown in Figure 6.

We implemented the iterative proceduretreewalk() rather
directly in IL. The input data for this compute kernel is fourar-
rays. The first contains the positions and masses of the particles
and cells. We pack a position and a mass into a vector variable
with four elements. Therefore, this array is an array of four-
element vectors. The mass of a cell equals the total mass of the
particles in the cell, and the position of the cell is at the center
of mass of the particles. The second and third arrays contain
the “next” and “more” pointers, respectively. Both of theseare
simple arrays. The fourth array contains the sizes of the cells.
The size of the cell is necessary for testing the opening con-
dition. See the description in Appendix Appendix A for the
definitions of these arrays.

In the present work, we adopted the following modified
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Figure 5: A tree with “more” and “next” pointers, shown by blue and red arrows, respectively.

opening condition, expressed as

l
θ
+ s< d, (2)

wheres is the distance between the center of the cell and the
center of mass of the cell. The modified condition of Eq. (2)
takes the particle distribution in the cell into account throughs
since if particles gather at a corner of a cell, the effective size
of the cell becomes larger. In Figure 7, we present a schematic
view of a distant cell and a particle which we are trying to calcu-
late the force acting on. In practice, we precomputed the square
of the effective sizeSeffective as

Seffective=

(

l
θ
+ s

)2

, (3)

and sentSeffective instead ofl for each cell. WithSeffective, we
do not need to compute the square root ofd, and we simply
compareSeffective andd2 during the tree traversal.

In Figure 8, we present an abstract version of our compute
kernel written in IL. In IL programming, each SC executes the
compute kernel with the assigned data in parallel. In this code,
own represents the specific cell assigned to each SC;=, load,
and-> are not real IL instructions or operations but conven-
tional symbols used here for the purpose of explanation. We
have omitted the calculation of the load addresses for the ar-
rays since it is too lengthy to show in detail. In addition, the
particle–particle and particle–cell interaction codes have been
omitted because they simply compute the functionsf andp in
Eq. (1). In Appendix A, we present a working compute kernel
written in C for OpenCL. We present a performance compari-
son between the IL and OpenCL implementations in the next
section.

Table 1: Our test system

CPU Intel Xeon E5520× 2

Memory DDR3 800 1GB× 6

GPU Radeon 5870 memory 1GB

OS Ubuntu 9.10 (64 bit)

Driver Catalyst 10.8 (fglrx 8.76.7 [Aug 3 2010])

SDK ATI Stream SDK 2.2

With the compute kernel shown, the flow of our tree method
on the Cypress GPU is as follows.

1. Construct a tree (host).
2. Compute the total mass, the center of mass, and the effec-

tive size of each cell (host).
3. Compute the “next” and “more” pointers (host).
4. Send the input data to the GPU (host).
5. Iterative tree walk associated with the force calculation for

each particle (GPU).
6. Receive the force for each particle from the GPU (host).

We have indicated whether the corresponding part is executed
on the host or the GPU in bold text at the end of each step.

5. Tests and optimization

Here, we describe the results of some basic tests to show
that our code worked correctly, and to obtain some performance
characteristics. We used the configuration shown in Table 1 for
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Figure 7: Schematic view of a distant cell and a particle (shown by a solid purple point). The black solid points are particles that belong to the cell. The large red
point is the center of mass of the particles in the cell.

all results presented in this paper. In the basic tests, we used a
set of particles randomly distributed in a sphere.

First, Table 2 shows how the computing time depends onN.
Each value of computing time was obtained by averaging the re-
sults of 20 runs. In this test, we setθ = 0.6. Ttotal andTconstruction

are the total time required for the force calculation and thetime
spent on the construction of the tree, respectively. Roughly,
the tree construction took 20–28% ofTtotal. For all values of
N used, we checked that there was effectively no error in the
force computed by the GPU.1 All operations on the GPU were
done with single-precision, and we observed that the error was
comparable to the machine epsilon,∼ 10−6. We believe that
the error originates from a difference in the implementations
of the inverse of the square root on the host and on the GPU.
We consider that this is not at all significant for our purposeof
astrophysical many-body simulations.

Regarding computing speed, randomly distributed particles
are the most severe test because two successive particles inthe
input data have a very high chance of being at different posi-

1Here, the “error” is not the error due to the approximations in the force
calculations.

Table 2: Dependence of computing speed onN: no sorting

N Ttotal (s) Tconstruction(s)

50K 3.95× 10−2 1.1× 10−3

100K 9.65× 10−2 2.5× 10−2

200K 2.34× 10−1 6.1× 10−2

400K 5.83× 10−1 1.5× 10−1

800K 1.36× 100 3.8× 10−1
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...declaration of I/O arrays and constants...

...initialize variables for accumulation...

xi = load own->x

yi = load own->y

zi = load own->z

cell = root

whileloop

break if cell is null

xj = load cell->x

yj = load cell->y

zj = load cell->z

mj = load cell->m

s_eff = load cell->s_eff

dx = xj - xi

dy = yj - yi

dz = zj - zi

r2 = dx*dx + dy*dy + dz*dz

if cell is a particle

...compute particle-particle interaction...

cell = load next

else

if r2 > s_eff

...compute particle-cell interaction...

cell = load cell->next

else

cell = load cell->more

endif

endloop

Figure 8: Abstract IL code for our compute kernel that executes the iterative
tree walk.

Table 3: Dependence of computing speed onN: particles sorted in Morton
order

N Ttotal (s) Tconstruction(s)

50K 3.00× 10−2 9.1× 10−3

100K 6.08× 10−2 1.8× 10−2

200K 1.27× 10−1 3.9× 10−2

400K 2.65× 10−1 8.0× 10−2

800K 5.66× 10−1 1.6× 10−1

tions. By the nature of the tree method, if two particles are
close to each other, those particles are expected to be in the
same cell and to interact with a similar list of particles anddis-
tant cells. This means that if two successive particles in the
input data are geometrically close, the tree walk for the sec-
ond particle almost certainly takes less time owing to a higher
cache-hit rate. To accomplish such a situation, we can sort the
particles to ensure that successive particles are as close as pos-
sible together. Fortunately, such sorting is easily available with
the tree method by traversing the tree in depth-first order. In
the course of the traversal, we add each particle encountered at
a leaf node to a list. After the tree traversal, we can use the
list obtained to shuffle the particles so that the order of parti-
cles is nearly the desired order. This ordering of particlesis
called the Morton ordering. With this preprocessing, the speed
of our method was altered as shown in Table 3. Note that the
time in Table 3 does not contain the time required for the pre-
processing. This is adequate, since in astrophysical many-body
simulations, the tree structure is repeatedly constructedat each
time step so that we can automatically obtain this sorting for
free. We observed thatTtotal obtained with the Morton ordering
was faster by a factor of 1.5–2.2, depending onN, than without
the preprocessing. Moreover,Tconstructionalso decreased in all
cases owing to better cache usage on the host. With the Morton
ordering, the tree construction took roughly 14–27% ofTtotal.

The programming API for the Cypress GPU has a facility to
report the cache-hit rate for the GPU. In Table 4, we show how
the cache-hit rate depends onN and the ordering of the parti-
cles. The results indicate that the performance of our method
is significantly affected by the ordering of the particles. In the
tests described in the following, we always used preprocessing.
Note that we could have obtained even better results if we had
sorted the particles in the Peano–Hilbert order, which has been
reported to be the optimal order for locality of data access,and
is used by some tree codes (e.g., Warren & Salmon, 1993).

In Figure 9, we presentTtotal as a function ofN for three
cases: the tree method with Morton ordering, the tree method
without sorting, and the brute force method. Except forN <
30, 000, the tree method with Morton ordering (θ = 0.6) out-
performs the brute force method on the GPU.

In Figure 10, we compare the performance for the follow-
ing three cases: (a) a kernel written in IL running on a Cypress
GPU, (b) a kernel written in C for OpenCL running on a Cy-

8



Table 4: Dependence of cache-hit rate onN for different orderings of the parti-
cles

N No sorting (%) Morton ordering (%)

50K 75 93

100K 63 91

200K 55 87

400K 48 85

800K 43 80

 0.01

 0.1

 1

 10000  100000  1e+06

se
c

N

IL (no sort)
IL (Morton)

IL (brute force)
N log N

N2

Figure 9: Comparison between the tree method on a GPU and the brute force
method on a GPU.Ttotal as a function ofN is plotted for three cases. TheN2

andN log N scaling lines are also plotted for reference.

press GPU, and (c) a kernel written in C for OpenCL running
on a multicore CPU. Since our test system had eight physical
(16 logical) cores, the OpenCL kernel ran on the CPU with 16
threads. The last two cases show almost identical performance
even though the theoretical performance in single precision for
the Cypress GPU is∼2 0 times faster. In fact, the tree method is
not compute-intensive but is limited by memory bandwidth, and
hence the effective performance of the compute kernel written
in IL is roughly∼ 1% of the theoretical performance in single-
precision. On the other hand, the performance gap between the
two kernels written in IL and C for OpenCL is a factor of∼2.5.
We believe that one of the main reasons is that our compute
kernel written in C for OpenCL is executed without using L1
cache. We will investigate further optimizations of the OpenCL
kernel in future work.

Next, we examine howTtotal depends onθ, which controls the
error bound for the tree method. A largerθ means that more of
the distant particles are replaced by a multipole expansion. In
other words, for a smallerθ, we need to perform a larger number
of force calculations, and hence the computation will take a
longer time. At the same time, the error due to the multipole
expansion decreases. Practically, a force calculation by the tree
method withθ < 0.1 is reduced to almost the same level as
a brute-force computation. In such a regime, effectively, we
do not have any preference for the tree method. In Table 5, we

 0.01

 0.1

 1

 10000  100000  1e+06

se
c

N

IL
OpenCL GPU
OpenCL CPU

N log N

Figure 10: Comparison between the tree method using a kernelwritten in IL,
the tree method using a kernel written in OpenCL on a GPU, and the tree
method using a kernel written in OpenCL on a CPU. TheN log N scaling line
is also plotted for reference.

Table 5: Dependence ofTtotal and the cache-hit rate onθ for N = 800K

θ Ttotal (s) Cache-hit rate (%)

0.2 1.65× 101 23

0.3 5.24× 100 36

0.4 2.24× 100 48

0.5 1.14× 100 59

0.6 6.82× 10−1 68

0.7 4.92× 10−1 75

0.8 3.98× 10−1 80

0.9 3.43× 10−1 80

1.0 3.10× 10−1 82

show the dependence ofTtotal and the cache-hit rate onθ. In this
test, we usedN = 800K particles. In all of the tests that we have
presented so far, a clear trend is that the computing time seems
to be determined solely by the cache-hit rate. Before we had
done these tests, we expected that branch operations would be
a bottleneck for the compute kernel. In reality, all that matters
is the cache-hit rate.

Finally, we measured the average error in the accelerations
using the following equation:

aerror =
1
N

N−1
∑

i=0

|atree
i − adirect

i |

|adirect
i |

, (4)

whereatree
i and adirect

i are the acceleration forces obtained by
the tree method on the GPU and by the brute force method on
the host computer, respectively. We use a similar definitionfor
the error in the potential,perror. For this test, we used a realis-
tic particle distribution that represented a disk galaxy. We used
GalactICS (Kuijken & Dubinski, 1995) to generate the particle
distribution. The particle distribution had three components,
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namely a bulge, a disk, and a halo, with a mass ratio of approx-
imately 1:2:12. Tables 6 and 7 presentaerror andperror, respec-
tively, for several different values ofN andθ. Both aerror and
perror depend onθ as expected. Except forN = 500K, we have
a smalleraerror for largerN. We found no systematic error in
ai computed by the tree code on the GPU. However, it would
be desirable to use double-precision variables for accumulation
of ai to reduceaerror for largeN > 105. There is only a negli-
gible difference between the results computed by the compute
kernels written in IL and in C for OpenCL.

6. Comparison with other work

6.1. Octree textures on a GPU

Lefebvre et al. (2005) have implemented an tree data struc-
ture for a texture-mapping and tree traversal algorithm on a
GPU. Owing to the limitations of GPUs and on the SDK for
the GPUs at that time, their method seemed to be restricted to
applications in computer graphics. A critical point is thatthe
possible depth of the tree was limited, so that we cannot di-
rectly employ this implementation for our purposes.

6.2. Another tree implementation on a GPU

Gaburov et al. (2010) have reported another implementation
of the tree method on a GPU. Our implementation and their
approach share the same strategy, but there are differences in
detail, aside from the GPU architecture adopted. Both of us
have implemented a tree walk on a GPU. The implementation
of Gaburov et al. (2010) constructs interaction lists by means
of a tree walk on a GPU and then computes the force on the
GPU using these interaction lists. This implementation requires
three invocations of kernels. In contrast, we do a tree walk and
compute the force on-the-fly with one kernel invocation.

Both approaches have pros and cons. With the Gaburov et al.
(2010) approach, a fairly high compute efficiency (∼ 100
Gflops) has been obtained, whereas our code shows low ef-
ficiency (∼ 30 Gflops). On the other hand, Gaburov et al.
(2010)’s code requires more floating-point operations thandoes
our optimal tree code. We believe that our implementation
is simpler than that of Gaburov et al. (2010), which requires
multi-pass computations. And we also believe that our im-
plementation is easier to extend to a general tree walk. In
fact, we have extended our compute kernel written in IL to
the SPH method (Gingold & Monaghan, 1977; Lucy, 1977) and
obtained fairly good performance.

6.3. Fast multipole method on a GPU

Gumerov & Duraiswami (2008) have reported an implemen-
tation of a fast multipole method (FMM) on a GPU. The FMM
is a sophisticated algorithm to evaluate long-range interaction
forces with a computational complexity ofO(N). In the FMM,
in addition to the replacement of distant particles with multi-
pole expansions, local expansions are utilized to evaluatethe
force acting on a group of particles. Gumerov & Duraiswami
(2008) reported that forN = 1, 048, 576, the algorithm took
0.68 s withp = 4 (Table 8 of Gumerov & Duraiswami (2008)),

wherep is a parameter that controls the error bound. Figure
10 of Gumerov & Duraiswami (2008) indicates that the aver-
age relative error obtained withp = 4 was∼2×10−4 for the
potential. The error is comparable to the relative error obtained
with the tree method withθ ∼ 0.5–0.6. Note that Gumerov and
Duraiswami used a random particle distribution in a cube. For
comparison, we did a test with a similar particle distribution.
Our kernel written in IL took 0.65 s forN = 1, 048, 576 with
θ = 0.6. The cache-hit rate of the test was 81%. The perfor-
mance of our tree code and that obtained by Gumerov and Du-
raiswami with the FMM is comparable. Note that the Cypress
GPU used in the present work was different from and newer
than the GPU that Gumerov and Duraiswami used. Generally,
the FMM is well suited to applications that require long-range
interaction forces for uniformly distributed particles orsources,
whereas the tree method is more robust to the highly clustered
particles that typically arise in astrophysical many-bodysimu-
lations. We believe that our method is more suitable than that of
Gumerov & Duraiswami (2008) for our purpose of astrophysi-
cal applications.

7. Conclusions

In this paper, we have described our implementation of the
tree method on a Cypress GPU. By transforming a recursive
tree traversal into an iterative procedure, we have shown that
the execution of a tree traversal together with a force calcula-
tion on a GPU can be practical and efficient. In addition, our
implementation shows performance comparable to that of a re-
cently reported FMM code on a GPU.

We can expect to get further performance gains by fully uti-
lizing the four-vector SIMD operations of the SCs of the GPU.
Moreover, since 10–20% ofTtotal is spent on the tree construc-
tion, parallelization of this part on a multicore CPU will bean
effective way to boost the total performance. Provided that we
can easily extend our code to implement a force calculation for
short-range interactions by a method such as the SPH method,
we believe that a future extended version of our code will en-
able us to do a realistic astrophysical simulation that involves
baryon physics withN > 1, 000, 000 very rapidly. It is fairly
easy to incorporate higher-order multipole expansion terms into
our method, and it would be a natural extension to the present
work. Another good application of the tree method on a GPU
would be to simulations that adopt a symmetrized Plummer po-
tential (Saitoh & Makino, 2010). We believe that our method
is the best for implementing that proposal, and hence that we
shall certainly obtain better accuracy and good performance in
simulating galaxy evolution and formation with different mass
resolutions.
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Table 6: Dependence of the average acceleration erroraerror on N andθ. N is a multiple of 1024.

θ N = 10K N = 50K N = 100K N = 200K N = 500K

0.2 2.93e-04 1.69e-04 1.48e-04 2.24e-04 5.73e-03

0.3 6.37e-04 4.42e-04 3.98e-04 4.52e-04 5.90e-03

0.4 1.23e-03 8.86e-04 8.16e-04 8.27e-04 6.20e-03

0.5 2.04e-03 1.50e-03 1.41e-03 1.36e-03 6.64e-03

0.6 3.15e-03 2.31e-03 2.20e-03 2.06e-03 7.20e-03
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0.9 7.85e-03 5.95e-03 5.69e-03 5.22e-03 9.86e-03

1.0 9.95e-03 7.69e-03 7.34e-03 6.81e-03 1.13e-02

Table 7: Dependence of the average potential errorperror on N andθ.

θ N = 10K N = 50K N = 100K N = 200K N = 500K

0.2 4.46e-05 4.39e-05 5.37e-05 5.52e-05 4.64e-05

0.3 9.87e-05 1.07e-04 1.41e-04 1.42e-04 1.02e-04

0.4 1.84e-04 1.90e-04 2.70e-04 2.66e-04 1.80e-04

0.5 2.98e-04 2.96e-04 4.30e-04 4.23e-04 2.88e-04

0.6 4.42e-04 4.34e-04 6.23e-04 6.10e-04 4.28e-04
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0.8 7.71e-04 7.29e-04 1.04e-03 1.02e-03 7.29e-04

0.9 9.57e-04 8.99e-04 1.27e-03 1.24e-03 8.99e-04
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Appendix A. Working OpenCL code

In this appendix, we present our compute kernel written in C
for OpenCL. We have tested this kernel with ATI Stream SDK
2.2. The functiontree_gm is an entry point to the kernel.n is
the number of particles.pos[i] is a float4 variable for the
positions and masses, i.e.,xi andmi . acc_g[i] is a float4

variable for the accelerations and the potential, i.e.,ai and pi .
next[] andmore[] are arrays that contains the two pointers
described in Section 4.4. For all arrays, we assume that the data
for the particles is at indicesi from 0 to n − 1. The data for
the cells resides ati >= n. Finally, size[] contains softening
parameters of the particles fori < n and the size of the cells
for i >= n. We believe that it will be straightforward to prepare
these arrays from any tree implementation.
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float4 g(float4 dx, float r2, float mj)

{

float r1i = native_rsqrt(r2);

float r2i = r1i*r1i;

float r1im = mj*r1i;

float r3im = r1im*r2i;

float4 f;

f.x = dx.x*r3im;

f.y = dx.y*r3im;

f.z = dx.z*r3im;

f.w = r1im;

return f;

}

__kernel void

tree_gm(__global float4 *pos,

__global float *size,

__global int *next,

__global int *more,

__global float4 *acc_g,

int root, int n)

{

unsigned int gid = get_global_id(0);

float4 p = pos[gid];

float4 acc = (float4)(0.0f, 0.0f, 0.0f, 0.0f);

int cur = root;

while(cur != -1) {

float4 q = pos[cur];

float mj = q.w;

float s = size[cur];

float4 dx = q - p;

float r2 = dx.x*dx.x + dx.y*dx.y + dx.z*dx.z;

if (cur < n) {

if (r2 != 0.0f) {

r2 += s;

acc += g(dx, r2, mj);

}

cur = next[cur];

} else {

if (s < r2) {

acc += g(dx, r2, mj);

cur = next[cur];

} else {

cur = more[cur];

}

}

}

acc_g[gid] = acc;

}

Figure A.11: Working OpenCL code that that executes the iterative treewalk. The compute kernel that we have written in ILis mostly similar to this code.
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